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Abstract
The process of evapotranspiration transfers liquid water from vegetation and soil surfaces to the
atmosphere, the so-called latent heat flux (QLE), and modulates the Earth’s energy, water, and
carbon cycle. Vegetation controls QLE by regulating leaf stomata opening (surface resistance rs in
the Big Leaf approach) and by altering surface roughness (aerodynamic resistance ra). Estimating rs
and ra across different vegetation types is a key challenge in predicting QLE. We propose a hybrid
approach that combines mechanistic modeling and machine learning for modeling QLE. The
hybrid model combines a feed-forward neural network which estimates the resistances from
observations as intermediate variables and a mechanistic model in an end-to-end setting. In the
hybrid modeling setup, we make use of the Penman–Monteith equation in conjunction with
multi-year flux measurements across different forest and grassland sites from the FLUXNET
database. This hybrid model setup is successful in predicting QLE, however, this approach leads to
equifinal solutions in terms of estimated physical parameters. We follow two different strategies to
constrain the hybrid model and therefore control for the equifinality that arises when the two
resistances are estimated simultaneously. One strategy is to impose an a priori constraint on ra
based on mechanistic assumptions (theory-driven strategy), while the other strategy makes use of
more observational data and adds a constraint in predicting ra through multi-task learning of both
latent and sensible heat flux (QH; data-driven strategy) together. Our results show that all hybrid
models predict the target variables with a high degree of success, with R2 = 0.82–0.89 for grasslands
and R2 = 0.70–0.80 for forest sites at the mean diurnal scale. The predicted rs and ra show strong
physical consistency across the two regularized hybrid models, but are physically implausible in the
under-constrained hybrid model. The hybrid models are robust in reproducing consistent results
for energy fluxes and resistances across different scales (diurnal, seasonal, and interannual),
reflecting their ability to learn the physical dependence of the target variables on the meteorological
inputs. As a next step, we propose to test these heavily observation-informed parameterizations
derived through hybrid modeling as a substitute for ad hoc formulations in Earth system models.

1. Introduction

Evapotranspiration, i.e. surface latent heat flux (QLE),
plays a key role in driving Earth’s energy, water, and

carbon cycles, and is primarily controlled by dynamic
meteorological conditions and soil water conditions,
as well as static properties such as soil characteristics
and plant traits (Jung et al 2010, Dou and Yang
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2018, Ajami 2021). Plants critically influence QLE

mainly through their direct control of transpiration,
but also through shaping aerodynamic surface prop-
erties (i.e. roughness). They use their leaf stomata
to dynamically regulate the water loss to the atmo-
sphere, which depends not only on atmospheric water
demand, but also on soil water availability (Damour
et al 2010, Kennedy et al 2019, Carminati and Javaux
2020). While the physical drivers that cause water
to evaporate are well described and understood, the
influence of biological control on QLE, mainly the
transpirative water flux, is more difficult to assess.
As a consequence, empirical formulations, especially
for surface (rs) and aerodynamic resistance (ra),
remain used in process-based models, which can lead
to large uncertainties in predicting QLE (Polhamus
et al 2013). Most formulations of rs are empirical
or rely on optimality concepts, such as minimiz-
ing water loss while maximizing carbon assimilation
(e.g. Tan et al 2021). As such, these concepts do not
take into account the active transpiration mechan-
ism that some plants use to down-regulate leaf tem-
perature through evaporative cooling to prevent leaf
overheating at high irradiance and air temperature
(Lin et al 2017, Drake et al 2018). Other empirical
approaches, e.g. the Jarvis–Stewart formulation, Ball–
Berry model, and Leuning model aim to derive para-
metrizations based on statistical correlations between
rs (or canopy resistance) and the key environmental
variables (Jarvis 1976, Stewart 1988, Leuning et al
1991, Leuning 1995).

These ad hoc formulations have several draw-
backs, e.g. they are considered too rigid, especially
when evaluated in a coupled system of atmosphere–
biosphere feedbacks where some of the environ-
mental variables are actually also a function of rs
(Ronda et al 2001). Overall, these empirical repres-
entations for rs and ra in deterministic models for
QLE obey physical laws and phenomenological beha-
vior (Krasnopolsky 2013, de Bezenac et al 2017). Yet,
they exhibit limited capability to adapt to other or
changing vegetation composition or long-term cli-
matic conditions, especially with respect to soil mois-
ture (Damour et al 2010, Medlyn et al 2011, Kennedy
et al 2019).

Statistical models have been proposed as altern-
ative approaches to reliably estimate QLE due to their
data-adaptiveness (Tramontana et al 2016, Dou and
Yang 2018, Carter and Liang 2019). In particular,
approaches that use machine learning (ML) tech-
niques are gaining traction because they can impli-
citly learn unknown latent processes and consti-
tute a more complete statistical representation of
the processes that influence QLE at different scales
in space and time (Jung et al 2009, 2020, Dou
and Yang 2018). However, these data-driven mod-
els have several drawbacks, such as the need for
large amounts of high-quality data, their limited

physical consistency, and their lack of mechanistic
interpretability (Karpatne et al 2017a, 2017b).

Accordingly, physics-based models are restric-
ted by the ad hoc assumptions of the system, and
ML models are limited by their inability to pro-
duce physically interpretable and consistent predic-
tions. Therefore, the combination of mechanistic
and ML modeling promises physically interpretable
performance of predicting and inferring intermedi-
ate (or latent) states and variables by merging the
advantages of the causal understanding of physics-
based models and the predictive power of ML. Dif-
ferent approaches have been proposed to circumvent
the issues originating from using pure physics-based
and ML models. They combine the complement-
ary strengths of both techniques, which enables ML
models to capture dynamic patterns and improve the
accuracy and physical interpretability of predictions.
These methods include a form of physics-guided ML
techniques, where the neural network (NN) is con-
strained by different means to produce predictions
that mirror realistic climate conditions and fluxes.
The physics-guided ML approaches can be generally
subdivided into physics-guided loss functions, ini-
tialization, architecture design, and hybrid modeling
(Karpatne et al 2017a, Reichstein et al 2019, 2022, Jia
et al 2020a, Willard et al 2020). The combination of
ML and mechanistic modeling, here denoted hybrid
modeling, makes it possible to combine the strengths
of both techniques: ensure physical consistency while
efficiently harvesting the growing resource of obser-
vational data (Reichstein et al 2019, 2022). Therefore,
the synergy of both techniques offers promising solu-
tions to the shortcomings encountered in using both
techniques separately. Several studies have success-
fully applied hybrid modeling in hydrological applic-
ations, such as the characterization of the different
known and unknown variables governing the global
water cycle (Kraft et al 2020, 2022), simulation of lake
temperature dynamics (Jia et al 2020b), and themod-
eling of global extreme flooding events (Yang et al
2019). Other studies focusing on land–atmosphere
interactions of ecosystem fluxes, such as QLE (Zhao
et al 2019), showed that these hybrid approaches
allow for better extrapolation and generalization cap-
abilities during extreme conditions.

In this study, we propose a hybrid modeling
approach that allows the inference of these biophys-
ical controls based onobservational data ofQLE across
ecosystems, while adhering to known physical laws
(Reichstein et al 2022). The aimof this study is to offer
guidance on how to infer the hidden controls of land-
atmosphere coupling from observational data using
hybrid learning rather than from ad hoc assumptions
with rigid parametrizations. The hybrid modeling
approach illustrates the ability to provide physically
interpretable and accurate predictions against obser-
vations at different temporal scales and ecosystems.
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The obtained observation-informedparametrizations
for rs and ra reveal variability across different vegeta-
tion canopy structures, which is unaccounted for by
conventional parameterizations.

In themethods in sections 2.1 and 2.2, we describe
the hybrid modeling approach and introduce dif-
ferent models of QLE using the Penman–Monteith
(PM) equation (Penman 1948, Monteith 1965) and
eddy covariance (EC) flux measurements from sev-
eral grassland and forest sites (Baldocchi et al 2001,
Li et al 2018). Our hybrid models should not only
yield accurate predictions of QLE, but also enable us
to better understand the functioning and influence
of biophysical processes on QLE expressed through
the surface and aerodynamic resistances. We present
and explore the problem of equifinality in our set-
ting (section 2.3.2) (i.e. different combinations of ra
and rs may result in the same QLE) and propose two
conceptually different solutions (theory- versus data-
driven) to this problem (section 2.3.3). We evaluate
the predictions of our hybrid models for QLE, ra and
rs against purely statistical models as well as against
established mechanistic models in section 3.

2. Methodology

In this section we describe the data pre-processing
methods and different model setups used. Section 2.1
describes the data and processing. Section 2.2
defines the physics-based component of the hybrid
model, and section 2.3 provides an overview of all
models.

2.1. FLUXNET 2015 data
The flux network (FLUXNET; https://fluxnet.org),
a global network of EC towers, provides estimates
of energy, water, and carbon fluxes at the land sur-
faces across climate regimes and plant functional
types (Baldocchi et al 2001, Li et al 2018). The
measurements in the FLUXNET 2015 Tier 1 data-
set are resolved at a half-hourly frequency. Follow-
ing Reichstein et al (2005), we select only measured
data and omit gap-filled data. Further, we restrict
our analysis to energy-balance-corrected measure-
ments, because the EC data do not satisfy the energy
balance budget closure, which potentially introduces
high uncertainty and systematic bias in our results
(Wilson et al 2002). Daytime values are selected based
on a threshold of sensible heat fluxQH> 5Wm−2 and
incoming short-wave radiation SWin > 50 Wm−2 to
avoid stable boundary layer conditions following Lin
et al (2018) and Li et al (2019). Only positive values
are selected for the latent heat flux (QLE), net radi-
ation (Rn), soil heat flux (QG), and vapor pressure
deficit (VPD) for daylight data according toZhou et al
(2016). Winter months between October and March
are excluded to focus on surface heat fluxes when the
vegetation is active (Zhao et al 2019). The FLUXNET

sites chosen include three forest and three grassland
sites with varying climatic conditions and site charac-
teristics (see table 1 in supplementary information).

2.2. The physically-based component: PM equation
Various process-based models exist for the estima-
tion ofQLE. They can be subdivided into energy, mass
transfer-based methods, water balance methods, and
aerodynamic methods (Brutsaert 2005, Zhao et al
2013). One prominent example is the PM equation
(Penman 1948, Monteith 1965) that provides the the-
oretical basis for determining QLE and its response
to changing climate and vegetation conditions (Mon-
teith and Unsworth 2013). The estimation ofQLE can
be traced back to the model proposed by Penman
(1948), which combines the energy balance and mass
transfer approaches to estimate evaporation from
open water surfaces. The model was later extended
to vegetative surfaces (Monteith 1985, Monteith and
Unsworth 2013, Vialet-Chabrand and Lawson 2019).
The PM equation

QLE =
sc (Rn−QG)+

ρacp(es−ea)
ra

sc+ γ
(
1+ rs

ra

) , (1)

describes the latent heat flux QLE (Wm−2), where Rn
andQG are measured in (Wm−2), rs and ra are estim-
ated in (sm−1), sc is the slope of the saturation vapor
pressure–temperature relationship (kPaC−1), es− ea
is the VPD of air (kPa), ρa is the mean air density
at constant pressure (kg m−3), cp is the specific heat
of dry air at constant pressure (1004.834 Jkg−1 C−1),
and γ is the psychrometric constant (kPaC−1).

2.3. Overview of models
The following subsections present the different mod-
els used, which differ in their approach towards
being more data- or theory-driven. Each subsection
describes in detail the structure of and differences
between the models. All models were randomly ini-
tialized and drawn from a uniform distribution.

2.3.1. Inverted PM and pure ML model
The PM equation is considered to be physics-based,
since core physiological and aerodynamic factors
describe the evaporative process (Jain et al 2008). The
equation highlights the relationship between evapo-
transpiration and surface conductance, which is reg-
ulated by the leaf stomata to minimize the water
loss to the atmosphere (Hetherington andWoodward
2003, Damour et al 2010, Gerosa et al 2012). Differ-
ent approaches model surface conductance at the leaf
level with various success. The determination of sur-
face conductance at the canopy scale, however, is even
more challenging due to canopy heterogeneity and
variability in microclimate within the canopy (Bonan
et al 2011, Lin et al 2018). A common approach is to
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invert the PM equation for rs to obtain the bulk sur-
face resistance and understand its variations

rs =
rasc (Rn−QG)+ ρacp (es− ea)− raQLE (sc+ γ)

γQLE
,

(2)

assuming that aerodynamic resistance ra is known; a
strong assumption as we will revisit later. The inver-
ted PM equation (PM Inv) is used to quantify can-
opy parameters and expresses the relative significance
of advective and radiative energy for QLE as a func-
tion of the ratio of surface to aerodynamic resistance
(Kelliher et al 1992, Köstner et al 1992, Zeppel and
Eamus 2008, Zhang et al 2016).

The inversion of the PM equation, leads to highly
unstable estimates of the resistances. Therefore, we
restrict surface and aerodynamic resistance values
derived using PM inversion and empirical formula-
tions (Knauer et al 2018) based on intervals that are
physically realistic (0–2000 sm−1 and 0–500 sm−1,
respectively).

The estimates for rs from equation (2) derived
through inverting the PM equation are referred to
here as the PM Inv model. Values for ra are estim-
ated using the Big Leaf formulation from Knauer et al
(2018), which calculates ra as the sum of aerodynamic
resistance for momentum (ram) and canopy bound-
ary layer resistance for heat (rbh)

ram =WS/U∗2, (3)

rbh = 6.2U
∗−0.667, (4)

and

ra = ram + rbh, (5)

where WS is wind speed (ms−1) and U∗ is fric-
tion velocity (ms−1). The PM Inv model represents a
baseline physical model for comparison against pure
data-driven models for QLE. The pure ML model for
QLE is set up to evaluate predictions against hybrid
models. The pure ML model consists of a feed-
forward NN (FNN) (figure 1), and details about the
hyperparameters of the model are found in table 2 of
the supplementary information. The rs is calculated
from QLE predictions from the pure ML model by
using PM Inv, and ra is estimated using the ad hoc
formulation (equation (5)) approach. This model is
purely data-driven and does not contain any physical
constraint regarding QLE.

2.3.2. Under-constrained hybrid model
The hybrid model estimates QLE using the PM
equation (equation (1)), where the two intermedi-
ate variables rs and ra are estimated by two FNNs
(figure 1). The variables used for predicting rs are
air temperature (TA), water availability index (WAI),

incoming shortwave radiation (SWin), mean incom-
ing shortwave potential (SWpot sm),VPD, and Rn. The
WAI is calculated as the annual cumulative difference
between QLE and precipitation (P). The WAI at time
t (WAIt) is calculated from the difference between
QLEt and Pt added to WAI at the previous time step
(WAIt−1)

WAIt = Pt−QLEt +WAIt−1. (6)

The variables for predicting ra are WS and U
∗.

The input variables chosen for the latent variables
rs and ra were selected based on variables included
in the Big Leaf and PM equations and physical intu-
ition and interpretability through manual tuning of
parameters. The predictors are normalized using the
mean and standard deviation of the training dataset.
Thus, the hybrid model first predicts the intermedi-
ate (or latent) variables rs and ra and uses them to
estimate QLE based on the PM equation. The hybrid
model predictsQLE that exist between the initial input
and resulting output phases in one step (Reimers
and Requena-Mesa 2020). The loss function minim-
izes the difference between predicted and observed
QLE and is defined as the mean absolute difference
between themodel predictions and observations with
n sample size, and parameters θ for rs and ra

min
θra ,θrs

n∑

i=1

∣∣∣Q̂LEi − QLEi

∣∣∣ . (7)

We use the mean absolute error as it is less sens-
itive to outliers than the mean squared error. The
pure ML model and the hybrid model both optim-
ize against QLE as highlighted in the loss function
(equation (7)), however, the hybrid model estimates
rs and ra as intermediate variables and uses the PM
equation to estimate QLE. While the pure ML model
directly predicts QLE without the physical constraints
imposed by the PM equation.

Although the two FNNs for ra and rs take differ-
ent predictor variables, the hybrid model is under-
constrained when simultaneously estimating the two
intermediate variables using only one target QLE.
The proposed hybrid model thus suffers from an
equifinality problem. The issue of equifinality, or
non-uniqueness, occurs when different model para-
metrization or structures result in equivalent repres-
entations of the system (Beven 2006, Schmidt et al
2020). Thus, many different combinations of rs and
ra can result in the same QLE value (figure 2).

2.3.3. Constrained hybrid models: a priori and
multi-task learning models
The identification and elimination of equifinality, in
the physics-based component is one of the key chal-
lenges in hybrid modeling (Kraft et al 2022). One way
to reduce equifinality is to restrict the parameter space
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Figure 1. Schematic overview and classification of all models with respect to being more theory- and/or data-driven, as well as the
strengths of the constraints on the loss function. The color coding represents the distinct and individual NN used for the latent
and target variables. The pure ML model consists of an FNN to predict QLE with no physical constraints. The hybrid models
consist of two individual FNNs, which estimate rs and ra separately with independent input climate variables. These latent
variables are used in the Penman–Monteith equation to estimate QLE, and differ based on the regularization method used in the
loss function. The unconstrained hybrid model suffers from equifinality. The a priori hybrid model is more strongly constrained
with a weighted ra from the Big Leaf model and is more theory-driven. The relative importance of ra in the loss which reflects the
influence of Big Leaf theory on the a priorimodel is regulated by φ. Based on multiple model runs, the φ value is selected to have a
minor influence of prior knowledge in the loss function. The multi-task learning model is constrained with more information
from learning an additional observation QH and is more data-driven. WS is wind speed (ms−1), and U∗ is friction velocity
(ms−1). Rn is the net radiation (Wm−2) VPD, is the vapor pressure deficit of air (kPa), WAI is the water availability index
calculated in equation (6), TA is air temperature (◦C), SWinis incoming shortwave radiation (Wm−2), and SWpot sm is mean
incoming shortwave potential (Wm−2).

through model regularization. This can be achieved
through two approaches; by including either addi-
tional theory or data via additional loss terms. The
integration of a priori knowledge in the loss func-
tion (i.e. a regularization) induces an a priori con-
straint on ra in the hybrid model (figure 1) based on
the empirical formulation presented in equation (5),
as the formulation for ra is considered to be more
robust than for rs. To do sowe regularize the loss func-
tion by adding a constraint on the loss minimizing
aerodynamic resistance Loss (ra , r̂a )/ϕ. The relative
importance of ra in the new loss is regulated by ϕ,
which is varied between the high influence and low
influence of the constraint. Based on multiple model
runs with varying values for ϕ, we select a value for
ϕ to only impose a low influence in the overall loss
function.

Another way of restricting the parameter space is
by extending the framework to model auxiliary target
variables, whereby the auxiliary tasks help to regular-
ize the problem objective (Liebel and Körner 2018).
Since the sensible heat flux (QH) is also dependent
on the aerodynamic resistance ra, we explore a multi-
task learning approach by restricting the parameter

space through modeling QH and QLE simultaneously
(figure 1). The estimation of QH is based on the res-
istance formulation

QH =
ρacp (TS−TA)

ra
, (8)

where TS and TA are surface and air temperature
respectively. The TS is estimated using the Stefan–
Boltzmann equation

TS =
4

√
QLWout

σϵ
, (9)

where QLWout is the outgoing longwave radiation
(Wm−2), σ is the Stefan–Boltzmann constant
(5.789 ×10−8Wm−2K−4) and ϵ is emissivity
(dimensionless). The emissivity ranges from 0 to 1,
and the values chosen were based on selecting models
with the highest predictive accuracy.

2.4. Evaluation
We evaluate four models,i.e. one pureMLmodel, one
under-constrained hybridmodel (i.e. with no strategy
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Figure 2. Equifinality in the physics-based component of hybrid model: The lines represent different QLE values that can exist for
specific conditions (the actual QLE value is approximately 334 Wm−2). Fixing all parameters of the PM equation sc =
0.175 kPaC−1 , Rn = 520.38Wm−2 , QG = 18.51 Wm−2, VPD= 1.333 kPa , ρa = 1.143 kg m−3 , cp = 1004.834 Jkg−1C−1,
γ= 0.0644 kPaC−1 , the different combinations of rs and ra values lead to the same QLE. Shaded areas show the physically
non-plausible and non-realistic values for rs and ra combinations, and non-shaded areas show physically plausible values.

to decouple ra and rs), and two constrained hybrid
models. The constrained hybrid models either con-
sist of an a priori constraint on ra or use a multi-
task learning approach. For a baseline comparison,
we use a pure ML model predicting QLE directly
without intermediate resistances and the estimation
of the inverted PM equation to evaluate the pre-
dictions of the hybrid models. The network archi-
tectures and hyperparameters used are similar for
the different models (table 2 in the supplementary
information) for a fair comparison. Evaluation met-
rics such as the rootmean square error (RMSE),mean
absolute error (MAE), and coefficient of determin-
ation (R2) are used to evaluate the model predic-
tions. To highlight the impact of noise on model
performance, we evaluate the model predictions on
half-hourly and 7 d mean aggregated scales. The
intermediate variables are assessed against the key
meteorological predictor variables to scrutinize phys-
ical consistency and plausibility. The target variables
are assessed against observations as well as the key
meteorological predictor variables to estimate model
performance and interpretability. We conduct five
model runs with random initializations for each of
the hybrid models and for one forest site (DE-Tha) as
well as, one grassland site (DE-Gri) to evaluate model
robustness at the mean diurnal scale. More inform-
ation can be found in table 3 of the supplementary
information.

3. Results and discussion

3.1. Evaluation of the learned latent variables r̂s
and r̂a
We evaluate the impact of the QLE-controlling resist-
ances r̂s and r̂a which are treated as intermediate vari-
ables in our hybrid approach. Note that the models
are driven by all relevant predictor variables for rs and
ra, respectively (cf figure 1), and only for evaluation
and interpretability puproses do we plot predictions
against individual predictor variables. Based on the
strongest dependencies discovered by our methods,
we first plot the inferred estimates of r̂s and r̂a against
the key meteorological drivers, namely VPD and the
frictional velocity U∗, respectively (figures 3 and 4).
The behavior of r̂s against VPD is consistent across all
the models and reflects a similar behavior as presen-
ted for Q̂LE (figure 5). The predicted r̂s shows a subtle
increase at lower ranges of VPD, reflecting that sto-
mata are still open for gas exchange with the atmo-
sphere. However, as VPD increases, the stomata start
to close and thus surface resistance increases sharply
(Massmann et al 2019). Further, we find that r̂s is gen-
erally lower for grasslands, which explains the gener-
ally higher estimates of QLE in comparison to forests
(figure 5). Another striking finding is that the models
seem to be able to identify differences in the physiolo-
gical functioning across different plant types in con-
trolling r̂s. For instance, the inferred relationship of r̂s
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Figure 3. Assessing latent variables rs and ra against VPD and U∗ respectively for different models in forests. Constrained hybrid
models reveal the physical consistency of latent variables compared to the under-constrained model, especially under different
environmental conditions. The colored lines represent the smoothed lines that fit a polynomial surface using local fitting for each
site. The contour lines represent 2D kernel density estimate.

Figure 4. Assessing latent variables rs and ra against VPD and U∗ respectively for different models in grasslands. The constrained
hybrid models yield more physically consistent results compared to under-constrained model and are able to capture the
vegetation and climate heterogeneities. The colored lines represent the smoothed lines that fit a polynomial surface using local
fitting for each site. The contour lines represent 2D kernel density estimate.

and VPD is very similar for the two forest sites DE-
Tha and FR-LBr, which are dominated by evergreen
needle-leaf trees, but it is quite different for the more
arid site FR-Pue, which is dominated by evergreen
broad-leaf trees (figures 3(a)–(c)). There, the hybrid
models show that on average rs rises more steeply
with increasing VPD but flattens out at very high
VPD (compare fit lines in figures 3(a)–(c)). Future
research is needed to determinewhether this behavior
actually reflects the plants’ mechanism for prevent-
ing leaf overheating by maintaining some evaporat-
ive cooling through the stomata (Lin et al 2017), or
whether it is just an artifact of too sparse data at high
VPD. Overall, the inferred r̂s through hybrid model-
ing (figures 3(a)–(c)) is much more precise than its
conventional derivation by inverting the PMequation
while making assumptions for ra (figure 3(d)). This
aspect constitutes a key advantage of our hybrid

approach as opposed to the inversion method, where
artificial noise in the flux measurements directly
propagates into the inverted estimates of r̂s resulting
in high artificial variability and a bias in r̂s ranging
from 0% to 30% (Wehr and Saleska 2021).

The inferred relationship for r̂a against its key
driver U∗ is not consistent across the hybrid mod-
els. The two constrained hybrid models, i.e. multi-
task learning (figure 3(f)) and a priori constraint
(figure 3(g)), consistently reflect the expected negat-
ive logarithmic relationship of r̂a against U

∗ (figures 3
and 4). In particular, in the case of the hybrid multi-
tasking model, this result is promising because the
relationship emerges from the observational data
alone, without inducing any prespecified knowledge.
Furthermore, the two constrained hybrid models
show variations of the r̂a relationship across the sites
(figures 3(f), (g) and 4(f), (g)). Thus, they are capable
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Figure 5. Evaluating QLE predictions against VPD for different models for forests (a)–(d) and grasslands (e)–(h). Higher
evapotranspiration rates are evident for grasslands compared to forests associated with higher stomatal conductance. The colored
lines represent the smoothed lines that fit a polynomial surface using local fitting for each site. The contour lines represent 2D
kernel density estimate.

Figure 6. Evaluation of QH observations and predictions at a half-hourly and mean diurnal scale for forest (a), (b) and grasslands
(c), (d) for the multi-task learning hybrid model. QH predictions are similar in range compare to QLE predictions in figures 4
and 7 for forests and grasslands. The colored lines represent the linear regression lines that fit linear models for each site. The
contour lines represent 2D kernel density estimate.

of capturing the canopy heterogeneity across sites
and are more flexible than the conventional rigid
parameterizations shown in figure 3(h) (forests) and
figure 4(h) (grasslands), where ra is a homogenous
function of U∗ across the different sites.

The under-constrained hybrid model
(figure 3(e)), however, illustrates the risk of equifinal-
ity and the physics-violating behavior of this
approach. In other words, r̂a exhibits physically
inconsistent relationships in the under-constrained
model across the sites (figure 3(e)), while the

predicted r̂s and Q̂LE retain physically plausible estim-
ates (figures 3(a) and 5(g)–(i), respectively). The
issue of equifinality is more prominent in forests
than in grasslands, likely because aerodynamic res-
istance is less dominant in controlling QLE in forests
(figures 3(e) and 4(e); Chen and Liu 2020).

Aerodynamic resistance ra constitutes a critical
link in the surface energy balance, especially under
different environmental and stability conditions, as
it has a bearing on both, QLE and QH. Uncertainties
in QLE and QH mainly arise from the uncertainty
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Figure 7. Evaluation of QLE observations and predictions at different temporal scales for forests. Figures (a), (d), (g), (j) show
predictions against observations at a half-hourly scale for different models; figures (b), (e), (h), (k) show predictions against
observations at mean diurnal scale; figures (c), (f), (i), (l) show QLE anomalies at an interannual scale for the different models.
The colored lines represent the linear regression lines that fit linear models for each site. The contour lines represent 2D kernel
density estimate.

in estimating ra for both dense and sparse canopy,
and particularly under arid and semi-arid conditions
(Trebs et al 2021). Our multi-task learning hybrid
model, however, is able to provide fairly high accur-
acy for QLE and QH predictions for grasslands under
unstable and semi-arid conditions without overes-
timating ra, which has been proven difficult in other
modeling efforts (Trebs et al 2021). For example, the
predictions for QLE (figure 5) and QH (figures 6(c)
and (d)) at theUS-Var grassland site, characterized by
a dry Mediterranean-type climate (Xu and Baldocchi
2004, De Kauwe et al 2017), are fairly accurate and
relate to physically consistent ra predictions.

To get an estimate of the structural (epistemic)
uncertainty for the inferred relationships for rs and
ra, we train each model five times with random ini-
tializations (refer to section 2.3). The hybrid models
show consistent predictions for the relationships for
rs and ra at mean diurnal scale across the model runs
with different initializations. The under-constrained
hybrid model is consistent in producing physic-
ally non-interpretable ra for all initializations. The
constrained hybrid models, on the other hand, are

able to consistently reproduce the physically plaus-
ible relationships for rs and ra, especially at forest
sites. Hence, our hybrid modeling approach yields
robust predictions, yet we stress the caveats related to
equifinality in these under-constrainedmodel setups.

3.2. Evaluation of the target variables Q̂LE and Q̂H

We evaluate the predicted QLE (Q̂LE) from all the
hybrid models and the pure ML model against
observed QLE (QLEobs) at a half-hourly scale and
at 7 d mean aggregates (mean diurnal) for forest
(figure 7) and grassland (figure 8) sites. All models
produce similar QLE patterns compared to obser-
vations with minor differences in performance. For
forests (figure 7), the more flexible models, i.e.
the under-constrained hybrid model and pure ML
model, perform slightly better (R2 = 0.49) than do
the multi-task learning model (R2 = 0.48) and the a
priori constraint model (R2 = 0.46). For grasslands,
the performance of all models is generally better than
for forests.We find that the performance of themulti-
task learning model exceeds the performance of the
a priori constraint model and is similar to the pure
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Figure 8. Evaluation of QLE observations and predictions at different temporal scales for grasslands. Figures (a), (d), (g), (j) show
predictions against observations at a half-hourly scale for different models; figures (b), (e), (h), (k) show predictions against
observations at mean diurnal scale; figures (c), (f), (i), (l) showQLE anomalies at aninterannual scale for the different models. The
colored lines represent the linear regression lines that fit linear models for each site. The contour lines represent 2D kernel density
estimate.

ML model (R2 = 0.74–0.75) (figure 8). This finding
could indicate that our theory-based constraint for ra
might be too rigid and is not supported by the flux
observations. Overall, the RMSE ranges from 70 to
73Wm−2 for forests and 60–71Wm−2 for grasslands
at a half-hourly scale for all models. TheMAE at half-
hourly measurements range from 50 to 53 Wm−2 for
forests and from 43 to 48Wm−2 for grasslands for all
models. The multi-task learning model provides pre-
dictions for QH (Q̂H) (figure 6) of similar accuracy
compared to theQLE predictions for all sites (figures 7
and 8), reaching R2 = 0.53 for forests and R2 = 0.68
for grasslands sites at a half-hourly scale. Overall, the
pureMLmodel slightly outperforms the hybridmod-
els for both forest and grassland sites, owing to its
flexibility and non-parametric attributes as it only
minimizes the loss ofQLE, without being constrained
by the PM equation. More information on the phys-
ical interpretability of Q̂LE assessed against meteor-
ological variables can be found in the Suppl. Info.
Sec. 3.3.

We evaluate the hybrid models’ consistency with
respect to the interannual variability ofQLE for the

different sites. The interannual anomalies are calcu-
lated as the difference between the average annual
estimates of QLEobs in the training dataset and the
annual estimates of QLEobs and Q̂LE in the validation
and test dataset for the EC data and models, respect-
ively, to evaluate the predictive capacity of the dif-
ferent models (Jung et al 2009, Besnard et al 2019).
Figures 7 and 8 show the overall fit and performance
of the models in predicting interannual anomalies of
Q̂LE compared to observed anomalies of QLEobs. The
values ofR2 range between 0.47 and 0.49 for the inter-
annual Q̂LE anomalies for forests and thus exhibit
a comparable performance at half-hourly frequency
(R2 ranges between 0.46 and 0.49) (figure 7). We
observe a similar behavior at grassland sites:R2 ranges
between 0.65 and 0.75 at the half-hourly scale and
between 0.62 and 0.74 for the interannualQLE anom-
alies (figure 8). Overall, the evaluation of the mod-
els at multiple temporal scales shows that the mod-
els are capable of learning not only the predominant
structure of the diurnal and seasonal cycle, but also
the more subtle year-to-year anomalies. The presen-
ted consistency reflects that the models learn the
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physically correct dependence of the meteorological
predictor variables controlling QLE (figure 5).

4. Conclusions

We present a new approach to end-to-end hybrid
modeling of latent heat fluxes that can simultaneously
retrieve the two controlling intermediate variables—
the surface (rs) and aerodynamic resistance (ra)—
while maintaining physical consistency across dif-
ferent vegetation types. The hybrid models provide
reliable predictions against measurements of latent
heat fluxes at different time scales, ranging from
daily to seasonal to interannual variations. This cross-
scale consistency shows that our model framework is
able to learn the physically consistent dependencies
between the meteorological input variables and the
target fluxes, rather than just the dominant structure
of diurnal and seasonal cycles.

The main novelty and outcome of this study
are the data-driven parameterizations for rs and
ra jointly estimated by two separate NNs, which can
lead new insights on biophysical regulation of sur-
face evaporation. We show that the NNs together
can provide many solutions (non-uniqueness) and
lead to physically plausible predictions forQLE fluxes,
while presenting physically implausible relationships
to the predictors. This non-uniqueness can be mit-
igated by introducing either more data or theory
into the loss function of the hybrid model. Spe-
cifically, we make use of two different approaches
(a priori constraint and multi-task learning) to reg-
ularize the parameter space for the NNs. The con-
strained hybrid models in general yield accurate and
physically interpretable predictions, with the multi-
task learning model estimating the target and lat-
ent variable predictions with accuracy similar to the
pure ML model, but with constraints that respect the
surface energy budget. Therefore, by incorporating
additional observation-based information, themulti-
task learning model is the optimal hybrid model for
the problem at hand. This architecture makes it pos-
sible to reduce equifinality and enables the model
to extract underlying information from observations
rather than ad hoc assumptions, while allowing the
NN enough flexibility within the limits of physical
interpretability of the surface energy balance.

When using the hybrid models to determine rs
and ra, we find substantial differences between sites
compared to the very uniform empirical formula-
tions commonly used. This inter-site spread in the
observation-based parameterizations suggests that
the conventional empirical formulations are too rigid
and do not account for the variability caused by the
vegetation canopy structure. The hybridmodels show
differences among sites, highlighting in particular the
different physiological functions of the different plant
types, in comparison to the PM equation under the
Big Leaf assumption. The resulting relationships for

rs and ra not only show physically consistent behavior
across scales, but also reveal new insights into how the
varying resistances control surface energy fluxes. By
evaluating the relationship of rs and ra to the driv-
ing meteorological variables, we are able to identify
the effect of structural differences between forests and
grasslands. The general response of stomatal conduct-
ance to VPD and photosynthesis in forest and grass-
land ecosystems is more aligned with the optimality
theory as it considers the interactions between tran-
spiration and carbon assimilation. However, grass-
lands tend to show a weaker dependence of stomatal
conductance on photosynthesis and VPD that can be
attributed to structural vegetation differences of the
leaf area index and significantly larger weight and
impact of ra on rs. ra is generally higher for grass-
land sites than for forests which is attributed to the
surface roughness of leaves. rs is higher for forest
sites compared to grasslands owing to the different
atmospheric demand of the canopy and water uptake
through roots that highlight the functional balance
between shoots and roots under water-stressed con-
ditions. In addition, we detect that these learned para-
meterizations in the hybrid models exhibit lower sto-
matal conductance, suggesting that the rs values usu-
ally obtained by inversion of the PM equation may be
systematically overestimated.

Several approaches have already been proposed to
use the growing number of observations to constrain
uncertainty in mechanistic model simulations, espe-
cially for key unknown plant behavior in the coupled
Earth system (Lian et al 2018, Winkler et al 2019a,
2019b, Varney et al 2020). As a next step, we pro-
pose to derive parameterizations directly from obser-
vations using hybrid modeling, as presented in this
study, to replace these ad hoc formulations in Earth
system models. This approach will not only help
reduce uncertainty, but also advance significantly the
understanding of biogeophysical and biogeochemical
processes in land–atmosphere coupling.
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