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New upper bounds are developed for the L, distance between &/
Var[£] 1/2 and linear and quadratic functions of z ~ N (0, I ;) for random vari-
ables of the form & = sz (z) — div f(z). The linear approximation yields a
central limit theorem when the squared norm of f(z) dominates the squared
Frobenius norm of V f(z) in expectation.

Applications of this normal approximation are given for the asymptotic
normality of debiased estimators in linear regression with correlated design
and convex penalty in the regime p/n < y for constant y € (0, oo). For
the estimation of linear functions (aq, ) of the unknown coefficient vec-
tor 3, this analysis leads to asymptotic normality of the debiased estimate for
most normalized directions ag, where “most” is quantified in a precise sense.
This asymptotic normality holds for any convex penalty if y < 1 and for any
strongly convex penalty if y > 1. In particular, the penalty needs not be sepa-
rable or permutation invariant. By allowing arbitrary regularizers, the results
vastly broaden the scope of applicability of debiasing methodologies to obtain
confidence intervals in high dimensions. In the absence of strong convexity
for p > n, asymptotic normality of the debiased estimate is obtained for the
Lasso and the group Lasso under additional conditions. For general convex
penalties, our analysis also provides prediction and estimation error bounds
of independent interest.

1. Introduction. Consider the linear model
(1.1) y=XB+e¢

with an unknown coefficient vector 8 € R”, a Gaussian noise vector € ~ N (0, o2I,) and a
Gaussian design matrix X € R"*? with i.i.d. N(0, X) rows independent of &. We assume
throughout the sequel that X is invertible. The paper develops confidence intervals for 6 =
(ag, B) from a given regularized initial estimator ,8 € R?, using a technique referred to as
debiasing: a correction to the initial estimate (ao, ,B ) in the direction ag is constructed so that
the “debiased” estimate can be used for inference about 6 = (ag, B).

1.1. Regularization induces bias. 1f XX is invertible the unregulated least-squares es-
timate ,B = (X"X)"'X "y is unbiased, that is, E[ ,B — B]1X] =0. On the other hand, if the
square loss is regularized with an additive penalty,

(1.2) B = argmin ||y — Xb||*/(2n) + g(b)

beRP
for penalty functions commonly used in high-dimensional statistics such as g(b) = A||b||; for
A > 0 (Lasso) or g(b) = ;,L||b||2 for u > 0 (ridge regression), then ,B is biased.

For ridge regression ﬂ =X"X +nul ») IXTy, thls bias can be quantified explicitly
when X = I, as a shrinkage to the origin. Let Yo US; v, T be the SVD of X with s; > 0 and
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r = min(n, p). By rotational invariance, v; is independent of s; and uniformly distributed in
the unit sphere in R”. Thus, with G,, being the Marchenko—Pastur law,

—~ szv v, B —-1.2 ) p)x )
B < E| S v B L G by
. Ll 57 +”M] [l 1 ,2+nu] ﬂ/x—l—(r/p)MGy(dx) as =y

The Lasso penalty g(b) = A||b||; also introduces bias. For example, for deterministic
orthonormal designs, the Lasso estimator of the coefficient B; is the soft-thresholding of
N(B;, o2/n), which is again biased toward the origin. For Gaussian designs with ¥ = I p
and in an average sense, the Lasso is approximately the soft-thresholding of N(8;, r*z /n)
with certain 7, > o under proper conditions [1]. Thus, with s; =#{j : |8;] > A}, the squared
bias of the Lasso, || — E[ﬁ] ||%, is expected to have no smaller order than the lower bound s1 12
for its €5 risk [3], Theorem 3.1. Alternative approaches were proposed to remove or reduce
the bias of the Lasso for strong signals, for example, by using concave penalty functions (e.g.,
SCAD [24], MCP [48]) or iterated hard thresholding algorithms [13]. These approaches yield
an error term of the order (|| 8|0 — si))»z —|—s502/n where s; ={j=1,..., p:|Bj| > cA} for
some constant ¢ > 0 [25, 34], alleviating the bias of the Lasso for large coefficients at typical
penalty levels A > o /n'/2.

Debiasing the Lasso, asymptotic normality and confidence intervals. 1f the goal is the
estimation of a single scalar parameter & = (ag, ) in a predetermined direction ag instead
of the full vector B € R?, it is possible to correct the bias of the Lasso and to construct con-
fidence intervals for 8: there is already a vast literature on asymptotic normality of de-biased
estimates in sparse linear regression for the Lasso [8, 9, 26-28, 33, 46, 51], among others.
In this literature ag is usually the jth canonical basis vector and f; the scalar parameter
of interest. Given the Lasso 8 as an initial estimator of §, the idea is to add a debiasing
term to achieve asymptotic normality, which then yields confidence intervals for 6 = (ag, 8).
If 5o = ||Bllo in (1.1), several debiased estimators have been proposed and their asymptotic
normality hold under certain rate conditions on sg, n, p. The earliest works on this topic
[9, 26, 46, 51] provide asymptotic normality results in the regime solog(p)//n — 0. When
solog(p)/+/n — 0 indeed holds, the debiasing constructions in these papers are all first-order
equivalent to each other, and under normalization || ¥~ 1/2¢q, lo=1to

0= (ao,B) +lz0l;°zg (y — XB),
——

initial estimate debiasing correction

Vi@ —0) = Vnlzolly 2 € + Op(Ry),
[ — S — ——

normal part remainder

(1.3)

where ug = Z_lao/(ao, E_'ao) and zo = Xug ~ N(0, I,;). While these works do not as-
sume X known and construct an estimated score vector Z for zg, the impact of using Z can
be absorbed into the remainder in (1.3) with R, = osglog(p)/+/n. The direction ug and
the debiasing correction in (1.3) have a natural semiparametric interpretation [49]. Viewing
0 : R? — R as the function 8(8) = (ag, B), the Fischer information for the estimation of
6(B)in (1.1)is Fy = 1/(02(a0, E_lao)), and the direction uq above is the only u € R” with

(1.4) (VOB), u)= (ag,u) =1

such that Fj is also the Fischer information in the one-dimensional submodel {ﬁ +tu,t € R}
For this reason, the line {8 + fuo,r € R} is referred to as the least-favorable one-dimensional
submodel for the estimation of 6. The normalization (1.4) ensures that 9(}9 +tu) = G(ﬂ )+t
and 0 = 9(/3 + Tug) with 7 = ||zoll5 zg(y Xﬂ) so that (1.3) replaces the initial ﬂ with
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its one-step correction ﬁ + Tu, where 7 maximizes the likelihood in the least-favorable sub-
model. We refer to [10] for a systematic study of this semiparametric perspective.

If solog(p)/+/n — 400 and X is unknown with bounded spectrum, the minimax estima-
tion error of the form /n ®—0) diverges for any estimator 6 [16]. This rules out asymptotic
normally results at the \/n adjusted rate if solog(p)/+/n — +00 and no further assumption
is made on X. However, if z¢ is known, (1.3) holds with R, = \/solog(p/s0)/n(1 + so/~/n),
providing asymptotic normality for sparsity levels so < n%/3 up to logarithmic factors; cf. [8],
Corollary 3.3. Similarly, [28], Theorem 3.8, provides (1.3) with @y = e; € R” a canonical ba-
sis vector and R}, = log(p)+/so/nmax; | Z_le‘,- |l1. Already in the regime /n << so << n*/3,
the arguments of [8, 28] differ significantly from the £1-f,, Holder inequality argument of
[9, 26, 46, 51]: while these earlier works prove asymptotic normality with a remainder term
of order Op(solog(p)//n), [8, 28] analyze explicitly the smaller order terms hidden in this

Op(solog(p)/+/n) remainder.
For so >> n?/3, the debiasing correction in (1.3) needs to be modified:

6 = (a0, B) + (n— I31) "'zg (y — XB),
Vi@ —6) = Vnlzoly*z{ € + Op(R))

with § = {j € [p]: Bj # 0} and R! = o (solog(p/s0)/n)'/?; cf. [8], Theorem 3.1. For
|=~12ag| = 1, the difference from (1.3) is the replacement of ||Z0||2_2 ~n~! in the de-
biasing correction with (n — |:S’\|)_1 to amplify it by a factor (1 — |§| / n)~!. This modification
is required as soon as 5o > n*/3 up to logarithmic factors [8], Section 3. These asymptotic
results for sop >> /n are amenable to the lack of knowledge of X: in this case, estimation
of zg is possible when > lagis sufficiently sparse; see [28] if the direction of interest ag is
canonical basis vector and [8], Section 2.2, for arbitrary direction ag. These results [8, 28]
for so >> /n and correlated X are so far restricted to random Gaussian designs.

(1.5)

Inflated asymptotic variance for nonvanishing prediction error. In the results discussed
so far for the Lasso, solog(p/so)/n — 0 or stronger conditions are required for asymptotic
normality, and the asymptotic variance of \/n (5— 0) is o2. The condition sg log(p/so)/n — 0
implies the consistency of the Lasso in prediction and estimation thanks to error bounds of
the form || Z'/2(B — B)II3 < solog(p/so)/n [5, 8, 38, 50]. It turns out that the asymptotic
variance of 4/n (5— 0) is larger than o2if | X 1/2 (E —B) ||% does not vanish,; this is the situation
studied in the present work. The literature on asymptotic normality of debiased estimates in
the regime

(1.6) p/n—y € (0,400), so/n—k €(0,1)

for constants y, k > 0 is more scarce. In this regime where p, n and s¢ are all of the same
order, [27, 33] provide asymptotic normality results for the debiased Lasso (1.5) in the es-
timation of B; (canonical ag = e;) in the isotropic Gaussian design. In these works, the
asymptotic variance of \/n & —0) equals a constant rf satisfying the system of two nonlin-
ear equations in [1] and [33], Proposition 3.1, Theorem 3.1. The constant rf is related to the
residual sum of squares [33], Corollary 4.1, and out-of-sample error [33], Theorem 3.2, as in

(1= 18I/n) 2y — XBI3/n =T 22, o>+ |=2B-B)|5 " 2,

where —F denotes convergence in probability. These results for £ = I p highlight that the
asymptotic variance is strictly larger than o> when p, n are of the same order as in (1.6).
This phenomenon in the regime (1.6) is generic: for instance, the asymptotic variance is also
larger than o2 for all permutation-invariant penalty functions [17], Proposition 4.3.
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In this regime where n and p are of the same order, [21, 23] proved asymptotic normality
and characterized the variance for unregularized M -estimators. For M -estimators, a debiasing
correction is unnecessary due to the absence of regularization, and a rotational invariance
argument reduces the problem of correlated designs to a corresponding uncorrelated one [23],
Lemma 1. However, this rotational invariance is lost in the presence of a penalty such as the
£1-norm. New techniques are called for to analyze the asymptotic behavior in the regime (1.6)
and under correlated designs of estimators that are not rotational invariant. More recently, the
approximate message Ppassing techniques used in [21, 27] were used to obtain similar results
in logistic regression [40]; but again, these techniques cannot handle the Lasso penalty for
correlated design. A more detailed comparison with these works is made in Section 3.8. To
our knowledge, there is no previous asymptotic normality result for debiased estimates in
the regime (1.6) for correlated designs in the presence of a penalty not depending on X (i.e.,
in situations where rotational invariance does not hold). A main goal of the paper is to fill
this gap. Available techniques that tackle the regime (1.6) assume, in addition to uncorrelated
design, that the penalty is invariant under permutations of the p coefficients [1, 15, 17,
33] and that the empirical distribution of the true {\/nB;, j < p} converges to some prior
distribution. A second goal of the present paper is to show that asymptotic normality of de-
biased estimates can be obtained beyond the Lasso and beyond permutation-invariant penalty
functions, without imposing the convergence of the empirical distribution of the normalized

coefficients {/nB;, j < p}.

1.2. A general construction of debiased estimators. This section describes a general ap-
proach to systematically construct de-biased estimates in the linear model (1.1) where X has
i.i.d. N(0, X) rows. Our goal is to construct confidence intervals for the one-dimensional pa-
rameter 0 = (ag, B). Consider an initial estimator B, viewed as a function of (y, X), that is,
ﬁ : R™<(+P) 5 RP and assume that this function B is Fréchet! differentiable. For a given
observed data (y, X) from the linear model (1.1) and a E Fréchet differentiable at (y, X),
there exist uniquely matrices H € R and G € R™*? such that

XB(y+n.X)—XB(y,X)=H"n+o(Inll),
B(y,X +nag)—B(y,X) =G n+o(Inl)

for all » € R". With X = (x; ,),e[n 1,jelp)» if the partlal derivatives of ﬂ (y, X) at the ob-
served data (¥, X) are (8/8xlj)ﬂ(y X) and (8/8y,)ﬂ(y X) then (1.7) implies HTe, =
X(a/ayl)ﬂ(y,X) and Ge; = Z] l(ao,e])(E)/a)clJ),B(y,X) for canonical basis vectors
e; € R" and e; € R”. The derivatives of ﬂ and the matrices H and G can be computed
by only looking at the observed data (y, X), for instance by finite difference schemes.

Next, consider the function ¢ defined as

1.7)

¢ RUTP SR (3, X) > ¢y, X) = XB(y, X) —

If B is differentiable at (y, X), then ¢ is differentiable as well. By the product and chain
rules,

¢y +10.X)— ¢y, X)=[H - L1 n+o(In),

(1.8) . R P
d(y, X +nag) — ¢y, X)=[(ao, B)I, +GX "] n+o(lnl).

1Although the Fréchet derivative is the usual definition of derivative in finite dimension, we write Fréchet to
emphasize that the derivative is linear. Linearity may fail for weaker notions such as Gateaux differentiability.
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If the partial derivatives of ¢ are (9/dy;)¢ and (3/9dx;;)¢, the second line of the previous
display is equivalently rewritten as

> (@0.¢)(@/0xi)b(y. X) = [{ao. B, + GX ] 'e;

for each canonical basis vector n = e¢; € R".

Observe that the arguments (y, X) of ¢ are centered and jointly normal random variables
and their correlations are computed explicitly, for example, E[x;;y/] = eJTZ Blii=¢, with
basis vectors e; € R”. One version of Stein’s formula, also known as Gaussian integration
by parts, is E[Gh(Zy, ..., Z,)] = ZZ=1 E[GZiIE[(0/0zk)h(Z1, ..., Z4)] provided that the
function h(zy, ..., z4) is differentiable and that G, Z, ..., Z, are centered jointly normal
random variables, provided the existence of the expectations [41], Appendix A.4. We lever-
age this version of Stein’s formula to obtain an unbiased estimating equation involving only
one unknown parameter, the scalar 6 = (ag, 8) of interest. For G; = el.TX > lag, we find
E[G;yi] = E[Gixt;j] =0 if i # k while E[G;x;;] = (ao, e;) and E[G,y;] = (ao, B) so that
by reading the partial derivatives in (1.8),

(G (3, X0) = (a0, BIE[ 225,20 | + 3 taw, ] 221, 3]
=

(1.9) i ij

=E[(ao. B)(Hi; — )] + E[(a0. B) + ¢/ GX "e;].
Summing overi =1, ...,n and using ¢(y, X) = Xﬂ — y, we find that
E[(XZao, XB— y)] = E[—(ao, B) trace[I,, — H1+ (ag, B)n + trace[XTa]].

To transform this equation into a form representative of the results of the paper, define the
scalars df and A by

(1.10) df = trace[H |, A= trace[XTa] + (ag, B)df

The notation df underlines that trace[ H] has the interpretation of degrees-of-freedom of the
estimator ﬂ in Stein’s Unbiased Risk Estimate (SURE) [37]: regarding it = X ,B as an estlmate
of u = X B in the Gaussian sequence model with observation y = u + &, the quantity SURE =
ly — %+ 202df — o2n is an unbiased estimate of the in- sample error ||it — M ||X(,B —
B)|12. With this notation, we obtain the unbiased estimating equation,

(1.11) 0=E[(XZ 'ag, y — XB)+ (n — dh)((ao, B) — 6) + A],

where the only unobserved quantity inside the expectation is 8 = (ag, B), the scalar parameter
we wish to estimate. In the above application of Stein’s formula, G; = el.TX > ~lay was cho-
sen on purpose so that § appears in (1.9) only through (ag, 8) thanks to E[G;y;] = (ao, B).
Note that replacing G; in (1.9) by el-TX u for any u € R” not proportional to £~ 'ag brings
a scalar projection of B different from (ag, 8): this shows the unique role of the random
vector XX "'ag to derive an unbiased estimating equation for 6 = (ag, B). It is notable
that the direction ¥~ 'ag coincides with the least-favorable direction described around (1.4).
Equation (1.11) is obtained for an arbitrary initial estimator E provided that its derivatives
with respect to (y, X) exist and the integrability conditions hold to ensure existence of the
expectations involved. From (1. 11) the method of moments suggests to estimate 6 with
0 = (ap, ﬂ Y+ (n — df) l(xxag, y — Xﬂ Y+ A), which resembles (1.5) for the Lasso
for df = |S| and XX ~'ag = zo under the normalization (ag, £~ 'ag) = 1.

It is useful at this point to specialize the above derivation to an estimator for which all
derivatives can be computed explicitly. For Ridge regression with penalty g(b) = ,u||b||% for
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some ;> 0, B(y, X) = (XX +nul ) ' X"y and

H =X(X"X +nul,) X7,
(1.12) R | _ _
GT=(XTX—|—n,qu) [ao(y—Xﬂ)T—XTWO,ﬂ)]-

Indeed, the derivatives of B( ¥, X) exist as it is the composition of elementary differentiable
functions. Differentiation with respect to y is straightforward as ﬂ is linear in y, whlle in
order to compute G we proceed by setting b(t) = B(y, X(¢)) with X(z) = X + tnao Dif-
ferentiation of the KKT conditions X (t)T( y — X(2)b(t)) = nub(t) at t = 0 provides the
directional derivative (d/dt)b(t)|;—0 = GTn This glves (1.12). It follows from (1.12) that
df = trace[ X (X " X +nul ,) "' X "Jand A= (y— XB) "X (X "X +nul )" ag for the quan-
tities in (1.10) (for A\, note the fortuitous cancelation of the term (a, ﬁ)fff). For the Lasso,
similar differentiability formulae are derived in [8]. It is however, unclear how to obtain
closed form formulae for the derivatives of B for an arbitrary convex penalty g in (1.2).

We now set up some notation that will be useful for the rest of the paper, and derive again
the unbiased estimating equation (1.11) using this new notation. Define

(1.13) uo=X 'ap/lao, 27 a0),  zo0=Xuo,  Qo=1Ipx,—uoag.

The normalizing constant in ug is such that (ag, #p) = 1 holds so that the expression (1.13)
for ug coincides with the direction of the least-favorable submodel discussed around (1.4).
The vector z( is independent of X Q, by construction as (z¢, X Q) are jointly normal and
uncorrelated. This follows by noting that XX ~!/2 has i.i.d. N(0, 1) entries and

20=XT /|27 %), XQy=XT VX (I,-vv")x!/?
for the unit vector v = 2_1/2a0/||2_1/2a0|| as by construction of Q( matrix I, — ! =
/2 QOE_l/ 2 is the orthogonal projection onto {v}-. We summarize this as

(1.14) X =XQ,+z0aj withzo~ N(0, HZ_I/zao I _Zln) independent of X Q.

For brevity, we assume in the sequel and without loss of generality that the direction of
interest ag is normalized such that

(1.15) |=7"a0|? = (a0, T~ ag) = 1.

By definition of u¢ and zg, the normalization (1.15) gives zo ~ N (0, I,).
Conditionally on (X @, &), define the function f(x g,.¢) : R" — R" by

(1.16) f(XQO,e)(ZO):XE_y-

By (1.14) and the independence of € and X, the conditional expectation given (X Q, €) can
be written as integrals against the Gaussian measure of zg, for example,

E[zg fx 0y.e)Z0)(X Q. &)] = /(ZTf(XQo,s)(Z))e_”z”%/z(«/E)_" dz

since zg ~ N (0, I,,). As we argue conditionally on (X QO, €), we omit the dependence on
(X Q, &) and write simply f : R" — R". Since y =¢ + Xﬂ and X =XQ,+ anO ,

f(zo)=XB(e + X QyB +z0ad B, X Qy + z0ag) — XB —e.

The gradient V f with respect to z¢, holding (X @, €) fixed, can be computed by the product
rule and the chain rule via (1.8):

(1.17) Vf(zo)" =1.(ao, B —B) +[(ao, YH" +XG'].
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We adopt the usual convention that the gradient of a vector valued function is the transpose
of its Jacobian. Computing the directional derivative of f in a direction 5 requires consid-
ering the difference of an expression at (e, X Qg, zo + tn) minus the same expression at
(e, X 0y, z0), dividing by ¢ and taking the limit as + — O; this is equivalent to considering
the difference of an expression at (e, X (¢)) with X(#) = X + tnag minus the same expression
at (¢, X), dividing by ¢ and taking the limit as t — 0.

Taking the trace of (1.17) and by definition of df and A in (1.10), the identity

—&0 ' div f(z0) — 20 f(20)
= (n —d)((ao, B) — 6) + (z0,y — XB) + A

holds where div f(zg) = trace[V f(z¢)]. Since E[div f(z¢9) — zgf(z())|(X 0o,€)] =0 by
Stein’s formula [37], this provides the unbiased estimating equation (1.11). Reasoning con-
ditionally on (e, X @), using Stein formulae with respect to z¢ involving conditional ex-
pectations given (e, X Q) and gradients of the form V f(z¢) holding (e, X Q) fixed will
be a recurring theme throughout the paper. In this context, the function f itself depends on
(e, X Qp) asin (1.16), although the dependence on (e, X Q) is omitted for brevity.

In order to construct confidence intervals using the unbiased estimating equation (1.11),
one may hope that the quantity (1.18) above is well behaved—ideally, approximately normal
with mean zero and a variance that can be consistently estimated from the observed data. By
the second-order Stein’s formula in Proposition 2.1 below, which was already known to Stein
[37], (8.6), in a different form, the conditional variance of (1.18) given (e, X Q) is

Varg[£0] = Eo[ | £ z0) | + trace[{V f (z0)}?]]
=Eo[V*©)]] for V¥(6) = |y — XB|? + trace[{V f (z0)}*].

where Eg = E[-|e, X Q] denotes the conditional expectation with respect to zo given
(e, X Qp) and Varg denotes the conditional variance given (e, X Q). The gradient V f(zg)
in (1.17) and the unbiased estimate V*(0) of Varg[£p] only depend on the unknown parameter
of interest # and observable quantities, and V*(#) is quadratic in 6.

Assume now we are in an ideal situation in the sense that both conditions below are satis-
fied: (1) The quantity (1.18) is approximately normally distributed conditionally on (&, X Q)
and (i) V*(0) is a consistent estimator of (1.19), the conditional variance of the random
variable (1.18). Then the set of  for which the inequality

(1.20) [(n — dh((ao. B) — 0) + (z0. y — XB) + A]* = V*(6)z2, <0

is satisfied is an (1 — a)-confidence interval, where P(|N (0, 1)| > z4/2) = 1 — a. Solving the
corresponding quadratic equality gives up to two solutions @1 (zy/2) < O2(z«/2) that are such
that (1.20) holds with equality. These two solutions implicitly depend on the observables

(y—XB,z0), ly—XBI% d, A, ajB

and the derivatives of B If the coefficient of 62 in the left-hand side of (1.20) is positive, (i.e.,
if the leading coefficient of (1.20), seen as a polynomial in 6 with data-driven coefficients, is
positive), a (1 — o) confidence interval for 6 = ag B is then given by

(1.21) Cl = [01(za/2), O2(za/2)]-

We will show in the discussion surrounding (3.30) below that the dominant coefficient is pos-
itive and that the confidence interval is indeed of the above form if B is a convex penalized
estimator. Although a variant of the above construction was briefly presented in [7], Section 6,
(there the function zg — X Qy(B — B) — € is used), important questions remain unanswered
to prove the validity of the general confidence interval in (1.21) and its applicability to com-
monly used regularized estimators.

(1.18)

(1.19)
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1.3. The rest of the paper is organized as follows. Section 2 develops an L, bound be-
tween &/ Var[£]'/2 and N (0, 1) for random variables of the form £ =z f(z) — div f(2)
where z ~ N (0, I,). Section 3 uses this normal approximation to show the asymptotic nor-
mality of (1.18) and proves the consistency of the variance estimate V*(6) in (1.19) in the
regime where p and n are of the same order in the linear model (1.1) with correlated design.
Section 4 provides closed-form formulas to apply the results in Section 3 to the Lasso, the
group Lasso and twice continuously differentiable penalty functions. Section 7 contains the
proofs of the results in Section 3. Appendix A provides a technical lemma on the integrability
of smallest eigenvalue of Wishart matrices, Appendix B provides the proofs of the asymptotic
normality results for the Lasso and group Lasso when p > n and Appendix C contains the
proofs of the derivative formulae for the group Lasso.

1.4. Notation. For two reals {a, b}, let a A b = min{a, b}, a V b = max{a, b} and a4 =
a V0. Let I ; be the identity matrix of size d x d, for example, d = n, p. For any p > 1, let [ p]
be the set {1, ..., p}. Let || - || be the Euclidean norm and || - ||, the £, norm of vectors for any
q > 1,sothat ||-|| =-[l2. Let || - lop be the operator norm of matrices and || - ||  the Frobenius
norm. Let ¢min () be the smallest eigenvalue of a symmetric matrix S. We use the notation
(-, -) for the canonical scalar product of vectors in R” or R?, that is, {(a, b) = a'b for two
vectors a, b of the same dimension. For any event €2, denote by I, its indicator function. The
unit sphere is S” I={x eR?: x| =1} Convergence in distribution is denoted by —d
and convergence in probability by —. Throughout the paper, Co, C1, ... denote positive
absolute constants, Ci(y) positive constants depending on y only and Cr(y, u) on {y, u}
only.

For any vector v = (v, ..., vp)T € R? and set A C [p], the vector v4 € R!41 s the restric-
tion (v;)jea. For any n x p matrix M with columns (M1, ..., M) and any subset A C [p],
let My = (M, j € A) be the matrix composed of columns of M indexed by A. If M is a
symmetric matrix of size p x p and A C [p], then M 4 4 denotes the submatrix of M with
rows and columns in A, and M Z}A is the inverse of M 4 4. For any square matrix M, let

M* = (M + M ")/2 be its symmetrization giving the same quadratic form.

For a vector valued map / : R" — R with coordinates A1, ..., h; : R" — R, the gradient
Vh € R"*4 is the matrix with columns Vhy,..., Vh,. Thus, Vi is the transpose of the
Jacobian of & and h(x + ) = h(x) + Vh(x)Tn 4+ o(]|ln||) if each coordinate &; is Fréchet
differentiable at x. For deterministic matrices A € R"*9, V(Ah) = (Vh)A" € R"*™ For f
in (2.1), V f(x) € R"*" and the divergence is div f (x) = trace[V f(x)].

2. Normal approximation in Stein’s formula. We develop in this section normal ap-
proximations for random variables of the form

(2.1) £=z' f(z) —div f(2),

for which Stein’s formula [37] states E[£] = 0, where z ~ N (0, I,) is standard normal and
f :R" — R". We establish L, bounds for the linear and quadratic approximations of & and
construct consistent variance estimates in the related CLT.

Throughout this paper, the ith coordinate f; of f is a function f; : R" — R and its weak
gradient is denoted by V f;. Similarly, the weak derivative of g(z) is denoted by Vg. We refer
to [14], Section 1.5, for definitions of weak differentiability. For the application to asymp-
totic normality of debiased estimates in Section 3, the functions we will consider are locally
Lipschitz. By Rademacher’s theorem, locally Lipschitz functions are Fréchet differentiable
almost everywhere, which is stronger than the existence of directional derivatives in all di-
rections. In this case, the weak derivatives agree with the classical partial derivatives almost
everywhere. As far as the application in Section 3 is concerned, the reader unfamiliar with
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weak differentiability may consider the additional assumption that f is locally Lipschitz in
the following results and replace weak derivatives with classical derivatives. The variance of
(2.1) is given by the following proposition.

PROPOSITION 2.1 (Second-order Stein formula, [37], equation (8.6), [7]). Let z ~
N(Q@,1I,) and f :R" - R" be a function with each coordinate f; being squared inte-
grable and weakly differentiable with squared integrable gradient, that is, E[ f;(z)*] +
E[||IV f; (2)]1?] < +oc. Then

2.2) E[(z' f(2) —div f(2)*] = E[|| £ @[] + Etrace[{V f (2)}°].

The above result, in the twice differentiable case, was known to Stein [37], equation (8.6).
If f is twice differentiable, the result follows by a sequence of integration by parts. The
differentiability requirement was relaxed to only once weakly differentiable f in [7] where
statistical applications of this formula to such once differentiable f are discussed.

2.1. Linear approximation. The goal of the present section is to derive normal approxi-
mations and CLT for the random variable (2.1). The intuition is as follows. We are looking
for linear approximation of the random variable (2.1), of the form z ' p ~ N (O, ||||?) for
some deterministic g € R”. We rewrite (2.1) as

(2.3) 2 f@—divf@) = z'» +z2' (f(2) —p)—divf(z).
linzr/;art remainder

The remainder term above is mean zero with second moment equal to E[| f(z) — w||*] +
Etrace[{V f(z)}?] by Proposition 2.1. This second moment is minimized for g = E[ f(z)],
hence z " E[ f(z)] gives the best linear approximation of £ in (2.1). The following result pro-
vides conditions on f under which the remainder term is negligible in (2.3).

THEOREM 2.2. Let z ~ N(0,1,) and f be a function f :R" — R", with each coordi-
nate f; being squared integrable and weakly differentiable with squared integrable gradient,
that is, B[ fi ()21 + E[||V fi (2)||*] < +00. Then € =z f(z) — div f (z) satisfies

(2.4) E[(/ Var[£]'? — 2)* ] =€} + (1 — (1 — €)' /P)? =€ 4 c1€}
with Z = zTIE[f(z)]/HE[f(z)]H ~ N(0, 1), deterministic real 1/4 < c; <1 and
2 2
2.5) &2 def | IELf ]I <2< 2E[IV f(2) ] -
Var[£] E[ll £ @)II21 +E[IV f (2)lI%]

where € € 2RIV L@V IFIAELf @I + 2E[{Vf@}13]). Consequently,
sup, g |IP(§/ Var[£]'2 < 1) = P(Z <1)| < C(e] + 1€ for C =1+ 2m)~ 12,

A direct consequence of Theorem 2.2 is 612 <4< 26% < 2?%. Inequality (2.4) provides
an upper bound on the 2-Wasserstein distance between &/ Var[£] 172 and Z ~ N(0, 1). When
612 — 0, it gives a stronger L, form of the CLT &/ Var[£]'/?2 =< N(0, 1) in addition to the
Kolmogorov distance bound in Theorem 2.2. The theorem follows from Proposition 2.1 and
an application of the Gaussian Poincaré inequality.

PROOF OF THEOREM 2.2. Define Z =z E[f(z)]/IIE[f(z)]|| then Z ~ N (0, 1) and
& — Var[£]'?Z =77 g(z) — divg(2),
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where g(z) = f(z) — rE f(z) and r = (Var[£]'/2/||E £ (z)||). By Proposition 2.1 applied to g
and a bias-variance decomposition,

E[(¢ — Var[£]'/2Z)*]
=E| f(z) — rE[f@)]|* + Etrace[{V f(2)}?]
=E|f@) —E[f@)]|* + Etrace[{V £ (2)}*] + {Var[]"> — |Ef (2) |}?
= Var[§] - [Ef @) |* + {Varlg]"? - |[Ef @]}
thanks to (r — D||Ef(z)|| = Var[£]'/? — |Ef(z)||. Thus, (2.4) follows from the definition
of €7 in (2.5). Moreover, E[|| f(z) — E[ f(2)11*] < E[|IV f(z)]|%] by the Gaussian Poincaré

inequality and | M| + trace(M?) = 2||M*||% for M € R"™*". Hence, with a = [Ef(2)|?,
b=E| f(z) —Ef@)|? c=Etrace[{V f(z)}*] and d = E[||{V f (2)}* | 3] we have

oo bre M

21E[||Vf(z)||12p] - 2E[||Vf(z)||%]
T a+b+c " a+2d

a+2E[IVF@I%] ~ Ellf @I+ IV (@)I%]

thanks to another Gaussian Poincaré inequality for the last inequality. Finally, x?/4 < (1 —
VT —=x)? < x? holds for all x € [0, 1], which proves c| € [1/4, 1].

For any 8 > 0, by Markov’s inequality P(& /Var[£]'/? < 1) —P(Z <) < P(]&/ Var[£]'/? —
Z|>8) +P(Z elt,t +8]) < (€] + c1€1) /8> + 8(2m)~!/2 since the standard normal pdf is
uniformly bounded by (2m)~1/2. Hence, with § = (e% + clef)l/ 3 the above and a similar
argument on [t — &, ¢] provide the Kolmogorov distance bound. [J

Normal approximation results such as Theorem 2.2 are flexible tools as they let us derive
asymptotic normality results by mechanically computing gradients: By Theorem 2.2, it suf-
fices to show that the expectation of ||V f(z) ||%F is negligible compared with that of || f(z) Ik
to obtain £/ Var[£]!/?2 —¢ N(0, 1). Normal approximations involving derivatives have been
studied for random variables with the more general form W = g(z) for differentiable func-
tions g : R” — R. The second-order Poincaré inequality of [19] bounds the total variation
distance drvy of g(z) to the Gaussian distribution using the first and second derivatives of g:
[19], Theorem 2.2, specialized to W = g(z) with z ~ N (0, I,,) states that

26)  drv{W.N(uo. 03)} = (2v/5/03)E[|Ve@ |1 /B[ Ve [,

where W = g(z), z~ N(0,1,), uo = E[W] and 002 = Var[W]. Above, Vg, Vzg denote
the gradient and Hessian matrix of g. Inequality (2.6) provides a CLT for g(z) provided
that the moments of the derivatives IE[||Vg(z)||4]1/4 and E[lleg(z)llﬁp]l/A' are negligi-
ble compared to the variance ag = Var[g(z)]. Inequality (2.6) has been successfully ap-
plied to derive asymptotic normality of unregularized M -estimators when p/n — y < 1
and the M-estimation loss is twice differentiable [31]. However, the (2.6) based approach
is not applicable for regularized estimators such as the Lasso and group Lasso that are
only once differentiable functions of (X, y). In fact, by Proposition 4.1 below, the Lasso is
not twice differentiable as trace[(d/dy)X B( y, X)] is integer-valued. In Theorem 2.2, while
£ =z f(z) —div f(z) already involves the derivatives of f through the divergence, the ratio
E% that appears in the upper bound (2.5) only involves f and its gradient V f; the second
derivatives of f need not exist. Section 3 uses Theorem 2.2 to provide asymptotic normality
for debiasing estimators that are only once differentiable.
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Variance estimate. It follows from Theorem 2.2 that random variables & of the form

(2.1) are asymptotically normal under the condition 1 — ||E[ f(z)]||?/ Var[£] — 0, or under

a somewhat stronger but more explicit condition E% — 0 as in (2.5). The following theorem

provides consistent estimates of Var[£].

THEOREM 2.3. Let f,z, &, 612 and cy € [1/4, 1] be as in Theorem 2.2. Then

ony  EUS@I/varte)'? = 1)%) = € ~ Bfmace((V £ @) Va1 + cref
| <(1-e})er/2—28) +cref

with €, € 2RIV £ (@) |2 1/UELF @I + 2E[|V £ 2) 131} = €2. Consequently,

2.8) | £ @)%/ Varig] »F 1 and  £/|f )] —¢ N, 1)

when €2 + & 1{E[trace({V f (2)}*)] < 0} — 0.

PROOF OF THEOREM 2.3. It follows from the Jensen inequality and (2.4) that

E[(] f(z)|/ Varl£]"? = 1)*] < B[] £ (2)|*]/ Varl&] + 1 — 2|[7]/ Var[£]"/2
=€l — E[trace({Vf(z)}z)]/Var[E] + cref

with g = E[V f(z)] due to 612 =1- ||ﬁ||2/ Var[£]. For the second inequality in (2.7),

et — E[trace({V f (2)}?)]/ Varl] = E[| f (z) — &[*]/ Varl£] < E[|V £ (2)[ 7]/ Varl£],

thanks to the Gaussian Poincaré inequality, and (1 — 612)?% /(22— 2?%) equals to the right-hand
side above by the definition of €. [

2.2. Quadratic approximation. The decomposition (2.3) is especially useful if the linear
part z' g with p = E[f(z)] is a good approximation for £ =z f(z) — div f(z). In some
cases, for example, if f(z) = Az for some square deterministic matrix A, the decomposition
(2.3) is uninformative. It is then natural to look for the best quadratic approximation of £ in
the sense of the L, orthogonal projection to

JO2=1éu.a =pu'z+z"Az —trace[A] :p e R", A eR"M" =4 @ 65,

where 7 = {pn'z:p € R"} and % = {7 Az — trace[A] : A € R"*"} are L, subspaces
orthogonal to each other.

The calculation in (2.4) for 7] is generic in the following sense. If £ is the L, projection
of a random variable £ in L,, then the sine of the L;-angle between & and & is € = (E[(§ —

£)?/EE D=1 — E[§2]/E[§2])1/2 and
(2.9) E[(&/ Var[£]"/? — &/ Var[€]'/?)*] =2(1 — /1 — €2) = > + c€*

holds for some deterministic real 1/4 < ¢ < 1. Indeed, take € = sin with o being the L;-
angle between & and &, so that (2.9) becomes (2 sin(oz/2))2 =2(1 —cos(w)) = €%+ ce* asin
the proof of Theorem 2.2.

The next result extends Theorem 2.2 to the L, quadratic projections to .7 and .7 >, and
also gives Theorem 2.2 the interpretation as the L projection to J#].
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THEOREM 2.4. Letz~ N(0,1,), f :R" — R” satisfy the assumption of Theorem 2.2,
and £ =z f(z) —div f(z). For p € R" and A € R™" [et A= 2" (u + Az) — trace A.
Let @ =E[f(z)] and A =E[V f(z)]. Then éﬁ’z is the Ly projection of & to 7 » and

E[¢ - &0 =E[| f@ — &|* - 1A1}] + Etrace[{V £ (z) — A}°]

<2E[|{V (@) - A}|3].

Consequently, &z o is the projection of § and SE,Z to 4 with E[(SE,Z — éﬁyo)z] = ZIIZS ||%,
and & 7 is the projection of § and S— ato F6 with IE[(‘;‘E 1 — 5o Z)z] = ||zl
For the projection éu 1 0f & to 7, 61 ) ey 52 —]/E[Sz] satisfies 61 ) < 6% ) def

2E[I{V f(z) — A)® II% J{ITEl? + 2E[ ||{Vf(z)}5||F]} and under the condition 61’2 =o(1),

(2.10)

@.11) JA° 12, /(m3+ [A°)3) >0 & &/ Varl£]/? -4 N, 1).

For the projection §, 5 of § to I, e% =1- S ]/E[S ] satisfies 62 <€ _2 & {I%l1? +
2E[I{V £ (z) — AV IF1/AEI* + 2E[{V f ()} IIF]} and under the condition €5 = o(1),

(2.12) |A°2,/[A° |7 =0 < &/Varlg]'? -9 N, 1).

PROOF OF THEOREM 2.4. The function g(z) = f(z) — p — A"z has gradient Vg =
V f — A. Application of the second-order Stein’s formula in Proposition 2.1 to g yields

E[(¢ — £, 4)2] =E[| fz) —u — A z|*] + Etrace[{V £ (z) — A}] &1 +1I.

The first term is I = E[|| f(z) — u||*]1 + ||A||% —2E[zT A(f(z) — p)]. By Stein’s formula and
the linearity of the trace, we have

A% —2E[zTA(f(z) — u)] = | A||% — 2E trace(V f(2)AT)
=A% —2trace[A T A]
= — A% + 1A — A3
We also have E[[|V £ (z) — Al 71 =E[IV f(2) 7] = |A]I% so that
=E[|f@ - u|* ~ |V @[] +E[| V@ - A ] + 14 - Al
For the second term, using that E[V f(z) — A] = 0 we get
Il =Etrace[{V f(z) — A}z] = Etrace[{V f(z) — Z}z] + trace[{A — A}?].
Due to || M |3 + trace(M?) = 2||M*||% for M € R"™" it follows that
E[¢ — &) =E[| £ @) — &| - IAl7] + Etrace[{V f (z) — A4}’]
+ e — R+ 24 -2

The optimality of u = and A = A follows, so that &z 4 1s the Ly projection of £ to JA 2.

Also, the first line above gives the formula of E[(§ — Sﬁ’z)z] in (2.10), and the second line
gives the formulas for the variances of &z ¢ and 50,2- The upper bound in (2.10) follows

from E[|| f (z) — &|I* — A 7] <EIV £ ()71 = |1 All3 = ELIV £ (z) — A||] thanks to the
Gaussian Poincaré inequality. Inequality (2.10) is equivalent to

E[&*] = E[&2 5] +E[¢ — & 0] < IEI7 + 2| & | + 2E[|{V F @) — A} [7],
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which provides 612’2 < E%’z and €3 < & by bounding from above the denominator in 612’2 =

— E[&7 51/E[§?] and € = 1 — E[&] 4 1/E[§7].

For (2.11), we write éﬁ,z = ?:l{ajG_,- + bj(G§ — D} with iid. G ~ N(O 1), where
aj = uJTﬁ and G; = u]Tz with the eigenvalue decomposition A’ = Z 1bjuju T. Assume
without loss of generality that Var(a;G; + b; (G2 - 1) = a2 + 2192 is nomncreasmg in j
and that Var[é 4l satisfies Z” 1(a + 2b2) = 1 The COIldlthIl on the left-hand side of

(2.11) implies that the integer kn = [||A llop 1 = [(max;b;)~ 17 satisfies k, — 400 and
Zj | b? L1= Var[sﬁ’z], so that

kn n
ex =206+ 3 4Gy +by(G] = D]+ op(1),
j=1 Jj=ky+1

Assuming that Y1 ma j
sary, k, — +00 implies max -, (a + 2b2) = ak gt 2b2 k,+1 — 0 so that the second term
above is independent of the first and approx1mately N (0, 1 — ¢) by the Lyapunov CLT when
ZI; 1a2 — ¢ < 1. This proves that the LHS of (2.11) implies the RHS. Conversely, assume
the asymptotic normality on the RHS so that ijl{ajGj + bj(G% — 1)} —> N(0,1). Let
Wi=a;G;+b; (G? — 1) and j, <n. As W;, is an independent component of the sum, for

— ¢ for some c € [0, 1] by extracting a subsequence if neces-

any (aj,,bj,) — (a, b) along a subsequence with a® + b* > 0, we must have b = 0 because
Wi, —4 N(0, a®+2b%) by the Cramér-Lévi theorem and W, —49 4G +b(G*+1) for some
G ~ N(0,1). As j, <n are arbitrary, this gives ||KS lop=max;—1, . » b? — 0. O

.....

Variance estimate: Quadratic case. Theorem 2.4 provides the quadratic normal approxi-
mation of & under the condition E% » —> 0 with

2.13) &, 26l =1—(|E[f@]|* +2{E[Vf @]} |})/ Varle]

where €7 , is defined using the upper bound |[E f(z)[|* + 2E[|[{V f (z)}* ||%] > Var[£] estab-
lished in (2.10) in the denominator on the right-hand side of (2.13).

THEOREM 2.5. Let f,z,&, 0 =E[f(z)] and A =E[V f(z)] be as in Theorem 2.4 and
Var[§] = || f (z)|* + trace[{V f (2)}?]. Then

(2.14) E[|Var[£]/ Var[&] — 1]] < 26} , + 2€1,2Co + Coll Allop/ Varl£]'/?

with € 2 & RE[|V f () — Al1}1/ Varlg )"/ and Co & ()% +2/[&|13)/ Varl§1)'/2. Con-
sequently, under the conditions {E[||V f(z) — A||%] + ||A||0p}/(||ﬁ||2 + ||As||%) =o(l) and
TN/l + 14715 = 01,

2.15) Var[£]/ Var[e] -1 and  (Var[£])"'/%e >4 N (0, 1).

It follows from the second-order Stein formula in Proposition 2.1 that m is an unbiased
estimator of Var[£]. Moreover, when E[||V f(z) — Alli], |AllF and ||A|lop are all equivalent

to their symmetric counterparts, E[||V £ (z) — Al|2] < E[|[{V f (z) —Z}SnF] ||Z||F = 1A% | F
and ||A||Op = ||A llop, the condition for (2.15) holds if and only if 61 >+ ||A | p/(||[1,||2
A" F) = o(1) for the quantities in (2.13) and (2.11). The proof is given in Appendix D.
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3. Debiasing general convex regularizers. Our main application of the normal approx-
imation in Theorem 2.2 concerns debiasing regularized estimators of the form

(3.1 ﬂ—argmln{lly Xb|*/(2n) + g(b)}

beRP
for convex g : R” — R in the linear model (1.1). Throughout, let h = ﬁ — B be the error
vector, ag € R? be a direction of interest, 8 = (ag, ) be the target of statistical inference,
and ug, zg and Q be as in (1.13) so that (1.14) holds.

3.1. Assumption. We say that g is pu-strongly convex with respect to the norm b —
IZ1/2p) if its symmetric Bregman divergence is bounded from below as

(3.2) (b —b)"((3g)(b) — (3g)(B)) > | =2 (b — b)|?

for some u > 0. Here, the interpretation of (3.2) is its validity for all choices in the sub-
differential (dg)(b) and (dg)(b). Condition (3.2) holds for any convex g for u = 0. If g is
twice differentiable, (3.2) holds if and only if ©X is a lower bound for the Hessian of g.
However, (3.2) may also hold for nondifferentiable g, for example, the elastic-net penalty
with £ = I,,. Our results require the following assumption.

ASSUMPTION 3.1. (i) Let y > 0, u € [0, %] be constants such that © + (1 — y)4 >
0, that is, either u > 0 or y < 1 must hold. Consider a sequence of regression problems
(1.1) with n, p — +o0o and p/n < y. The penalty g : R? — R in (3.1) is convex and (3.2)
holds. The rows of X are i.i.d. N(0, X) with invertible ¥ and the noise & ~ N (0, o?l,) is
independent of X . (ii) ag € R? is a sequence of vectors normalized with || ~?ag| = 1.

Note that if (3.2) holds for u > 0 it also holds for ' = min(%, @) and we may thus assume
w0, %] without loss of generality. Strongly convex objective functions admit unique min-
imizers. Since y < 1 implies P(¢min(Z~2XTXX71/2) > 0) = 1 (cf. Appendix A) and the
objective function of the optimization problem (3.1) is (pmin(E~2XTXE~12/n) + w)-
strongly convex, Assumption 3.1 grants almost surely the existence and uniqueness of the
minimizer (3.1).

3.2. Gradient with respect to y and effective_degrees-of-freedom. Consider a penal-
ized estimator (3.1) viewed as a function ,3 ,B (y, X). For every X € R"*?, the map
y— X B( ¥, X) is 1-Lipschitz (cf. Proposition 7.3). By Rademacher’s theorem, for almost
every y there exists a unique matrix H e R " such that

(3.3) XB(y+n,X)=XB(y, X)+H n+o(Inll),,

asin (1.7), thatis, H is the gradient of the map y > X B( y, X). Furthermore, H is symmetric
with eigenvalues in [0, 1]; see Proposition 7.3 for the existence of H and its properties. While
existence of H was assumed in (1.7) in the Introduction, for penalized estimators (3.1) the
matrix H provably exists for almost every y by Proposition 7.3.

Table 1 provides closed-form expressions of H for specific penalty functions g. The proofs
of these closed-form expressions will be given in Section 4. An advantage of defining H as
the Fréchet derivative of the Lipschitz map y — X ,B( y, X) is that this definition applies to
any convex penalty g, even though for arbitrary penalty g we are unable to provide a closed-
form expression for H. Finally, define the effective degrees-of-freedom df of ﬁ by

(3.4) df = trace[ H]

as in (1.10). Because H is symmetric w1th elgenvalues in [0, 1] (cf. Proposition 7.3), 0 <
df < n holds almost surely. The matrix H and the scalar df play a major role in our analysis.
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TABLE 1
Closed-form expressions H from equatwn (3.3) for specific convex penalty functions g : RP — R. For the Lasso
and elastic-net, S = {jelpl: ,3] # 0}. For the group Lasso, S and M are given in Section 4.3

Penalty H e R Justification
g(b) =A|b|l; (Lasso) X§(X:|§—X§)_1X—§r [44], Proposition 4.1
g(b) = n|bl3 (Ridge) XXTX +npulp)~'xT (1.12), Section 4.1
g(b) = Al|bll; + 1[5 (Elastic-Net) X§(X—§'—X§ + nu1|§|)_1 Xg [44], (28), [7], Section 3.5.3,
g®) = lbligL = XK | mllbg, 2 Xs(X{Xg+m~'xi [45], Proposition 4.2
(group Lasso (3.33))
g(b) twice continuously differentiable X(XTX + ang(ﬂ))_lXT Section 4.1
g(b) arbitrary convex function symmetric with eigenvalues in [0, 1] Proposition 7.3

3.3. Approximation for & = z; f(z0) — div f(z0) and the debiased vector B (de—bias)
Consider, for a fixed value of (X QO, e) the function f(x g,.¢) : R" — R" given by

(3.5) fx00.6)(z0) = f(z0) = XB — .

For brevity, we will often omit the dependence on (X Q,, €) of f as discussed after (1.16).
The Fréchet gradient V f (zo), where it exists, is uniquely defined by

(3.6) fx00.0)@0+ 1) — fix0p.e)(z0) = [V fz0)] 1+ o(Inl)

and the divergence by div f(z()) = trace[V f(zp)]. If /3 = argming p,(|le — X(b B/
(2n) + g(b)) with X=X+ nao , then (3.6) is equivalent to

(3.7 (XB-B)—e)—(XB—y=[VSzo] n+o(lnl).
By Stein’s formula, we have conditionally on (X @), €) that almost surely
(3.8) E[£0l(X Qo, )] =0 for & = zq f(z0) — div f (z0)-

As in (1.18) for the general case discussed in the Introduction, (3.8) gives an unbiased esti-
mating equation for 6 = (ag, 8). The next lemma provides an expression for V f(zg).

LEMMA 3.1. Let Assumption 3.1(1) be fulfilled, ag € R? and H be as in (3.3). Then
(3.9) Vf(zo) =, — H) (ao, h) + wo(y — XB) "

satisfies (3.6) for some random wq € R" almost surely. If additionally | X ~"/?

aol|l =1, then

(3.10) lwoll® <n " min{(4) ™", prmin(Z 2 X TX T2 /m) 7).

Lemma 3.1 is proved in Section 7.1. Although we do not use this fact in any results, we
mention here in passing that vector wg in (3.9) is linear in ag in the sense that wg can be
chosen of the form WX~/ 2ao forA some matrix W € R"*”_ Indeed, the proof of Lemma 3.1
shows that the map (&, X) — X (B — B) — & is Fréchet differentiable at almost every point
by Rademacher’s theorem. At such a point, w1th ai,a; € R?, ¢t € R, the linear combination
a3 = a| +ta; and the perturbed design matrix X=X+ n(a;+ tay)’ , linearity of the Fréchet
derivative implies that

(XB—-B)—¢€)—(XB—y)
= (a1 +taz, h)(I, — H)" + (wi +tw2)(y — XB) ) n+ o(Inl).
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TABLE 2
Closed-form expressions for wy € R" in Lemma 3.1 for specific convex penalties g : RP — R

Penalty Vector wgy € R” in Lemma 3.1 Justification

g(®) = A||b||; (Lasso) X§(X—§FX§)’] (ao)s [8], Proposition 4.1

g() = 11]1b]3 (Ridge) XXX +nplp)ag Section 4.1

gb) = lblgL = XK | Mellbg, 12 Xs(X{X5+M)"@ao)z Proposition 4.2
(group Lasso (3.33))

g(b) twice continuously differentiable X(XTX + ang(ﬁ))_1 ) Section 4.1

where w; and w, denote the wy from (3.9) for ag = a; and ag = a», respectively. Hence,
with w3 = w +two, (3.9) holds for (ag, wo) = (a3, w3z). This proves that wg is linear in ay,
that is, it is of the form wo = WX ~!/2aq for some matrix W € R"*?. One way to construct
W explicitly is the following: define the jth column of W as the vector wq corresponding to
ap=X'e j Where e; is the jth canonical basis vector. The linearity proved above for any
linear combination a3 then implies that (3.9) holds for wy = wWx~12qq for any ag € RP,
Inequality (3.10) provides an upper bound on the operator norm of W. Linearity of w¢ with
respect to ap and explicit matrices W can be seen for some penalty functions in Table 2.
Such Fréchet differentiability with respect to X is used in [4, 6] to develop estimates of
|2 1/2 (ﬂ B)|1? in linear models with Gaussian covariates similar to the present paper.
By taking the trace of (3.9), we obtain almost surely under Assumption 3.1,

—& =div f(z0) — (z0, f(z0))
(3.11) = (n —df)((ao, B) — 6) + (z0 + wo, y — XB)
= (n—dh(@ —6)

for

(3.12) 0 < (ag, B) + (n — )~ "(zo + wo, y — XB).

In the present context of the regularized estimator /3 in (3.1) with its effective degrees-of-
freedom df defined in (3.4) and under Assumption 3.1, the quantities &p, df, 6 in the previous
display coincide with the random variables with the same name in (1.18). By (3.8), equality
E[£9] = 0 holds so that

0 =E[-&0]
(3.13) =E[(n —dh@ —6)]
= E[(n — df) (@0, B) - 6) + (z0 + wo, y — XB)]

by taking expectations in (3.11). This provides a first evidence that the correction (n —
df) l(z() + wo, y — X ﬂ 1ndeed removes the bias, at least after multiplication of (0 —0)
by (n — df) Since zo = XX lag under the normalization (1.15), the unbiased estimating
equation (3.13) is the specialization of (1.11) from the Introduction to the penahzed estima-
tor (3.1), for which we have the gradient expression (3.9) in terms of wg and H.If ﬁ is given
by (3.1), by identifying the terms in (1. 18) and (3.11) we see that the random variable A
defined in (1.10) of the Introduction is here A= (wg, y—X ,B ) with wq given by Lemma 3.1.
The following lemma shows that this term is negligible.

LEMMA 3.2.  Under Assumption 3.1, there exists 2, with P(Q2},) < Co(y, ;L)n_l/2 and
(3.14) E[Ig, (wo, y — XB)*/ Varol&ol] < C1(y, wyn™"
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The proof is given in Section 7.5. Since P(£2,) — 1, inequality (3.14) implies (wg, y —
X ﬂ /Varo [&0] —P (. This motivates the definition

(3 15) ﬂ(de—blas) dﬁfﬂ‘i‘(l’l _df)—lz—lXT y_XB)
The debiased estimate (a, B(de bias)y jn direction ay is obtained from 6 in (3.12) by dropping
the smaller order term (n — df) Hw, y—X ﬂ By Slutsky’s theorem, (3.14) implies

o df , 72 (de—bias)
(3.16) 570 —4F ifand only if (n {ao, B A
Varg[§0]'/2

Varg[£0]!/2
for any candidate limiting distribution F. As E[£p] = 0, this suggests that the simpler correc-
tion in (3.15) also corrects the bias of 8. By Prohorov’s theorem, there exists a subsequence
and limiting distribution F such that (3.16) holds in this subsequence. While F is mean
zero as &g/ Varg[£g] has mean zero and variance one, F' has variance at most one by Fatou’s
lemma. However, the normality of F' is unclear at this point.

To obtain more precise information on the limiting distribution and the deviations of &,
the next subsections build estimate of its variance and derive asymptotic normality results by
showing that F = N (0, 1) for most directions ag. The next result provides a loose data-driven
upper bound on the error {(ag, pde=bias)y _ g

4

THEOREM 3.3.  Under Assumption 3.1, there exists 2, with P(Q5) < Co(y, ,u)n_l/2
and

(3.17) E[Iq, (n — db>(ag, B0 — B)/|ly — XBII*] < Ca(y, ).
Furthermore, |(ao, B9~ — g)| = Op(1)||ly — XB|l/(n — df) = Op(1) ||y — XB|/n.

Theorem 3.3 is proved in Section 7.6. If ||X(,§ — ,B)||2/n = Op(c?), then ly — X:EH/n =
Op(1)o/+/n is of the same order as the width of confidence intervals based on the least-
squares estimator as n — +00 while p remains fixed. Theorem 3.3 shows that under this
mild additional assumption on the prediction error || X (ﬂ B)|I?/n, the second term in (3.15)
indeed corrects the bias, achieving (ag, 8 p(de—bias) _ B) = Op(1)o//n.

3.4. Variance estimates. By Proposition 2.1, the conditional variance Varg[£g] can be
written as Varg[&g] = Eo[V*(6)] for

def
(3.18) V*©) = lly — XBIP + trace[{V f (z0)}].
We allow the variance estimate to depend on the unknown 6 = (@, B) as the resulting pivotal
quantity, —V*(0)~1/2gy = V*(0)~/2(n — df)(6 — 6) via (3.11), would depend on 6 anyway.
While V*(0) itself can be used to estimate Varg[&p], its sign is unclear. The following sim-
plified version of it, obtained by removing the smaller order terms in V*(9),

V©O) S 1y — XBI2 + trace[(H — I,)*]((ao. B) — 0)°

= |ly — XBI?>+ |H — I,|%(ao, h)?,

is nonnegative. This follows from Proposition 7.3 since I, —Aﬁ is almost surely positive
semidefinite. Lemma 3.4 bg}ow shows that the relative bias Eo[V (6)]/ Varg[£p] — 1 converges
to 0 in probability, that is, V (6) is asymptotically unbiased for Varg[&p].

(3.19)

LEMMA 3.4.  Under Assumption 3.1, there exists 2, with P(Q2;,) < Co(y, //4)n_1/2 and

EolV(©)] 1” 51@[1 EgllVO) ~ V*(Q)I]] _Gomw
Varo[£o] Varo[£o] n

(3.20) ]E[Ign
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An alternative variance estimate that does not depend on the unknown parameter 6 is given
by replacing @ in V (9) by the point estimate (ag, 8489} with g(de=bias) jp (3.15):

_ _ .y — XB)2
(3.21) V(ag) = V(lag. BC™P) = ||y — XBI* + |1, —H||ZF%

The next lemma pr0v1des V(ao) / V(@) —P 1 and that V(ao) is also asymptotically unbiased
in the sense EO[V(ao)] / Varg[&o] —P 1. Lemmas 3.4 and 3.5 are proved in Section 7.5.

LEMMA 3.5.  Under Assumption 3.1, there exists Q, with P(Q5) < Co(y, wn=Y2 and

Jaln ot ) <

n

3.5. Asymptotic normality of debiased estimates. Throughout this section, ®(t) =
P(N (0, 1) <t) denotes the standard normal cdf. For a given penalty function g : R” — R,
we define the deterministic oracle B* and its associated noiseless prediction risk R, by

V(ap)'/?

Eo[V (ap)]'/?
{7(9)1/2

! Eol[V (6)]'/2

(3.22) max{]E|:IQ”

B* Gléfalrgmin”El/z(ﬂ —b)|*/2+ g (b).
beRP

(3.23) Wi g

def 2

R o |50

Our first result provides asymptotic normality of the debiased estimate when the error
(ag, ,3 B) of ﬂ in direction ag is negligible compared to R,.

THEOREM 3.6. Let Assumption 3.1 be fulfilled. Let Bde=bias) po g5 in (3.15). Then, for
any ag with |2V 2ag|| = 1 such that (ag, h)*/R, —F 0,

g_— B(de—bias)> -6
]P’( >—<I>t +1P’( §t>—CI>ti| 0
f‘;g[' e R O G 1] -

where Vy denotes any of the four quantities: Vargl[&pl, ||y — XBHZ, \7(9) or \V/(ao).

Theorem 3.6 is proved in Section 7.6. The theorem, as well as its variants below, are
obtained by applying Theorem 2.2 conditionally on (&, X Q) to the function f(zo) in (3.5).
This argument relies on the normality of zo conditionally on (e, X Q), and thus the Gaussian
design assumption. Here is an outline. Define

(3.24) 53(a0) € Eo[ |V £ z0) |71/ {Eo[ | £ o) |*] + Eo[| V £ z0) [ 3]}

where [E( and Var are the conditional expectation and conditional variance given (X Q,), €).
It is sufficient to show that 8%(a0) —P 0 in order to prove asymptotic normality of

£0/ Varg[£0]'/? by Theorem 2.2 and of &y/|| f (zo)|| by Theorem 2.3 since 8% = 8%((10) sat-

isfies 26% > max(elz, ?%) for the e%, ?% in Theorems 2.2 and 2.3. The proof makes rigorous
the following informal bound:

2 TR 2
Eo[gvf(m)llpl < H‘Eo[llln2 H||%(ao, h) ]+ Op(n~11?)
Eolll f (zo)I*1 + Eol[lIIV f (zo) I %] CL(vs nRy

for some constant Cy(y, i), by establishing a lower bound on || f (zo)||*> = ||y — X /3 ||? for the
denominator (Lemmas 7.4, 7.6 and 7.7), and by showing that the rank one term wo(y — X 8 )T

81 (ag) =
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in (3.9) is negligible in the numerator. Finally, |1, — H II% < n always holds by Propo-
sition 7.3 and (ag, h)?/Rs is shown to be uniformly integrable, so that the assumption
(ag, h)> /Ry —Po grants E[Slz(ao)] — 0. The next two results identify directions ag such
that (ag, h)%/R, —* 0 holds.

THEOREM 3.7.  There exists an absolute constant C* > 0 such that the following holds.
Let Assumption 3.1 be fulfilled, B9~ be as in (3.15). Then for any increasing sequence
ap — +00 (e.g., ap =loglog p), the subset

(3.25) S={vesP L :E[(x"?,n)/|=?h|*] < C*/a,)
of the unit sphere SP~' in R? has relative volume |S|/|SP~| > 1 — 2e=P/% and

(3.26)  sup SHPHP<§T0/2 < t) — q)(t)‘ + ‘IP(M IB/(;e_bias): B) < t) B cp(t)H S0

apex!/2steR Ll \ V) /(n — df)

where Vo denotes any of the four quantities: Varg[&o], ||y — Xﬁ||2, ?(0) or \v/(ao). Fur-
thermore, with e € R? the jth canonical basis vector and ¢cond(X) = || X ||op||2_1 llop, the
asymptotic normality in (3.26) uniformly holds over at least (p — ¢cona(X)a,/C*) canon-
ical directions in the sense that J, = {j € [p]: ej/||)3_1/2ej|| € El/zg} has cardinality
[Jpl>p— ¢cond(z)ap/C*-

Theorem 3.7 is proved in Section 7.6. For a given sequence of directions ag € £1/25P~1,
if b, = E[{ag, h)?/||’Z/?h||*] — O then it follows by choosing a, = C*/b, that ag € £'/2S
for the S in (3.25) so that (3.26) implies that asymptotic normality holds for this sequence of
ag. In other words, asymptotic normality holds for all ag such that E[(ag, h )2 /11X 12p 1] —
0. Thus, a sequence of directions ag for which asymptotic normality does not follow from
Theorem 3.7 is a sequence such that E[(aq, h)?/||Z'/?h||*] does not vanish, that is, the
squared error (ao, h)2 in direction ag carries a constant fraction of the full prediction error
|=/2h||%. Such direction ag must thus be very special, which is embodied by the exponen-
tially small bound on the relative volume | S\ SP~1|/|SP~1|.

THEOREM 3.8. Under Assumption 3.1, there exists Q, with P(Q¢) < Co(y, pyn~1/?
and

(3.27) E[Iq, (a0, B — B) + (n —df)~'zg (y — XB))*] < R.Cs(y, 1u)/n

If additionally g is a seminorm, then |z6|'(y — XE)I/n = |a(—)rZ_1XT(y — XB)|/n <
g(XYag) always holds by properties of the subdifferential of a norm. Consequently, if
g(X7'ag)?/R, — 0 then (ag, h)*/ Ry — 0 and the conclusions of Theorem 3.6 hold.

Theorem 3.8 is proved in Section 7.6. The first part of the theorem says that the esti-
mation error (ag, h) is essentially —(zg,y — X ﬁ) /(n — af) up to an error term of order
R, Op(n~'/2), so that (ag, h)®/R, —¥ 0 if and only if (n — df)~2(zo, y — XB)%/R, =T 0.
Combined with the fact that (1 — af/ n) is bounded away from 0 by Lemma 7.4, this im-
plies that (ag, h)>/R, —F 0 if and only if n2(zg, y — XB)?/R« —" 0. The last part of the
theorem relies on the property g(u) < Supscyqu) u's for any norm g where dg(u) is the sub-
differential of g at u. This property also holds if g is a seminorm; however, it is unclear how
to extend the last part of the above theorem if g is not a seminorm.

For the Lasso, the penalty function is g(b) = A||b||; and condition g():_lao)z/R* —
0 becomes )\2||E_1a0||%/R* — 0. Typically, the tuning parameter A is chosen as A
o(210g(p/k)/n)1/2 with k = 1 [11], among others, or k = 59 [3, 5, 25, 30, 39], where s¢9 =
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B llo. For such choices, the condition )L2||):_1a0||%/R* — 0 can be written as ||X " lag||; =
(Ry/0*)20(/n/Tog(p/k)) and since R, > o2, a sufficient condition is | lag|; =
o(v/n/log(p/k)). If ag = e; is a vector of the canonical basis, the normalization (1.15)
gives (Z*I)jj =1 and ||Z*1ej||1 is the £; norm of the jth column of £~'. The condi-
tion || 'agll; = o(/n/Tog(p/k)) allows, for instance, the jth column of X~! to have
o(+/n/log(p/k)) constant entries. This assumption is weaker than that of some previous
studies; for instance, [28] requires IIZ_lao|I1 = O(1) for ag = e;. The following example
illustrates the benefit of picking a proper penalty level A.

EXAMPLE 1. Let p/n— y <1 and g(b) = A||b|1.

(1) For . =0, the Lasso and debiased Lasso are both ideﬁtical to the least squares esti-
mator and the debiasing correction proportional to z —XB)isOsince X" (y—XB) =0,
sothat§ — 6 = (ao, h)y=a](X"X)"'X e in(3.12), df p.VO) ~y—XBI*~o?x2,
and i@ —0) % > N(0,0%/(1—y)).

(ii) Suppose |S|/n + | Xh||*/n + |1Z12R)2 = 0]p(1)f0r suitable . > o/21og(p/so)/n
as in [8, 50]. Then V(@) = (1 +op(1))no? and f(@ —0) —> N(0,02).

3.6. Confidence intervals. Theorems 3.6 to 3.8 are valid for any choice of the variance
estimate among ||y — X8 ||2 V(Q) in (3.19) and V(ao) in (3.22) for directions ag such that
(ag, h)? Y°/ Ry —P 0 holds. For such direction ay, the choice || y—XpB ||2 leads to the narrowest
confidence interval for 8, namely

(3.28) P(0 € [(@o, BYT) £ 25 n(n —dh) !y — XBI]) = 1 —a,

where [u £ v] denotes the interval [u — v, u +v], P(IN (0, 1)| > z4/2) = o and E(de*bias) is the
debiased estimator in (3.15). The choice v(ao) leads to intervals with larger multiplicative
coefficient for zy /2, namely

ly—XBI1> 1, —H|%(zo,y — XBP)W}
(n — df)> (n — df*

has probability converging to 1 — « for directions a satisfying any of the above theorems.
For such directions, the choice V (9) justifies confidence intervals of the form (1.21) as

(3.30) ((n — df) (@0, B) — ) + (z0. y — XB))* = V(6)22, <0

holds with probability converging to 1 — «. Given the expression for V(®) in (3.19), the
left-hand side of (3.30) is a quadratic polynomial in 6 with dominant coefficient (n — af)? —
Za/2ll 0 — H||2 Smce I, — H||2 <n-— df almost surely by properties of H in Proposi-
tion 7.3 and n — df > C, (v, n)n for some constant C,(y, u) with probability approaching
one by Lemma 7.4, in the same event the dominant coefficient is positive. The intersection of
events (3.30) and {n — af > C«(y, n)n} has probability converging to 1 — « and in this event,
0 € [01(z¢/2), O2(zq/2))] where O1(z4/2), O2(z4/2) are the two real roots of the left-hand
side of (3.30) as a quadratic function of 6.

(329) fe [(ao, Blde—bias)) 4 za/z<

3.7. Variance spike. One can pick any choice among the three variance estimates in The-
orem 3.6 because it assumes (ao, )2/R, —F 0 and this limit in probability implies both
V©)/lly — XBI? =P 1 and V(ag)/lly — XB||> —F 1. These limits in probability to 1 are
made rigorous by (3.22) and by the lower bound ||y — XB]12 > Run(C2(y, u) — Op(n~'/2))
obtained from Lemmas 7.4, 7.6 and 7.7 as explained in (7.38) of the proof.
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The reason that the estimates ‘7(6) and V(ao) were introduced is that the simpler estimate
ly—X ﬂ ||? is not asymptotically unbiased for Varg[&o] for directions S @ such that ( (ag, B)? /R,
does not converge to 0 in probability: While the relative bias of V(0) and V(ao) provably
converges to 0 in Lemma 3.4 and (3.22) for all directions ag, the same cannot be said for the
simpler estimate ||y — X ﬁllz.

THEOREM 3.9. Let Assumption 3.1 be fulfilled. Then the following are equivalent:

Q) Iy - XBI> / Varo[£o] —P1,
(ii) Eo[ny XB21/ Varo[£0] —F
(iii) {(ag, h 2/R —>PO

(iv) {(ao, h >n/||y XBI? —

V) (z0.y — XB)?/(nlly — Xﬂllz)—>
i) V©)/lly — XB|> > 1,

(vii) V(ao)/ly — XBII> =T 1.

Theorem 3.9 is proved in Section 7.5. It shows that for the directions ag such that
(ag, h)*n/|ly—X BH 2 P 0 does not hold, for example, directions such that the error (ag, )>
is of the same order as the average squared residual ||y — X 3”2 /n (see Lemma 7.2 in Sec-
tion 7.2), the simpler estimate ||y — X ﬁll2 fails to account for a nonnegligible part of the
variance Varg[&p] by item (i) above. The goal of the estimates V(G) and V(ao) is to repair
this as EO[V(Q)] / Varp[&o] —P 1 and Eo[‘}(ao)] / Varg[&o] —P 1 hold for all directions by
Lemmas 3.4 and 3.5, even for directions ag such that (i)—(vii) above fail. Note that the quan-
tity (zo, y — Xﬁ)z/(nﬂy — Xﬁ”z) in item (v) is observable (i.e., does not depend on B), so
that (i)—(vii) are expected to hold when this quantity is sufficiently small.

For directions ag such that (ag, h)?n /||y — X,7§||2 — 0 does not hold, we expect a vari-
ance spike, that is, an extra additive term in the variance estimate equal to ||I,, — H | % (ag, h)?
in V(0) and to |1, — H|%(zo0, y — XB)?/(n — dh)? in V (ao). The confidence interval (3.28)
that does not take into account this variance spike is expected to be too narrow and to
suffer from undercoverage for directions ao with large (ag, h)’n/|ly — X ﬁ||2. The wider
confidence interval (3.29) is expected to repair this, although for directions ag such that
(ag, B)n|ly — X 3“2 —P 0 does not hold the current theory does not prove whether the
asymptotic distribution is normal. The theoretical evidence that the variance spike occurs is
grounded in the relative asymptotic unbiasedness of V(Q) in (3.20) and of V(ao) in (3.22),
combined with the negative result for the simpler variance estimate ||y — X ﬁ||2 via Theo-
rem 3.9 as discussed above. Figure 1 in Section 5 illustrates the variance spike on simulations
for the Lasso and direction a proportional to the first canonical basis vector.

The second term in the variance estimates (3.19) and (3.21) is necessary for certain ag for
the estimate B = 0, which corresponds to (1.2) with penalty g(0) = 0 and g(b) = 400 for
b#0.For = =1,,a0=B/|IBl and V. =2| B>+ 02,

—& —n{ao, B)+zgy _ (V)EYI_ (- ||ﬁ||+zo,e,+||ﬂ||zo,
Ve~ (yI2+nag, V2~ <||y||2/n+ 18I/ v,}/?

(3.31)

By the CLT, the numerator of the rightmost quantity converges to N (0, 1) and in the denomi-
nator, (| y||%/n+ 1B11%)/ Vi« —F 1 by the weak law of large numbers, so that (3.31) converges
in law to N (0, 1) by Slutsky’s theorem. On the other hand, if the variance estimate ||y — X B Ik
is used instead of V (9) in the denominator, the CLT —&/lIlyll =4 N(O, V. /(I BII? +02)) still
holds but the asymptotic variance is 1 + (1 4+ o2/||B]|*) ™"



412 P. C. BELLEC AND C.-H. ZHANG

3.8. Relaxing strong convexity when p > n. The previous theorems are valid under As-
sumption 3.1: Either ¥ < 1 and g is an arbitrary convex function, or ¥ > 1 and g is required
to be strongly convex with parameter . If p/n > 1 and the penalty g is not strongly convex,
the techniques of the present paper still provide asymptotic normality results under additional
assumptions as shown in the following result.

Consider either the Lasso

(3.32) B = argmin{|ly — Xb|>/(2n) + 1||b|1}
beRP

for some A > 0 or the group Lasso norm || - ||gL and group Lasso E defined as

_ K
(3.33) B = argmin{||y — Xb|*/(2n) + [bllcL}. IBllcL =Y A llbg, 2.

beRP k=1

where (Gy,...,Gg) is a partition of {I,..., p} into K nonoverlapping groups and
Al,...,Ag > 0 are tuning parameters. If each G is a singleton and Ay = A > 0 for all

k=1,..., p, then (3.33) reduces to the Lasso (3.32).

THEOREM 3.10. Lety > 1, k € (0,1) be constants independent of {n, p}. Consider a
sequence of regression problems with p/n <y and invertible %.. Assume that the group Lasso
estimator B in (3.33) satisfies

(3.34) P(1Bllo < kn/2) — 1.

If ag is such that ||Z~"2ag|| = 1 and (ag, B — B)2/ Ry = 0 for the R, in (3.23), then
(3.35) suﬂgm(uy — XBI7 ((n — df){ao. B — B) + 24 (y — XB)) <t) — d(1)| > 0.
te

Furthermore, for any a, with a, — oo and S in (3.25), the relative volume bound given
after (3.25) holds, and the asymptotic normality (3.35) holds uniformly over all ag € X'/>§
and uniformly over at least (p — ¢cond(X)a,/C*) canonical directions in the sense that
Jy={jelpl:e;/IZ"%e;| € 2125} has cardinality |J,| > p — ¢eond(E)a,/C*.

Theorem 3.10 is proved in Appendix B. The strong convexity requirement in Assump-
tion 3.1 is relaxed and replaced by assuming the high-probability bound ||B||0 <kn/2 on
the number of nonzero coordinates. Surprisingly, no conditions are required on the true
regression vector 8 or on the tuning parameters, although these quantities affect whether
P(||ﬁ||o < kn/2) — 1 is satisfied. Figure 2 in Section 6 illustrates Theorem 3.10 on simu-
lated data.

Comparison with existing works on the Lasso. The Lasso is largely the most studied
initial estimator in previous literature on debiasing and asymptotic normality, so it provides a
level playing field to compare our method with existing results. In the approximate message
passing (AMP) literature, which includes most existing works in the n/p — y regime, for
example, [21, 23, 27] or more recently [33, 40, 42, 43], it is assumed that ¥ = I, and that
the empirical distribution G, (1) = p_1 Zle I{/np j <t} converges in distribution and in
the second moment to some “prior” G as n, p — +00. Assume these conditions and consider
the jth component E(jde_blas) of B(de=bia%) in (3.15) for X = I, that is,

PUTP) =B+ (Xej, y — XB)/(n — db).
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Then the Lasso has the interpretation as its soft thresholded debiased version,

> de—bias ~

Bi= n(ﬁj e=bias). 3 /(1 —dt/n))  where n(u; 1) = sgn(u)(|u| — .
and the main thrust of the AMP theory is that the joint empirical distribution of the debiased
errors and the true coefficients,

p
Hyp(u.t)=p~ Y VB ™ — up; <u./npj <1},
j=1

converges in distribution and the second moment to the limit A with independent N (0, 7p)
and G components, where g is characterized by a system of nonlinear equations with 2 or
3 unknowns. These nonlinear equations depend on the loss (here, the ¢> loss), the penalty
(here, the £1-norm), the distribution of the noise, as well as the prior distribution that governs
the empirical distribution of the coefficients of 8. We note that these works typically assume
that X has N(0, 1/n) entries, so that their coefficient vector is equivalent to our /np. For
instance, [33] characterizes the limit of the empirical distribution of (\/nf@=b129  /ng)
in terms of two parameters, {7.(A), kx(1)}, that are defined as solutions of the nonlinear
equations in [33], Proposition 3.1; see also [17], Proposition 4.3, for similar results applicable
to permutation-invariant penalty. This approach presents some drawbacks: For instance, it
requires the convergence of the empirical distribution G , to a limit (which can be viewed
as a prior), it yields the limiting distribution for the joint empirical distribution Hy, , of the
estimation errors and the unknown coefficients but not for a fixed coordinate.

The above Theorem 3.10 for the Lasso differs from this previous literature in major ways.
First, it provides a limiting distribution for the de-biased version of (@, B) for a single, fixed
direction ag: Theorem 3.10 does not involve the empirical distributions of ./nB, «/nB or its
debiased version. This contrasts with previous literature on the n/p — y regime where the
confidence interval guarantee holds on average over the coefficients {1, ..., p} [21, 23, 27,
40]. This improvement is important in practice: if the practitioner is interested in the effect
of a specific effect jo € {1, ..., p}, it is important to construct confidence intervals with strict
type I error control for B, as opposed to a controlled type I error that only holds on average
over all coefficients. Another feature of the results in this paper is that there is no need to
assume a prior on the coefficients of § in the limit.

Surprisingly, Theorems 3.6, 3.7 and 3.10 and their proofs completely bypass solving the
nonlinear equations that appear in the aforementioned works as the nonlinearity is directly
treated here with the normal approximation in Theorem 2.2. Asymptotic normality in Theo-
rems 3.6, 3.7 and 3.10 is obtained for a fixed direction a¢ (or a fixed coordinate j € {1, ..., p}
when ag = e;), and the correlations in X are handled with a direct approach. Since the first
version of this paper was made public, extensions of works cited in the two previous para-
graphs were developed [18, 32] to to obtain, for X # I, asymptotic normality results in an
averaged sense over {1, ..., p}. It is unclear at this point whether these methods can yield
asymptotic normality for a fixed coordinate instead of in an averaged sense.

4. Examples. We now present three penalty functions for which closed-form expres-
sions for H and w are available. In this section, when computing gradients with respect to
Zo in order to find c/l\osed—form expressions for wy in (3.9), we consider (X @, €) fixed as in
(3.7). Explicitly, VB(zo) " is uniquely defined as

(4.1) B—B=[VBzo] n+o(lnl),

where E =argming g, |[X(b—B) —¢ I2/(2n) + g(b) and E = argmingp, || (X + nag)(b —
B)—e ||2 /(2n) + g(b)A. When computing gradients with respect to y in order to find closed-
form expressions for H in (3.3), we view B(y, X) = argminyg, || Xb — yII7/(2n) + g(b) as
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a function of (y, X) and if y — B( y, X) is differentiable at y for a fixed X then

(4.2) BGH.X)— By, X)=[3/8y)B(y, X)]F — ) +o(IF — yl).

where (a/ay)ﬂ(y, X) € RP*" is the Jacobian. Once the Jacobian (8/8y)/3(y X) is com-
puted, H in (3.3) is given by H' = X(B/By)ﬁ(y, X). We use the Jacobian notation
(0/0y) ﬂ( y, X) when computing the derivatives with respect to y to avoid confusion with
the gradient VB (z¢) in (4.1).

4.1. Twice continuously differentiable penalty. The simplest example for which closed-
form expressions for H , af, wo can be obtained is that of twice continuously differentiable
and strongly convex penalty g. If g is strongly convex, Lemma 7.1 proves that the Fréchet
derivative of h = B — B with respect to (e, X) exist for almost every (e, X) by Rademacher’s
theorem. At a point (e, X) where the derivative exist, we obtain a closed-form expression
for the gradient (3.9) as follows. The KKT conditions of the optimization problem (3.1)
read X" (y — X E) =X"(e —Xh) = an(B). Differentiation with respect to zg for a fixed
(e, X Q) asin (4.1) gives

(XTX +n[VZ¢B)]}(VBz0) =aoly — XB)" — X (a, h).
By the product rule, this provides the derivative of f(z¢9) = Xh — €, namely
43) Vo) =X(X"X+nVgP) [aoly — XB)" — (a0, W)X "] + I,,(ao, h).

Regarding H involving differentiation with respect to y, the Lipschitz condition of the map
y = E for strongly convex g follows from (7.19) in the proof of Proposition 7.3. Hence,
the Jacobian in (4.2) exists almgst everywhere, and differentiation of the KKT conditions for
fixed X gives (X' X +nV2g(B))(0/0y)B(y, X) =X so that

=(X(3/3y)B(». X)) =X(X"X +nVZ(B)) ' X"
Identity (4.3) combined with this expression for H provides (3.9) with
wo=X{X"X +nVgP)} 'a

4.2. Lasso. Consider the Lasso B in (3.32). For (&, X) with continuous distribution such
as Gaussian under consideration here, almost surely § is unique and

44) XI(y—XB)/n=xrsgn(Bg).  |X&(y—XB)/n|. rank(Xg) = ||,

for the Lasso as inA[44, 48] and [7], Proposition 3.9, so that the Jacobian of the mapping
(zo, €, X Q) — X B with respect to zp and € can be computed directly by differentiating
the KKT condition as in [7, 8, 44]. The following proposition provides closed-form expres-
sions for the gradients for the Lasso estimator, which are valid almost surely and require no
assumption on the sparsity of 8 or the penalty level.

PROPOSITION 4.1. Let A > 0 and consider the Lasso ﬁ in (3.32). Let S = {jelpl:
Bi i # 0}. For almost every (&, X) e R0 there exists a neighborhood of (€, X) in which

the map (e, X) — S is constant, |S| <n, X1 XS is invertible and the map (&, X) — ,B is
Lipschtiz. In this neighborhood, almost surely [V 8 (zO)T]gt,- —0e RIS ,

[VB@o) s = (X3X5) ™ ((@0)5(XB — 0T — X (ao, b)) e RS,

H= X3(X{X5)'x], df= S| and (3.9) holds with wy = X3(X{X3) ' (a0)s.
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PROOF OF PROBOSITION 4.1. Progosition 3.9 in [7] proves, for almost every (e, X),
the uniqueness of § and (4.4). Let (¢, X) € R™<(P+D pe a point at which (4.4) holds. Let
— =p = -~ _ = T /— —5,— = g
y=XB+& S=supp(B(y, X)) ands =X (y—XB(¥,X))/(nr). At (y, X) = (¥, X), the
unique solution of (4.4) is given by the analytic expression

A . R
By=(XiXq)  (X{y—niss), Py =0s.

Moreover, the above expression gives the unique solution of (4.4) in an open neighborhood
of (£, X) in R™*P*D in which S=35, sgn(ES) = sg and rank(XS) |S| are constants.
Differentiating this expression immediately yields the formulas for H, df and [Vﬂ (zo) "5 e
For [VB(z0) " I3, differentiating both sides of XT(XS(ﬂ B) — &) = —nisy yields

(@0)5(XsB — )" + Xlalh+ XIX5[VB(z0) 5=

dueto X = X0+ anS—. Finally, the formula for wo follows from (8/8zO)(X,§ —y) =
X (0/9z0)B + Inagh and simple algebra. [

4.3. Group Lasso. Consider a partition (G],.. ,Gg) of {1,...,p} and the group
Lasso estimator in (3.33). Let B = {ke [K] : ||/3Gk || # 0} be the set of active groups
and § = Ukeg Gk the union of all active groups. Define the block diagonal matrix M =

diag(Mc,.6,)5e5) € RSS! by

o . o
45  Mg.c,=nilBe, " (Ig, — 1Bg, I 2B, B,). M eRSXS

The following proposition provides closed-form expressions for the gradients for the group
Lasso estimator and related quantities H and wy in terms of S and M. Its proof is given in
Appendix C. Note that the formula for H was known [45].

PROPOSITION 4.2.  The following holds for for almost every (3, X) e R”X_(H'p). The
set B=1{k € [K]: ||Bg,Il > O} of active groups is the same for all minimizers B of (3.33)
at (y, X) and B = B for all (y, X) in a sufficiently small neighborhood of (y, X). If addi-
tionally Y—grfg is invertible where S = Ukeg Gk then the map (y, X) — E is Lipschitz in a
sufficiently small neighborhood of (¥, X). In this neighborhood, we have

[VB@0)]s. =0, [VBGo)s = (X3 X5+ M) [@0)3(y — XB)" — (a0, 1) X 1],

H= X5(X{ X5+ M)~'X] and (3.9) holds with wo = X5(X§ X5+ M)~ (ao)s.

S. Simulations: Lasso and variance spike. Figure 1 illustrates the variance spike phe-
nomenon of Section 3.7 for the Lasso and aq proportional to the first canonical basis vector.
The data is generated as follows: (s, n, p, 02) = (200, 750, 1000, 1.0), coefficient vector 8
is s-sparse with 81 =20, 8; = £1 for j =2, ..., s (independent random signs), B; = 0 for
J > s; inverse covariance matrix >l = I,+ 0.95~1/2(e, sgn(ﬂ)T + Sgn(ﬂ)elT), direction
ap=e;/ (e;rZ_lel)l/ 2 for e; € RP the first canonical basis vector. 512 repetitions were used
and (X, B) are the same across these repetitions. We see that Vo = ||y — X ,/B\||2 yields an
empirical standard deviation (std) substantially larger than 1 (second column), whereas using
Vo = ‘7(9) repairs this with an std close to 1 (third column). This choice of (X, 8) is a minor
modification of [8], Example 2.1 and Figure 2: it is constructed so that (ay, B — B)? captures
a substantial fraction of the full prediction error || X!/2 (B — B2
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—df , (de-bias) _ _df } (de-bias) __ 1/9.5 5 — 5
A | e | e | 19 @ B | (a0.B-B)
std: 1.324 ] > : std: 1.027 .
0.005 3.23 £0.45 0.32 +£0.11
i std: 1.257 g 2| std: 1.006
0.01 2.62 £0.41 0.40 £0.12
std: 1.314 2 std: 1.001
0.05 a 4.39 +£0.86 1.81 +£0.39
std: 1.362 2 2 std: 1.008
0.1 TRl T BN 11.70 +2.40 56+1.14

FI1G. 1. Standard normal QQ-plots of (ay, B(de_bia“) ﬂ)/VOI/2 with Vo = ||y — X,@H2 (second col-

umn) and with Vo = V(@) ly — Xﬂ||2 + (n — df) ap, ﬂ B)2 (third column), prediction error
|x1/2 (ﬁ B> (fourth column) and squared estimation error in direction aq (fifth column) for the
Lasso (3.32) for each A € {0.005, 0.01, 0.05, 0.1} with the data-generating process described in Sec-
tion 5.

6. Simulations: Group Lasso. Figure 2 illustrates Theorem 3.10 for the group Lasso
(3.33) with standard normal QQ-plots of (ag, ﬂ(de bias) _ gy(n — df) /ly — X ﬂ | for
(n, p, o) = (600,900, 2) and the group Lasso (3.33) with 30 nonoverlapping groups each
of size 30, where all A in (3.33) are equal to a single parameter A. The unknown coefficient
vector B is the same across all 256 repetitions and has 240 nonzero coefficients, all equal to
1 and belonging to 8 groups (so that the group sparsiy of 8 is 8, and within these 8 groups all
coefficients are equal to 1). The design covariance X is generated once as ¥ = W /(5p) where
W has Wishart distribution with covariance I, and 5p degrees-of-freedom. This choice of
(B, X) is the same across all 256 repetitions. The direction of interest is ag = e1/||2_1/2e1 |
where e € R? is the first canonical basis vector. The first 8 plots above are standard normal
QQ-plots across 256 repetitions for 8 different choices of A. The ninth plot shows, for each A,
boxplots of 2 = (1 —df/n) 2|y — X B ||2 /n across the 256 repetitions. This 7 is proportional
to the length of the corresponding confidence interval (3.28) so that the smallest confidence
interval (3.28) is achieved for A = 0.138.

7. Proof of the main results in Section 3. In order to prove Theorems 3.6 and 3.7, we
apply the bound on the normal approximation in Theorem 2.2. We recall here some notation
used throughout the proof. Let 8 be the estimator (3.1), H the gradient of y — X ﬂ as in
(1.8), ap € R? with |2 712ag| =1, zo and Q, as defined in (1.13),

(7.1) 0 =1(ao,B),  fGo)=XB—y, & =2z(f(z0)—div f(z0).

Vector wy € R” is given by Lemma 3.1. The oracle §* and its associated noiseless predic-
tion risk R, are given by (3.23). Throughout, Eq denotes the conditional expectation given
(e, X Q) and Vary the conditional variance given (e, X Q).
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FIG. 2. Standard normal QQ-plots of (ay, pde—bias) _ gy, dh/lly — XB| for for the group Lasso (3.33).
The data-generating process is described in Section 6.

7.1. Lipschitzness of regularized least-squares and existence of wg. By Rademacher’s
theorem, a Lipschitz function U — R for some open set U C RY is Fréchet differentiable al-
most everywhere in U. The following lemma is the device that verifies the Lipschitz condition
for the mappings (¢, X) — B and (¢, X) — Xh — & in certain open set U, and consequently,
differentiability almost everywhere in U.

LEMMA 7.1. Let € R?, X and X be two design matrices of size n X p, and € and €
two noise vectors in R". Let g : RP — R be convex such that minimizers

{||e+X(ﬂ—b)||2 {||é+)?<ﬂ—b>||2

B € aremin
B £ 2n 2n

beRP

exist. Let h = ,B B, f=Xh—e, h ﬂ B, f Xh—e Let also D (ﬂ ﬂ)_(ﬂ—
B)T{(32)(B) — (32)(B)} where (3g)(B) =n~'XT (& — Xh) is the subdzﬁ‘erenttal at ,B given
by the optimality condition of the above optimization problem and similarly for (3g) (B), with
D¢ (B, B) = 0 by the monotonicity of the subdifferential. Then

nD,(B.B) + I f — FII?
(7.2) —h-0)"X-XTf+E—e+X-Xn) (fF-F
= trace[(X — )N()T(fﬁT - ?h—r)] +E-o(f- 1.

If g is coercive (i.e., g(x) — +00 as || x| = +00) then the map (¢, X) — & — Xh is Holder
continuous with coefficient 1/2 on every compact. We also have

nDe(B.B)+1XB - BI*/2+1XEB - B)I*/2
73) =@-B " (Xe-X"®+B-B X X-X"X)h+h)/2

—|—g(b)}, Beargmin
beRP

+e0)
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(74)  <IB—Bllle —ENNIX + Xllop/2
+ 1B —BIIX — Xllop[(Ile +&1/2+ (1X llop + 1 X llop)) (11| + 1721 /2].

If either g is strongly convex or if there exists a constant k > 0 and a bounded neighborhood
N of (e, X) such that ||ﬁ ﬂ||/c < ||X(ﬁ ﬂ)|| for all {(e, X), (¢, X)} C N then the map
(e,X) ﬂ is Lipschitz in N.

PROOF OF LEMMA 7.1. The KKT conditions for B and ﬁ provide
nB-B)T @B =0 -m'X"f,
nB-B B =h-m'X"f.
Summing and adding || f — f11>= & —&)T(f — f) + (Xh — Xh) " (f — f) on both sides,

nDeB.B)+If—FIP=h"X-X)"f+r"X-X)"fF+GE-o(f- 1)

so that (7.2) holds.

By optimality of ,B I £11%/(2n) + g(ﬂ) <|IXB+¢el|? ~/(2n). If g is coercive, this implies
that for every compact K C R™U+P) | f|| + ||kl and ||f|| + ||h|| are bounded by a constant
dependmg only on g, B, n, K if {(e, X), (¢, X)} C K. In this case, (7.2) implies that ||f —
fl? < (IIX X|F+ e —€|)C(g, B, n, K) for some other constant depending on g, 8, n,
K only. This implies Holder continuity of (e, X) + ¢ — Xh with Holder coefficient 1/2 on
every compact.

For (7.3) and (7.4), the KKT conditions for ﬂ yield

nB-BTOHB) +IXB-BI*2=B—-B"X (e~ Xh+h))2).

Summing the above and its ﬁ _counterpart yields the equality (7.3). Writing X Te —X'#=
X+X)(e-8)/2+X-X)"(F+e)/2and similarly X' X - XX = (X + X) T (X —
X )2+ (X —-X )T(X +X )/2, inequality (7.4) follows. To prove the Lipschitz condition in
N, we note that for a fixed value of (e, X, h), the right-hand side of (7.4) is linear in ||h |
while the left-hand side is quadratic in ||h || thanks to either strong convex1ty of g or the as-
sumptlon on k. This implies that ||A]| is bounded uniformly for all (&, X) in V. Since &, X,

z, X, ||h|| ||| are all bounded in NV, (7.4) divided by IIﬂ /3 || provides the desired Lipschitz
property O

LEMMA 3.1. Let Assumption 3.1(1) be fulfilled, ag € R?P and H be as in (3.3). Then

(3.9) Vf(zo)" =, —H) (ao, h) +wo(y — XB)T
satisfies (3.6) for some random wq € R™ almost surely. If additionally |2~ ?ag| = 1, then
(3.10) lwoll* <n~" min{(4) ™!, Gmin(Z2X TXE T2 0) 71,

PrROOF OF LEMMA 3.1. Under Assumption 3.1, Lemma 7.1 implies that the map
(¢,X)— f = Xh — ¢ is Lipschitz in an open neighborhood of almost every point, and
thus H and V f(zo) are defined as Fréchet derivatives almost surely in (3.3) and (3.6), re-
spectively. To prove (3.9), that is, that the range of V f(z9) — (ag, h)(I, — H ) is the linear
span of f, we study the dlrectlonal derivative in a direction 5 € R". For two pairs (¢, X) and
(¢, X) with X = X + n]ao =X0¢+ (n+ z())a0 and € = e +1n{ag, h), consider the solu-
tions ﬂ and ﬂ defined in Lemma 7.1 and ¢, = X(ﬂ B) — & with ¢y = X(ﬁ —B—e=f.
When the map (e, X) — f is Fréchet differentiable at (e, X),

(1.5) Jim (¢, — o)/t = (V./(20) ~ tao. k) (In ~ D)) '
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by theAchain rule and the linearity of the Fréchet derivative, noting that (3/d¢)(e — X h) =
I, — H. For this specific choice of (¢, X), we have

(7.6) (X —X)h+e—-8=0.

It follows that the second term in the first line of (7.2) is zero, so that (7.2) gives

unlZ'2B = B)I* + Ido — 11 < [(ao, h — Ryiq " f|
ducto X — X = tnag. Consequently, ¢; — ¢ = 0 when an = 0. This and (7.5) give (3.9).
Moreover, for f # 0, wo = lim;_,o(¢p, — @)/t for n = — £/ £, so that (3.10) is an upper
bound for lim, .y ||, — @/ in the case of || Z~/?ag|| =1=—y " f where

unlZ'2 B = B+ Ido — b, I1> < e[ =2 (h — 1) |
by the previous display. For u > 0, the above inequality gives ||¢) — ¢, I < t2(4pun)~! using
uv < u2/4—|— vZ. For nw=0,

Smin (W) Z'2(h —1)|* < [XT(h — B)|* = l1p, — oI

with quin(W) being the smallest eigenvalue of W=3x"12XTxx-1/2, Hence, (3.10) holds
in either cases. [

7.2. Loss equivalence to oracle estimators. To apply Theorem 2.2 with respect to zo to f
in (7.1), we will need to control expectations involving ||wg||, (@o, k), || X k]| and ||y — X B]|.
To this end, define the random variables F and F by

(71.7) Fr € (Ig1?/n) v (lell?/(o2n)) v (e = Xh*|*/(nR)) v 1
with g = Xh*/||Z/?h*|| and the h* and R, in (3.23), and
(1.8) FE2/[1 Amax{p, dmin(Z~2(XTX/n)Z 7).

We note that the three random vectors /o, g and (¢ — Xh*)/R,'/? have N(0, I,,) distribu-
tion, so that F is of the form F; = max;—; 23 W;/n where each W; has the X,% distribution.
Thus, by Proposition A.1 and properties of the X,% distribution,

(790 E[F}]VE[F ] <C,p),  E[(F+—1?*<3Var[x2]/n*=6/n.

It follows from (1.15), Lemma 7.2 below and (3.10) that almost surely

(7.10) (ao, h)> < [Z'2h[* v (1XR|?/n) < Fy F?Ry,  llwoll® < F/@n),
(7.11) lly — XBI*/n <2F4 + 2F, F*R, <4F,F’R,,

for the wo in Lemma 3.1. The moment inequalities in (7.9) and the almost sure bounds
(7.10)—(7.11) allow us to control expectations involving ||wg||, {(ao, k), || X k]| and ||y — X B]|
throughout the proofs. The following lemma provides the first inequality in (7.10).

LEMMA 7.2 (Deterministic lemma). Consider the linear model (1.1) and a convex
penalty g(-). Let B in (3.1) and B*, h*, R, be defined in (3.23). Suppose the penalty satisfies
u {(dg)w+B*) — (3g)(B*)} = nl X" ?u|*Vu € RP with u € [0, 1/2]. Let F.y be defined in
(7.7) and F any random variable satisfying

(7.12) 1< F/2 andeither |£?h|*/(n|XRI?)<F/2 or u'=F)2,
for instance (7.8). Then
(7.13) |Z2h|* < F?max(a?, |E'2h*|?) < FL F2R.,

(7.14) IXk|?/n < max{2F52, 52 + F2|2'/?h*|*} < FL F?R,,
where 2 = Fyo? + (Fy — D ZY20*|? = (F. — DRy + 02,
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PROOF OF LEMMA 7.2. The KKT conditions for B, that is, nag(ﬁ) =X"(y - Xﬁ),
yield

2(8-B)" 09)B)=2(B—B*) X" (y — XB)/n
=(|ly—XB*|* =y — XBI* = IX(B — B)I*)/n
= (|1 X" > = IXR)* = | X (B — B*)I> +2¢ "X (b — h*))/n
< (1Xk*|* = | XR|* + |le]1?)/n.
Similarly, the KKT conditions —Xh* = dg(B*) for B* yield
(7.15) 2(8* — B) (98)(B*) + 1ZV2(B — )17 < [="*R|* — | =" 2h* |,
Summing the two above displays yields
A +2wIIE(B - %I
(7.16) < (Fy — )|="20*|* + |='2R|* = | XR|?/n + Fio?
=52+ |='2h|* — | Xh|/n.
For | !/2h|| > F||X!/?h*||, by the triangle inequality
(7.17) |=2h)2(1 = 1/F)? < | Z'*(B - B*))2
provides a lower bound on the left-hand side of (7.16) so that

o [fa—1/F?+2/F - DYIZYV2R|? i 1XR|?/n = Q/F)|
(7.18) A= 1/F2a 42w — [P i 1XRI /0 < @/F)| 2207,

= F?|z"h|®

due to F =2/u > 4 in the second case. This gives (7.13). For | XZ!/?h| > F||Z!/?h*| by
(7.16), (7.17) and (7.18) we have
IXh|?/n <2+ 22?1 — (1 = 1/F)?} <% + F%52{1 — (1 — 1/F)?} =2F5>2,

and for |X'2h| < F||Z'?h*|| we have |Xh|*/n < &> + F*|2'?h*|?, and thus (7.14)
holds. O

7.3. Existence and properties of H and df.

PROPOSITION 7.3. Let X € R"™7P be any fixed design matrix, and E(y) =
argming g, {lly — Xb|1?/(2n) + g(b)}. Then the following statements hold:

@) I1XBy) —BOI =<y =Yl forall y,y € R", that is, y — X B(y) is 1-Lipschitz.
Its gradient H exists almost everywhere by Rademacher’s theorem, that is, for almost every
y there exists H e R"™" with ||ﬁ||OR§ 1 such that XB () = XB(y) + H n + o(Inl).

(ii) For almost every y, matrix H is symmetric with eigenvalues in [0, 1]. Consequently,
with df = trace(H) as degrees-of-freedom, (n — df)(l — df/n) <\, — H||2 <n-— df.

PROOF. A proof of (i) is given in [2]. For completeness, the argument is the following:
by (7.3) with X =X,2=y — XB and e = y — X8 we have

(7.19) nDy(B(3), B() + IXBG) — XBONI* < (y =5 "X (B(y) — BG)).
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Using Dy (ﬁ(}), ﬁ( y)) > 0 by monotonicity of the subdifferential and the Cauchy—Schwarz
inequality yields the desired Lipschitz property. For (ii), define

u(y) = Iyl = [y — XB»[*)/2 - ng(B(y))

= sup {y' Xb — | Xb|?>/2 —ng(b)).
beRP

The function u : R* — R is convex in y as a supremum of affine functions, and X ﬁ( y) is
a subgradient of u at y. Alexandrov’s theorem as stated in [35], Theorem D.2.1, states that
any convex u : R" — R is twice differentiable at y for almost every y in the following sense:

u is Fréchet differentiable at y with gradient Vu(y) and there exists a symmetric positive
semidefinite matrix S such that for every ¢ > 0 there exists § > 0 such that for all y € R”,

[y —yll <6 implies  sup Jlv—Vu(y)=SG -yl =ely—yl.
vedu(y)
By (i) and the definition of H, for almost every y it holds that X| B(}) =X ﬁ( W+HT (-

y)+o(]|y — yl). Combining these two results and taking v = X 8(¥), we get that § = H for
almostevery y. [J

LEMMA 7.4. Let Assumption 3.1 be fulfilled with n > 2. Then there exists an event
independent of (2o, €) such that

P(Q25) =0 ify <1,
e

_ G a2 :
Qo C{n—df> |1, — Hlp = Ci(y, p)n}  with PQS) <o ify > 1.

where Cy(y, ) € (0, 1) depends on {y, u} only.

PROOF OF LEMMA 7.4. If y < 1, the choice Cy(y, u) = (1 — y) works with probability
one because rank(l?l) <rank(X) < p <yn and ||IA1||0p <l1.

If y > 1, then we have u > 0 in Assumption 3.1. Let Qo = {|| X QX _1/2||0p <.Jp+
2/n}. By [20], Theorem IL13, P(Q) > 1 — e™/? due to X Qo2 /2 = X3~ V21, —
(271 2ag)(Z~"2ap)" with |£7'2ag|| = 1. Next, we hold X fixed and study the deriva-
tives of X B with respect to y. Let B(y) be as in Proposition 7.3. Let P = I, — 2024 /lIzoll?
be the projection onto {zo}* so that PX = PX Q,. Let y, ¥ be such that 2y J(y =5 =0,o0r
equivalently P(y —y) =y —¥. By (7.19) and (3.2),

nul| 22 (B(y) = BOI>+ I1X(B(y) =BG < (y =3 X(B(y) — B(G))
= (=N "PX(BG) - BG)).
On Qo, 1(/7 +2) 721X Qo(B(y) = BGNI? < nul Z'2(B(y) — B(F))|I*. Combined with
the above display, this implies (1 +M(f+2) 2)||PX(}9(y) ﬂ(y))|| <|P(y—Yy)|. With
¥ = y + Py and by definition of H, we have L™ 1||PHP17|| <[Pyl +o(in|) for L= 1+
nw(/y +2)° 2) ! hence ||PHP||Op < L. Since rank(P) = n — 1, by Cauchy’s interlacing

theorem I,— H has at least n — 1 eigenvalues no smaller than 1 — L > 0. Finally, since
I,—His symmetric with eigenvalues in [0, 1] by Proposition 7.3,

n —dt =trace[l, — H] > |I, — H|% > (n — 1)(1 — L)*> > nC,

with C, = (1 — L)?/2 thanks ton > 2. [
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7.4. Lower bound on ||y — X /§||2 /n. The following lemmas are useful to bound from
below the denominator in (3.24).

LEMMA 7.5. Let Assumption 3.1 be fulfilled. Then E[Sg] < Ces(y, wW)nRy and

(7.20) E[((1 —df/n)(ao, ) +n~"(z0, y — XB))*]/Rs < C1(y, w)n”",
(7.21) E[Ig, (@0, k) + (n — dh) ™ (zo, y — XB))*]/ R« < Cs(y, )n"",

where Q2 is the event from Lemma 7.4.

PROOF OF LEMMA 7.5. By (3.9) combined with (3.10), (7.11) and (7.9),
(7.22) E[(wo, y — XB)*] <E[llwol*ly — XBI*] < E[(F/(2n))4nFy F*] < Co(y, w)R.
Similarly, by definition of V*(6) in (3.18)@[@3] =E[V*0)] =Ellly— XBI>+ V.S (zo)l|3]
Using (7.10)—(7.11), we have E[||y — X 8]|> < 4nR,E[F F?] and
E[|V fzo)| ] < E[2111, — H3-(a0. ) + 2(wo, y — XB)?]
(7.23) < nE[2(ao, h)*] + Cio(y. W) R4
<nR.Ci1(y, )

thanks to V £ (zo) in (3.9), and (a + b)? < 2(a® + b?) for the first inequality, || 1, — H||% <n
by Proposition 7.3 and (7.22) for the second inequality, and (7.10)—(7.9) for the third in-
equality. This provides E[SO] < Cy2(y, m)nR,. Next, (7.20) holds due the bound (7.22) and
the relationship in (3.11) between &y, (wg, y — X }3 and the integrand in left-hand side of
(7.20). Then (7.21) follows from (7.20) and I, (1 — df/n) 2 < Cy(y, )~ -2 by Lemma 7.4.

O

LEMMA 7.6. Let B be as in (3.1) for convex g and let B*, h*, R be as in (3.23). Then

(7.24) (1 —df/m?/8 < |ly — XBI*/(nR.) + A% + Al + A,

(7.25) < V*O0)/(nRy) + AL + A% + AL+ AC

where V*(0) is defined in (3.18) and A, .. ., Ag are nonnegative terms defined as
(7.26) A o211 —dt/n) —eT(y — XB)/(no?)[*/R,.

(7.27) AL E(Fy —Dlly — XBI?/ Ry,

(7.28) ASE |1 —dt/n)(as, k) — g (XB — y)/n[*/Rs

AL 2w (1, — H)(y — XB) (a0, h)|/R..
where g = Xh*/||Z'?h*|| and a, = Th* /| X'/ *h*).
PROOF OF LEMMA 7.6. By the triangle inequality and definitions of A, Af,
(7.29) (1 —di/m)o < (/o) (y — XB)/n + (A%R,)'>,
(7.30) (1 —dt/n)(as, h) < (g"(XB — y))/n+ (A°R,)"?,
(1—df/n) (0> +h Zh*) < (e — Xh*) (y — XB)/n + (A%)'*R, + (AS)'?R,,
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where the last line follows from the weighted sum o (7.29) + || £/ zh* I(7.30) and using o V
I Z=12h*| < R."/? for the last two terms. By the KKT conditions of ﬂ and B*,

(B*—B) 9g(B*) = (h —h*) Tk,
(B—8") 9gB) =(B—B") X (y—XB)/n.
Summing these equalities and using the monotonicity of the subdifferential yields
|=V20*|* + lly — XBI?/n
(7.31) <h"Zh*+(B—B)X"(y—XB)/n+|y—XBI*/n
=h"Sh*+(y— XB*) (y — XB)/n.
Combining (7.31) multiplied by 1 — cﬁ/ n with the line after (7.30) gives
(1 —dt/n)(Rs + Iy — XBI*/n)
~ o T - av1/2 v 1/2
<Q2—di/n)(y—XB*) (y —XB)/n+ (A;) ""Re+ (Ay) '“Rs
<2|y — XB*[Ily — XBI/n +2(max{A%, AS})'*R,

using the Cauchy—Schwarz inequality and (2 — af/ n) < 2 for the last inequality. Using (2a +
2b)* < 8(a® + b?) for the right-hand side with ||y — XB*||*ly — XB||*/(n*R.}) < ||y —
XB Ik /(nRy) + AZ completes the proof of (7.24). The second inequality, (7.25), then follows
from (3.9), (3.18) and
trace[ (1, — H){ao, h) + wo(y — XB))’]
= |1, — HIl3-(ao, h)> + (wg (y — XB))* + 2w( (I, — H)(y — XB)(ao, h),
which implies V*(8) — |y — XB|2 > —nAYR,. [

LEMMA 7.7. Define A, def AL+ Aﬁ + A+ Ag where A5, ..., Az are defined in
Lemma 7.6. Under Assumption 3.1, we have E[A,] < C(y, wn~12,

PROOF OF LEMMA 7.7.  'We bound each of A, Ab A, Ad separately. We have Ab
(Fy — D4F} F? by (7.11) so that E[A]] < C13(y M)I’l 1/2 by virtue of (7.9). For A%,
have A% =n 2672|0%(n — df) — eT(y Xﬂ)| /R.. By the second-order Stein formula
(Proposition 2.1) with respect to e conditionally on X,

E[AY] =n"2E[|ly — XBI*/Rs + o> trace({I, — H}*)/R,] < n 'E[4F F* +1],
where we used trace({I, — H }?) < n from Proposition 7.3 and (7.11) for the inequality.
Thanks to (7.9), th1s shows that E[Af] < n_'C14(y w). Similarly, for Ad in (7.25), Ad

20~ lwolllly — XBlll{ao. )|/ R, < n~'2(F/2)/22F, F2, hence E[AZ] < = Cis(y. 1) by
(7.11) and (7.9). For Aj,, we have g = z¢ for ag = a, so that E[A{] < Ci6(y, u)n~ 1 by
(7.20). O

7.5. Event Q2,,. With Qqp, Cy(y, n) in Lemma 7.4 and A, in Lemma 7.7, let
(7.32) Qn=QoN{Eo[An] Vv A, < C2(y w)/16}.
By the union bound, Markov’s inequality and the bound on E[A,] in Lemma 7.7,

(7.33) P(QC) < P(Q5) + Ci7(y, win~ /% < con =1/
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thanks to P(Q25) < e™"/? in Lemma 7.4. By (7.24),
(7.34) Q, C {lly — XBI? = RunC2(y, n)/16}.

Since €2 is independent of z¢, taking the condition expectation Eq of (7.25) in Q¢ gives
(7.35) Qu C {Varolgo] A Eo[lly — XBI*] = RenCl(y, 1)/16}.

Proofs of Lemmas 3.2, 3.4 and 3.5 and Theorem 3.9.

LEMMA 3.2. Under Assumption 3.1, there exists Q, with P(QC) < Co(y, w)n~'/? and
(3.14) E[Ig, (wo, y — XB)*/ Varolo]] < Cis(v. pn ™"

PROOF OF LEMMA 3.2.  With 2, in (7.32), (3.14) follows from (7.35) and (7.22). [

LEMMA 3.4.  Under Assumption 3.1, there exists 2, with P(Q2},) < Co(y, u)n_l/2 and

EolV(©)] _ lﬂ SE[I% Eol|V (6) — V*(e)n] ~ Cvlr )
Varg[&p] Vary[&o]

(3.20) E[lgn

n

PROOF OF LEMMA 3.4. Let, beasin(7.32). The first inequality in (3.20) followAs from
the triangle inequality. By (7.35), we have E[/g, Eo]| V©)— V*(0)|]/ Varg[&]] < E[|V(0) —
V*(6)]116/ (n R, Cz(y w)). With V*(6), V(G) in (3.18)~(3.19) and V f(zo) " in (3.9),

V*(0) — V(0) = (wo, y — XB)* +2w] (I, — H)(y — XB){ao. h)

Using || I, — I?llOp < 1 from Proposition 7.3 and (7.10)—(7.11), we find by the Cauchy-
Schwarz inequality |V*(0) — V(G)l <2+ 2«/§)R* F\F 3. The proof of (3.20) is complete
by virtue Holder’s inequality and the moment bounds (7.9). [

LEMMA 3.5. Under Assumption 3.1, there exists 2, with P(Q}) < Co(y, wn~2 and

V(@aog)'? 1\2} [ 'Eo[f/mo)]l/2 - m _ G,

(3.22) max{E[lszn TONE Eo[V (6)]!/2

n

PROOF OF LEMMA 3.5. By the triangle inequality for the Euclidean norm in R,
(7.36) V@) =V ©)'"?| < |1, — Hllr[(ao, h) + (n —d) " (z0, y — XB)].

Let €2, be as in (7.32). Using V(9) >|ly—XB ||2, the lower bound (7.34) and || I,, — ﬁll% <n
by Proposition 7.3,

E[lg,|V (a0)/?/V©)/? 1]

<E[lq, ((@o, ) + (n — d) "' (z0, y — X B))*]16/(R.C2(y, 1))

so that €2,, C Qo and (7.21) completes the proof for the first term in the maximum in (3.22).
For the second term in the maximum, by the triangle inequality for the norm Eq[(-)?]!/2,
we have |Eo[V (a0)]'/2 — Eo[V (6)1'/2] < Eol|V (ap)/? — V(6)/212]'/2. The proof is com-
pleted by using again (7.36), the lower bound (7.35) on Eg[||y — XBllZ] in €2, and the same
argument as for the first term in the maximum. [J

THEOREM 3.9. Let Assumption 3.1 be fulfilled. Then the following are equivalent:
() lly — XBI*/ Varolgo] = 1,
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(i) Eollly — Xﬂllz]/Varo[éo] —P1,
(iii) {(ag, h )/R — O

(iv) {(ao, h >n/||y XBI?>—

V) (zo.y — XB) /(n||y Xﬂllz)—>
vi) V(©)/ly— XB|*>—

(vii) V(ao)/|ly — Xﬂ||2—> 1.

PROOF OF THEOREM 3.9. (v) < (iv) is due to Cy(y, wn < ||I,, — I?!||%E <nin 2, by
Lemma 7.4 and Proposition 7.3 combined with (3.17).

(iv) & (vi) follows from Cy(y, wn < |[I, — I?H% <nin ,.

(vi) < (vii) is proved in Lemma 3.5.

(iii) = (i), (iii) = (vi) and (iil) = (vii) are shown in the proof of Theorem 3.6.

(iv) = (iii) follows from ||y — X B|>/(nRs) = Op(1) by (7.11) and (7.9).

(i) = 512 —P 0 was shown in the proof of Theorem 3.6, and 812 —P 0 implies
E[IV f (zo)I%1/Eollly — XB1I%1 =¥ 0 and Eftrace[(V f (z0))*11/Eollly — X811 =¥ 0 so
that (iii) = (ii) holds. R R

By Lemma 3.4, (ii) implies that Eo[V (8)1/Eo[|ly — X B11*1— 1 =Eo[|I1, — H|% (a0, h)*1/
Eollly — XB||2] converges to O in probability. Since Eg[||y — Xﬁ”z]/(nR*) = Op(1) by
(7.11) and (7.9), combined with ||[I, — H||% > C2(y, u)n in Qo by Lemma 7.4, this im-
plies I, Eol(ao, h)*1/ R« =Eollq,(ao, h)*1/ R« —F 0 as Qq is independent of zg. Thus, (ii)
implies (iii) by Markov’s inequality with respect to Eg.

Finally, to show (i) < (ii), we have by the Gaussian Poincaré inequality

Varo[lly — XBII*] < Eo[|[V £ (z0)](y — XB)[*] < Eo[|V £ z0) 2,1y — XBII*].

With V f(zO) in (3.9) and the bounds (7.10)—(7.11), we have ||y — XB|? <4nF,.F?R, and
IV £ (zo)13, < 2QF4 F? + Fy F*)R, thanks to |1, — H||op < 1 by Proposition 7.3. Com-
bined with the lower bound (7.35) on Varg[§p] and the moment upper bounds (7.9), we obtain
Ellg, Varo[lly — XBII?1/ Varo[£1?] < Ca1(y, w)n~"/2, which gives (vii) & (). O

7.6. Proofs of Theorem 3.3 and asymptotic normality results.

THEOREM 3.3. Under Assumption 3.1, there exists 2, with P(Q25) < Co(y, ,u)n_l/2
and

(3.17) E[Ig, (n — dh*(ag, B0 — 87 /1y — XBI*] < Coa(y, p).
Furthermore, |(ag, B2 — )| = Op(1)||y — XBI|/(n — df) = Op(1)|ly — X B||/n.

PROOF OF THEOREM 3.3. Let €, be as in (7.32). Since Ig |y — X,’B\H_2 < 16/
(CZ()/,,u)nR*) by (7.34), using (7.21) completes the proof of (3.17). For the second
part, random variables bounded in Ly are stochastically bounded so that (3.3) provides
(@0, B0 — B)| = Op(1)|ly — XBI|/(n — df), and Iq,(1 — df/n)~" < Culy, )" for
o in Lemma 7.4 provides (1 — a/n) =0p(l). O

THEOREM 3.6. Let Assumption 3.1 be fulfilled. Let ﬁ(de_bias) be as in (3.15). Then, for
any ag with |27 2ag|| = 1 such that (ao, h)*/R, —TF 0,

A(de—bias) .y
sup[ P( %0/2 <t) q)(t)‘ ‘ < '?/2 ) 5t)—d>(t)H—>0,
reR Vo /(n— df)
where Vy denotes any of the four quantities: Varg[&o], ||y — X BHZ, \7(9) or ‘V/(ao).
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PROOF OF THEOREM 3.6. Let 2, be as in (7.32). Let 812 be the quantity in (3.24),
omitting the dependence in ag as it is clear from context. Since 512 < 1 by definition,
E[(Sf] < IE[Q,,(S%] + P(29). In ,, (7.35) provides a lower bound on the denominator of
82 so that E[Ig, 871 < E[||V f(z0) 3116/ (nR<C2(y, 1)). By (7.23) and the bound (7.33) on
P(£2y,), we obtain

(7.37) E[61] < E[lq,87] +P(R5) < Cas(y, w)(E[(ao, k)*/R] +n~ ") + Coly, pyn~ 12

Furthermore, (ag, h)Z/R* is bounded in L; thanks to E[{ag, h)4/R*2] < E[FJ%F“] <
Coa(y, ) by (7.10) and (7.9). Since a sequence of random variables uniformly bounded in
L, is uniformly integrable, the assumption (a, h)Z/R* —Po implies E[(ao, h)z/R*] — 0,
and thus IE[(SIZ] — 0. This completes the proof that IE[(S%] — 0 and that &y/ Varo[éo]l/ 2 —>d
N(0,1) by Theorem 2.2. Next, by (3.16), (n — df){ ao Blde=bias) _ gy /varo[£]1/2 —

N (0, 1) also holds. It remains to prove Vo / Vary[&p] —P 1 for all four possible choices for
Vo. By (2.7), E[SZ] — O implies ||y — Xﬂll / Varg[£] = 1, while

V©) | _IH-Lili{ao /(iR
~lly — XB|? ly — XBI2/(nRy)

Proposition 7.3 provides |H — 1 nll% < n so that the numerator converges to 0 in proba-
bility thanks to assumption (ag, k)?/R, —F 0. The denominator is bounded from below
by Cf(y, w)/16 in 2, by (7.34) and P(L2,,) — 1. This proves V(@)/Varo[éo] —P 1 and
V (ao) / Varg[£9] =" 1 follows by Lemma 3.5. Slutsky’s theorem completes the proof as
Vo/ Varg[&p] —P1 for all four possible choices for V. As ®(¢) is continuous, convergence
in Kolmogorov distance is equivalent to convergence in distribution. [J

(7.38)

THEOREM 3.7.  There exists an absolute constant C* > 0 such that the following holds.
Let Assumption 3.1 be fulfilled, B9~ be as in (3.15). Then for any increasing sequence
ap, — +oo (e.g., ap =loglog p), the subset

(3.25) S={ve s, E[x"?v, hY/|Z?h|*] < C*/a,)
of the unit sphere SP~ in R? has relative volume |S|/|SP~1| > 1 —2¢=P/% and
A(de—bias) _
IP( 51/2<z> dD(t)’ l ( ?/2 'B>§t>—d>(r)ﬂ—>0
/(n — df)

where Vg denotes any of the four quantities: Varg[&ol, ||y — Xﬂllz, ‘7(9) or V(ao). Fur-
thermore, with ej € R? the jth canonical basis vector and ¢cond(X) = || X ||0p||)3_1 llop» the
asymptotic normality in (3.26) uniformly holds over at least (p — ¢cond(X)ap/C*) canon-
ical directions in the sense that J, = {j € [p]: ej/||Z*1/2ej|| e X128} has cardinality
|Jpl > p— ¢Cond(z)ap/C*-

(3.26) sup sup[
apex!/251eR

PROOF OF THEOREM 3.7. We construct a subset S of the sphere such that (ay, h)2/
R, —T 0 uniformly over all ag € £'/2S. Let v be uniformly distributed on the unit Euclidean
sphere SP~!, independently of (X, y), and denote by v its probability measure. The vector
/DV is sub-Gaussian in R” [47], Theorem 3.4.6, in the sense that for any nonzero vector u €
R?, fexp{(ﬁvTu)z/(C*llu 1)} dv(v) < 2 for some absolute constant C* > 0. By Jensen’s
inequality and Fubini’s theorem,

(vTEI/2h)2 («/7
/GXP{E[W]}dU(v)SE[/ Xp{c='<||z‘/2h||2}dv(v)]
<2.
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Hence, by Markov’s inequality, for any positive x,
v({ve SP~ E[(0 =2R) /| 2R > C*x/p)) < 2.

Setting x = p/a,, we obtain that the subset S c §P~! defined by (3.25) has relative volume
at least |S|/|SP~!| > 1 — 2P/ and for all a9 € /28,

(7.39) E[(ao, k)?/|Z'*R|*] < C*/a,.

Furthermore, the set § N {Z7"/2e;/|Z7'2¢;|, j € [p]} has cardinality at least p —
¢cond(z)ap/c>l< due to
I11?

Xp: 1 E|: (ej,h)Z i|<||Z|| E|: i|<¢ (X)
j=1 ”z_l/zejll2 ”21/2’1”2 - op ”21/2h”2 = @cond .

To show that supaoezl/ng[S%(ao)] — 0, thanks to (7.37) it is enough to prove that
El{ag, h)2 /Ry] — 0 uniformly over ag € X 1723, By the Cauchy—Schwarz inequality,

E[(ao, h)?/R.] = E[(ao, k)| 2| /Ri(ao, k) /| Z"/*R|]
<E[|="2n]*/R2]"(C* /ay) '

for any ag € £!/2S thanks to (7.39), while E[||Z/2h|*/R.2] < E[F2F*] < Cas(y, 1) by
(()71.11(;()1 and (7.9). This implies sup,, .y 125 El(ao, #)*/R] — 0 and sup, _s1/25E[87(a0)] —
old.
By Theorem 2.2, this shows that &/ Varg[£]'/? —¢ N (0, 1) uniformly over ag € X!/?8.
Since the bounds (3.14), (7.38) are all uniform over all ag with || Z~"%ag| = 1, Slutsky’s

theorem implies Vo/ Varoléo] = 1, &/V,'> =< N(0, 1) and {(n — df)(ao, k) + 2 (y —

X B)} / VOl 2 _,d N (0, 1) uniformly over ag € X 172§ for all four possible choices for Vp, and

convergence in Kolmogorov distance follows from convergence in distribution. [l

THEOREM 3.8. Under Assumption 3.1, there exists 2, with P(Q5) < Co(y, ,u)n_l/2
and

(327)  E[lg, (@0, B—B)+(n—d)~'zg (v — XB))*] < RuCas(y, )/

If additionally g is a seminorm, then Izg(y — XB)I/n = IagZ_lXT(y — Xﬁ)|/n <
g(Xag) always holds by properties of the subdifferential of a norm. Consequently, if
g(X7ag)?/R. — 0 then (ag, h)*/R. —* 0 and the conclusions of Theorem 3.6 hold.

PROOF OF THEOREM 3.8. The first statement /pf the theorerll follows from Lemmg 7.5.
Finally, if g is a norm then the KKT conditions of B, |z (y — XB)| = n|(Z~'ao) Tag(B)| <

ng(E_lao) since for a norm g(u) = SUPycog(u) (u,v). O

APPENDIX A: INTEGRABILITY OF ¢_. (X%~1/2/./n) WHEN p/n — y € (0, 1)

min
In our regression model with Gaussian covariates, the matrix X X 12 hasiid. N 0, 1) en-

tries, and the inverse of its smallest singular value enjoys the following integrability property
asn, p — 4oo with p/n — y € (0, 1).

PROPOSITION A.1. Letn > p and let G be a matrix with n rows, p columns and i.i.d.
N(0, 1) entries. Then G' G is a Wishart matrix and if n, p — +o0 with p/n — y € (0, 1)
we have for any constant k not growing with n, p,

lim E[¢min(GTG/n) ] = (1 — /7)) %
p/n—y
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PROOF. Throughout the proof, p = p, is an implicit function of n; we omit the subscript
for brevity. Since S, = ¢min(GTG/n) — (1 — ﬁ)z almost surely (cf. [36]), it is enough
to show that the sequence of random variables (S, k)nZno is uniformly integrable for some
no > 0, that is, that SUP,, >y, E[S, k I{s,<e;] — 0 as € — 0. For uniform integrability, we use
the following argument from [22], Section 5. The matrix G ' G is a Wishart matrix and the
density of L = quin(GTG) satisfies for A > 0,

—(n—p+1)/2 1 1
2 mpt DR s S (n=p=1)/2,=1/2 _ NGRS i
FOr=5Hr=4+) F(r(=5E2) e

i) <

A);

cf. [22], Section 5. The density of S, = L/n = d)min(GTG /n) that we are interested in is
given by fs (x) =nfr(nx) for x > 0. Hence, if 0 <e < (1 —y)/2,

1 - 1)/2
VT () (%) emrrb/ i|‘/‘€x(n—p—1)/2—ke—nx/2dx'
I3 =4 =5+2) 1o

E[S, *I(5<e)] < [

The mode of the integrand over [0, +00) is x; =1 — p/n — 1/n — 2k/n. Thanks to € <
(1 —y)/2, there exists some n| > 1 such that for all n > ny,

(A.1) n—p—1-2k>n(l—-y)/2,

(1 — y)/2 is smaller than the mode x,; and the integral above is bounded by en=p=k+D)/2 o
e "¢/2_ Let A, denote the bracket of the previous display. Then using Stirling’s formula
I'(x + 1) x v/2mxe *x*, we have for some constants 72, C2(y) > 0 possibly depending on

Vs
log(Ay)

sup _ 08An) < Ca(y)

nzn, (n—p+1)/2
because the main terms (coming from x* in Stirling’s formula) cancel each other. Then for
anyn>niVnp,
(A.2) IE[‘S‘r:kl{S,, <e}] =< (eXp(Cz(y))E)(”_P‘H)/zefkefneﬂ
| = (CXP(CZ(V))E)(n7p+l)/27kekcz()/)—ne/2'

For n > np, (A.1) holds and if € < (exp C2(y))~! we have

sup E[S;FI(s, <] < (exp(Ca(y))e) ™ —7/H hC)

n=nivny
which converges to 0 as € — 0. This shows uniform integrability of the sequence and proves
the claim. [J
APPENDIX B: PROOF: p > n WITHOUT STRONG CONVEXITY
LEMMA B.1. Let 8 € R? and assume that p/n < y. Then for any k < 1,

. IX (@ —1B)]?
P inf 75
reR,uek?:|ulo<cn,u—1B£0\n|| /% (u — 1 B)|2

)= otra0?) > 1,
for some constant ¢(y, k) > 0 depending only on y, k.

Lemma B.1 and its proof are straightforward extensions of [12], Proposition 2.10, which
treats the case X =1,, B =0.
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PROOF. If V C R? is a subspace of dimension d = |kn| + 1 and G = XX~ !/2, then by
(A2) with k=0, € € (0, (1 —d/n)/2) and n large enough,

IP’( inf IGv|?/n < e) <exp(Ca(x")log(e)(n — p +1)/2 — ne/2)
veX!2vi|v|=1

for constant k' = (k + 1)/2 thanks to 1 > k¥’ > d/n. Applying this bound to the subspace
Vg ={u—1B,(u,1) e RP*! 1 upc = 0} for B C [p] with |B| < kn and using the union
bound,

2
IP( o ( X (uw—1tB) )<€) <( P )eCZ(K/)10g(6)(n—d+1)/2—ne/2
teRueRP:[ullo<in \n || XY 2(u — 1 B)|12 ~ \lkn]

<o log(ey)+Ca (k") log(e)(n—d+1)/2—ne/2

using (1) < e?108(r/4) < gnlogler/n) with g = |kn] <n and p/n <y. Since d < kn + 1,
choosing € = 1 A exp(Ca(x")~!(1 — k)"'21log(ey)) the right-hand side of the previous dis-
play is bounded from above by ¢~"¢/2. This value of € provides ¢(y, k)>. [

THEOREM 3.10. Lety > 1, k € (0, 1) be constants independent of {n, p}. Consider a
sequence of regression problems with p/n <y and invertible X.. Assume that the group Lasso
estimator B in (3.33) satisfies

(3.34) P(|IBllo < kn/2) — 1.

Ifag is such that |2~ 2ag|| = 1 and (ag, B — B)2/Rx > 0 for the R, in (3.23), then
(3.35) suﬂg{P(ny — XBI 7 ((n — dh(ao, B — B) +2{ (y — XB)) <1) — d(1)| — 0.
te

Furthermore, for any a, with a, — oo and S in (3.25), the relative volume bound given
after (3.25) holds, and the asymptotic normality (3.35) holds uniformly over all ay € £'/>S
and uniformly over at least (p — ¢cond(X)a,/C*) canonical directions in the sense that
Jy={jelpl:e;/IIZ"%e;| € £V/28} has cardinality |J,| > p — ¢eona(E)a,/C*.

PROOF OF THEOREM 3.10. As in the rest of the paper, f(z0) =y — XE and we wish
to apply Theorem 2.2 to zo conditionally on (e, X Q). Instead of applying Theorem 2.2 to
f, and in order to avoid certain events of small probability where the sparse eigenvalues of
X are not well behaved, we will apply it to a different function. Consider F in (7.7) and the
events,

QL ={lIBllo <«n/2},

QX = {F+ < 2, (F+ — 1)+ < 4,/10g(n)/n},

QE={ | X (u—1B)l

min ST N
teRueRP:|ulo<in | EV2(u — 1 B)||

o/n,

X):—1/2||Op <J/n@2+ ﬁ)},

where ¢ = ¢(y, k) is thg constant from Lemma B.1. Finally, let QgxT be the event (C.1) that
the KKT conditions of 8 hold strictly, and set

QY Q NQLNQkkTN Q.
We have P(21) — 1 by (3.34) and standard concentration bounds for X3 random variables
[29], Lemma 1, give P(2,) — 1. Lemma B.1 and [20], Theorem II.13, provide P(2g) — 1
and (C.1) gives P(QkkT) = 1. These bounds imply P(€2) — 1 by the union bound.
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As the only randomness of the problem comes from (e, X), we may choose the underlying
probability space as R"” x R"*” so that Q, Qr, Qp, Qkkr are subsets of R" x R"*7, We
next prove that €2 is open as a subset of R* x R"*”_ Indeed, because the KKT conditions are
strict in €2, €2 is a disjoint union of sets of the form

(B.1) QL NQENQ N{IBg )l >0,ke ByN{|XT(y — XB)| < nix, k € BC)

over all possible active groups B C {l1,..., K}. The sets Q2g, 2, are open as the inequal-
ities are strict. In Qp, the function (e, X) — B is locally Lipschitz by Lemma 7.1, hence
continuous. By continuity, the preimage of the open set (0, +-00) by the function Qg — R,
(e, X) = [|Bg, |l is open by continuity, and the preimage of the open set (—00, nig) by the
function Qg — R, (¢, X) — || X (T;k y—X E)H is also open, again by continuity. This shows
that the set (B.1) is open for any fixed B C {1, ..., K} so that 2 is open as the union of sets
of the form (B.1) over all B C {1,..., K} satisfying ) ;.p |Gk| < kn/2. This proves that
Q C R" x R"*? is open.

For F =2max{l, |Z'2h|?/(n||Xk||*)} in Lemma 7.2, (7.12) is satisfied so that (7.13)-
(7.14) hold. In 2, we thus have |Z'2Rh|?> v (| Xh|?/n) < F1F?R. <8¢ 2R, and ||y —
XBH/ﬁ < Fj_/za + V8¢ 'R,/? < 329~ ' R,.. Furthermore, ||w0||% <o Y/n in Qf
thanks to |S| < xn/2 and the explicit expression for wq in Proposition 4.2. In summary,
we have in 2,

|Z28)% v (I XR|?/n) < 8¢ 2R,
(B.2) ly — XBI*/n < 1897 2R,,

2
lwoll“ < /n

which replace (7. 10) (7.11) in the present context. By the deterministic inequality (7.29), in
Q we have df < |S | <kn/2 since H is rank at most |S | with operator norm at most one, so
that

(B.3) Io(1 —k/2)%/8 <|ly — XBI*/(nRy) + A%+ AD + AL
Let (e, X), (e, X) both in Q, let & = ¢ and let h, h, f, f be as in Lemma 7.1. Thanks to
event Qg and the fact that |S| < Kn/2 and similarly for ﬂ we have ¢?||X/2(h — h)||2
IX (h — h)|%/(2n) + |X (h — h)|%/(2n). Thus, by (7.3),
n? 122 —h)P<h—n)"X-X)Te+h—h)" (X" X—X"X)(h+h)/2.
Summing this inequality with the first line in (7.2), we find
~ ~
ng?[Z2h ="+ 1f - fI°
(B.4) <h-h"X-X)Te+ - X" X-X"X)(h+h)/2
+h-X-XTf+h X -T(f-D.

Thanks to the bounds in (B.2), this implies || f — j~"|| <L|(X — X’)E_I/ZHOP if {(e, X),
(e, X)} C Q, where L = Ca7(y, k)R, \/2.

For a given (e, X Q)), we define Up = {z0 e R" : (¢, X Q¢ + an(T) € Q}. In Uy, the func-
tion f(z9) = X(B — B) — e is L-Lipschitz. By Kirszbraun’s theorem, there exists a function
F : R" — R” that is an extension of f, that is, F(zg) = f(zo) for zg € Up, and such that

F is L-Lipschitz in the whole R”. Note that both function F and f implicitly depend on
(e, X Qp)- Since 2 is open, Uy is also open, and thus conditionally on (X Q,, €),

(B.5) V f(z0) = VF(zo), forallzye Up.
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(Without the openness of 2 established above, equality of the gradients would be unclear).
Since F : R” — R" is such that F'(z9) = f(z¢) in 2, by (B.3),

(1 —«/2%q < Ia[ly — XBI?/(nR) + AL + AL + AS]

(B.6) ) )
= Io[| F(z0) |/ (nRy) + A% + AL + AC].

Taking conditional expectations and multiplying both sides by 82 def EollIVF o)l F]/
{Eol[IV F(z0) 1314 Eolll F (zo)|I*1}, we find

83(1 — ik/2)*Eolla] < Eo[|VF (zo) |5/ (n R)] + Eo[Ia(A% + AL + AS)],

due to 87Eo[Igll F (z0)|I*] < Eol|IVF (z0)||%] for the first term and 82 < 1 for the second.
Using 62 <1 and 1 = I + Iqe,

E[82](1 — 1/2)* < E[Iq|VF(z0) |5/ (nRy)] + E[Iq(A% + AL + AS)]
+P[Q°](1 + L*/R,),

where we used that ||VF(z())||2F < n||VF(z())||gp <nL? in Q¢ since F is L-Lipschitz. We
now prove that the three terms on the right-hand side converge to 0. For the third term,
L?/R, < Cas(y, k) and P(Q€) — 0 as £ has probability approaching one. For the first term,
since F is L-Lipschitz, |VF (zO)ll%p < nL? almost surely so that the sequence of random
variables Iq||V F(zp) IIZI’7 /(Ryn) is uniformly integrable. Thanks to uniform integrability, if
we can prove ||VF (zo)||%/(Rn) =T 0, then E[Iq||V F(z0)[|3/(R«n)] — 0 holds. We use
that IqV f(z0) = IqV F(z0) by (B.5), and that in Q2 the gradients of f with respect to z¢ are
given in Proposition 4.2, so that by (B.2),

19| VF(z0)| p/(Re)'? = I |V (20| ./ (Ren) /2
< Ig[lwollly — XBIl + 11, — H||r|(ao, k)|]/(Run)"/?
< Cao(y, ) (n™ V2 + | (a0, h)|/ R.?),

which converges to 0 in probability thanks to assumption (ao, B — B)?/R, £ 0. Thanks
to uniform integrability, this proves E[lq||VF (z())ll%r/ (62n)] — 0. It remains to show
E[Iq(A% + AL + AS)] — 0. By definition of A? in (7.27), thanks to 2, and (B.2) we have
IQAZ < 18g0_2(F+ — 1) < C3o(y, k)/log(n)/n. For A% in (7.26), let IT : R” — R”" be the

convex projection onto the Euclidean ball of radius /18¢~2R,, then IT(y — X E) =y—X ;3
in 2 by (B.2) so that

E[IqA%] =E[Iq{(1 —di/n) —e T(y — XB)/(no?)}*]o?/ R,
(B.7) <E[|O(y — Xﬂ)|| 1/ ( )+o /(nRy)
<180 2/n+1/n

by applying Proposition 2.1 to the function & — II(y — X ﬁ), which is 1-Lipschitz as
the composition of two 1-Lipschitz functions (cf. Proposition 7.3(i)). For A{ in (7.28),
let g, a, by as in Lemma 7.6 and set u, = > la,, 0,=1,— u,ka*—r and note that
(g, uy, Q,) = (zo,uo, Q) for ag = a,. Let also w, be the wo from Prqposition 4.2 for
ap = a,. As above for ag, for a fixed (e, X Q,) the function g — y — X8 is L-Lipschitz
in U, ={g e R" : (e, XQ* + gaT) € Q} by (B.4) for the value of L given after (B.4).
Furthermore, ||y — X ﬁ||2 < 18n<p‘2R* in Q. By Kirszbraun’s theorem, there exists an ex-
tension F, : R” — R” implicitly depending on (¢, X Q,) such that F,(g) =y — X ﬂ in
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and || Fx(g)||> < 18n¢ 2R, by composing the extension given by Kirszbraun’s theorem by
the convex projection onto the Euclidean ball of radius (18n¢~2R,)'/?. By Proposition 2.1,
with respect to g conditionally on (¢, X Q,),

E[Io((n — df){as. b) + (w, + g, y — XB))?] = E[Ia(div Fu(g) + (g, Fx(2)))*]
< 18n(p_2R* + nL?.

For the value of L given after (B.4) and using the bound (B.2) to control (w,, y — X ﬁ) in ,
this gives E[IqAS] < C31(y, k)n~!

This proves (1 — K/2)2E[5%] — 0. Consequently, Eg = zOTF(zO) — div F'(z¢) satisfies
| sup, [P(Eo/[|F (zo)|| < 1) — ®(1)] — 0 by (2.8). Since & = z{ f(z0) — div f(zo) is equal
to Eo on the event Q because F is an extension of f, we have |P(£y/| f(zo)l <t) —
P(Eo/IIF(zo)ll < 1)| < 2P(2°) — 0, so that sup, IIP’(éo/IIf(zo)II <1) —®()| = 0 as well.
The conclusion (3.35) is obtained by controlling the term w,, (y Xﬁ)/||y X,B || by [Jwoll,
which is bounded as in (B.2) in .

It remains to show that (3.35) holds uniformly over all ag € > 1/25 and to derive the
properties of S. The proof of the relative volume bound on S and the lower bound on
the cardinality of {j € [p] : ej/||2_1/2ej|| € 21/23} is the same as in the proof of The-
orem 3.7 given around (7.39), and for ag € /25 inequality (7.39) holds. For such ay,
Ellg(ao, h)?/R.] < 8¢ *E[(ao, h)*/IIZ/?h|*] < 8¢~2C*/a, — 0 by (B.2) for the first
inequality and (7.39) for the second. ]

APPENDIX C: STRICT KKT CONDITIONS WITH PROBABILITY ONE FOR THE
GROUP LASSO

LEMMA C.1. Consider a design matrix X € R"*? and a response vector y € R" for
which the joint distribution of (X, y) admits a density with respect to the Lebesgue measure.

Consider a partition of {1, ..., p} into groups (G, ..., Gk ) and any minimizer
def
Be argmm2—||Xb yIZ+ 1Bl bl & Z el
beRp &0
for some deterministic A1, ..., g > 0. There exists an open set U C R*<U4D) such that
P((y, X) € U) =1 and the KKT conditions are strict in {(y, X) € U} in the sense that
(C.1) {y».X)eU}c{vk=1,...,K, ﬂGk—0:>||X (y — X,B)|]2<nkk}

Finally, B= {ke[K]: ||ﬁGk || > 0} is constant in a small neighborhood of any point in U .

PROOF OF LEMMA C.1. Consider a fixed B C {I,..., K} and its complementary set
B¢, and consider the group Lasso estimator B(B) with the additional constraint bg, = 0
for every k € B¢. Now consider a group k € B¢. Since the joint distribution of (X, y) has
a density with respect to the Lebesgue measure, the conditional distribution of X, given
(y, (Xej)j¢c,) also admits a density with respect to the Lebesgue measure. Conditionally,
on (y, (Xe;) ¢c,), two cases may appear:

G Ify— XE(B) = 0, the KKT condition for group G hold strictly since Ay 7~ 0.

(ii) If y — XB(B) # 0, the distribution of X, given (y, (Xe;) j¢G,) and the distribution
of ng (y — XB(B)) given (y, (Xe;) j¢c,) both have a density with respect to the Lebesgue
measure. The sphere of radius nA; has measure O for any continuous distribution, hence

P(|XG, (y — XB(B))|, # niily. (Xej)jgc,) = 1.
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Finally, the unconditional probability P(|| X —(l;k y—X E(B)) ll2 # nAg) is also one. Let U =

Nscir....x) Nigsl (v, X) 1 1XE, (v — XB(B)) 2 # nix). Then P((y, X) € U) = 1 as a fi-
nite intersection of events of probability one and (C.1) holds. The set U is open as a finite
intersection of open sets, since {(y, X) : ||ng (y — XB(B))||l2 # nAg} is open by continuity

of (y,X)— XT(y XB(B)) by the claim following (7.2).

Next, to show that B is constant in a neighborhood of every point in U, set Us =
Necir,...x) Nigst, X) 11X G, (v — XB(B))l2/(nix) — 1| > 8} for all § > 0. We have
U = ;-0 Us and the set Us is open by continuity of (y, X) — |||X k(y — X,B(B))||2/

(nAr) — 1], which follows from the continuity of (y, X) — X T( y—X :[}(B)) by the claim
following (7.2). For any (y, X) € U, there exists some § > 0 with (3, X) e Us. Let B={k e
[K]: B¢, |l > 0}. By continuity of (y, X) XT(y— Xﬂ) thanks to the claim following

(7.2), there ezc\lsts a neighborhood N of (¥, X) with A/ C Us such that for all (y, X) € NV,
IXE, (y—XB)Il/(nrg) < 1—38/2fork ¢ Band | X[, (y—XB)|I/(nkx) > 1 —8/2fork € B.
Since N C Us, [|1X§, (y — XB)II/(nay) > 1 — 8/2 implies [| X, (y — XB)II/(nhx) =1, so
that B=BinN. O

PROPOSITION 4.2.  The following holds for for almost every (y, X) e R"><_(]+p). The
set B=1{k € [K]: ||Bg,Il > O} of active groups is the same for all minimizers B of (3.33)
at (y,X) and B = B for all (y, X) in a sufficiently small neighborhood of (y, X). If addi-
tionally Ygfg is invertible where S = Ukeg Gk then the map (y, X) — ﬁ is Lipschitz in a
sufficiently small neighborhood of (y, X). In this neighborhood, we have

[VB@)]s. =0, [VBGo)5 = (X3 X5+ M) [@0)3(y — XB) — (a0, 1) X 1],
H=X5(X X5+ M)~'X{ and (3.9) holds with wo = X5(X{ X5+ M)~ (ao)3.
PROOF OF PROPOSITION 4.2. By Lemma C.1, B and § are constant in a sufficiently

small neighborhood of almost every (y, X). The additional assumption that Y—jrfg is in-
vertible provides that X g X5 is invertible by continuity of the smallest eigenvalue in a small

enough compact neighborhood of (¥, X), and in this neighborhood (y, X) ﬁ is Lipschitz
by the sentence following (7.4), and thus almost everywhere differentiable by Rademacher’s
theorem. The formulae for V(z), H and wy involving the matrix M in (4.5) are then ob-
tained by differentiating the KKT conditions restricted to S in this neighborhood, that is,
X5 (- XB)=nmBg,/IIBg, |l forallke B. O

APPENDIX D: PROOF OF THEOREM 2.3

PROOF OF THEOREM 2.3. With E[[E+ A4 ' z|2] = [&|2 + IA]|% in mind, consider
Var[£] = Il f(z)— (E—I-ZTz)II2 + trace[{V f(z) —Z}z]
+2(f(2)—FE—A 2) (E+A z)+2trace[{V f(z) — A}A]
+ (17 +A 2 ~ 1T = [ANF) + 7 + AN + trace[A”].
By the triangle and Cauchy-Schwarz inequalities,
E[[ f @) + trace[{V £ (2)}*] - Var[£]]]
<E[|f@ - ®+4 )"} +E[|V /(@) - A]}]
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+2E[| f@ — B+ A 2)|] +E[| V£ ) — A| 3] {Iml? + 20 A1E)
+E[||E+A 2| = ' = [ AN%]] + &N + A% + trace(A°) — Var[£]].

We have E[|| f(z) — B+ A 2)[21 < E[IV f(z) — Al3] < ?iZVar[s] /2 by the Gaussian
Poincaré inequality, E[|[Z + A z|% — &> — [AI}2] = AR + 2trace{(AA )%} <

IA]|2,C3 Var[£], and 0 < 1 — {[[&]|* + A1} + trace(A°)}/ Var[£] < ?f,z as in (2.11). Thus,
(2.14) holds and the conclusions follow. [J
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