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Abstract— Clouds play a key role in regulating climate change
but are difficult to simulate within Earth system models (ESMs).
Improving the representation of clouds is one of the key tasks
toward more robust climate change projections. This study
introduces a new machine-learning-based framework relying on
satellite observations to improve understanding of the representa-
tion of clouds and their relevant processes in climate models. The
proposed method is capable of assigning distributions of estab-
lished cloud types to coarse data. It facilitates a more objective
evaluation of clouds in ESMs and improves the consistency of
cloud process analysis. The method is built on satellite data from
the Moderate Resolution Imaging Spectroradiometer (MODIS)
instrument labeled by deep neural networks with cloud types
defined by the World Meteorological Organization (WMO), using
cloud-type labels from CloudSat as ground truth. The method
is applicable to datasets with information about physical cloud
variables comparable to MODIS satellite data and at sufficiently
high temporal resolution. We apply the method to alternative
satellite data from the Cloud_cci project (ESA Climate Change
Initiative), coarse-grained to typical resolutions of climate models.
The resulting cloud-type distributions are physically consistent
and the horizontal resolutions typical of ESMs are sufficient to
apply our method. We recommend outputting crucial variables
required by our method for future ESM data evaluation. This
will enable the use of labeled satellite data for a more systematic
evaluation of clouds in climate models.
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I. INTRODUCTION

EARTH system models (ESMs, also referred to as cli-

mate models) are important tools not only to improve

our understanding of present-day climate but also to project

climate change under different plausible future scenarios.

The simulation of clouds and their interactions with the

climate system, however, remain a major challenge for

ESMs [1]. The representation of clouds in these models has

been identified as one of the primary sources of intermodel

spread [2], [3]. An improved representation of cloud processes

in ESMs is therefore an essential component in addressing

these issues [4], [5], [6].

Observations frequently used to assess model performance

are obtained from long-term satellite products providing near-

global coverage, which have proven to be well suited for

the evaluation of climate models [7], [8]. This conventional

approach is, however, constrained in part due to limitations and

uncertainties of observational products themselves [9], such as

biases or varying spatial and temporal coverage.

We propose a new approach to ESM evaluation, designed

to facilitate process-oriented evaluation of clouds in climate

models and to address some of the apparent limitations

of using conventional observational data. We use a priori

knowledge about the characteristics of different cloud classes

based on the cloud-type classification of the World Meteo-

rological Organization (WMO). By exploiting this a priori

knowledge, cloud processes can be highlighted in further

evaluation. Our approach extends the recent development

of machine learning based cloud classification methods for

satellite data [10], [11], [12], [13], [14], [15] to climate

models. Machine learning-based cloud classification is not a

new idea (see [16]), but has only recently become feasible

for large-scale applications due to the increase in available

computing power and the different available methods have

distinct properties. An important distinction between classifi-

cation methods is whether they are supervised or unsupervised.

The former relies on previously assigned classes and the latter

aims at automatically finding distinct new classes. Supervised

classification relies on the assumption that the assigned classes

fit the purpose, whereas the user has limited control over the
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makeup of the classes in unsupervised methods. Therefore,

supervised methods allow for interpreting the final results

without additional analysis steps but require a set of labeled

data [11], [14]. If the goal is to find classes that are as distinct

as possible, or if no previously labeled data are available,

unsupervised methods are preferable [12], [13].

To our knowledge, no high-resolution [O(1 km)] cloud-

class-labeled satellite data have been used for analysis and

evaluation of ESMs, so far. labeled datasets allow for a

more detailed and more direct interpretation of cloud classes

in the respective satellite data in contrast to comparatively

coarse classifications as used for example in the D-Series of

the International Cloud Climatology Project (ISCCP, [17]).

Previous studies have used clustering for satellite products and

the output of satellite simulators from models for unsupervised

classification of clouds [6], [18], [19]. In these studies, mor-

phological cloud regimes are then assigned to the identified

clusters, according to the average physical properties of each

cluster. Such a classification offers valuable insights into how

individual models represent clouds in a more specific way than

simple climatologies of physical variables would. However,

in addition to being built on the rather low resolution of

(280 km)2 of the ISCCP-D1 [17] product, uncertainties and

artifacts introduced by the satellite simulators can affect the

results [20], [21]. In a recent study, a convolutional neural

network was used on (4000 km)2 grid cells to assign the

amount of each of four cloud classes per cell [22]. In [22], the

classes were derived from WMO classes detected from surface

observations, and the method is applicable to climate model

output. Other studies have classified satellite data by cloud

regime to investigate specific cloud properties such as radiative

effects or precipitation [23], [24]. Recently, clustering methods

for cloud regimes have been applied to current-generation

climate models using the 1◦ × 1◦ resolution ISCCP-H prod-

uct [25] for training, which has a much higher resolution

than ISCCP-D1 [26]. Most of the clusters found this way are

labeled with cloud regimes named after cloud types defined

by the WMO.

Our method aims at establishing this connection between

observations and models without the requirement to assign

cloud classes a posteriori. We instead compute the relative

amount of WMO cloud classes in coarse grid cells as explained

in Section II. Statistical analysis can be conducted on these

distributions in the same manner as for the traditionally used

physical variables but in the phase space of cloud classes.

The proof-of-concept is outlined as follows. In Section II,

we describe the satellite products used and introduce the two

machine learning methods applied. In Section III, we use

our results to establish: 1) that a neural network can be

used to accurately assign cloud class labels to satellite data;

2) that this labeled satellite data provides a sufficient basis to

train a regression model relating physical variable retrievals

from satellites to cloud class distributions in coarse grid cells;

and 3) that the application to a coarse-grained version of the

alternative ESA Cloud_cci satellite product [27] is possible,

showing the potential of the framework. Our findings are

summarized in Section IV. A discussion and outlook are

presented in Section V.

Fig. 1. Two stages of machine-learning—a classifier and a regression
model—are required to obtain cloud-type predictions on datasets with low
horizontal resolution.

II. METHODS

A. Overview

Our goal is to evaluate clouds in climate models using

observational data labeled with cloud types. For this, we need

to: 1) obtain or create a cloud-labeled dataset and 2) enable a

comparison to climate model output.

As a starting point, we use the partially labeled CUMULO

dataset [11], which is then fully labeled using a neural network

classifier. As this dataset has much higher horizontal resolution

than typical climate model output this classifier can not be

used for climate models directly. Instead, we train a regression

model to predict the relative amounts of each cloud type that

are present in larger areas (grid cells) of the fully labeled

dataset. This concept is outlined in Fig. 1.

In Section II-C (Stage I in Fig. 1), we outline how

the CUMULO dataset was created using data from the

MODIS and cloud-type labels from CloudSat. Since classi-

fying low-resolution data with individual cloud types is not

appropriate, a regression model is trained on a coarse-grained

version of this dataset (see Section II-D), Stage II in 1).

Section II-E explains the steps applied to validate the regres-

sion model’s performance (see Fig. 5) on coarse-grained data

from ESA Cloud_cci, which are independent of the training

data. In this step, we obtain cloud class distributions, i.e., the

percentages of each cloud type in each coarse grid cell of

the dataset. Model datasets can be evaluated by relating these

distributions to the underlying processes driving formation and

evolution of the specific cloud type.

The workflow of this framework is shown in Fig. 2,

which illustrates how the different datasets and the two

machine-learning models contribute to providing cloud-type

distributions for low-resolution data.

B. Satellite Data Products

This work is based on data from three satellite products

summarized in Table I.

1) CloudSat: The cloud classes used in the CUMULO

dataset are obtained from CloudSat. The product combines

radar measurements from CloudSat and lidar data from the

Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)

of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite

Observation (CALIPSO) satellite [32]. These are used as the

basis for a mixed threshold-based/fuzzy logic cloud classifier.

The use of active sensors provides data that uniquely enable

the labeling of multiple clouds along the vertical. A limitation
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Fig. 2. Workflow schematic: 1) IResNet is trained on the CUMULO dataset and then applied on the unlabeled full-swath Moderate Resolution Imaging
Spectroradiometer (MODIS) yielding the fully labeled CUMULO dataset; 2) RF regression model is trained on a coarse-grained version of this data to provide
cloud class distributions; and 3) RF is applied to unseen data, allowing validation of the methods performance or evaluation of the target dataset.

TABLE I

THREE SATELLITE DATASETS USED AT DIFFERENT STAGES IN OUR FRAMEWORK

of this dataset is its sparse spatial and temporal coverage. Also,

the small footprint size of the satellite instruments used makes

distinction between stratocumulus and stratus clouds difficult.

2) MODIS: The inputs (called features in the follow-

ing) to the machine-learning algorithms used here are also

included in CUMULO and obtained from the Cloud Prod-

uct of the MODIS instrument, which operates aboard the

Terra and Aqua satellites. These are sun-synchronous polar-

orbiting satellites like CloudSat and CALIPSO, which together

with Aqua were part of NASAs afternoon constellation

(A-Train) from 2006 to 2018, providing near simultaneous

measurements. The MODIS Cloud Product data include nine

pixel-level retrievals of physical variables (see Table II) as

well as 13 radiance channels. These variables are provided for

images of 1354 × 2030 1-km2 pixels each covering 5 min.

Known limitations include large uncertainties in the detected

cloud phase in high elevation regions, including Greenland and

Antarctica. We use the MODIS data for the year 2008 provided

with theCUMULO dataset.

3) ESA Cloud_cci: For validation of the method, we use

the ESA Cloud_cci (ESA CCI) dataset. It is a long-term

cloud product obtained from different observational sources.

We use the dataset based on data from the Advanced Very

High Resolution Radiometer (AVHRR) aboard the polar

orbiting afternoon satellites from the National Oceanic and

TABLE II

PHYSICAL VARIABLES AVAILABLE FROM THE MODIS CLOUD PRODUCT,
USABLE AS FEATURES FOR THE MACHINE LEARNING MODELS

Atmospheric Administration (NOAA). Among others, the

retrieved variables include a cloud mask and cloud physical

variables that are also available from the MODIS Cloud

Product (see Table II). The retrievals included in the ESA

CCI data are obtained using the Community Cloud retrieval

for Climate (CC4CL) algorithms [33]. CC4CL shows little

dependence on the observational instrument or the surface

properties of the measurement region, but still suffers from

some particular issues for retrievals using passive sensor

data. This includes difficulties in assessing the thermodynamic

phase of mixed-phase clouds as well as the detection of thin

cirrus clouds. We use the daily L3U dataset for June 2009 up to

and including December 2011, with July 2010 being removed

due to faulty temperature retrievals.
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Fig. 3. Schematic of the pixelwise classifier, which is a convolutional neural
network trained on features from MODIS and one of eight cloud-type labels
from CloudSat per pixel.

TABLE III

CLOUD TYPES FROM THE CUMULO DATASET

C. Pixelwise Classification

We create a fully labeled cloud-type dataset by applying a

pixelwise classifier network to the sparsely labeled CUMULO

datset [11]. The results is a high-resolution, high-coverage,

cloud-labeled dataset (see Fig. 3). The classification scheme

applied here is largely based classification algorithm used

in [11]. The CUMULO dataset provides one of eight cloud-type

labels (see Table III) per cloudy pixel along a narrow, vertically

resolved path. To be compatible with the 2-D MODIS data,

each vertical column is represented by the class which occurs

most often in that column. The data from the two satellites are

aligned such that, where available, the label track from Cloud-

Sat is superimposed on the corresponding MODIS data. This

excludes nighttime measurements, as some MODIS retrievals

are not available at night. Since the CloudSat swath is quite

narrow, most of the pixels in the resulting CUMULO dataset

are not assigned a label, which is why a neural network is

trained using the labeled part of the dataset to predict cloud

class labels for the unlabeled pixels.

The neural network used in [11] and here to classify

clouds in the CUMULO dataset is a semisupervised convol-

utional network based on the invertible residual network

(IResNet) [34]. Residual networks [35] have become the

baseline for many image-related tasks and the IResNet addi-

tionally allows for semisupervised training. The training is

termed semisupervised as both labeled and unlabeled samples

are fed to the network. The model learns to minimize the

cross-entropy for the labeled parts [see (2)] as well as the neg-

ative log-likelihood [see (1)] of the latent representation z of

all (labeled and unlabeled) samples

L = −
∑

zk=F(xk ),
xk ∈X

log(p(zk)) + Tr(JF) (1)

Ll =
∑

xk ,yk∈Xl

log(xk)yk . (2)

Here, zk = F(xk) is the latent output of the IResNet F without

its classifier head, and JF is its Jacobian, with Tr denoting the

trace operation. X contains all samples x and Xl contains only

the samples with labels y.

The IResNet is applied to tiles consisting of 3 × 3 MODIS

pixels to determine the cloud type of the central pixel. The

training target is the cloud class that occurs most often in the

tile or a random choice of classes that occur equally often in

the tile. Note that this way, the class label is predicted such that

it is representative of the whole tile, even though the label is

only assigned to the central pixel. This is a design choice that

possibly introduces a bias toward more frequent cloud classes

but increases the number of usable tiles both for training and

prediction by allowing for overlapping tiles. Tiles that contain

less than six cloudy pixels according to the MODIS cloud

mask are discarded. Therefore, the neural network is agnostic

to such cases including clear sky situations. By applying

the trained model, pixels in the CUMULO data that are yet

unlabeled are assigned class labels, resulting in a set of fully

labeled satellite data.

The CUMULO data contain MODIS radiance channels as

well as retrieved physical cloud properties (see Table III). With

potential application to climate models in mind, we decided to

train the IResNet using the physical variables as features, these

being more readily available from climate models than the

radiances at the particular MODIS spectral channels. We found

that the classes predicted by the model trained on the physical

variable features were slightly more physically consistent. For

example, we found that a number of high and thin clouds

were given the Cumulus (Cu) label when using the radiances

only, but this did not happen when using the physical cloud

properties. However, the performance difference was marginal

such that the classification step could be trained on either set

of features. To be able to perform the training on physical

variables, pixels containing missing values, e.g., from failed

MODIS retrievals are imputed, using the mean value for each

3 × 3 pixel tile. As the tiles are small, this is not expected

to skew the values in the individual tiles significantly as

neighboring pixels are expected to have similar properties.

The IResNet is trained on all available CUMULO granules

for the year 2008 (∼48 000 multivariate images of 1354 ×

2030 pixels) with standardized features. Instead of using a

train/test split, we used fivefold cross-validation on the same

data to assess generalization to unseen data. The model used

for final predictions is then trained on the complete year. Due

to the high temporal resolution of the data, there should be

enough variance in the features for the training data to be

representative of longer periods typical for climate models.

This will compensate for the fact that only one year of training

data is used.
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Fig. 4. Cloud type predictions for data with low horizontal resolution are
obtained by coarse-graining high-resolution predictions as a basis to train
a regression model predicting relative amounts of each cloud type for each
coarse resolution grid cell.

D. Regression on Low Resolution Data

The second stage of machine learning (see Fig. 4) is

designed to transfer the information contained in the (labeled)

high-resolution satellite data to datasets of lower temporal and

spatial resolution, like typical ESM output.

For this, the labeled satellite dataset obtained from the

pixelwise classification is coarse-grained. All variables that are

provided in both the CUMULO and the target dataset can be

used as features.

The labeled data are provided on an evenly spaced metric

grid, but many climate models are provided on evenly spaced

angular grids. The area covered by individual pixels will not

match between these two grids and scale differently depending

on their geographic location. For simplicity and for the purpose

of a proof-of-concept, we determine the grid cell size that

on average is most representative of the target grid and use

the averages of each variable over these grid cells as features

for our model. We assume that the remaining differences

between the grids are mitigated by averaging. The output

is the relative cloud class occurrence in the grid cell, i.e.,

the fractional amount of each of the eight cloud classes

plus an additional “undetermined” class. The “undetermined”

class contains all pixels for which the prediction of a label

was not possible due to failed MODIS retrievals, which

often indicate clear sky. Missing values for pixels with no

cloud are processed accordingly when computing the grid-cell

averages (see Section II-F), such that cloud class fractions are

predicted consistently for all properties including those that

are not defined for clear sky (e.g., ptop). Grid cells containing

only “undetermined” pixels are discarded. Thus, we obtain

a multivariate regression problem with a 9-D output space,

containing the eight classes plus “undetermined” pixels, and

up to 11 features (i.e., the number of suitable physical variables

provided by the CUMULO data, see Section II-F).

For our model, we choose the random forest (RF) [36]

regression method for reasons of simplicity, computational

efficiency, as well as its inherent normalization of the predicted

Fig. 5. Method is validated by applying the trained regression model to data
the model has not seen before. The predictions are then analyzed for physical
consistency.

fractions. After training the RF on the coarse-grained classified

images, it can be directly applied to the target data, i.e., ESM

output, providing cloud class fraction predictions for each grid

cell. To investigate the sensitivity to the resolution and choice

of features used, we trained multiple RFs for different respec-

tive choices. The individual training samples are weighted with

weights wi given by the L1-norm wi = ||yi − y||1, where

yi denotes the cloud class fractions for the i th training sample

and y the average over all samples used in training. The

weighting ensures that samples close to “the average sample”

are given less weight in training, to reduce the effect of any

bias in the data. We have about 48 000 labeled CUMULO gran-

ules (multivariate images of 1354 × 2030 pixels) available.

To limit the amount of memory required, the RFs are trained

on roughly 50·106 random samples drawn from a training split

of 10 000 labeled data images. The amount of samples varies

because grid cells containing only “undetermined” pixels are

excluded. The models are then evaluated on a test split con-

taining 8422 images. The hyperparameters of the RF models

are chosen such that the depth of the individual regression

trees is 17 or less. We apply a bagging subsampling fraction

of 0.7 and a minimum leaf size of 2, with 400 individual trees

per forest. These hyperparameters showed an optimal trade-off

between the model’s performance and size.

E. Application to ESA CCI Data

As a proof-of-concept, we apply our method to

an independent satellite dataset, the ESA CCI data

(see Section II-B). Application to the output of current

ESMs (e.g., those contributing to CMIP6) is not yet possible

due to too coarse horizontal and/or temporal resolution of the

available output and/or key variables (e.g., cer, cod), required

for sufficient performance, being unavailable. As illustrated in

Fig. 5, we use this validation stage to show that the method

generalizes to coarse data obtained from different sources

and it is thus expected to also be applicable to other datasets

such as suitable ESM output.

The ESA CCI data provide a similar representation of

the observed cloud state and contain similar physical cloud

variables as the MODIS product and are therefore comparable

to the CUMULO data. In contrast to using ESM output as target

data, this allows for a more direct assessment of uncertainties

and limitations of this approach as possible model deficiencies

do not play a role. We provide an analysis of predictions
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TABLE IV

FRACTIONS OF THE CLOUD CLASSES FOR PIXELWISE CLASSIFICATION WITH PREDICTION ACCURACY AND F1 SCORE FOR THE SUPERVISED

PART OF THE DATA. CLOUDSAT LABELS ARE FOR 21 · 106 LABELED PIXELS INCLUDED IN CUMULO, PREDICTIONS

ARE FOR 800 · 106 PIXELS. SCORES ARE AVERAGES FOR THE FIVE VALIDATION SPLITS

using different spatial and temporal resolutions in the Supple-

mentary Material. For each validation experiment using the

coarse-grained ESA CCI data, we randomly sample 20% of

the available grid cells.

F. Features and Preprocessing

The RF regression model is trained on the features also

available in the target dataset. For the ESA CCI data, these

include cloud top temperature (ttop), cloud top height (htop),

cloud top pressure (ptop), surface temperature (tsurf ), cloud

optical thickness (cod), cloud water path (cwp), and the

effective radius of cloud particles (cer). For the cloud water

path and the effective radius, the MODIS cloud product as

well as the ESA CCI daily product do not distinguish between

ice and liquid water. Instead, an additional flag is available to

distinguish between liquid and ice cloud tops, which we use

to separate cwp into liquid water path (lwp) and ice water

path (iwp) as well as cer into the liquid and ice particle

radii (cerl/ceri). This procedure is an approximation and only

justified under the assumption that the phase flag provided by

the satellite data is representative of the whole cloud column.

The grid box averages for the cloud liquid/ice water path,

the radii, cod are computed over all pixels in each cell,

i.e., replacing missing values with zero. This is useful as

these values approach zero with decreasing cloud amount.

In contrast, ptop, htop, ttop are only averaged over cloudy

pixels (“in-cloud values”). The features used for the RF model

should ideally complement each other. Information on the

cloud thickness is implicitly contained in both cwp and cod.

As the features ptop, htop and ttop effectively contain the same

physical information, only one of them is used. Here, we use

ptop as feature. In addition to the cloud variables, we also use

surface temperature tsurf as it is readily available in many

datasets. As a default, we therefore select cwp, lwp, iwp, cerl,

ceri, cod, ptop, tsurf, which we call the optimal set of features

in the following.

The ESA CCI dataset also provides a pixelwise uncertainty

estimate for each variable, which we use to exclude pixels

for which the uncertainty is larger than twice the actual

value. We note that cwp in the ESA CCI data can take very

large values. Such outliers with lwp > 2000 g/m2 or iwp >

6000 g/m2 are excluded from the prediction. The arithmetic

means of the latitude and longitude coordinates of all pixels in

a grid cell are used as representative geographical locations.

III. RESULTS

A. Predicted Cloud Classes at Pixel Level

To assess the performance of the IResNet, we use accuracy

and F1-Score (see Table IV). A qualitative analysis of the

physical properties of the predicted cloud classes is used

to evaluate the consistency of the results. This is important

because the physical properties of the classes predicted by

the IResNet model need to be consistent with those from the

WMO definitions.

The labels extracted from CloudSat that are available in

CUMULO display a strong class imbalance (see Table IV),

which we also find in the predicted classes. Most classes occur

with a similar frequency in the source data and predictions,

with deviations being small enough to be attributable to real

differences in the data. We would like to highlight two key

properties of the class distributions: 1) there are very few

strati (St) and deep convective (Dc) clouds in both the source

and the prediction and 2) Cumulus (Cu) and cirrus (Ci) clouds

are strongly underestimated in the predictions compared to

the source data. For example, Cu has the smallest amount of

all predicted cloud classes while this class is more common

than St and Dc in the source data. Further assessment of the

representation of these four classes (St, Dc, Cu, Ci) is therefore

of high importance. The mean accuracy of the classification in

the validation splits of the cross-validation is larger than 0.8 for

all classes but Sc, which suggests considerable skill in the

classification method. However, for a multiclass problem with

a large class imbalance such as the one we have here, the

accuracy alone is not a suitable measure to fully assess the

performance of the method. We therefore additionally look

at the F1-Score, which is sensitive to the class imbalance and

can help identify individual class biases in the predictions. The

F1-Score is at least 0.4 for all classes except for St, and espe-

cially high for Sc and Cu with values larger than 0.6. When

considering the accuracy scores for all classes, this suggests

a good skill in representing the class imbalance. An excep-

tion is the St class with an F1-Score of 0.21. As noted in

Section II-B, the CloudSat algorithm has trouble distinguishing

between St and Sc, which is why this is also to be expected

for the IResNet. To assess the uncertainty of the classifica-

tion, we compute the mean metrics with standard deviation

for each of the five validation splits in the crossvalidation

and obtain an accuracy of 0.886 ± 0.003 and F1-score of

0.472 ± 0.005. We demonstrate in the Supplementary Material

that the predicted classes are also physically consistent with

the expectations of the respective WMO cloud types.

B. Cloud Class Distributions at Coarse Resolution

The RF is expensive to train on large datasets such as

the year-long, high-resolution CUMULO dataset. Because of

these computational constraints, we train the RF on a subset

of the labeled data of about 25% the size of the complete

dataset. Tests have shown that the errors stabilize when using
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Fig. 6. Joint density of the predicted and true (a) Ac and (b) Ns fractions from the CUMULO test set for a grid cell size of (100 km)2, using the optimal
set of features (see Section II-F). The color scale and the marginal histograms are logarithmic. The red line indicates the line of perfect correlation. The area
between the dashed magenta lines indicates a deviation between ground truth and prediction of less than 0.1 and the area between the black lines indicates a
deviation by less than a factor of two in either direction.

Fig. 7. Results for a model trained using features without (a) liquid/ice distinction (cwp, cer, cod, ptop, tsurf ) and a model trained also without (b) cod, for
comparison with Fig. 6.

even fewer training data. The mean errors and R2 scores for

the different settings are summarized in Table V. Since with

smaller grid cell sizes, more cells containing only “undeter-

mined” pixels are excluded, and the relative amount of cloudy

pixels increases, which is why we see larger mean absolute

errors for small grid cells. Using the median, however, we see

better performance for smaller cells. The R2-score increases

with grid cell size, most likely due to the decreasing variance

caused by averaging over more pixels. The performance is

therefore judged not to be strongly dependent on the grid box

size. We also use joint densities of predicted and ground truth

cloud fractions of the test split as a performance indicator.

Fig. 6 shows these for a grid cell size of (100 km)2 using the

optimal set of features (see Section II-F). The joint density plot
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Fig. 8. Relative occurrence per class from CloudSat measurements (year 2008) from the 2B-CLDCLASS-LIDAR product per 2◦ × 2◦ grid cell.

displays the concentration of samples in the truth/prediction

space, and along the x- and y-axis the marginal distributions

of the true and predicted fractions, respectively.

For both cloud classes in Fig. 6, there is a clear correlation

between the ground truth and the predictions with a Pearson

correlation of cP = 0.96 for Ns and cP = 0.89 for Ac.

Many predictions are, however, far off the target: Fig. 6(b)

shows several hundred samples with a predicted Ns fraction

of about 0.2 where the true fraction is close to 1. For this

specific example, this is a small fraction [O(0.001%)] of the

total number of grid cells, but it shows that the predictions

can differ strongly from the true values in a nonnegligible

number of cases. This deviation is a manifestation of ambi-

guity between different cloud states, likely caused by noise

generated by the averaging of the features. Furthermore, this

is an example of the predictions favoring low cloud fractions,

TABLE V

RESULTS OF THE REGRESSION MODELS FOR DIFFERENT GRID BOX SIZES.
(1) TRAINED USING A DEFAULT SET OF FEATURES. (2) USING cwp

AND cer, NOT SEPARATED INTO ICE AND LIQUID, IN ADDITION TO

cod, ptop, tsurf. (3) USING (cwp, cer, ptop, tsurf ) AS FEATURES

as the “undetermined” class is prevalent in the training data.

As shown in Fig. 6(a), large altocumulus (Ac) fractions (>0.9)
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Fig. 9. Average class fractions for the predictions on coarse-grained ESA CCI data. The RF was trained on (10 km)2 grid cells and applied to 10 × 10 pixel
grid cells. The results are projected onto a 1◦ × 1◦ grid. Many classes show similarities to the distributions in the CloudSat data (see Fig. 8), even though the
location is not used as a feature.

are underestimated by the RF, but the deviation in this region

remains largely below 0.1, as indicated by the dashed line.

Most of the samples are, however, still contained within the

� = 0.1 range (magenta dashed lines). For fractions larger

than 0.2, samples deviating by more than a factor of 2 (outside

black lines) are rare. For fractions smaller than 0.2 (bottom

left corner), deviations by a factor of more than 2 occur

frequently, indicating difficulty in correctly predicting small

fractions. Note that such predictions contribute significantly to

the relative error, but have a negligible effect on the absolute

error. We construct a random baseline by sampling from the

class distributions in the IResNet predictions. We find that the

mean absolute deviation is larger for the random baseline by

roughly a factor of five, indicating that the regression model

outperforms the random baseline.

In the Supplementary Material, we show that our method

reproduces physically meaningful cloud class distributions.

Specifically, we show that the features resulting in a pre-

diction of a certain cloud class are in line with those

expected from the meteorological definition of the respective

class.

As the variables available in typical ESM output can vary,

not always matching our optimal set of features, we also

determine which of these features are essential to achieve good
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Fig. 10. Time series of mean predicted class fractions from 1 June 2009 to 31 December 2011. The per-class mean is computed for all locations in the
southern hemisphere where at least one instance of the respective cloud class fraction is within the 90th percentile of all predictions of this class. Note that
July 2010 has been excluded due to faulty data.

performance. In addition to using the optimal set of features,

we therefore also trained the model using different alternative

sets, containing fewer features. Using the cloud top phase flag

to distinguish between ice and liquid for some of our features

(lwp, iwp, cerl,ceri) produces a small performance increase

as the metrics indicate in Table V. Comparing Fig. 6(a) and

Fig. 7(a) shows that the correlation between the true and pre-

dicted values becomes less pronounced when the information

about the thermodynamic phase is removed. Further ablation

studies reveal, that using cod and ptop is critical for the RF

performance, but these variables are infrequently contained in

ESM standard output. An example is shown using features

without cod, where Table V shows a significant decrease in

the R2-score. The effect on the joint density displayed in

Fig. 7(b) is visible as predicted fractions being skewed toward

smaller values. Predicted fractions above 0.8 are very rare and

the joint density seems to be shifted toward the lower black

line, corresponding to half the true value. We provide further

information on the feature importance in the Supplementary

Material.

C. Validation

To assess the generalization performance of the method,

we compare predictions of the class distributions on ESA

CCI data to the classes from the CloudSat CLDCLASS-

LIDAR product. We use the class labels from CloudSat for the
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Fig. 11. Difference between the mean predicted fractions and CloudSat per 2◦ × 2◦ grid cell for the relative amount of the classes with lowest/highest
correlation, St [(a) cP = 0.18]/Sc [(b) cP = 0.88]. The color map is normalized to the range [−m, m], where m is the maximum value for the class across
both (CloudSat, predictions) distributions. Predictions obtained from RF trained on (100 km)2 data and applied on 100 × 100 ESA CCI pixels.

year 2008. Again, the 3-D CloudSat data are aggregated into

two dimensions using the most common cloud class within

each vertical column as a representative cloud class. The

labels provided by CloudSat for individual orbits are sparse,

but using a whole year of measurements provides enough

samples per location to compare to the predicted distributions.

Fig. 8 shows the sparsity of CloudSat labels, even though

the data have been aggregated to grid cells of 2◦ × 2◦.

Consequently, clear regional differences are not visible for

all cloud classes, but Ci, Sc, and Cu show distinct areas of

frequent occurrence. For example, Sc clouds are frequently

detected in the subtropical subsidence regions off the west

coasts of the continents, Ci clouds are frequent in the deep

Tropics, and Cu is found frequently over the tropical and

subtropical oceans away from the stratocumulus decks.

In the following, for a better comparison of the CloudSat

ground truth and the predictions on the ESA CCI data,

we exclude the “undetermined” predictions such that the

cumulative fraction of all eight cloud classes equals one

in each cell. The reported fractions are therefore a relative

measure and independent of the total cloud amount in each

grid cell.

The CUMULO and the ESA CCI data are provided on

different grids. Because of averaging, same-size grid cells are

not needed and thus no interpolative regridding is applied.

We compare predictions obtained with the same model on

differently sized ESA CCI grid cells in the Supplementary

Material to this article. Our results show that for a model

trained on large (100 km)2 grid cells, there is no qualitative

difference in the predictions for different grid sizes. However,

some features become more pronounced when smaller grid

cells are used during prediction. The maximum grid cell size

for a reasonable application to ESM output, therefore, depends

on the region or processes of interest.

Fig. 9 shows the predictions on the ESA CCI data using the

RF trained on grid cells of (10 km)2 and applied 10×10 pixel

grid cells. Different classes occur in distinct patterns and the

Sc class dominates in the predictions, while St and Dc occur

very rarely.

Fig. 10 shows the time series of the class fractions averaged

over grid cells in the Southern Hemisphere for which the

respective cloud class can vary strongly. We define this by

selecting grid cells for each class where at some time the class

fraction is especially large (90th percentile). Using this method

of analysis, almost all predicted classes show a seasonal cycle.

Only for the classes Cu and Sc such a cycle is not visible.

The Ns and As classes are predicted at higher fractions in

the cold months. In contrast to Ns and As, Ac and St have

higher fractions in summer. The CloudSat ground truth is too

sparse to similarly assess seasonal cycles and enable a direct

comparison.

D. Uncertainty Estimate

For the ESM evaluation, deviations introduced by the data

need to be separable from those caused by the evaluation

method.

As an uncertainty estimate for the consecutive application

of both machine-learning methods, we compute the Pearson

correlation and difference between the predictions and the

CloudSat labels. For this purpose, we bin the relative amount

of each class to grid cells of 2◦ × 2◦ size for both datasets.

As an example, differences for the cloud types with highest

(Sc) and lowest (St) correlation are shown in Fig. 11. The

difference increases with the fraction of occurrence of each

class (as displayed in Fig. 9). Note that this is only a rough

measure of accuracy as the two datasets differ in temporal

and spatial resolution. Additionally, an exact match cannot be

expected as the CloudSat data cover the year 2008, while the

ESA CCI data cover the period June 2009 to the end of 2011.

The mean within-class correlation is 0.65. Table VI shows

the mean fractions of the classes in the predictions and the

CloudSat data. The predictions here are comparable to the pix-

elwise predictions obtained using the IResNet (see Table IV).

The most notable difference in the distribution is again the

under-representation of Ci in the predictions relative to the

CloudSat labels, which is caused by the under-representation

in the predicted pixelwise labels. Table VI also shows the

relative difference between the two distributions for grid

cells showing a large class fraction in the predictions (90th

percentile). For all classes, the magnitude of this deviation is

below 50%. This is also the range of relative deviation we
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TABLE VI

MEAN FRACTION OF THE PREDICTED CLASSES COMPARED WITH THE

RELATIVE AMOUNTS OF THE CLASSES IN CLOUDSAT. THE LAST ROW

SHOWS THE MEAN DIFFERENCE FOR PIXELS WITH PREDICTIONS

IN THE 90TH PERCENTILE �90 RELATIVE TO THE MEAN µ90

OF THESE PREDICTIONS. PREDICTIONS ARE TAKEN FROM

A MODEL TRAINED ON THE DEFAULT SET OF FEATURES

USING (100 km)2 AND APPLIED ON 100 × 100 PIXEL

ESA CCI GRID CELLS

found on the test split, leading to an overall estimate of the

uncertainty of 50%.

IV. SUMMARY

We presented a method for the evaluation of clouds in

coarse resolution data, employing the consecutive application

of machine-learned classification and regression models. Using

this method, information on clouds from high-resolution, 3-D

CloudSat and CALIPSO lidar products is first added to passive

sensor data from MODIS using the CUMULO framework

and then transferred to coarse resolution data. This approach

offers a new perspective on statistical and process-oriented

assessment of the performance of climate models by being

able to analyze the model output in terms of different cloud

classes and thereby distinguishing the driving mechanisms for

the formation and evolution of different cloud types more

clearly. This provides the potential to better understand and

ultimately improve existing model deficiencies.

The pixelwise classification has a high accuracy of at

least 0.8 for each class, with little variation across the val-

idation splits. The relative amounts of predicted Cu and St,

however, can differ by more than a factor of 2 compared to

the CloudSat data used as ground truth. The predicted cloud

classes show distinct physical properties that are consistent

with the expected properties of the corresponding WMO cloud

classes.

The subsequent regression can reproduce consistent cloud

class distributions on regional scales with mean errors being at

least one order of magnitude smaller than the random baseline.

Furthermore, the RF regression successfully generalizes to

different data as could be shown using the ESA CCI data. The

predicted global distributions of the individual cloud classes

compare well with the CloudSat ground truth. This is evident

when qualitatively comparing the distributions for each class

as well as in the correlations and differences in areas of a

high-class fraction. The correlation is larger than 0.6 for all

but two classes (St/Dc) and the relative difference in areas of

a high-class fraction is smaller than 50% for all classes. The

spatio-temporal location of a sample is not used as an input for

the machine-learning algorithms. Therefore, any predictions

are solely based on the physical properties represented by

the features. Yet, even small-scale regional characteristics of

the CloudSat ground truth are similarly represented in the

predictions using the ESA CCI data. Notable examples are

a peak of Ci in the tropical warm pool region or an increased

As fraction in the Himalayas. Additionally, the geographical

means for all classes correlate positively with the respective

relative occurrence in the CloudSat ground truth, with higher

correlations for the classes with many available samples.

We further showed that the regression model associates each

class with specific feature values (see the Supplementary Mate-

rial). These values are consistent with the expected properties

of the different WMO cloud types. Analysis of the effects of

temporal averaging of the target data showed that the method

works well with near-instantaneous data but cannot be applied

to monthly averaged data (see the Supplementary Material).

Tests with multiple sets of input features have shown that

information about the cloud height, cloud water content and

optical thickness are essential for good performance, with

information on the thermodynamic phase of the cloud provid-

ing additional robustness. In contrast, the horizontal resolution

of the data, the model is trained on, seems to be less critical

(see the Supplementary Material). Models trained on different

grid cell sizes show differences but no clear optimal resolution

can be defined from these initial results. It is recommended,

however, that predictions be performed using data at their

highest available horizontal resolution as more features can

be resolved.

Predictions on test data show clear correlations of ground

truth and predictions (average c̄p = 0.92). Predictions on the

ESA CCI data provide enough information to isolate individual

features and processes. This suggests that this method can be

successfully applied to any dataset of sufficient length and

horizontal and temporal resolution to allow for statistically

robust predictions. When applied to the test data, the median

relative deviation was about 50%. Comparing the predictions

with the raw labels from CloudSat we find similar values.

Especially in regions where specific cloud types are predicted

with a high frequency of occurrence, we find relative devi-

ations mostly below 50%. Only the St class is consistently

underestimated for which the pixelwise classification already

showed poor performance.

V. DISCUSSION

The results from testing the regression model with unseen

data show physical and temporal consistency of the results

across all analyses. This is the primary goal of this method

aiming to evaluate physical processes. We can therefore

be confident that the results are meaningful, even though

the results of the classification do not exactly reproduce the

label distribution in the source data. The deviations in the

amount of St predicted by the classifier can be at least partly

explained by the relatively small amount of training samples

and the similarity to the physical properties between St and Sc.

We conclude that pixelwise labeled data are therefore suitable

as a basis for training a regression model which learns cloud

class distributions on datasets with a horizontal resolution

typical for climate model scales. Generally, our results suggest

that the method is, therefore, suitable for a process-oriented

assessment of clouds simulated by climate models. Using the

predicted distributions this can be performed in the space of
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cloud classes, providing several advantages. First, a layer of

subjective interpretation is removed by being able to analyze

the results in terms of cloud classes clearly defined by the

underlying classification algorithm (CloudSat, [28]). Because

we are using the commonly used WMO classes, the resulting

cloud class distributions can then be analyzed and interpreted

in a process-based manner as the key processes driving

formation and evolution differ between the cloud classes.

This greatly simplifies the analysis and evaluation of selected

physical properties related to cloud processes in the climate

models. Second, as the deep learning algorithm learns from

high-resolution 3-D data, the climate models are implicitly

analyzed in a horizontally super-resolved manner which also

takes into account information about the vertical structure of

clouds, i.e., learning from a combination of 2-D and 3-D

data can potentially take advantage of information from the

vertical that would not be included in the cloud top view. That

the method can resolve phenomena on regional and seasonal

scales provides the opportunity to identify spatio-temporal

areas in which clouds are not correctly represented. This could

for example be done for the low-level clouds found in the

subtropics west of the continents, investigating their horizontal

extent, their dependence on feature values, and their tempo-

ral evolution. However, due to the nature of the multistage

process, some limitations apply: by building the regression on

2-D, spatially averaged source data it is hard to make correct

predictions on individual grid cells. This results in several

samples for which the predicted cloud fraction differs by a

factor of 2 or more. Additionally, the under-representation of

the Cu class and the limited accuracy of the St class show that

this method can still be improved. This probably stems at least

partly from the CloudSat ground truth itself, as the CloudSat

algorithm has trouble distinguishing between St and Sc. We,

therefore, recommend combining these classes when applying

these or similar methods. Some features of the predicted cloud

distribution such as, for example, the high fractions of Ns

along the Antarctic coast, might be amplified or hidden by

noisy satellite retrievals. Especially in high latitudes, clouds

can be challenging to characterize with passive sensors like

MODIS. Our ML models do not provide satisfactory results

when applied to temporally averaged data because they are

trained on instantaneous measurements. Using geostationary

data available, e.g., every 30 min (GOES satellite [37]) for

the pixelwise classification instead of MODIS data available

only twice a day might improve the results. Such an approach

has been applied to other atmospheric variables like convection

and rainfall [38], [39]. The physical properties of the predicted

clouds could then be safely averaged over time due to the high

and consistent temporal resolution of the data allowing the

regression model to train on data more comparable to typical

ESMs output. However, the processes to be evaluated with

our approach are not resolved at large temporal scales. This

contributes to the poor regression performance for monthly

mean data and will still be an issue when the RF is trained on

temporally averaged data. In turn, this means that this method

is suitable to detect model deficiencies relatively quickly

in contrast to using climatological means from long-term

simulations. This is because we would expect an inaccurate

representation of the global and regional cloud distributions

to be already detectable with model output available for less

than a year.

The consecutive application of two machine learning steps

makes it difficult to quantitatively estimate the propagated

errors. Even though the error of the classification and regres-

sion can be individually estimated using test splits, the com-

bined impact of these errors is not clear. The small variations

of the different IResNets used in the crossvalidation suggest

high confidence of the networks in their predictions, but errors

or uncertainties can not be propagated through an RF. Error

estimation is further complicated by possible inconsistencies

in the CloudSat classification algorithm, i.e., clouds not nec-

essarily being labeled the same way a human expert would.

An example of this is the difficulties in differentiating between

St and Sc. We do not, however, see any specific inconsistencies

in the physical properties or the regional distributions of the

predictions, suggesting that the propagated uncertainties are

reasonable. We estimate the uncertainty of at least 50% to

what would be reported by CloudSat for individual predictions

can be expected. However, in large datasets, the method can

identify individual regions of high occurrence for a class.

The absence or underestimation of such phenomena in the

global cloud distribution would be signs of possible ESM

deficiencies. Even for classes for which limited training data

are available (Cu, St, Dc), we find that the predictions are self-

consistent. This is apparent in the characteristic feature values,

which are distinct for each class and do not vary regionally

(see the Supplementary Material). The regional distributions

of the classes are attributable to the predominant atmospheric

conditions. For example, the Dc class occurs more frequently

near the equator, Cu is found predominantly in tropical and

subtropical regions over the ocean, St is mostly west off the

continents in the subtropical subsidence regions. Both, Cu and

St are as expected low-level clouds with low cloud top heights.

In terms of implementation, this method can be applied

to new datasets quickly and does not require individual

implementation for each model. We would like to note that

many of the variables needed for this method are typi-

cally part of the standard output of climate models so the

main requirement would be to provide instantaneous or near-

instantaneous values, i.e., model output not averaged over

longer time intervals. We would therefore like to encourage

the modeling community to provide such an output, e.g.,

in future model intercomparison projects such as CMIP7.

We especially recommend adding the cloud optical thickness,

and the effective particle radii for liquid and ice particles as

instantaneous 2-D variables to the CMIP7 data request. Future

improvement of the method could include replacing the RF as

a regression model. The most significant advantage of the RF

is the use of the bagging process during training, which helps

to generalize well to unseen data. However, the size of the

RF scaling with the size of the dataset and batched training

is not straightforward requiring a high degree of subsampling

to make training computationally feasible. Therefore, as noted

previously, this required us to discard data. However, once

trained, applying the RF to batched data for predictions is

possible and fast, making it suitable for practical application.
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A CNN could be a reasonable replacement for the RF due to

the resemblance of the data to images. First attempts to replace

the RF with a CNN, however, did not yield satisfactory results

independent of specific architecture, with the network’s loss

not converging. Additionally, implementation and training of

the RF are much simpler than that of a CNN, which makes the

RF more suitable in practice. Also, in this study, the CloudSat

cloud classes in the source data are aggregated in the vertical

dimension by assigning the most common class in the cloud

column to the respective pixel. Even though this provides an

implicit resolution of vertical features, a full classification in

three dimensions would be a clear improvement. An improved

representation of the vertical cloud structure might be obtained

by using a more sophisticated aggregation algorithm. Taking

into account the physical properties of the observed pixel in

each vertical column might lead to more representative ground

truth.
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