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Accurate prediction of precipitation intensity is crucial for both human and natural
systems, especially in a warming climate more prone to extreme precipitation. Yet,
climate models fail to accurately predict precipitation intensity, particularly extremes.
One missing piece of information in traditional climate model parameterizations is
subgrid-scale cloud structure and organization, which affects precipitation intensity
and stochasticity at coarse resolution. Here, using global storm-resolving simulations
and machine learning, we show that, by implicitly learning subgrid organization,
we can accurately predict precipitation variability and stochasticity with a low-
dimensional set of latent variables. Using a neural network to parameterize coarse-
grained precipitation, we find that the overall behavior of precipitation is reasonably
predictable using large-scale quantities only; however, the neural network cannot
predict the variability of precipitation (R2 ∼ 0.45) and underestimates precipitation
extremes. The performance is significantly improved when the network is informed
by our organization metric, correctly predicting precipitation extremes and spatial
variability (R2 ∼ 0.9). The organization metric is implicitly learned by training
the algorithm on a high-resolution precipitable water field, encoding the degree of
subgrid organization. The organization metric shows large hysteresis, emphasizing
the role of memory created by subgrid-scale structures. We demonstrate that this
organization metric can be predicted as a simple memory process from information
available at the previous time steps. These findings stress the role of organization
and memory in accurate prediction of precipitation intensity and extremes and the
necessity of parameterizing subgrid-scale convective organization in climate models to
better project future changes of water cycle and extremes.

organization of convection | machine learning | precipitation extreme |

precipitation parameterization | organization metric

Convection and clouds manifest themselves in various forms and exhibit multiscale
structures, ranging from being randomly distributed to being highly organized (i.e.,
clustered). This organization, which can persist from a few hours to several days, can
modify atmospheric moisture distribution, radiation, and precipitation intensity (1, 2).
In a random, unorganized, convecting atmosphere, moisture has a narrow distribution.
Organization increases the variance of the moisture distribution by increasing the
humidity in the clouds’ surrounding areas and by drying out more distant regions.

Nevertheless, this reduction in moisture does not necessarily correspond to a decrease
in precipitation intensity, as predicted by some precipitation schemes (3). Organized
convection creates a locally humid environment that promotes longer-lasting, stronger,
and more humid convective clouds; because the air entrained at the edge of convection
is moister, it does not substantially reduce the buoyancy of convection. Furthermore,
organization may generate a self-reinforcing moisture memory, increasing the chances
of convective precipitation in regions that have experienced deep convection and
precipitation recently (4). The degree of organization can also affect the precipitation
efficiency (5), defined as the ratio of surface precipitation to cloud condensate, so that
the inclusion of an organization metric in climate models might be important for more
realistic predictions of precipitation extremes in a warming climate (6). The organization
of clouds also affects intercloud interactions and cold pool properties. Convection
triggered by the collision of cold pools (namely, areas of relatively low temperature
generated by the evaporation of rain or melting of ice) is more likely to result in extreme
precipitation (7).

The above-mentioned processes emphasize the crucial role of convective organization
inmodifying the distribution of moisture and precipitation. However, for climate models
that solve discrete forms of continuous equations of motion at a coarse resolution of
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about 100 km, convection is spatially too small to be resolved. As
a result, its impacts on resolved variables are approximated as a
function of these variables, a process known as parameterization.
Convective parameterizations typically do not represent subgrid-
scale organization. This approximation raises the question of
whether we can rely solely on resolved variables for the represen-
tation of convection in parameterizations or whether we need to
consider the smaller-scale structure of convection as well.

Typical mass-flux convection schemes, used in general circula-
tion models (GCMs), employ a model of convective updrafts,
under the assumption of quasi-equilibrium (QE) (8). These
parameterizations do not include any organization or interac-
tion among convective updrafts, treating them as randomly
distributed convective plumes. Cloud cover parameterization and
their impact on radiation sometimes use some representations of
organization, but these remain largely ad hoc (9). This raises the
question as to whether we need to incorporate some information
about subgrid-scale organization to better model precipitation
intensity and its distribution in GCMs.

GCMs’ prediction of the global mean precipitation, which is
controlled by the energy balance of the atmosphere, is typically
close to the observed value (10). Additionally, precipitation
averaged over bins of precipitable water (PW), which represents
the total amount of water vapor in a column of the atmosphere,
exhibits a simple power-law behavior (11) with respect to PW,
increasing rapidly as PW increases. However, precipitation shows
large variability within each bin (Fig. 1). In other words, con-
ditioned on large-scale quantities, precipitation exhibits strong
stochasticity. Many climate models have shortcomings in accu-
rately reproducing precipitation statistics, and they sometimes
rain too often and too little (the so-called “drizzle problem”).
One approach to address this shortcoming is by adding noise
to the convective tendencies predicted by the parameterization
(12, 13). This stochastic parameterization has shown promise to
improve weather and climate model prediction of precipitation
statistics and reduce its biases (14), yet this noise is not directly
connected to any physical processes and thus is challenging to
parameterize. Subgrid-scale organization (at scales ∼100 km) is
one source of stochasticity regulating precipitation intensity at
the climate scale (15). The failure of traditional deterministic

parameterizations to accurately reproduce the statistical behavior
of precipitation could potentially be rooted in their neglect of
subgrid-scale organization.
Parameterizing subgrid-scale organization has also previously

been suggested as a potential approach to circumvent the so-
called “entrainment” problem. Mapes and Neale (16) included
a prognostic and empirical “organization” variable in their
convective parameterization, with the effect that subgrid-scale
structure led to deeper and stronger convection than in the
unorganized case. Their prognostic “organization” parameter was
a single empirical dimensionless scalar, tuned such that it had a
steady-state value on the order of unity and a timescale on the
order of a few hours.
One obstacle in integrating subgrid-scale organization into

parameterizations is determining how to obtain useful informa-
tion from these subgrid structures that can aid in approximating
unresolved variables such as precipitation, convective mass flux,
or radiation, which may be reliant on such an organization. It
is essential to not only comprehend how organization influences
various processes but also precisely measure its overall impact at
the GCM scale, so as to incorporate it into the parameterization.
To address this challenge, we employ machine learning to
implicitly learn subgrid-scale organization and develop a pre-
cipitation parameterization that incorporates these data-driven
organization metrics. Machine learning techniques such as deep
neural networks provide a powerful opportunity for developing
new parameterizations, given the availability of high-resolution
simulations of the atmosphere. Neural networks (NNs) can
closely approximate the underlying function that relates observed
quantities (or inputs) to the target quantities. Machine learning
has recently proven powerful for parameterizing subgrid-scale
processes in climatemodels, such as convection and precipitation;
by training neural networks to emulate higher-resolution simula-
tions averaged at coarse resolution, as in those high-resolution
simulations, some processes such as convection are explicitly
resolved (17–21). Neural networks can emulate unresolved
processes from resolved variables, as they can capture complex
nonlinear behavior of a physical system, given that they have
access to the necessary predictors and thus can be used for hy-
pothesis testing by evaluating the influence or relevance of specific

Fig. 1. Global storm resolvingmodel. Snapshot of a cloud scene on 24 February 2016 from SAM as part of the DYAMOND dataset. Ten days, randomly selected,
of the tropical regions (displayed between the two white dashed lines) from this simulation are used for this analysis. The inset plot shows precipitation versus
precipitable water for 10 d of SAM simulations. Lines show the precipitation conditionally averaged by 0.3-mm bins of precipitable water and for 1-K bins of
free tropospheric temperature. Scatter dots show the spread in precipitation for each bin of precipitable water and averaged free tropospheric temperature
across the simulation domain and time period.
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inputs to a particular prediction (in our case of precipitation at
the coarse scale). Machine learning has also shown tremendous
skill in analyzing images and their complex spatial structure
and thus might be well suited to investigate 2D organization
and as a hypothesis tool to demonstrate the importance of
subgrid information to best reproduce precipitation. Here, we
take advantage of this capacity of NNs to test two hypotheses:
namely, to

• evaluate to what extent coarse-scale precipitation (∼100 km)
is predictable using only coarse-scale quantities, and

• investigate whether informing the neural network with
subgrid-scale organization information improves its prediction
of precipitation.

The data that we use for training the neural networks are the high-
resolution simulations produced by the System for Atmospheric
Modeling (SAM) (22), which was run as a part of the DYnamics
of the Atmosphere general circulation Modeled on Nonhydro-
static Domains (DYAMOND) Phase 2 Intercomparison Project
(23) and which are publicly available. The original resolution
of SAM-DYAMOND is 4.2 km, and the two-dimensional
quantities are written every 15 min. We discuss the realism of
the DYAMOND dataset, specifically its precipitation product,
in more detail in the methodology section.

To prepare the data for training a neural network, we
coarse-grain two-dimensional variables of SAM-DYAMOND
by horizontally averaging to typical climate model resolution
(for instance, 100 km), as shown in Fig. 2A and discussed
in the method section in more detail. We refer to these
averaged variables as coarse-scale. Furthermore, we discard all

nonprecipitating and land pixels, thus to narrow the focus of this
study down to predicting precipitation intensity over the tropical
ocean (20◦S - 20◦N). This choice reduces the heterogeneity of
the feature space and allows us to build a minimal but robust
model with a significantly smaller number of inputs compared
to previous studies (17, 18, 20, 21). In SI Appendix, we discuss
how including land modifies the results.
Our baseline neural network is a vanilla, fully connected feed-

forward network (Fig. 2B) that receives coarse-scale variables as
input and predicts coarse-scale precipitation. The inputs are PW,
sea surface temperature (SST), near-surface specific humidity
(qv2m), and near-surface air temperature (T2m), and the output
is precipitation. In simple precipitation models, SST and PW are
commonly used as predictors of precipitation intensity (11, 24).
Muller and O’Gorman (25) show in their cloud-resolving model
that the boundary layer water vapor sets a stability threshold that
controls the onset of deep convection. Following their finding,
we use qv2m as a proxy of boundary layer water vapor, as we find
a strong correlation between these two variables (SI Appendix,
Fig. S1A). We also use T2m as a predictor because of its high
correlation with temperature averaged over the boundary layer
(above 850 hPa), as shown in SI Appendix, Fig. S1B. From qv2m
and T2m, the network can potentially learn the relative humidity
of the boundary layer, an important factor in the evaporation
of rain and thus precipitation efficiency, which largely affects
precipitation intensity (5, 26).
Thus,most results are based on this set of inputs coarse-grained

over a block of 32× 32 (or 130× 130 km2). Nevertheless, we
explore several other choices of inputs and coarse-graining that
we describe in Methods and discuss their impact on the results
when relevant.

A

C

B

Fig. 2. Overview of proposed framework for parameterizing precipitation. (A) Coarse-graining the high-resolution data. (B) Baseline-NN architecture: This
network receives coarse-scale variables (e.g., SST and PW) as input and predicts coarse-scale precipitation. (C). Org-NN architecture: The Left panel shows the
autoencoder that receives the high-resolution PW as input and reconstructs it after passing it through a bottleneck. The Right panel shows the neural network
that predicts coarse-scale precipitation. The input to this network is the coarse-scale variables (as for the baseline network) as well as org extracted from the
autoencoder. The two blocks are trained simultaneously.

PNAS 2023 Vol. 120 No. 20 e2216158120 https://doi.org/10.1073/pnas.2216158120 3 of 11

D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
w

w
w

.p
n
as

.o
rg

 b
y
 9

0
.8

.2
0
9
.1

2
5
 o

n
 J

u
ly

 9
, 
2
0
2
3
 f

ro
m

 I
P

 a
d
d
re

ss
 9

0
.8

.2
0
9
.1

2
5
.



Results

Predicting Precipitation from Coarse-Scale Quantities. To in-
vestigate the first hypothesis, i.e., the predictability of precipita-
tion using coarse-scale quantities only, we use a neural network
depicted in Fig. 2B, which we refer to as baseline-NN.

Fig. 3A shows the precipitation predictability when the NN
uses as input coarse-scale PW, SST, qv2m, and T2m. The
latter two variables inform the baseline-NN about the boundary-
layer condition (27). To construct this plot, we bin coarse-scale
PW, then average coarse-scale precipitation, predicted and true,
over each bin of PW. We also compute the variance of coarse-
scale precipitation values that fall within each bin of PW. The
plot shows the bin-averaged precipitation (orange line and blue
dashed line) and the variance within each bin (shading). The
baseline-NN accurately recovers the critical behavior of mean
(bin averaged) precipitation conditioned on PW and its rapid
transition past a critical point. However, it cannot explain the
precipitation variability observed in the global storm resolving

simulations, and its performance, measured by R2 across all
samples, is about 0.45. The low R2 reveals that even though the
baseline-NN captures some of the variability in precipitation,
it does not find a strong relationship between inputs and

precipitation. Furthermore, R2 computed at each bin of PW
(Fig. 3A green line) does not exceed 0.5.
Comparing the probability density function (pdf) of precipi-

tation predicted by the baseline-NN with the true precipitation
(Fig. 3B) reveals that the model also fails to predict the tail
of the distribution, in line with climate models’ prediction of
precipitation and their difficulty in representing extremes.
To verify the importance of surface fluxes on the prediction

of precipitation, we run an extra test in which we include coarse-
scale surface-sensible and heat fluxes alongside the four variables
mentioned above in the input of the baseline network. This
inclusion marginally improves overall R2 by 0.05∼0.1. This
improvement mostly occurs at locations with large PW for which
precipitation intensity is small, potentially related to the diurnal

A

C

D

F

E

B

Fig. 3. Performance of the NN. (A–C) trained using only coarse-scale variables and (D–F ) trained using coarse-scale variables as well as org metric as input. A
shows true (blue) and predicted (orange) coarse-scale precipitation averaged over PW bins (1 mm) for training using only PW, SST, qv2m, and T2m. Shading
shows the SD of coarse-scale precipitation for each bin of PW. The green line plots the R2 across PW bins. Panel B shows the probability density function (pdf)
of precipitation for true (blue) and prediction from panel a (orange). Panel C displays the R2 computed for each latitude and longitude location across time
steps for panel A. Panels D–F show the same as A–C but predicted as by Org-NN, which includes the org metric in its inputs.
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cycle of precipitation; yet, the network still underestimates
extreme precipitation (SI Appendix, Fig. S2A).

We run further tests with our baseline-NN, in which we
also include total cloud cover (at the coarse scale) as an input
of the network. In climate models, total cloud cover is a
parameterized variable and not directly related to precipitation,
so that including it as input of the NN could provide hints
about the condensed water, which is directly used for the
parameterization of precipitation. This inclusion (SI Appendix,
Fig. S2B) improves the prediction negligibly but emphasizes that
the mean cloud cover does not provide relevant information
required for accurate prediction of precipitation. Additionally,
further analysis confirms that including Convective Available
Potential Energy (CAPE) or Convective INhibition (CIN)
as predictors does not improve the prediction (SI Appendix,
Fig. S2C).

To summarize, the baseline-NN has a low skill in accurately
predicting precipitation and its variability, even though the
overall behavior of precipitation, averaged over bins of PW,
is decently predictable from coarse-scale quantities (PW, SST,
and boundary layer information). In this work, we use only
the near-surface and column-integrated values as input of the
NN; thus, we cannot rule out that including the whole column
profile may improve the prediction. Yet, based on previous
studies, even including the whole column of the atmosphere
as input to a machine learning model did not fully capture
the stochasticity observed in GCM-scale precipitation, as shown
in previous work (21). Colin et al. (28), using small-domain
cloud-resolving simulations, showed that homogenizing the
moisture field horizontally while keeping the domain mean
constant significantly affected precipitation. Furthermore, Yuval
and O’Gorman (20) indicated that precipitation predictability is
significantly reduced by coarsening the resolution, despite the use
of moisture, temperature, and wind at all the vertical levels, from
the surface to the free troposphere. This indicates that either
relevant information for an accurate coarse-scale prediction of
precipitation is missing or that the precipitation is stochastic
and thus that its actual value is largely unpredictable. In the next
section, we investigate the next hypothesis, which is precipitation
variability is explainable by the inclusion of an organization
metric.

Org Informed Prediction of Precipitation.Our hypothesis for
the failure of the baseline-NN to predict precipitation variability
is that it is due to the lack of information on subgrid-scale
variability, which is not present in coarse-scale variables, such that
additional subgrid-scale information needs to be included in the
inputs of the NN. Here, we specifically investigate the potential
importance of subgrid-scale cloud patterns, i.e organization, and
whether including this information in the neural network can
improve its prediction. Over the last three decades, many studies
have investigated the impact of organization on the dynamics
and thermodynamics of convection as well as on precipitation.
In parallel, more than 20 differentmetrics have been developed to
quantify the degree of organization or, more generally, the cloud
pattern (29). SI Appendix, Fig. S3 shows the correlation between
the time series of different metrics applied to the DYAMOND
dataset. These metrics capture some aspects of the organization
and can potentially be used to inform the coarse-scale variables
about subgrid-scale cloud patterns for predicting precipitation.
However, these metrics have been designed for large domains
(>200 km), while for climate-size domains (100 to 200 km)
where convection might cluster to some degree, these metrics

usually fail to provide valuable information. Furthermore, each
of these metrics targets a specific aspect of cloud organization
that may not be directly relevant to predicting precipitation.
We instead turn this approach on its head and try to learn

an implicit representation of organization that is most relevant
to precipitation prediction. To do so, we extract information
relevant to predicting precipitation from a high-resolution
field using a dimensionality reduction technique known as an
autoencoder. An autoencoder (AE) is a powerful nonlinear
dimensionality reduction approach that has been originally
developed for image processing (30). The encoder part of the AE
nonlinearly projects high-resolution inputs into a low-dimension
nonlinear manifold that efficiently describes the data. This low-
dimension representation, i.e., a latent space, embeds optimal
information needed from the high-resolution field to reconstruct
precipitation. Here, we apply this AE to high-resolution PW and
extract its latent representation (hereafter named org) to inform
our precipitation-predicting network about the organization. By
coupling the AE with the NN, which predicts precipitation, and
training the two networks in parallel, the AE directly receives
feedback from the objective function of the NN through back-
propagation (the process of minimizing the loss function by
adjusting the weights and biases of the NN). Thus, the AE
is forced to extract relevant information that improves the
prediction of precipitation. Fig. 2C shows the architecture of
our network. We refer to this network as Org-NN. Importantly,
we impose rotation invariance of the loss function measuring
the organization of the high-resolution field, as the organization
of clouds should not depend on its exact location, nor on the
rotation of the field (Methods). The Left block of the schematic
(Fig. 2) shows the autoencoder that receives high-resolution PW
anomaly as input. The Right block shows the fully connected
feed-forward NN, with the same number of hidden layers and
neurons as baseline-NN. This network receives the coarse-scale
variables along with org and predicts precipitation. These two
blocks are trained simultaneously. In other words, we train two
networks end to end in parallel: one that reduces the dimension of
the high-resolution field into a few latent variables—the org—and
the other one that predicts precipitation with SST, PW, qv2m,
and T2m (as previously) with the addition of organization latent
variables org. The dimension of org is set to 4. Further tests with
different org dimensions are discussed in the Methods section
and summarized in SI Appendix, Table S2 and Fig. S5.

Fig. 3 D–F shows the Org-NN prediction of precipitation.
Org-NN demonstrates a significant improvement as compared
to the baseline-NN. The R2 of this prediction increases to 0.9
when computed across all data points. Reducing the number of
org variables to 2 or changing the resolution does not significantly
change the results as summarized in SI Appendix, Table S2 and
Fig. S5. R2, computed for each bin of PW, is close to 0.80 for
almost all bins except where precipitation is small (e.g., scaled-
PW ∼ 0.3).
We further quantify the Org-NN performance by comparing

its probability density function (PDF) with the one of the true
precipitation from the storm-resolvingmodel (Fig. 3E). Org-NN
fully captures the PDF, including the tail of the distribution,
which corresponds to the precipitation extremes. Additionally,
Fig. 3F shows the R2 of the Org-NN computed for each latitude-
longitude grid across time steps. The white patches in this figure
have precipitation smaller than 0.05 mm/h, so they are excluded
from the input of the model. Org-NN has significantly larger R2

(>0.8) except for regions that are close to the points which do
not have precipitation larger than the threshold.

PNAS 2023 Vol. 120 No. 20 e2216158120 https://doi.org/10.1073/pnas.2216158120 5 of 11
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In climate models, the modeling and representation of hourly
and subhourly precipitation extremes, which are dominated by
deep convective precipitation, continue to be one substantial
source of uncertainty. Our results demonstrate a significant
improvement in precipitation prediction with the inclusion of
org, suggesting that the subgrid-scale structure is potentially
an important piece of information currently missing in the
parameterization of convection and precipitation in climate
models.

Prediction of the Org Variables. Including org variables in the
input of the neural network significantly improves the prediction
of precipitation; however, in climate models, where high-
resolution fields are not available to be used for the prediction
of org, how can org be generated? One approach to address
this issue would be to predict org from coarse-scale variables
resolved by a climate model. Rephrased differently, can we apply
a diagnostic model using coarse-scale variables as input to predict
org? Additionally, from observations, we know that organization
can persist over time, thus exhibiting a strong temporal memory,
meaning that org variables should carry some information that
persist over time and could be advected, potentially with the
mean field. Mapes and Neale (16) integrate this idea in their org
metric by making it time-dependent and advective. We adopt
this approach and include large-scale variables and org at the
current and previous time steps to predict the org at the current
time. Mathematically this is expressed as

org(t) = F [X (t − nLS1t, ..., x − 1t, t),

org(t − norg1t, ..., t − 1t), θ ]

(nLS = 0, 2, 4; norg = 0, 1, 2),

[1]

where F is a function approximated by a fully connected feed-

forward neural network, X is the coarse-scale variables (SST, PW,
qv2m, T2m, and surface fluxes), and θ is the neural network
parameters. 1t is the time resolution of the data and equals
15 min for the DYAMOND data. nLS and norg represent the
maximum lagged time step of large-scale variables and the org
variables that we include as the input features. Thus, the network
that approximates F has two sets of inputs, the coarse-scale
variables from current and up to nLS previous time steps and
the org variables of up to norg prior time steps. Additionally, we
also build neural networks to predict org using only org ’s previous
time steps without any coarse-scale input. In this case, the first

(X ) term in Eq. 1 is no longer retained. All inputs are at the same
location as predicted org; that is, the model is local. With this
model, we design two sets of tests: 1) including only the coarse-
scale variables (norg = 0) as input to verify the predictability of org
from historical information at coarse-scale, and 2) including both
coarse-scale and org history as input to explore the predictability
of org from its own history.

org prediction with coarse-scale input: We run three tests with
nLS= 0, 2, and 4, which, respectively, correspond to using only
the current time step, the current and two previous time steps,
and the current and four previous time steps. Fig. 4 summarizes

the R2 of these tests. Predicting org with X (t) (i.e., nLS = 0) has
R2 ∼ 0.3 for the first org variable and R2 ∼ 0.1 for three others
(Fig. 4). Including 2 previous time steps (i.e., nLS = 2) increases
R2 of all org predictions by about 0.1, while increasing nLS to 4
results in a minor increase in R2 (Fig. 4 and SI Appendix, Fig. S4)
compared to nLS= 2. This finding indicates that the org variables,
particularly org1, are to some extent predictable from historical

Fig. 4. The figure summarizes R2 of org prediction (Eq. 1). The neural
networks that use only coarse-scale variables as input are marked by back
slashes; the neural networks that use only previous org values as input are
marked by forward slashes. For the neural networks with both large-scale
variables and previous org as input, nLS and norg , respectively, represent the
prior time steps of coarse-scale variables and org history included as the
input to the neural network (Eq. 1). For instance, norg = 1 and nLS = 2means
using one prior time step of org and current and two previous time steps
of coarse-scale variables as input to the neural network F (Eq. 1). The test
“advect” includes neighboring coarse-scale pixels in the inputs, and the tests
‘linear ’ use a multiregression model instead of the neural network.

information of coarse-scale variables with the best results achieved
with nLS= 4 (1 h). Thus, large parts of information encoded in
org are not retrievable from the historical (and local) coarse-scale
variables.
In the three tests mentioned above, we use only coarse-scale

information of the same location for which we predict org, thus
ignoring the spatial advection of org. In addition to temporal
correlation, org can also be spatially correlated. Moreover, org
encodes not only the persisting subgrid-scale structures but might
also capture the coarse-scale front or waves propagating and
affecting the moisture field. To take account of this source of
org, as well as the spatial correlation, we modify the inputs to
F to include the coarse-scale variables of neighboring pixels as
well. For this specific test, then, we set nLS = 2, norg = 0, and

X is a 3x3 horizontal block for predicting org at the center of
this block. This test, shown in dark blue color in Fig. 4, has
R2 ∼ 0.66−0.70, which is significantly larger than the test with
similar historical coarse-scale data but only local information.
The larger predictability of org, when the neighboring coarse-
scale variables are known, suggests that org probably captures
more than just persistent subgrid-scale structure and encodes
propagating coarse-scale flow, which influence moisture field and
precipitation.
Prediction with coarse-scale and historical org inputs: As our

second set of tests, we include org history, alongside the large-
scale variables, in the input of the neural network F . With this
setup, we perform a test with nLS = 2 and norg = 1, which
corresponds to including coarse-scale variables of current and
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two previous time steps and org of one previous time step, and
a second test with nLS = 4 and norg = 2. We find that making
org(t) dependent on its own history improves the prediction of
org(t) significantly (Fig. 4). The test with nLS = 2 and norg = 1

has R2 > 0.95 for all four org variables. This indicates the
substantial predictability of org(t) given org ’s history, due in part
to the persistence of subgrid-scale structures over a period larger
than the 15-min time step of our data.

Given the significant temporal correlation among org vari-
ables, one can simply predict org(t) using an autoregressive or
multiregression model. To do so, we replace the neural network,
F , with a multiple linear regression and predict org(t) as a linear

function of org(t −dt) and X of current and previous time steps,
as summarized in Fig. 4, while keeping the model local (i.e., no
neighboring pixels). The result, shown in Fig. 4), suggests that
once the previous org value is known, org(t) becomes highly
predictable even with only one prior org time step. For a specific
test where we exclude coarse-scale variables from the input and
set norg = 1 (thus reducing the multiregression model to an

autoregressive model), R2 is higher than 0.95 for all org values.
This approach would then be preferable, compared to the others
mentioned above, due to its simplicity and the need for less
historical data for its input, which is crucially advantageous for
the implementation in a GCM.

What Does org Measure?. Previous org metrics have been de-
veloped using statistical and geometric arguments (29), but
here, we have relied on a data-driven approach to develop an
optimal metric for organization that is specifically targeting the
predictability of precipitation at the grid scale. Because neural
networks have nonlinear activation functions between layers,
they are more challenging to interpret than linear models. To
understand what the encoder is learning, we additionally train
a decoder to reproduce the high-resolution fields from the
latent representations. This decoder uses a rotation-invariant
loss function (31); this imposes a constraint such that high-
resolution fields that are rotations of one another (by nπ/2, where
n is a random integer number) are mapped to the same latent
representation, as rotations should not be physically meaningful
for predictions of precipitation.

To directly visualize the latent space, we first determine
the observed distributions of the org parameters learned from the
simulation data using the encoder. We consider cases where the
latent space has a dimension of dorg = 2 and dorg = 4 (at a
single time step). We denote these latent variables as org1 and
org2 for dorg = 2, and org1, org2, org3, and org4 for dorg = 4.
For both the dorg = 2 and dorg = 4 cases, we find that the
learned parameters are highly correlated with one another (joint
distributions in SI Appendix, Figs. S6A and S8). We apply
principal component analysis to the org variables to linearly
transform these variables to a coordinate systemwhere the axes lie
along the directions of greatest variance of the dataset. The joint
and marginal distributions for the first two principal components
for the dorg = 2 case (denoted as org ′

1 and org ′

2) are shown in
Fig. 5A, and for the first four principal components for the
dorg = 4 case are shown in SI Appendix, Fig. S9.
To effectively map out the latent space across the range of org

parameters observed in the DYAMOND simulations, we then
use the trained decoder to reconstruct the high-resolution fields
sampled across the distribution of values observed in the training
dataset along the directions of greatest variance for the latent
variables. The values of org1 and org2 that are input to the
decoder to produce a reconstruction of the high-resolution fields

Fig. 5. Latent space of org. (A) Joint probability distribution of the first two
principal components of the latent variables for the dorg = 2 case (denoted
as org′

1
and org′

2
) from predictions of the encoder trained on the DYAMOND

simulations. The marginal distribution are shown on the Top (for org′
1
) and

Right side of the plot (for org′
2
). (B) Visualization of the latent representation

for the dorg = 2 case. Color scaling is relative to the minimum andmaximum
values for PW in each reconstructed high-resolution field to best show small-
scale contrast. Values for the org′

1
and org′

2
are chosen to be the midpoint

of the deciles of their marginal distributions. SI Appendix, Fig. S7 shows the
same figure but with the color scale relative to the absolute contrast across
all the reconstructed high-resolution fields.

characteristic of that portion of the latent space are determined
by finding the average values for each decile of the distributions of
the transformed variables (org ′

1 and org
′

2). Fig. 5B shows the latent
space visualization for the dorg = 2 case. We similarly visualize
the latent space along the first two principal components for the
dorg = 4 case in SI Appendix, Fig. S10, and for the next leading
principal components in SI Appendix, Fig. S11; in this case, we fix
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the values for the other two principal components to the central
values of their marginal distributions.

Mapping out the latent representations along the first two
principal components of org for the dorg = 2 and dorg = 4
cases indicates that the learned org variables capture information
about how aggregated the high-resolution precipitable water
fields are. The first principal component (which accounts for
94.8% and 98.2% of the explained variance for the dorg = 2 and
dorg = 4 cases, respectively) in particular demonstrates increasing
aggregation moving from Left to Right in Fig. 5B. Moreover,
these two main modes of variability are robust to the number of
org parameters in the latent space, as the latent spaces for both
the dorg = 2 and dorg = 4 case are very similar for these first two
principal components (Compare Fig. 5B and SI Appendix, Fig.
S10). In addition, examining the absolute scaling of precipitable
water in the latent space (SI Appendix, Fig. S7) indicates that
org ′

1 is not simply correlated to the mean value of precipitable
water but is instead a measure of the degree of aggregation of the
high-resolution field.

Discussion

Whether and how to incorporate the subgrid-scale structure
into a climate model parameterization has been a persistent
question in the parameterization of convection. It is also relevant
to many other problems in climate science where the overall
impact of a complex field has to be approximated, such as ocean
surface temperature anomalies or the heat conductivity of sea
ice. In this work, we suggest an elegant approach to implicitly
learn the subgrid-scale structure and effectively incorporate
this into a parameterization. Our approach models the two
scales by two different networks: the unresolved scales using
an autoencoder and resolved scales using a feed-forward neural
network.

The results presented here suggest that coarse-scale variables (at
a scale of climate models ∼100 km) are not sufficient predictors
for accurate replication of precipitation statistics because of
the lack of inclusion of subgrid organization. This finding
calls into question current climate model parameterizations of
convection and precipitation that ignore any degree and mode
of organization at the subgrid scale. The current climate model
representation of convection is typically based on an ensemble
of unorganized, randomly distributed buoyant updrafts, without
any interaction or memory of the previous state of the system.
This deficiency has been suggested as one major reason for the
well-known climate model bias toward light rain (7, 16, 32), i.e.,
the so-called drizzle problem.

We have shown here that including convective organization
subgrid-scale information (in a neural network) significantly
improves the prediction skill of precipitation, particularly the
stochasticity and extremes of precipitation—a long-lasting issue
for climate models. This finding suggests that precipitation
stochasticity at the climate model scale is linked to subgrid-scale
structure and can be fully explained when this information is
incorporated into the parameterization.

Our data-driven organization variables, org, extracted from a
high-resolution field of PW were shown to carry the required
information needed to accurately predict precipitation at the
coarse scale. In addition, these organization metrics were shown
to be predictable as a memory process informed by historical
coarse-scale variables or org of a previous time step. The
studies of self-aggregation using small-domain cloud-resolving
models have emphasized the importance of memory for the

persistence of organization. In that case, the memory has been
attributed to moisture–convection feedback, moisture–radiation
feedback, etc. (2, 4, 28). Although we have not investigated
the source of memory, our results suggest that historical coarse-
scale variables are informative of the org variable to some degree.
More importantly, the strong temporal correlation between
org variables indicates that it may be related to persistent
subgrid-scale structures, and thus, these structures are important
for precipitation. An important avenue for future research is
exploring the physical processes and causal mechanisms that give
rise to this memory.
Our data-driven parameterization of subgrid-scale structure

can provide guidance for existing parameterizations by learning
the distribution of org variables and the temporal and spatial
correlations between them. This distribution can then be used to
inform the noise term in existing stochastic parameterizations.
Additionally, it is important to investigate the relevance of
subgrid-scale structure in predicting convective tendencies and
radiative cooling of the atmosphere to further improve data-
driven parameterizations. Since these parameterizations are all
connected, it is crucial to investigate whether a common set
of org variables can be learned and used effectively across all
parameterizations where the subgrid-scale structure might have
an impact.
Our finding helps to guide and improve the representation of

organization in climate models, one of the grand challenges in
“Clouds, Circulation andClimate Sensitivity” (33).We provide a
pragmatic way to tackle two problems at once: the representation
of cloud organization and precipitation stochasticity in coarse-
scale models. We also emphasize the key role of organization and
its predictability on precipitation prediction.

Materials and Methods

Data. The datasetwas producedby the System for AtmosphericModeling (SAM)
(22), as a part of the DYnamics of the Atmosphere general circulation Modeled
on Nonhydrostatic Domains (DYAMOND) Phase 2 Intercomparison Project of
global storm-resolving models (23).

The precipitation from DYAMOND simulations spatiotemporally averaged
over the tropics is comparable to the observation (23). For instance, SAM
predicts 4.07mm/d precipitation, slightly larger than the observed 3.50mm/d;
however, all DYAMOND simulations underestimate the cloud cover. The diurnal
precipitation cycle shows a similar amplitude to the observations; however, SAM
predicts an early peak at 1500 UTC compared to observation. Precipitation has
a very non-Gaussian probability distribution (Fig. 3 B and D) even when we
exclude all nonprecipitating pixels from data.

ThePhase2Intercomparisonprojectsimulatedfortydaysduringthenorthern-
hemisphere wintertime. Forty days only partially covers the large atmospheric
variability one can find in observations. For instance, this period is too short
for Madden–Julian oscillation (MJO) to form, and it includes only one El Niño-
Southern Oscillation (ENSO) condition. Yet, a duration of 40 d is adequate for
the purpose of this work, which is to explore whether subgrid-scale structure
matters for precipitation.

From40d simulated by SAM-DYAMOND,we discard the initial 10 d asmodel
spin-up (34) and randomly select 10 d from the last 30 d for training, so that
we capture the variability modeled by SAM, while keeping the size of the data
manageable.

Preprocessing. To prepare the data for our neural network, we select the
tropical band (20◦S - 20◦N) and 10 d of simulation. We discard land and
retain only ocean for our training because we look for a simple model and
adding land requires more input features and likely a larger dataset. The spatial
resolution of SAM-DYAMOND is about 4 km, and the temporal resolution of 2D
outputs is 15 min. We coarse-grain these data horizontally to subdomains
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that are equivalent/comparable to a GCM-size grid (e.g., ∼100 km) as
follows:

X(i, j, k) =
1

L2

l=Li∑

l=L(i−1)+1

m=Lj∑

m=L(j−1)+1

X(l, m, k), [2]

where X is the field to be coarse-grained, L is the averaging (coarse-graining)
factor, and i and j are the indices in the x and y directions. We test several

coarse-graining factors from L = 16 to L = 48 (equivalently 70 × 70 km2

to 200 × 200 km2). The results displayed in the paper are based on L = 32,
equivalent to 130 km, while the impact of L on the results is discussed when
relevant and reported in SI Appendix, Table S2.

The input to theencoder ofOrg-NN is thehigh-resolution (not coarse-grained)
PW anomalies with the shape of LxL (e.g., 32 × 32 for L= 32), and the anomaly
is with respect to the horizontal mean over the LxL subdomain. By subtracting
the mean, we separate the impact of large-scale PW from the subgrid-scale
structure captured by org. One can alternatively scale the high-resolution PW
fields by removing the mean and dividing by its SD. However, we find that this
latter method reduces the models’ performance, as discussed in SI Appendix.

To provide the train, validation, and test datasets, we split the 10 d into 6,
2, and 2 d for train, validation, and test, respectively. Furthermore, we keep
only the samples with precipitation larger than a threshold (0.05 mm/h) so
that we concentrate only on predicting precipitation intensity rather than on

precipitation triggering. The total number of samples is on the order of 108.

Neural Network Architecture. We use two neural networks: a feed-forward
network that is informed with only coarse-scale variables, which we refer to as
the baseline-NN. We use a second architecture, which combines a feed-forward
neural network with an autoencoder. The autoencoder extracts organization
information from the high-resolution PW anomaly field. Fig. 2 shows these two
networks. Both networks are implemented using the Tensorflow library version
2.9 (35), and the hyperparameters are tuned using the Sherpa hyperparameter
tuning library (36).
Baseline-NN. The baseline-NN (Fig. 2A) is a fully connected feed-forward neural
network with 4 hidden layers and [256,256,128,64] neurons. The learning rate

is scheduled to decrease with epoch and initialized to 10−4. The baseline-NN
has access to only large-scale variables and predicts precipitation. We run four
tests in which the choice of input of the baseline-NN differs and is as follows:

1. [PW, SST]
2. [PW, SST, specific humidity at 2m, temperature at 2 m]
3. [PW, SST, specific humidity at 2m, temperature at 2 m, sensible heat flux,

latent heat flux]
4. [PW, SST, specific humidity at 2m, temperature at 2 m, total cloud cover]
5. [PW, SST, specific humidity at 2m, temperature at 2 m, CAPE, CIN].

The baseline-NN predicts a precipitation value for each given set of large-scale
inputs.
Org-NN. The architecture of Org-NN is shown in Fig. 2B. The encoder part of
the autoencoder includes three one-dimensional convolutional layers followed
by two fully connected layers. The input to this network is high-resolution

PW anomalies with dimension 32× 32 grid points (or 130× 130 km2). The
encoder output is org variables. The dimension of org is a hyperparameter of the
network that we set to 4. The decoder has the inverse structure of the encoder.
It receives org variables and reconstructs the original high-resolution field (e.g.,
32× 32 grid points). The NN part of this network is similar to the baseline-NN
except that the latent variables, org, has been added as an extra input feature.
The input to NN is [PW, SST, specific humidity at 2m, temperature at 2m, org].

SI Appendix, Table S2 and Fig. S5 summarizes how the choice of resolution
(e.g., 32× 32, 16× 16, etc) and/or the dimension of org affects the results.
Changingthedimensionoforg to2doesnotaffect thepredictionofprecipitation;
however, it reduces the reconstruction accuracy.

Loss Function. The baseline-NN predicts precipitation and using coarse-scale
variables, while the Org-NN also reconstructs the high-resolution PW field and

predicts precipitation with this extra information provided by org. For predicting
precipitation, we use mean square error (MSE) as the loss function for the
feedforward neural networks in both the baseline-NN and Org-NN models:

loss =
1

N

N∑

i=0

(Pi
t
− Pi

p
)2, [3]

whereN is thenumberof samples,Pt represents the coarse-grainedprecipitation

from the DYAMOND dataset, and Pp represents the precipitation predicted
by the neural network. MSE gives the samples with extreme precipitation
greater importance than the samples with small precipitation, as these extremal
values significantly increase the loss. One can alternatively use mean absolute
error (MAE) as a loss function; however, we find that MAE results in a slight
underestimation of extremes, while not improving the overall performance of
the model.

For thebaseline-NN, theabove functionalready represents its final loss;while
for Org-NN, we apply the MSE loss for the autoencoder as well and then assign
weights to the loss of AE and to the loss of the feedforward NN and sum themup
as the final loss function. The emphasis of our work is on predicting precipitation
andextractingorgvariablesbutnotaccurately reconstructing thehigh-resolution
two-dimensional fields. Thus, we give the MSE of the autoencoder a smaller
weight (0.2) so that org-NN is more concentrated on its principal task.

An organization metric should not be sensitive to the orientation of clouds.
We enforce this criterion in the autoencoder so that the orgmetric is rotationally
invariant. To do so, for each high-resolution PW input of the encoder–decoder,
the network applies a random rotation of 90 degrees to the input, and the
encoder maps both nonrotated and randomly rotated input to the latent space.
To make the org rotation-invariant, we force the encoder to map both inputs
(nonrotated and rotated) to the same subspace in the latent space by adding the
following term to the loss function of AE:

Xr = R(X)

org = e(X)

orgr = e(Xr)

lossRI =
N∑

i=1

(orgi − orgri )
2/

N∑

i=1

|orgi|,

where R is a rotation operator that rotates the input X by nπ/2 and n is random
integer number. X is the nonrotated high-resolution PW anomaly input of the
autoencoder, Xr is the rotated input, e is the encoder network, org is the latent
representation of X, and orgr is the latent representation of Xr . lossRI is then
the term we add to the loss function to make it rotation-invariant. We normalize
the RI loss by dividing by the L1 norm of org values. This scaling prevents the
model from minimizing the lossRI by assigning small values to org rather than
enforcing the rotation invariant.

The loss of Org-NN, including all three terms, is then

Lossorg−NN = λ1
1

N

N∑

i=0

(Pi
t
− Pi

p
)2 + λ2

1

N

N∑

i=1

(pwti − pw
p
i )

2

+ λ3
1

N

N∑

i=1

(orgi − orgri )
2/

N∑

i=1

|orgi|, [4]

where P represents coarse-scale precipitation, pw is the high-resolution
precipitablewater (e.g., 32× 32), andN is thenumber of samples. Thefirst term
in Eq. 4 is the MSE loss of precipitation prediction, the second term is the MSE
loss of pw reconstruction, and the third term is the rotation-invariant loss. λ1,
λ2, and λ3 are hyperparameters and are set to 0.4, 0.2, and 0.4, respectively.

Training and Validation Procedure. The input to each network is in the form
of minibatches so that we do not train on individual samples one by one, but
rather on an ensemble of samples. Thus, the shape of inputs to the baseline-NN
and NN part of Org-NN is [nbatch,nf ], where nbatch is the number of samples
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randomly selected in eachminibatch and nf is the number of fields that we pass
as input. For example, for the baseline-NN where we pass PW and SST as input,
nf equals 2. The shape of the input for the AE is [nbatch,Lx ,Lx ,1], and Lx is the
dimension of the high-resolution field.We examine ourmodel on 4 resolutions:
200 km, 130 km, 100 km, and 75 km that correspond to Lx = 48, 32, 24,
and 16, respectively. The model is trained on the minibatches of 128 samples,
for 100 epochs. In order to prevent overfitting, we implement the strategy
of early stopping. At each iteration, the network computes the loss averaged
over samples in one minibatch. This loss value is backpropagated through the
network, and its derivative with respect to each neural network’s parameter is
computed. The neural network’s parameters are then updated using the ADAM
algorithm. This process is repeated over all minibatches, which corresponds to
one epoch. At the end of each epoch, the network’s performance is validated
using thevalidationdataset,which thenetworkhasnot seenwhilebeing trained.
The training-validation process continues until either the total number of epochs
is reached or until the early stopping criteria are met. Here, the early stopping
has patience equal to 10 epochs. This means that if the validation loss does not
improve for five consecutive epochs, the network training stops. Early stopping
was used to prevent the network’s overfitting so that themodel can have a better
generalization ability.

Evaluation Metric. To evaluate the neural network’s performance, we use R2,
a commonly usedmetric for quantifying the performance of regressionmodels.

Let us say we have a dataset of n values y1, y2, ..., yn, each associated with a

predicted value p1, p2, ..., pn. R
2 of these data is then defined as

R2 = 1 −

i=n∑

i=1
(yi − pi)

2

i=n∑

i=1
(yi − y)

,

where y is the truemean. Thenumeratormeasures the residual of theprediction,
while the denominator measures the variance of the true data. A perfect

prediction with zero residual has R2 = 1. A model that assigns mean value, y,

to each pi has R
2 = 0.

Given the spatiotemporal variability of precipitation, one can compute R2 in

several manners. Let us say P = P(time, lat,lon), then we can compute R2:

1. By expanding P and creating a large list, then computing an overall R2: This
score has the lowest value.

2. By computing R2 across one of the dimensions of the data: For example,

computing R2 for time series of precipitation at each (lat, lon). Fig. 3 C
and F are computed following this approach. Alternatively, one can bin

precipitation based on PW and then compute R2 of precipitation over each
bin of PW (green curves in Fig. 3 A and D).

3. By first averaging precipitation across one or two dimensions and then

computing R2 of the mean profile: For instance, one can first average true

and predicted precipitation zonally and temporally and then compute R2 of
the averaged profiles. Alternatively, one can first average precipitation over

bins of PW and then compute R2 for averaged precipitation.

In this work, we employ the first and second methods to compute R2. The first

method gives R2 ∼ 0.45 for baseline and 0.9 for Org-NN. The second method
is used in Fig. 3C as well as Fig. 3B, green line.

We have not computed R2 based on the third method as it overestimates
the models’ performance. One can imagine a NN that assigns the zonally
averagedprecipitationtoall longitudepointswithoutpredictinganylongitudinal

variability. Following the third approachmentioned above and computing R2 of
zonally averaged precipitation would evidently overestimate the performance

of the imagined NN. The samewill happen if we compute R2 using precipitation
averaged over bins of PW. Thus, although the averaged predicted precipitation
over bins of PW closely follows the true profile (Fig. 3A), the baseline model has

a low skill (R2 < 0.5) as revealed by Fig. 3A green line.

Data, Materials, and Software Availability. [1) Simulation of atmosphere
2) codes for preprocessing the data and training the neural networks]. Data
have been deposited in [1) DKRZ 2) Github] 1) https://www.esiwace.eu/services/
dyamond-initiative 2) https://github.com/Sshamekh/Precip-org) (37).
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