

LETTER • OPEN ACCESS

Hybrid modeling of evapotranspiration: inferring stomatal and aerodynamic resistances using combined physics-based and machine learning

To cite this article: Reda ElGhawi *et al* 2023 *Environ. Res. Lett.* **18** 034039

View the [article online](#) for updates and enhancements.

You may also like

- [Microplastics segregation by rise velocity at the ocean surface](#)
Michelle H DiBenedetto, Jessica Donohue, Kate Tremblay et al.

- [Beyond river discharge gauging: hydrologic predictions using remote sensing alone](#)
Hae Na Yoon, Lucy Marshall and Ashish Sharma

- [Observed contribution of Barents-Kara sea ice loss to warm Arctic-cold Eurasia anomalies by submonthly processes in winter](#)
Yanqin Li, Li Zhang, Bolan Gan et al.

ENVIRONMENTAL RESEARCH LETTERS

OPEN ACCESS

RECEIVED
14 September 2022

REVISED
23 January 2023

ACCEPTED FOR PUBLICATION
14 February 2023

PUBLISHED
7 March 2023

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

LETTER

Hybrid modeling of evapotranspiration: inferring stomatal and aerodynamic resistances using combined physics-based and machine learning

Reda ElGhawi^{1,2,3,*} , Basil Kraft¹, Christian Reimers¹, Markus Reichstein^{1,4} , Marco Körner³ , Pierre Gentile⁵ and Alexander J Winkler^{1,*}

¹ Max Planck Institute for Biogeochemistry, Biogeochemical Integration, Jena, Germany

² International Max Planck Research School for Global Biogeochemical Cycles, Max Planck Institute for Biogeochemistry, Jena, Germany

³ Department of Aerospace and Geodesy, School of Engineering and Design, Technical University of Munich, Munich, Germany

⁴ ELLIS Unit Jena, Michael-Stifel-Center, University of Jena, Jena, Germany

⁵ Department of Earth and Environmental Engineering, Columbia University, NY, New York, 10027, United States of America

* Authors to whom any correspondence should be addressed.

E-mail: relghawi@bgc-jena.mpg.de and awinkler@bgc-jena.mpg.de

Keywords: hybrid modeling, physics-constrained, machine learning, multi-task learning, evapotranspiration, surface resistance, aerodynamic resistance

Supplementary material for this article is available [online](#)

Abstract

The process of evapotranspiration transfers liquid water from vegetation and soil surfaces to the atmosphere, the so-called latent heat flux (Q_{LE}), and modulates the Earth's energy, water, and carbon cycle. Vegetation controls Q_{LE} by regulating leaf stomata opening (surface resistance r_s in the Big Leaf approach) and by altering surface roughness (aerodynamic resistance r_a). Estimating r_s and r_a across different vegetation types is a key challenge in predicting Q_{LE} . We propose a hybrid approach that combines mechanistic modeling and machine learning for modeling Q_{LE} . The hybrid model combines a feed-forward neural network which estimates the resistances from observations as intermediate variables and a mechanistic model in an end-to-end setting. In the hybrid modeling setup, we make use of the Penman–Monteith equation in conjunction with multi-year flux measurements across different forest and grassland sites from the FLUXNET database. This hybrid model setup is successful in predicting Q_{LE} , however, this approach leads to equifinal solutions in terms of estimated physical parameters. We follow two different strategies to constrain the hybrid model and therefore control for the equifinality that arises when the two resistances are estimated simultaneously. One strategy is to impose an *a priori* constraint on r_a based on mechanistic assumptions (theory-driven strategy), while the other strategy makes use of more observational data and adds a constraint in predicting r_a through multi-task learning of both latent and sensible heat flux (Q_H ; data-driven strategy) together. Our results show that all hybrid models predict the target variables with a high degree of success, with $R^2 = 0.82\text{--}0.89$ for grasslands and $R^2 = 0.70\text{--}0.80$ for forest sites at the mean diurnal scale. The predicted r_s and r_a show strong physical consistency across the two regularized hybrid models, but are physically implausible in the under-constrained hybrid model. The hybrid models are robust in reproducing consistent results for energy fluxes and resistances across different scales (diurnal, seasonal, and interannual), reflecting their ability to learn the physical dependence of the target variables on the meteorological inputs. As a next step, we propose to test these heavily observation-informed parameterizations derived through hybrid modeling as a substitute for ad hoc formulations in Earth system models.

1. Introduction

Evapotranspiration, i.e. surface latent heat flux (Q_{LE}), plays a key role in driving Earth's energy, water, and

carbon cycles, and is primarily controlled by dynamic meteorological conditions and soil water conditions, as well as static properties such as soil characteristics and plant traits (Jung *et al* 2010, Dou and Yang

2018, Ajami 2021). Plants critically influence Q_{LE} mainly through their direct control of transpiration, but also through shaping aerodynamic surface properties (i.e. roughness). They use their leaf stomata to dynamically regulate the water loss to the atmosphere, which depends not only on atmospheric water demand, but also on soil water availability (Damour *et al* 2010, Kennedy *et al* 2019, Carminati and Javaux 2020). While the physical drivers that cause water to evaporate are well described and understood, the influence of biological control on Q_{LE} , mainly the transpirative water flux, is more difficult to assess. As a consequence, empirical formulations, especially for surface (r_s) and aerodynamic resistance (r_a), remain used in process-based models, which can lead to large uncertainties in predicting Q_{LE} (Polhamus *et al* 2013). Most formulations of r_s are empirical or rely on optimality concepts, such as minimizing water loss while maximizing carbon assimilation (e.g. Tan *et al* 2021). As such, these concepts do not take into account the active transpiration mechanism that some plants use to down-regulate leaf temperature through evaporative cooling to prevent leaf overheating at high irradiance and air temperature (Lin *et al* 2017, Drake *et al* 2018). Other empirical approaches, e.g. the Jarvis–Stewart formulation, Ball–Berry model, and Leuning model aim to derive parametrizations based on statistical correlations between r_s (or canopy resistance) and the key environmental variables (Jarvis 1976, Stewart 1988, Leuning *et al* 1991, Leuning 1995).

These ad hoc formulations have several drawbacks, e.g. they are considered too rigid, especially when evaluated in a coupled system of atmosphere–biosphere feedbacks where some of the environmental variables are actually also a function of r_s (Ronda *et al* 2001). Overall, these empirical representations for r_s and r_a in deterministic models for Q_{LE} obey physical laws and phenomenological behavior (Krasnopolksy 2013, de Bezenac *et al* 2017). Yet, they exhibit limited capability to adapt to other or changing vegetation composition or long-term climatic conditions, especially with respect to soil moisture (Damour *et al* 2010, Medlyn *et al* 2011, Kennedy *et al* 2019).

Statistical models have been proposed as alternative approaches to reliably estimate Q_{LE} due to their data-adaptiveness (Tramontana *et al* 2016, Dou and Yang 2018, Carter and Liang 2019). In particular, approaches that use machine learning (ML) techniques are gaining traction because they can implicitly learn unknown latent processes and constitute a more complete statistical representation of the processes that influence Q_{LE} at different scales in space and time (Jung *et al* 2009, 2020, Dou and Yang 2018). However, these data-driven models have several drawbacks, such as the need for large amounts of high-quality data, their limited

physical consistency, and their lack of mechanistic interpretability (Karpatne *et al* 2017a, 2017b).

Accordingly, physics-based models are restricted by the ad hoc assumptions of the system, and ML models are limited by their inability to produce physically interpretable and consistent predictions. Therefore, the combination of mechanistic and ML modeling promises physically interpretable performance of predicting and inferring intermediate (or latent) states and variables by merging the advantages of the causal understanding of physics-based models and the predictive power of ML. Different approaches have been proposed to circumvent the issues originating from using pure physics-based and ML models. They combine the complementary strengths of both techniques, which enables ML models to capture dynamic patterns and improve the accuracy and physical interpretability of predictions. These methods include a form of physics-guided ML techniques, where the neural network (NN) is constrained by different means to produce predictions that mirror realistic climate conditions and fluxes. The physics-guided ML approaches can be generally subdivided into physics-guided loss functions, initialization, architecture design, and hybrid modeling (Karpatne *et al* 2017a, Reichstein *et al* 2019, 2022, Jia *et al* 2020a, Willard *et al* 2020). The combination of ML and mechanistic modeling, here denoted hybrid modeling, makes it possible to combine the strengths of both techniques: ensure physical consistency while efficiently harvesting the growing resource of observational data (Reichstein *et al* 2019, 2022). Therefore, the synergy of both techniques offers promising solutions to the shortcomings encountered in using both techniques separately. Several studies have successfully applied hybrid modeling in hydrological applications, such as the characterization of the different known and unknown variables governing the global water cycle (Kraft *et al* 2020, 2022), simulation of lake temperature dynamics (Jia *et al* 2020b), and the modeling of global extreme flooding events (Yang *et al* 2019). Other studies focusing on land–atmosphere interactions of ecosystem fluxes, such as Q_{LE} (Zhao *et al* 2019), showed that these hybrid approaches allow for better extrapolation and generalization capabilities during extreme conditions.

In this study, we propose a hybrid modeling approach that allows the inference of these biophysical controls based on observational data of Q_{LE} across ecosystems, while adhering to known physical laws (Reichstein *et al* 2022). The aim of this study is to offer guidance on how to infer the hidden controls of land–atmosphere coupling from observational data using hybrid learning rather than from ad hoc assumptions with rigid parametrizations. The hybrid modeling approach illustrates the ability to provide physically interpretable and accurate predictions against observations at different temporal scales and ecosystems.

The obtained observation-informed parametrizations for r_s and r_a reveal variability across different vegetation canopy structures, which is unaccounted for by conventional parameterizations.

In the methods in sections 2.1 and 2.2, we describe the hybrid modeling approach and introduce different models of Q_{LE} using the Penman–Monteith (PM) equation (Penman 1948, Monteith 1965) and eddy covariance (EC) flux measurements from several grassland and forest sites (Baldocchi *et al* 2001, Li *et al* 2018). Our hybrid models should not only yield accurate predictions of Q_{LE} , but also enable us to better understand the functioning and influence of biophysical processes on Q_{LE} expressed through the surface and aerodynamic resistances. We present and explore the problem of equifinality in our setting (section 2.3.2) (i.e. different combinations of r_a and r_s may result in the same Q_{LE}) and propose two conceptually different solutions (theory- versus data-driven) to this problem (section 2.3.3). We evaluate the predictions of our hybrid models for Q_{LE} , r_a and r_s against purely statistical models as well as against established mechanistic models in section 3.

2. Methodology

In this section we describe the data pre-processing methods and different model setups used. Section 2.1 describes the data and processing. Section 2.2 defines the physics-based component of the hybrid model, and section 2.3 provides an overview of all models.

2.1. FLUXNET 2015 data

The flux network (FLUXNET; <https://fluxnet.org>), a global network of EC towers, provides estimates of energy, water, and carbon fluxes at the land surfaces across climate regimes and plant functional types (Baldocchi *et al* 2001, Li *et al* 2018). The measurements in the FLUXNET 2015 Tier 1 dataset are resolved at a half-hourly frequency. Following Reichstein *et al* (2005), we select only measured data and omit gap-filled data. Further, we restrict our analysis to energy-balance-corrected measurements, because the EC data do not satisfy the energy balance budget closure, which potentially introduces high uncertainty and systematic bias in our results (Wilson *et al* 2002). Daytime values are selected based on a threshold of sensible heat flux $Q_H > 5 \text{ W m}^{-2}$ and incoming short-wave radiation $SW_{in} > 50 \text{ W m}^{-2}$ to avoid stable boundary layer conditions following Lin *et al* (2018) and Li *et al* (2019). Only positive values are selected for the latent heat flux (Q_{LE}), net radiation (R_n), soil heat flux (Q_G), and vapor pressure deficit (VPD) for daylight data according to Zhou *et al* (2016). Winter months between October and March are excluded to focus on surface heat fluxes when the vegetation is active (Zhao *et al* 2019). The FLUXNET

sites chosen include three forest and three grassland sites with varying climatic conditions and site characteristics (see table 1 in supplementary information).

2.2. The physically-based component: PM equation

Various process-based models exist for the estimation of Q_{LE} . They can be subdivided into energy, mass transfer-based methods, water balance methods, and aerodynamic methods (Brutsaert 2005, Zhao *et al* 2013). One prominent example is the PM equation (Penman 1948, Monteith 1965) that provides the theoretical basis for determining Q_{LE} and its response to changing climate and vegetation conditions (Monteith and Unsworth 2013). The estimation of Q_{LE} can be traced back to the model proposed by Penman (1948), which combines the energy balance and mass transfer approaches to estimate evaporation from open water surfaces. The model was later extended to vegetative surfaces (Monteith 1985, Monteith and Unsworth 2013, Viallet-Chabrand and Lawson 2019). The PM equation

$$Q_{LE} = \frac{s_c (R_n - Q_G) + \frac{\rho_a c_p (e_s - e_a)}{r_a}}{s_c + \gamma \left(1 + \frac{r_s}{r_a} \right)}, \quad (1)$$

describes the latent heat flux Q_{LE} (W m^{-2}), where R_n and Q_G are measured in (W m^{-2}), r_s and r_a are estimated in (sm^{-1}), s_c is the slope of the saturation vapor pressure–temperature relationship (kPa C^{-1}), $e_s - e_a$ is the VPD of air (kPa), ρ_a is the mean air density at constant pressure (kg m^{-3}), c_p is the specific heat of dry air at constant pressure ($1004.834 \text{ J kg}^{-1} \text{ C}^{-1}$), and γ is the psychrometric constant (kPa C^{-1}).

2.3. Overview of models

The following subsections present the different models used, which differ in their approach towards being more data- or theory-driven. Each subsection describes in detail the structure of and differences between the models. All models were randomly initialized and drawn from a uniform distribution.

2.3.1. Inverted PM and pure ML model

The PM equation is considered to be physics-based, since core physiological and aerodynamic factors describe the evaporative process (Jain *et al* 2008). The equation highlights the relationship between evapotranspiration and surface conductance, which is regulated by the leaf stomata to minimize the water loss to the atmosphere (Hetherington and Woodward 2003, Damour *et al* 2010, Gerosa *et al* 2012). Different approaches model surface conductance at the leaf level with various success. The determination of surface conductance at the canopy scale, however, is even more challenging due to canopy heterogeneity and variability in microclimate within the canopy (Bonan *et al* 2011, Lin *et al* 2018). A common approach is to

invert the PM equation for r_s to obtain the bulk surface resistance and understand its variations

$$r_s = \frac{r_a s_c (R_n - Q_G) + \rho_a c_p (e_s - e_a) - r_a Q_{LE} (s_c + \gamma)}{\gamma Q_{LE}}, \quad (2)$$

assuming that aerodynamic resistance r_a is known; a strong assumption as we will revisit later. The inverted PM equation (PM Inv) is used to quantify canopy parameters and expresses the relative significance of advective and radiative energy for Q_{LE} as a function of the ratio of surface to aerodynamic resistance (Kelliher *et al* 1992, Köstner *et al* 1992, Zeppel and Eamus 2008, Zhang *et al* 2016).

The inversion of the PM equation, leads to highly unstable estimates of the resistances. Therefore, we restrict surface and aerodynamic resistance values derived using PM inversion and empirical formulations (Knauer *et al* 2018) based on intervals that are physically realistic (0–2000 sm^{-1} and 0–500 sm^{-1} , respectively).

The estimates for r_s from equation (2) derived through inverting the PM equation are referred to here as the PM Inv model. Values for r_a are estimated using the Big Leaf formulation from Knauer *et al* (2018), which calculates r_a as the sum of aerodynamic resistance for momentum (r_{am}) and canopy boundary layer resistance for heat (r_{bh})

$$r_{am} = \text{WS}/U^{*2}, \quad (3)$$

$$r_{bh} = 6.2 U^{*-0.667}, \quad (4)$$

and

$$r_a = r_{am} + r_{bh}, \quad (5)$$

where WS is wind speed (ms^{-1}) and U^* is friction velocity (ms^{-1}). The PM Inv model represents a baseline physical model for comparison against pure data-driven models for Q_{LE} . The pure ML model for Q_{LE} is set up to evaluate predictions against hybrid models. The pure ML model consists of a feed-forward NN (FNN) (figure 1), and details about the hyperparameters of the model are found in table 2 of the supplementary information. The r_s is calculated from Q_{LE} predictions from the pure ML model by using PM Inv, and r_a is estimated using the ad hoc formulation (equation (5)) approach. This model is purely data-driven and does not contain any physical constraint regarding Q_{LE} .

2.3.2. Under-constrained hybrid model

The hybrid model estimates Q_{LE} using the PM equation (equation (1)), where the two intermediate variables r_s and r_a are estimated by two FNNs (figure 1). The variables used for predicting r_s are air temperature (TA), water availability index (WAI),

incoming shortwave radiation (SW_{in}), mean incoming shortwave potential ($SW_{pot\ sm}$), VPD, and R_n . The WAI is calculated as the annual cumulative difference between Q_{LE} and precipitation (P). The WAI at time t (WAI_t) is calculated from the difference between Q_{LE_t} and P_t added to WAI at the previous time step (WAI_{t-1})

$$\text{WAI}_t = P_t - Q_{LE_t} + \text{WAI}_{t-1}. \quad (6)$$

The variables for predicting r_a are WS and U^* . The input variables chosen for the latent variables r_s and r_a were selected based on variables included in the Big Leaf and PM equations and physical intuition and interpretability through manual tuning of parameters. The predictors are normalized using the mean and standard deviation of the training dataset. Thus, the hybrid model first predicts the intermediate (or latent) variables r_s and r_a and uses them to estimate Q_{LE} based on the PM equation. The hybrid model predicts Q_{LE} that exist between the initial input and resulting output phases in one step (Reimers and Requena-Mesa 2020). The loss function minimizes the difference between predicted and observed Q_{LE} and is defined as the mean absolute difference between the model predictions and observations with n sample size, and parameters θ for r_s and r_a

$$\min_{\theta_{r_s}, \theta_{r_a}} \sum_{i=1}^n |\hat{Q}_{LE_i} - Q_{LE_i}|. \quad (7)$$

We use the mean absolute error as it is less sensitive to outliers than the mean squared error. The pure ML model and the hybrid model both optimize against Q_{LE} as highlighted in the loss function (equation (7)), however, the hybrid model estimates r_s and r_a as intermediate variables and uses the PM equation to estimate Q_{LE} . While the pure ML model directly predicts Q_{LE} without the physical constraints imposed by the PM equation.

Although the two FNNs for r_a and r_s take different predictor variables, the hybrid model is under-constrained when simultaneously estimating the two intermediate variables using only one target Q_{LE} . The proposed hybrid model thus suffers from an equifinality problem. The issue of equifinality, or non-uniqueness, occurs when different model parametrization or structures result in equivalent representations of the system (Beven 2006, Schmidt *et al* 2020). Thus, many different combinations of r_s and r_a can result in the same Q_{LE} value (figure 2).

2.3.3. Constrained hybrid models: *a priori* and multi-task learning models

The identification and elimination of equifinality, in the physics-based component is one of the key challenges in hybrid modeling (Kraft *et al* 2022). One way to reduce equifinality is to restrict the parameter space

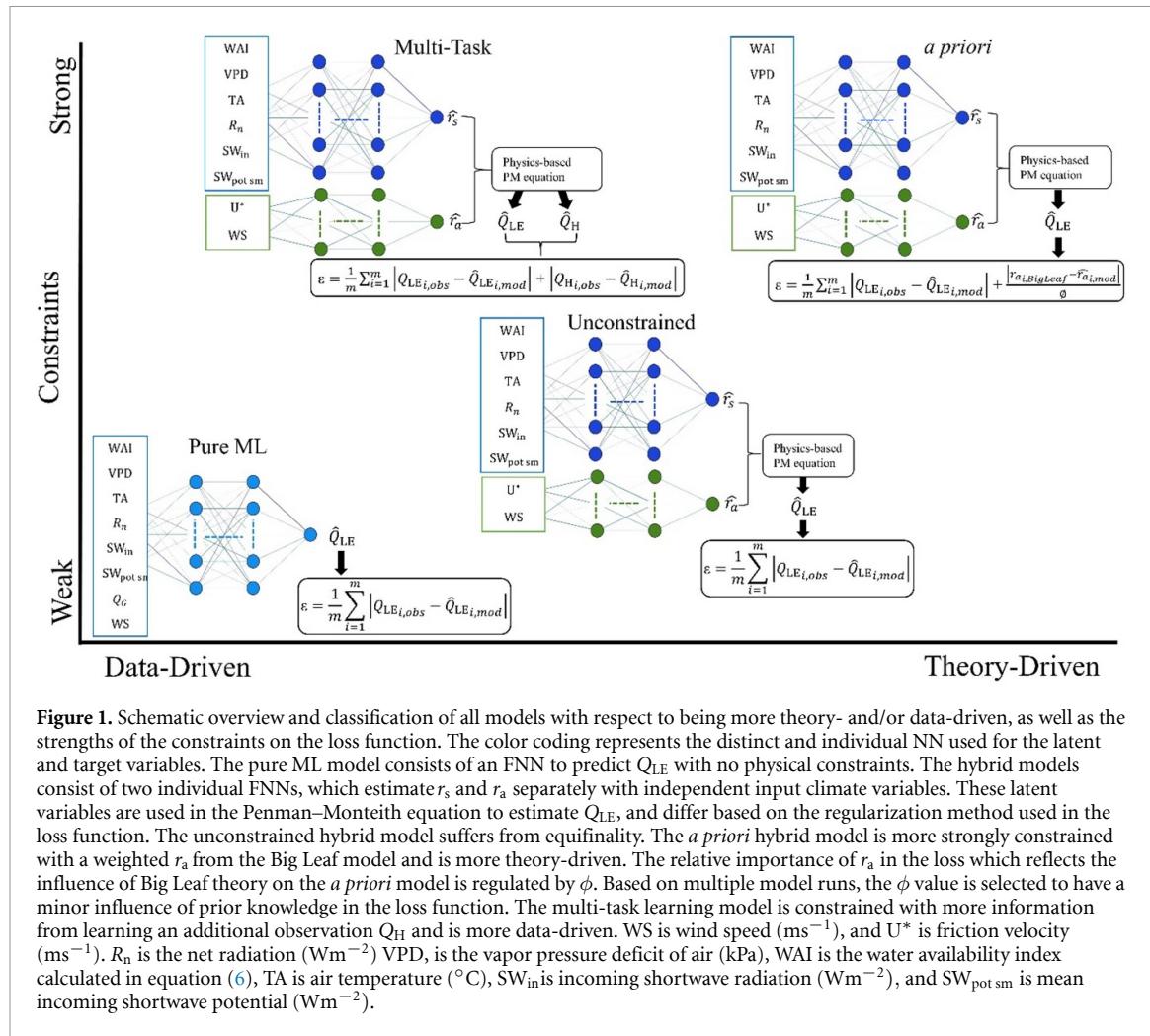


Figure 1. Schematic overview and classification of all models with respect to being more theory- and/or data-driven, as well as the strengths of the constraints on the loss function. The color coding represents the distinct and individual NN used for the latent and target variables. The pure ML model consists of an FNN to predict Q_{LE} with no physical constraints. The hybrid models consist of two individual FNNs, which estimate r_s and r_a separately with independent input climate variables. These latent variables are used in the Penman–Monteith equation to estimate Q_{LE} , and differ based on the regularization method used in the loss function. The unconstrained hybrid model suffers from equifinality. The *a priori* hybrid model is more strongly constrained with a weighted r_a from the Big Leaf model and is more theory-driven. The relative importance of r_a in the loss which reflects the influence of Big Leaf theory on the *a priori* model is regulated by ϕ . Based on multiple model runs, the ϕ value is selected to have a minor influence of prior knowledge in the loss function. The multi-task learning model is constrained with more information from learning an additional observation Q_H and is more data-driven. WS is wind speed (ms^{-1}), and U^* is friction velocity (ms^{-1}). R_n is the net radiation (Wm^{-2}) VPD is the vapor pressure deficit of air (kPa), WAI is the water availability index calculated in equation (6), TA is air temperature ($^{\circ}\text{C}$), SW_{in} is incoming shortwave radiation (Wm^{-2}), and $SW_{pot sm}$ is mean incoming shortwave potential (Wm^{-2}).

through model regularization. This can be achieved through two approaches; by including either additional theory or data via additional loss terms. The integration of *a priori* knowledge in the loss function (i.e. a regularization) induces an *a priori* constraint on r_a in the hybrid model (figure 1) based on the empirical formulation presented in equation (5), as the formulation for r_a is considered to be more robust than for r_s . To do so we regularize the loss function by adding a constraint on the loss minimizing aerodynamic resistance Loss (r_a, \hat{r}_a)/ ϕ . The relative importance of r_a in the new loss is regulated by ϕ , which is varied between the high influence and low influence of the constraint. Based on multiple model runs with varying values for ϕ , we select a value for ϕ to only impose a low influence in the overall loss function.

Another way of restricting the parameter space is by extending the framework to model auxiliary target variables, whereby the auxiliary tasks help to regularize the problem objective (Lieberl and Körner 2018). Since the sensible heat flux (Q_H) is also dependent on the aerodynamic resistance r_a , we explore a multi-task learning approach by restricting the parameter

space through modeling Q_H and Q_{LE} simultaneously (figure 1). The estimation of Q_H is based on the resistance formulation

$$Q_H = \frac{\rho_a c_p (T_S - T_A)}{r_a}, \quad (8)$$

where T_S and T_A are surface and air temperature respectively. The T_S is estimated using the Stefan–Boltzmann equation

$$T_S = \sqrt[4]{\frac{Q_{LW_{out}}}{\sigma \epsilon}}, \quad (9)$$

where $Q_{LW_{out}}$ is the outgoing longwave radiation (Wm^{-2}), σ is the Stefan–Boltzmann constant ($5.789 \times 10^{-8} \text{ Wm}^{-2}\text{K}^{-4}$) and ϵ is emissivity (dimensionless). The emissivity ranges from 0 to 1, and the values chosen were based on selecting models with the highest predictive accuracy.

2.4. Evaluation

We evaluate four models, i.e. one pure ML model, one under-constrained hybrid model (i.e. with no strategy

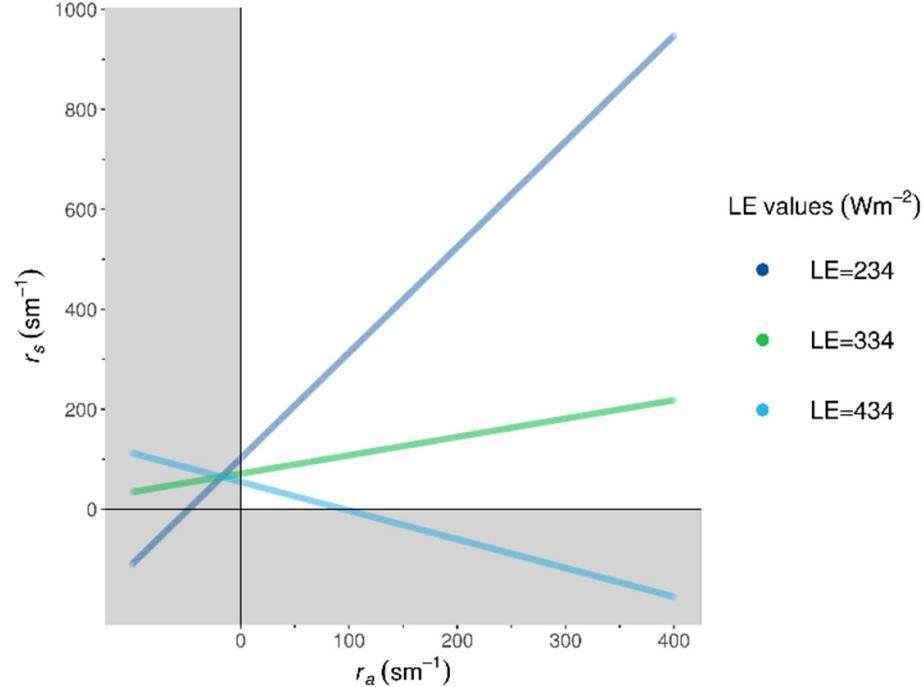


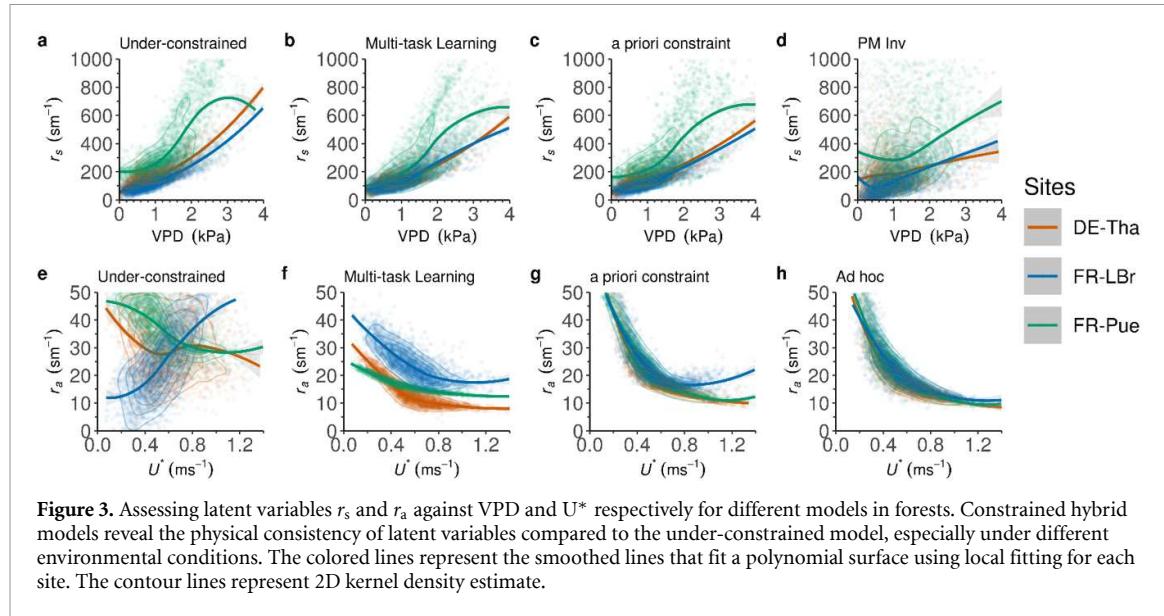
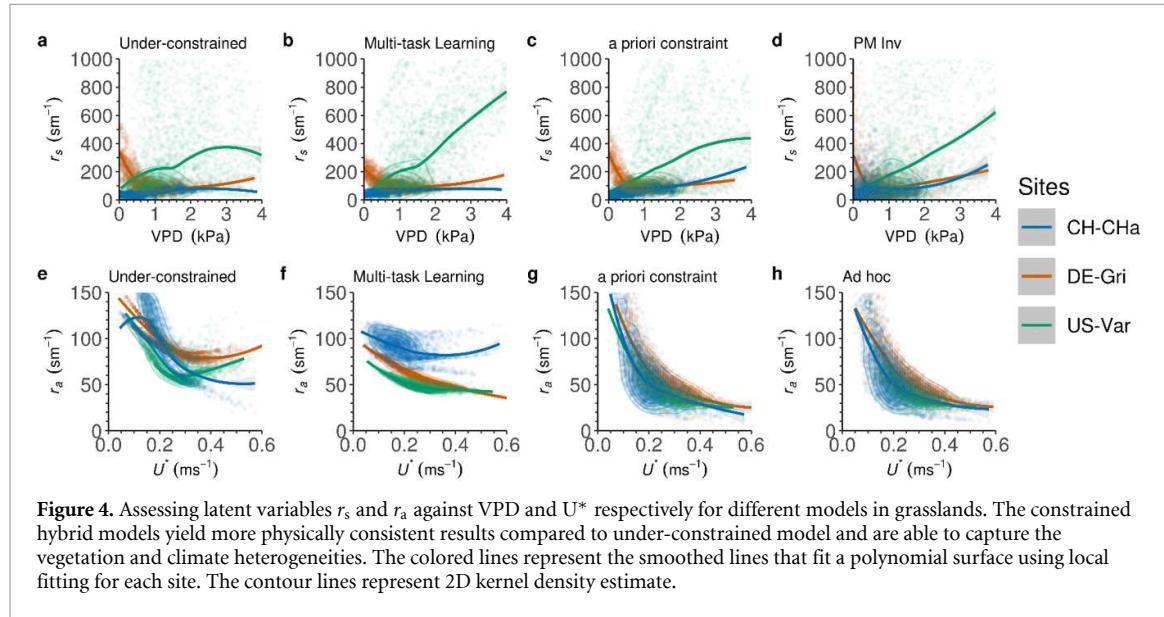
Figure 2. EQUIFINALITY in the physics-based component of hybrid model: The lines represent different Q_{LE} values that can exist for specific conditions (the actual Q_{LE} value is approximately 334 W m^{-2}). Fixing all parameters of the PM equation $s_c = 0.175 \text{ kPa C}^{-1}$, $R_n = 520.38 \text{ W m}^{-2}$, $Q_G = 18.51 \text{ W m}^{-2}$, VPD = 1.333 kPa , $\rho_a = 1.143 \text{ kg m}^{-3}$, $c_p = 1004.834 \text{ J kg}^{-1} \text{ C}^{-1}$, $\gamma = 0.0644 \text{ kPa C}^{-1}$, the different combinations of r_s and r_a values lead to the same Q_{LE} . Shaded areas show the physically non-plausible and non-realistic values for r_s and r_a combinations, and non-shaded areas show physically plausible values.

to decouple r_a and r_s), and two constrained hybrid models. The constrained hybrid models either consist of an *a priori* constraint on r_a or use a multi-task learning approach. For a baseline comparison, we use a pure ML model predicting Q_{LE} directly without intermediate resistances and the estimation of the inverted PM equation to evaluate the predictions of the hybrid models. The network architectures and hyperparameters used are similar for the different models (table 2 in the supplementary information) for a fair comparison. Evaluation metrics such as the root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R^2) are used to evaluate the model predictions. To highlight the impact of noise on model performance, we evaluate the model predictions on half-hourly and 7 d mean aggregated scales. The intermediate variables are assessed against the key meteorological predictor variables to scrutinize physical consistency and plausibility. The target variables are assessed against observations as well as the key meteorological predictor variables to estimate model performance and interpretability. We conduct five model runs with random initializations for each of the hybrid models and for one forest site (DE-Tha) as well as, one grassland site (DE-Gri) to evaluate model robustness at the mean diurnal scale. More information can be found in table 3 of the supplementary information.

3. Results and discussion

3.1. Evaluation of the learned latent variables \hat{r}_s and \hat{r}_a

We evaluate the impact of the Q_{LE} -controlling resistances \hat{r}_s and \hat{r}_a which are treated as intermediate variables in our hybrid approach. Note that the models are driven by all relevant predictor variables for r_s and r_a , respectively (cf figure 1), and only for evaluation and interpretability purposes do we plot predictions against individual predictor variables. Based on the strongest dependencies discovered by our methods, we first plot the inferred estimates of \hat{r}_s and \hat{r}_a against the key meteorological drivers, namely VPD and the frictional velocity U^* , respectively (figures 3 and 4). The behavior of \hat{r}_s against VPD is consistent across all the models and reflects a similar behavior as presented for \hat{Q}_{LE} (figure 5). The predicted \hat{r}_s shows a subtle increase at lower ranges of VPD, reflecting that stomata are still open for gas exchange with the atmosphere. However, as VPD increases, the stomata start to close and thus surface resistance increases sharply (Massmann *et al* 2019). Further, we find that \hat{r}_s is generally lower for grasslands, which explains the generally higher estimates of Q_{LE} in comparison to forests (figure 5). Another striking finding is that the models seem to be able to identify differences in the physiological functioning across different plant types in controlling \hat{r}_s . For instance, the inferred relationship of \hat{r}_s



and VPD is very similar for the two forest sites DE-Tha and FR-LBr, which are dominated by evergreen needle-leaf trees, but it is quite different for the more arid site FR-Pue, which is dominated by evergreen broad-leaf trees (figures 3(a)–(c)). There, the hybrid models show that on average r_s rises more steeply with increasing VPD but flattens out at very high VPD (compare fit lines in figures 3(a)–(c)). Future research is needed to determine whether this behavior actually reflects the plants' mechanism for preventing leaf overheating by maintaining some evaporative cooling through the stomata (Lin *et al* 2017), or whether it is just an artifact of too sparse data at high VPD. Overall, the inferred \hat{r}_s through hybrid modeling (figures 3(a)–(c)) is much more precise than its conventional derivation by inverting the PM equation while making assumptions for r_a (figure 3(d)). This aspect constitutes a key advantage of our hybrid

approach as opposed to the inversion method, where artificial noise in the flux measurements directly propagates into the inverted estimates of \hat{r}_s resulting in high artificial variability and a bias in \hat{r}_s ranging from 0% to 30% (Wehr and Saleska 2021).

The inferred relationship for \hat{r}_a against its key driver U^* is not consistent across the hybrid models. The two constrained hybrid models, i.e. multi-task learning (figure 3(f)) and *a priori* constraint (figure 3(g)), consistently reflect the expected negative logarithmic relationship of \hat{r}_a against U^* (figures 3 and 4). In particular, in the case of the hybrid multi-tasking model, this result is promising because the relationship emerges from the observational data alone, without inducing any prespecified knowledge. Furthermore, the two constrained hybrid models show variations of the \hat{r}_a relationship across the sites (figures 3(f), (g) and 4(f), (g)). Thus, they are capable

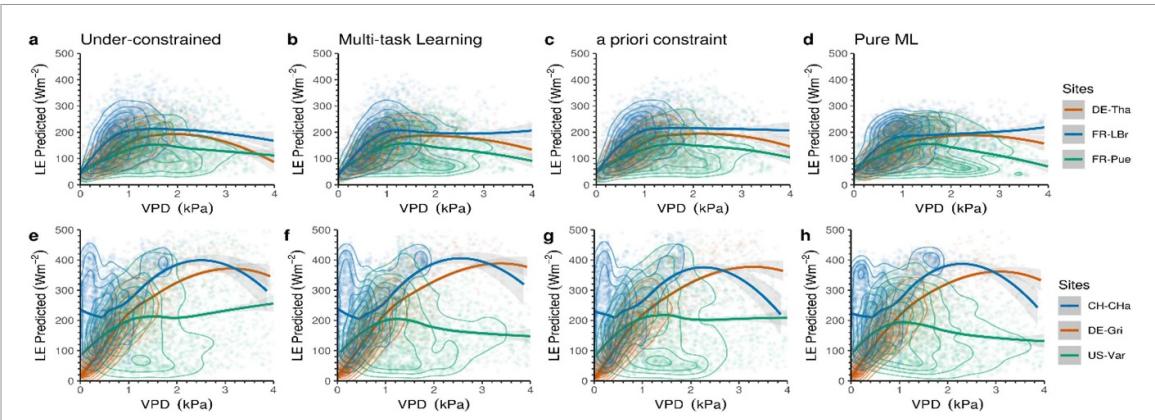


Figure 5. Evaluating Q_{LE} predictions against VPD for different models for forests (a)–(d) and grasslands (e)–(h). Higher evapotranspiration rates are evident for grasslands compared to forests associated with higher stomatal conductance. The colored lines represent the smoothed lines that fit a polynomial surface using local fitting for each site. The contour lines represent 2D kernel density estimate.

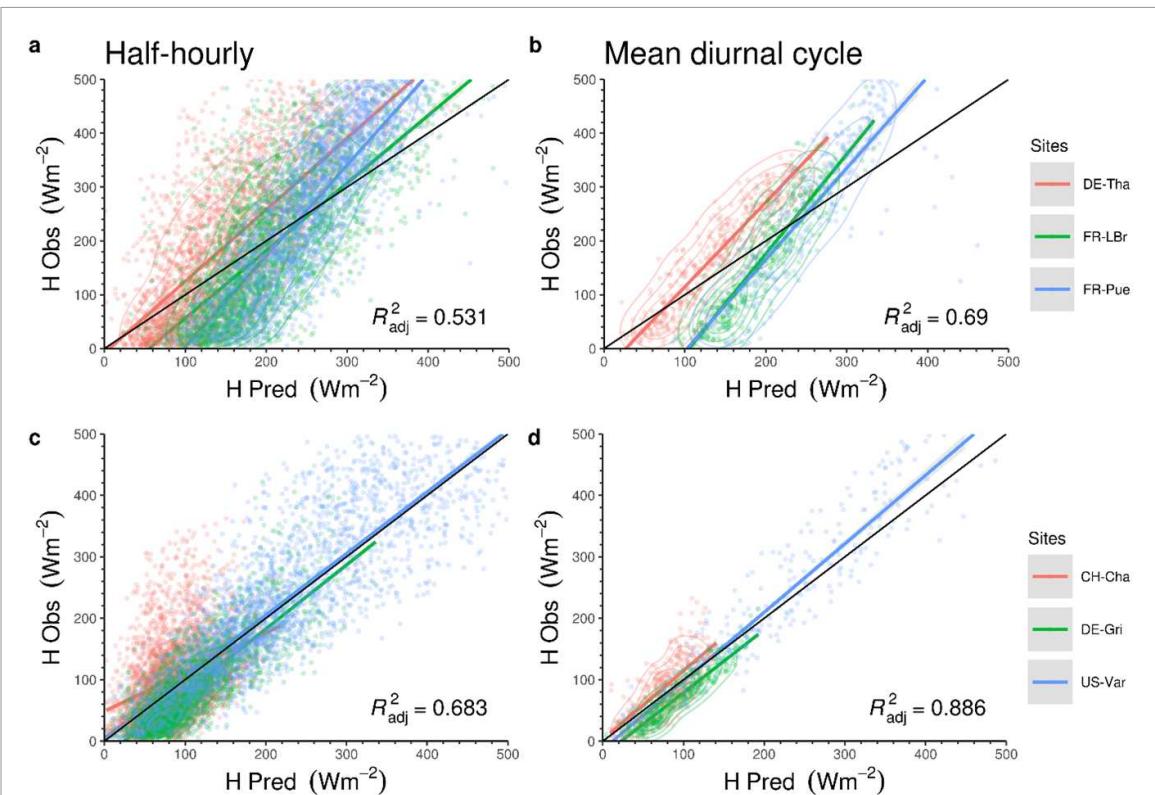


Figure 6. Evaluation of Q_H observations and predictions at a half-hourly and mean diurnal scale for forest (a), (b) and grasslands (c), (d) for the multi-task learning hybrid model. Q_H predictions are similar in range compare to Q_{LE} predictions in figures 4 and 7 for forests and grasslands. The colored lines represent the linear regression lines that fit linear models for each site. The contour lines represent 2D kernel density estimate.

of capturing the canopy heterogeneity across sites and are more flexible than the conventional rigid parameterizations shown in figure 3(h) (forests) and figure 4(h) (grasslands), where r_a is a homogenous function of U^* across the different sites.

The under-constrained hybrid model (figure 3(e)), however, illustrates the risk of equifinality and the physics-violating behavior of this approach. In other words, \hat{r}_a exhibits physically inconsistent relationships in the under-constrained model across the sites (figure 3(e)), while the

predicted \hat{r}_s and \hat{Q}_{LE} retain physically plausible estimates (figures 3(a) and 5(g)–(i), respectively). The issue of equifinality is more prominent in forests than in grasslands, likely because aerodynamic resistance is less dominant in controlling Q_{LE} in forests (figures 3(e) and 4(e); Chen and Liu 2020).

Aerodynamic resistance r_a constitutes a critical link in the surface energy balance, especially under different environmental and stability conditions, as it has a bearing on both, Q_{LE} and Q_H . Uncertainties in Q_{LE} and Q_H mainly arise from the uncertainty

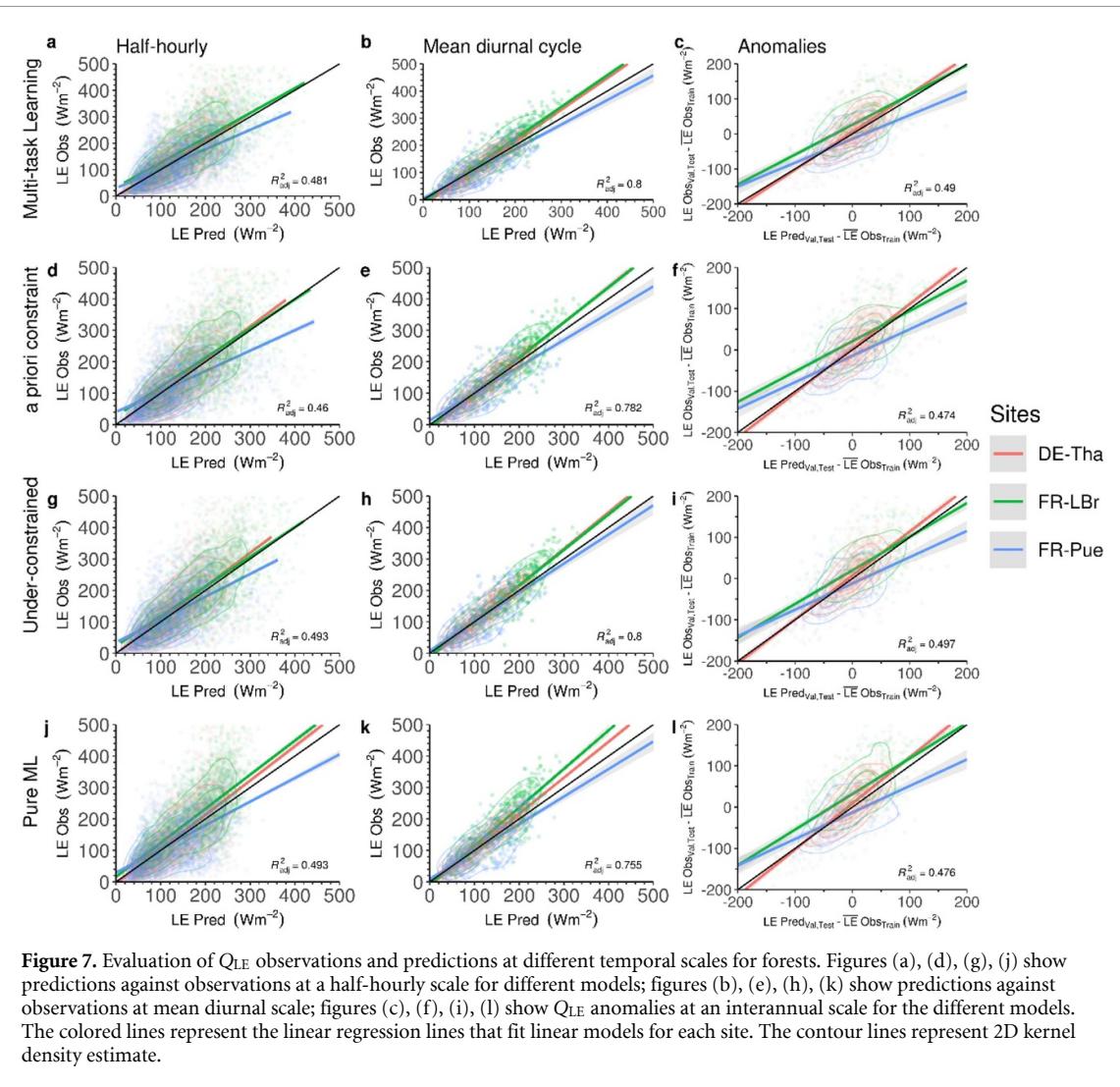


Figure 7. Evaluation of Q_{LE} observations and predictions at different temporal scales for forests. Figures (a), (d), (g), (j) show predictions against observations at a half-hourly scale for different models; figures (b), (e), (h), (k) show predictions against observations at mean diurnal scale; figures (c), (f), (i), (l) show Q_{LE} anomalies at an interannual scale for the different models. The colored lines represent the linear regression lines that fit linear models for each site. The contour lines represent 2D kernel density estimate.

in estimating r_a for both dense and sparse canopy, and particularly under arid and semi-arid conditions (Trebs *et al* 2021). Our multi-task learning hybrid model, however, is able to provide fairly high accuracy for Q_{LE} and Q_H predictions for grasslands under unstable and semi-arid conditions without overestimating r_a , which has been proven difficult in other modeling efforts (Trebs *et al* 2021). For example, the predictions for Q_{LE} (figure 5) and Q_H (figures 6(c) and (d)) at the US-Var grassland site, characterized by a dry Mediterranean-type climate (Xu and Baldocchi 2004, De Kauwe *et al* 2017), are fairly accurate and relate to physically consistent r_a predictions.

To get an estimate of the structural (epistemic) uncertainty for the inferred relationships for r_s and r_a , we train each model five times with random initializations (refer to section 2.3). The hybrid models show consistent predictions for the relationships for r_s and r_a at mean diurnal scale across the model runs with different initializations. The under-constrained hybrid model is consistent in producing physically non-interpretable r_a for all initializations. The constrained hybrid models, on the other hand, are

able to consistently reproduce the physically plausible relationships for r_s and r_a , especially at forest sites. Hence, our hybrid modeling approach yields robust predictions, yet we stress the caveats related to equifinality in these under-constrained model setups.

3.2. Evaluation of the target variables \hat{Q}_{LE} and \hat{Q}_H
 We evaluate the predicted Q_{LE} (\hat{Q}_{LE}) from all the hybrid models and the pure ML model against observed Q_{LE} ($Q_{LE,obs}$) at a half-hourly scale and at 7 d mean aggregates (mean diurnal) for forest (figure 7) and grassland (figure 8) sites. All models produce similar Q_{LE} patterns compared to observations with minor differences in performance. For forests (figure 7), the more flexible models, i.e. the under-constrained hybrid model and pure ML model, perform slightly better ($R^2 = 0.49$) than do the multi-task learning model ($R^2 = 0.48$) and the *a priori* constraint model ($R^2 = 0.46$). For grasslands, the performance of all models is generally better than for forests. We find that the performance of the multi-task learning model exceeds the performance of the *a priori* constraint model and is similar to the pure

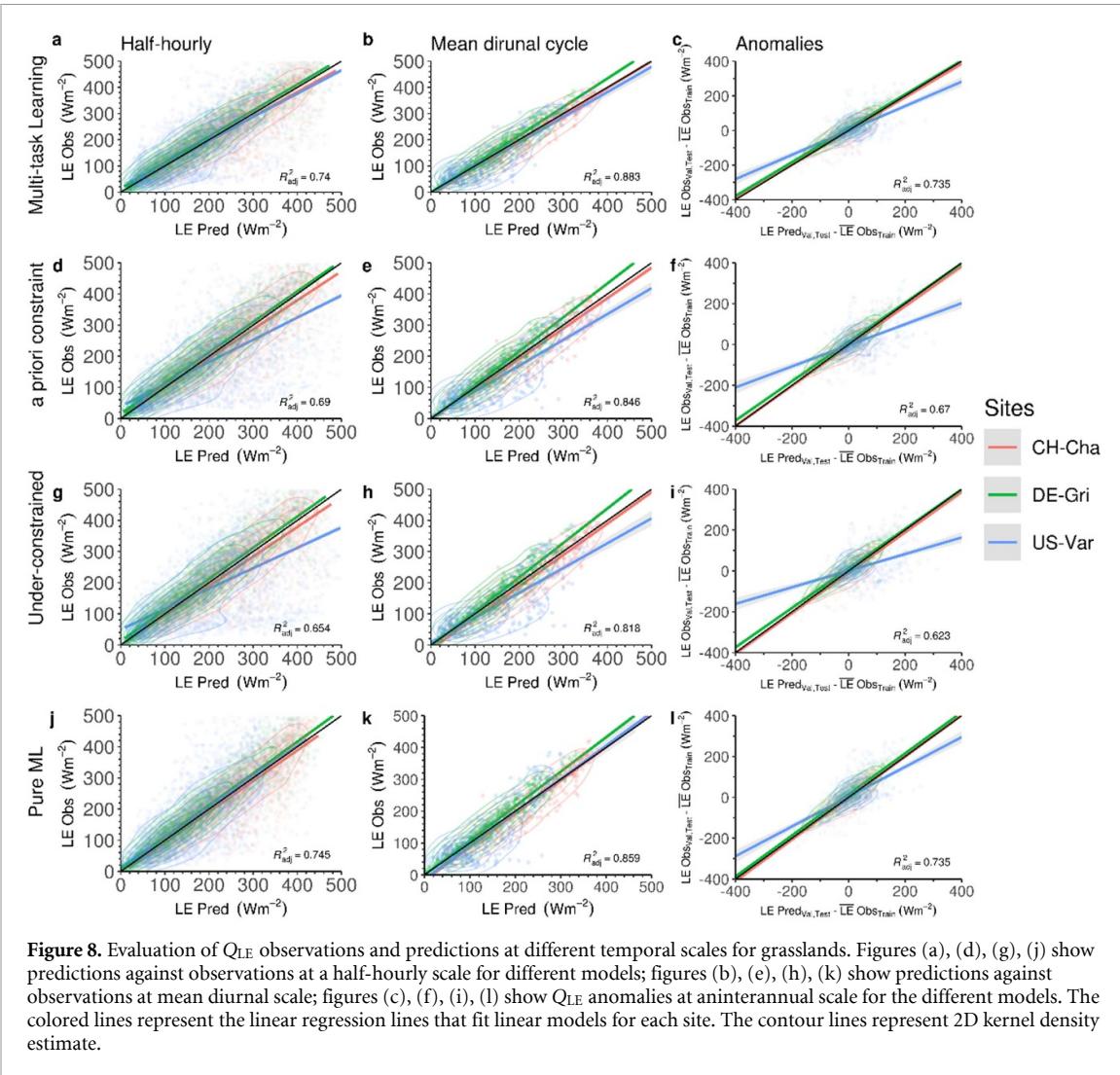


Figure 8. Evaluation of Q_{LE} observations and predictions at different temporal scales for grasslands. Figures (a), (d), (g), (j) show predictions against observations at a half-hourly scale for different models; figures (b), (e), (h), (k) show predictions against observations at mean diurnal scale; figures (c), (f), (i), (l) show Q_{LE} anomalies at aninterannual scale for the different models. The colored lines represent the linear regression lines that fit linear models for each site. The contour lines represent 2D kernel density estimate.

ML model ($R^2 = 0.74\text{--}0.75$) (figure 8). This finding could indicate that our theory-based constraint for r_a might be too rigid and is not supported by the flux observations. Overall, the RMSE ranges from 70 to 73 Wm^{-2} for forests and 60–71 Wm^{-2} for grasslands at a half-hourly scale for all models. The MAE at half-hourly measurements range from 50 to 53 Wm^{-2} for forests and from 43 to 48 Wm^{-2} for grasslands for all models. The multi-task learning model provides predictions for Q_H (\hat{Q}_H) (figure 6) of similar accuracy compared to the Q_{LE} predictions for all sites (figures 7 and 8), reaching $R^2 = 0.53$ for forests and $R^2 = 0.68$ for grasslands sites at a half-hourly scale. Overall, the pure ML model slightly outperforms the hybrid models for both forest and grassland sites, owing to its flexibility and non-parametric attributes as it only minimizes the loss of Q_{LE} , without being constrained by the PM equation. More information on the physical interpretability of \hat{Q}_{LE} assessed against meteorological variables can be found in the Suppl. Info. Sec. 3.3.

We evaluate the hybrid models' consistency with respect to the interannual variability of Q_{LE} for the

different sites. The interannual anomalies are calculated as the difference between the average annual estimates of $Q_{LE,obs}$ in the training dataset and the annual estimates of $Q_{LE,obs}$ and \hat{Q}_{LE} in the validation and test dataset for the EC data and models, respectively, to evaluate the predictive capacity of the different models (Jung *et al* 2009, Besnard *et al* 2019). Figures 7 and 8 show the overall fit and performance of the models in predicting interannual anomalies of \hat{Q}_{LE} compared to observed anomalies of $Q_{LE,obs}$. The values of R^2 range between 0.47 and 0.49 for the interannual \hat{Q}_{LE} anomalies for forests and thus exhibit a comparable performance at half-hourly frequency (R^2 ranges between 0.46 and 0.49) (figure 7). We observe a similar behavior at grassland sites: R^2 ranges between 0.65 and 0.75 at the half-hourly scale and between 0.62 and 0.74 for the interannual Q_{LE} anomalies (figure 8). Overall, the evaluation of the models at multiple temporal scales shows that the models are capable of learning not only the predominant structure of the diurnal and seasonal cycle, but also the more subtle year-to-year anomalies. The presented consistency reflects that the models learn the

physically correct dependence of the meteorological predictor variables controlling Q_{LE} (figure 5).

4. Conclusions

We present a new approach to end-to-end hybrid modeling of latent heat fluxes that can simultaneously retrieve the two controlling intermediate variables—the surface (r_s) and aerodynamic resistance (r_a)—while maintaining physical consistency across different vegetation types. The hybrid models provide reliable predictions against measurements of latent heat fluxes at different time scales, ranging from daily to seasonal to interannual variations. This cross-scale consistency shows that our model framework is able to learn the physically consistent dependencies between the meteorological input variables and the target fluxes, rather than just the dominant structure of diurnal and seasonal cycles.

The main novelty and outcome of this study are the data-driven parameterizations for r_s and r_a jointly estimated by two separate NNs, which can lead new insights on biophysical regulation of surface evaporation. We show that the NNs together can provide many solutions (non-uniqueness) and lead to physically plausible predictions for Q_{LE} fluxes, while presenting physically implausible relationships to the predictors. This non-uniqueness can be mitigated by introducing either more data or theory into the loss function of the hybrid model. Specifically, we make use of two different approaches (*a priori* constraint and multi-task learning) to regularize the parameter space for the NNs. The constrained hybrid models in general yield accurate and physically interpretable predictions, with the multi-task learning model estimating the target and latent variable predictions with accuracy similar to the pure ML model, but with constraints that respect the surface energy budget. Therefore, by incorporating additional observation-based information, the multi-task learning model is the optimal hybrid model for the problem at hand. This architecture makes it possible to reduce equifinality and enables the model to extract underlying information from observations rather than ad hoc assumptions, while allowing the NN enough flexibility within the limits of physical interpretability of the surface energy balance.

When using the hybrid models to determine r_s and r_a , we find substantial differences between sites compared to the very uniform empirical formulations commonly used. This inter-site spread in the observation-based parameterizations suggests that the conventional empirical formulations are too rigid and do not account for the variability caused by the vegetation canopy structure. The hybrid models show differences among sites, highlighting in particular the different physiological functions of the different plant types, in comparison to the PM equation under the Big Leaf assumption. The resulting relationships for

r_s and r_a not only show physically consistent behavior across scales, but also reveal new insights into how the varying resistances control surface energy fluxes. By evaluating the relationship of r_s and r_a to the driving meteorological variables, we are able to identify the effect of structural differences between forests and grasslands. The general response of stomatal conductance to VPD and photosynthesis in forest and grassland ecosystems is more aligned with the optimality theory as it considers the interactions between transpiration and carbon assimilation. However, grasslands tend to show a weaker dependence of stomatal conductance on photosynthesis and VPD that can be attributed to structural vegetation differences of the leaf area index and significantly larger weight and impact of r_a on r_s . r_a is generally higher for grassland sites than for forests which is attributed to the surface roughness of leaves. r_s is higher for forest sites compared to grasslands owing to the different atmospheric demand of the canopy and water uptake through roots that highlight the functional balance between shoots and roots under water-stressed conditions. In addition, we detect that these learned parameterizations in the hybrid models exhibit lower stomatal conductance, suggesting that the r_s values usually obtained by inversion of the PM equation may be systematically overestimated.

Several approaches have already been proposed to use the growing number of observations to constrain uncertainty in mechanistic model simulations, especially for key unknown plant behavior in the coupled Earth system (Lian *et al* 2018, Winkler *et al* 2019a, 2019b, Varney *et al* 2020). As a next step, we propose to derive parameterizations directly from observations using hybrid modeling, as presented in this study, to replace these ad hoc formulations in Earth system models. This approach will not only help reduce uncertainty, but also advance significantly the understanding of biogeophysical and biogeochemical processes in land–atmosphere coupling.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: [10.5281/zenodo.7078500](https://doi.org/10.5281/zenodo.7078500). Data will be available from 14 March 2023.

Code and data availability

All data used in this study are available from public databases or the literature, which can be found with the references provided in the respective ‘Data and methods’ subsection. Processed data and analysis scripts are available from the corresponding author upon request, and the repository will be published together with this article. Correspondence and requests for materials should be addressed to Reda ElGhawi (reldghawi@bgc-jena.mpg.de).

Acknowledgments

This research was funded by the European Research Council (ERC) Synergy Grant ‘Understanding and modeling the Earth System with Machine Learning (USMILE)’ under the Horizon 2020 research and innovation programme (Grant Agreement No. 855187). Gentine acknowledges funding from the National Science Foundation grant, Learning the Earth with Artificial intelligence and Physics (LEAP).

Author contributions

R E G, A J W and M R designed the study. R E G conducted the analysis. B K provided technical support in setting up the hybrid modelling framework. C R, M K and B K contributed to the conceptual and technical machine learning aspect of the study. All authors contributed ideas and to the interpretation of the results. R E G and A J W drafted the manuscript with input from all authors.

ORCID iDs

Reda ElGhawi <https://orcid.org/0000-0003-2930-4537>
 Markus Reichstein <https://orcid.org/0000-0001-5736-1112>
 Marco Körner <https://orcid.org/0000-0002-9186-4175>
 Pierre Gentine <https://orcid.org/0000-0002-0845-8345>
 Alexander J Winkler <https://orcid.org/0000-0001-6574-4471>

References

Ajami H 2021 Geohydrology: global hydrological cycle hydrological cycle *Encyclopedia of Geology* (Cambridge: Academic Press) pp 393–8

Baldocchi D *et al* 2001 FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities *Bull. Am. Meteorol. Soc.* **82** 2415–34

Besnard S *et al* 2019 Memory effects of climate and vegetation affecting net ecosystem CO₂ fluxes in global forests *PLoS One* **14** e0211510

Beven K 2006 A manifesto for the equifinality thesis *J. Hydrol.* **320** 18–36

Bonan G B, Lawrence P J, Oleson K W, Levis S, Jung M, Reichstein M, Lawrence D M and Swenson S C 2011 Improving canopy processes in the community land model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data *J. Geophys. Res. Biogeosci.* **116**

Brutsaert W 2005 *Hydrology: An Introduction* (Cambridge: Cambridge University Press)

Carminati A and Javaux M 2020 Soil rather than xylem vulnerability controls stomatal response to drought *Trends Plant Sci.* **25** 868–80

Carter C and Liang S 2019 Evaluation of ten machine learning methods for estimating terrestrial evapotranspiration from remote sensing *Int. J. Appl. Earth Obs. Geoinf.* **78** 86–92

Chen J M and Liu J 2020 Evolution of evapotranspiration models using thermal and shortwave remote sensing data *Remote Sens. Environ.* **237** 111594

Damour G, Simonneau T, Cochard H and Urban L 2010 An overview of models of stomatal conductance at the leaf level *Plant Cell Environ.* **33** 1419–38

de Bezenac E, Pajot A and Gallinari P 2017 Deep learning for physical processes: incorporating prior scientific knowledge (arxiv:1711.07970)

De Kauwe M G, Medlyn B E, Knauer J and Williams C A 2017 Ideas and perspectives: how coupled is the vegetation to the boundary layer? *Biogeosciences* **14** 4435–53

Dou X and Yang Y 2018 Evapotranspiration estimation using four different machine learning approaches in different terrestrial ecosystems *Comput. Electron. Agric.* **148** 95–106

Drake J E *et al* 2018 Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance *Glob. Change Biol.* **24** 2390–402

Gerosa G, Mereu S, Finco A and Marzuoli R 2012 Stomatal conductance modeling to estimate the evapotranspiration of natural and agricultural ecosystems *Evapotranspiration—Remote Sensing and Modeling* (Rijeka: InTech) (<https://doi.org/10.5772/21825>)

Hetherington A M and Woodward F I 2003 The role of stomata in sensing and driving environmental change *Nature* **424** 901–8

Jain S K, Nayak P C and Sudheer K P 2008 Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation *Hydrol. Process.* **22** 2225–34

Jarvis P G 1976 The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field *Phil. Trans. R. Soc. B* **273** 593–610

Jia X *et al* 2020b Physics-guided recurrent graph model for predicting flow and temperature in river networks (arxiv:2009.12575v2)

Jia X, Willard J, Karpatne A, Read J S, Zwart J A, Steinbach M and Kumar V 2020a Physics-guided machine learning for scientific discovery: an application in simulating lake temperature profiles (arxiv:2001.11086)

Jung M *et al* 2010 Recent decline in the global land evapotranspiration trend due to limited moisture supply *Nature* **467** 951–4

Jung M *et al* 2020 Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach *Biogeosciences* **17** 1343–65

Jung M, Reichstein M and Bondeau A 2009 Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model *Biogeosciences* **6** 2001–13

Karpatne A, Atluri G, Faghmous J H, Steinbach M, Banerjee A, Ganguly A, Shekhar S, Samatova N and Kumar V 2017a Theory-guided data science: a new paradigm for scientific discovery from data *IEEE Trans. Knowl. Data Eng.* **29** 2318–2

Karpatne A, Watkins W, Read J and Kumar V 2017b Physics-guided neural networks (PGNN): an application in lake temperature modeling (arXiv:1710.11431)

Kelliher F M, Köstner B M M, Hollinger D Y, Byers J N, Hunt J E, McSeveny T M, Meserth R, Weir P L and Schulze E D 1992 Evaporation, xylem sap flow, and tree transpiration in a New Zealand broad-leaved forest *Agric. For. Meteorol.* **62** 53–73

Kennedy D, Swenson S, Oleson K W, Lawrence D M, Fisher R, Lola da Costa A C and Gentine P 2019 Implementing plant hydraulics in the community land model version 5 *J. Adv. Model. Earth Syst.* **11** 485–513

Knauer J, El-Madany T S, Zaehle S and Migliavacca M 2018 Bigleaf—an R package for the calculation of physical and physiological ecosystem properties from eddy covariance data *PLoS One* **13** e0201114

Köstner B M M, Schulze E D, Kelliher F M, Hollinger D Y, Byers J N, Hunt J E, McSeveny T M, Meserth R and Weir P L 1992 Transpiration and canopy conductance in a pristine broad-leaved forest of Nothofagus: an analysis of xylem sap flow and eddy correlation measurements *Oecologia* **91** 350–9

Kraft B, Jung M, Körner M, Koirala S and Reichstein M 2022 Towards hybrid modeling of the global hydrological cycle *Hydrol. Earth Syst. Sci.* **26** 1579–614

Kraft B, Jung M, Körner M and Reichstein M 2020 Hybrid modeling: fusion of a deep approach and physics-based model for global hydrological modeling *Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.* **43** 1537–44

Krasnopolsky V M 2013 *The Application of Neural Networks in the Earth System Sciences* (Dordrecht: Springer) (<https://doi.org/10.1007/978-94-007-6073-8>)

Leuning R 1995 A critical appraisal of a combined stomatal-photosynthesis model for C3 plants *Plant Cell Environ.* **18** 339–55

Leuning R, Kriedemann P E and McMurtrie R E 1991 Simulation of evapotranspiration by trees *Agric. Water Manag.* **19** 205–21

Li L *et al* 2018 Evaluating global land surface models in CMIP5: analysis of ecosystem water- and light-use efficiencies and rainfall partitioning *J. Clim.* **31** 2995–3008

Li X, Gentine P, Lin C, Zhou S, Sun Z, Zheng Y, Liu J and Zheng C 2019 A simple and objective method to partition evapotranspiration into transpiration and evaporation at eddy-covariance sites *Agric. For. Meteorol.* **265** 171–82

Lian X *et al* 2018 Partitioning global land evapotranspiration using CMIP5 models constrained by observations *Nat. Clim. Change* **8** 640–6

Liebel L and Körner M 2018 Auxiliary tasks in multi-task learning (arXiv:1805.06334)

Lin C, Gentine P, Huang Y, Guan K, Kimm H and Zhou S 2018 Diel ecosystem conductance response to vapor pressure deficit is suboptimal and independent of soil moisture *Agric. For. Meteorol.* **250–251** 24–34

Lin H, Chen Y, Zhang H, Fu P and Fan Z 2017 Stronger cooling effects of transpiration and leaf physical traits of plants from a hot dry habitat than from a hot wet habitat *Funct. Ecol.* **31** 2202–11

Massmann A, Gentine P and Lin C 2019 When does vapor pressure deficit drive or reduce evapotranspiration? *J. Adv. Model. Earth Syst.* **11** 3305–20

Medlyn B E, Duursma R A, Eamus D, Ellsworth D S, Prentice I C, Barton C V M, Crous K Y, De Angelis P, Freeman M and Wingate L 2011 Reconciling the optimal and empirical approaches to modelling stomatal conductance *Glob. Change Biol.* **17** 2134–44

Monteith J L 1985 Evaporation from land surfaces: progress in analysis and prediction since 1948 *Advances in Evapotranspiration, Proc. National Conf. on Advances in Evapotranspiration* (Joseph, MI: American Society of Agricultural Engineers) pp 4–12 (available at: <https://agris.fao.org/agris-search/search.do?recordID=US8644525>)

Monteith J L 1965 Evaporation and environment *Symp. Society for Experimental Biology, the State and Movement of Water in Living Organisms* vol 19, ed G E Fogg pp 205–34

Monteith J L and Unsworth M 2013 *Principles of Environmental Physics: Plants, Animals, and the Atmosphere* 4th edn (Cambridge: Academic Press) (<https://doi.org/10.1016/C2010-0-66393-0>)

Penman H L 1948 Natural evaporation from open water, bare soil and grass *Proc. R. Soc. A* **193** 120–45

Polhamus A, Fisher J B and Tu K P 2013 What controls the error structure in evapotranspiration models? *Agric. For. Meteorol.* **169** 12–24

Reichstein M *et al* 2005 On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm *Glob. Change Biol.* **11** 1424–39

Reichstein M, Ahrens B, Kraft B, Camps-Valls G, Carvalhais N, Gans F, Gentine P and Winkler A J 2022 Combining system modeling and machine learning into hybrid ecosystem modeling *Knowledge-Guided Machine Learning* (New York: Chapman and Hall/CRC) pp 327–52

Reichstein M, Camps-Valls G, Stevens B, Jung M, Denzler J and Carvalhais N 2019 Deep learning and process understanding for data-driven Earth system science *Nature* **566** 195–204

Reimers C and Requena-Mesa C 2020 Deep learning—an opportunity and a challenge for geo- and astrophysics *Knowledge Discovery in Big Data from Astronomy and Earth Observation: Astrogeoinformatics* (Amsterdam: Elsevier) pp 251–65

Ronda R J, De Bruin H A R and Holtlag A A M 2001 Representation of the canopy conductance in modeling the surface energy budget for low vegetation *J. Appl. Meteorol. 40* 1431–44

Schmidt L, Heße F, Attinger S and Kumar R 2020 Challenges in applying machine learning models for hydrological inference: a case study for flooding events across Germany *Water Resour. Res.* **56** e2019WR025924

Stewart J B 1988 Modelling surface conductance of pine forest *Agric. For. Meteorol.* **43** 19–35

Tan S, Wang H, Prentice I C and Yang K 2021 Land-surface evapotranspiration derived from a first-principles primary production model *Environ. Res. Lett.* **16** 104047

Tramontana G *et al* 2016 Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms *Biogeosciences* **13** 4291–313

Trebs I *et al* 2021 The role of aerodynamic resistance in thermal remote sensing-based evapotranspiration models *Remote Sens. Environ.* **264** 112602

Varney R M, Chadburn S E, Friedlingstein P, Burke E J, Koven C D, Hugelius G and Cox P M 2020 A spatial emergent constraint on the sensitivity of soil carbon turnover to global warming. *Nat. Commun.* **11** 1–8

Vialet-Chabrand S and Lawson T 2019 Dynamic leaf energy balance: deriving stomatal conductance from thermal imaging in a dynamic environment *J. Exp. Bot.* **70** 2839

Wehr R and Saleska S R 2021 Calculating canopy stomatal conductance from eddy covariance measurements, in light of the energy budget closure problem *Biogeosciences* **18** 13–24

Willard J, Jia X, Xu S, Steinbach M and Kumar V 2020 Integrating physics-based modeling with machine learning: a survey 1 (arXiv:2003.04919 [physics.comp-ph]) p 34

Wilson K *et al* 2002 Energy balance closure at FLUXNET sites *Agric. For. Meteorol.* **113** 223–43

Winkler A J, Myneni R B, Alexandrov G A and Brovkin V 2019a Earth system models underestimate carbon fixation by plants in the high latitudes *Nat. Commun.* **10** 1–8

Winkler A J, Myneni R B and Brovkin V 2019b Investigating the applicability of emergent constraints *Earth Syst. Dyn.* **10** 501–23

Xu L and Baldocchi D D 2004 Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California *Agric. For. Meteorol.* **123** 79–96

Yang T, Sun F, Gentine P, Liu W, Wang H, Yin J, Du M and Liu C 2019 Evaluation and machine learning improvement of global hydrological model-based flood simulations *Environ. Res. Lett.* **14** 114027

Zeppel M and Eamus D 2008 Coordination of leaf area, sapwood area and canopy conductance leads to species convergence of tree water use in a remnant evergreen woodland *Aust. J. Bot.* **56** 97–108

Zhang Z Z, Zhao P, McCarthy H R, Zhao X H, Niu J F, Zhu L W, Ni G Y, Ouyang L and Huang Y Q 2016 Influence of the decoupling degree on the estimation of canopy stomatal conductance for two broadleaf tree species *Agric. For. Meteorol.* **221** 230–41

Zhao L, Xia J, Xu C, Yu Wang Z, Sobkowiak L and Long C 2013 Evapotranspiration estimation methods in hydrological models *J. Geogr. Sci.* **23** 359–69

Zhao W L, Gentine P, Reichstein M, Zhang Y, Zhou S, Wen Y, Lin C, Li X and Qiu G Y 2019 Physics-constrained machine learning of evapotranspiration *Geophys. Res. Lett.* **46** 14496–507

Zhou S, Yu B, Zhang Y, Huang Y and Wang G 2016 Partitioning evapotranspiration based on the concept of underlying water use efficiency *Water Resour. Res.* **52** 1160–75