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Abstract— In this paper, we adopt a three-stage based uplink
channel estimation protocol with reduced pilot overhead for an
reconfigurable intelligent surface (RIS)-aided multi-user (MU)
millimeter wave (mmWave) communication system, in which both
the base station (BS) and the RIS are equipped with a uniform
planar array (UPA). Specifically, in Stage I, the channel state
information (CSI) of a typical user is estimated. To address the
power leakage issue for the common angles-of-arrival (AoAs)
estimation in this stage, we develop a low-complexity one-
dimensional search method. In Stage II, a re-parameterized
common BS-RIS channel is constructed with the estimated infor-
mation from Stage I to estimate other users’ CSI. In Stage III,
only the rapidly varying channel gains need to re-estimated.
Furthermore, the proposed method can be extended to multi-
antenna UPA-type users, by decomposing the estimation of a
multi-antenna channel with J scatterers into estimating J single-
scatterer channels for a virtual single-antenna user. An orthog-
onal matching pursuit (OMP)-based method is proposed to
estimate the angles-of-departure (AoDs) at the users. Simulation
results demonstrate that the proposed algorithm significantly
achieves high channel estimation accuracy, which approaches the
genie-aided upper bound in the high signal-to-noise ratio (SNR)
regime.
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I. INTRODUCTION

THANKS to its cost-effective, power-efficient and
deployment-convenient features, reconfigurable intelli-

gent surface (RIS) technology is envisioned to be a promising
technique for enhancing the spectrum and energy efficiency
of 6G-and-beyond communications systems [2], [3], [4], [5],
[6], [7]. Deploying an RIS provides additional degrees-of-
freedom (DoF) that can be used to reconfigure the wireless
propagation environment, which brings tremendous benefits
for the wireless systems. To reap the benefits promised by
RIS, accurate channel state information (CSI) is required [8],
[9], [10], which is challenging to achieve for the following
two reasons. First, an RIS equipped with passive elements
typically does not have a receiver, so does not process complex
baseband signals, which means that traditional channel estima-
tion approaches cannot be adopted in RIS-aided systems. Due
to this characteristic, it is not possible to estimate the user-
RIS channel and RIS-base station (BS) channel separately, and
instead the cascaded channel is estimated, i.e., the equivalent
user-RIS-BS channel. Second, with a large number of antennas
at the BS and reflecting elements at the RIS, the cascaded
channel contains a large number of channel coefficients, which
can require a larger number of pilots. Hence, developing an
efficient channel estimation method for RIS-aided systems
with low pilot overhead is imperative.

Recently, there have been many contributions on channel
estimation for RIS-aided communication systems; see for
example [11], [12], [13], [14], [15], [16], [17], [18] and the
recent overview tutorial [8]. Early work focused mainly on
unstructured channel models, but channel estimation for these
models requires a pilot overhead that is proportional to the
number of RIS reflecting elements, which is often prohibitively
large. On the other hand, the sparse structure of high-frequency
millimeter wave (mmWave) channels, described by the angles
and gains of fewer paths, has been exploited to reduce
the pilot overhead and improve the estimation accuarcy of
multiple-input multiple-output (MIMO) systems efficiently by
leveraging compressed sensing (CS) techniques, direction-
of-arrival (DOA) estimation methods and Bayesian learning
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frameworks [19], [20], [21], [22]. Motivated by the works
on structured channel models, the sparsity of the user-RIS-
BS cascaded channel was exploited in [13] using CS to
reconstruct the channel. The authors in [15] exploited the fact
that the cascaded channel matrices for multiple users exhibit a
common column-block sparsity since all users share the same
RIS-BS channel, and developed an iterative channel estimator
based on this observation. Inspired by the common column-
block sparsity property, the double-structured sparsity of the
cascaded channel was considered in [16], using the Discrete
Fourier Transform (DFT) to analyze the estimation of the angle
parameters. The authors of [17] achieved a dramatic reduction
in pilot overhead by fully utilizing the correlation among the
different cascaded channels. The above-mentioned works [15],
[16], [17] considered multiple users but assumed that they
are equipped with only a single antenna. On the other hand,
the RIS-aided MIMO scenario was considered in [13], [18],
and [14]. The authors in [18] proposed an alternating mini-
mization and manifold optimization (MO) estimation protocol
for this scenario. To increase the estimation accuracy, a super-
resolution CS technique based on atomic norm minimization
was applied to cascaded channel estimation in [14]. However,
these three works assumed only a single user and thus did
not take advantage of the inherent correlation among the
channels of different users in an RIS-aided system. Apart from
this, [13], [14], [16], [18] assumed that the number of scatter-
ers for the user-RIS channel and RIS-BS channels are known
a priori, i.e., the sparsity level is known. In practice, however,
these parameters may not be known beforehand. Moreover,
a uniform linear array (ULA)-type BS, ULA-type users and/or
ULA-type RIS were assumed in the above mentioned works,
which may not be relevant for RIS-assisted communication
systems. The extension to the more typical uniform planar
array (UPA)-type RIS-aided multi-user (MU) system is not
straightforward. First, the number of angle parameters that
must be estimated doubles that of a ULA-type system, and
the asymptotic properties exploited for large ULAs may not
be applicable. Second but important, increasing the number of
parameters makes exploiting the channel correlation among
multiple users extremely complex, especially for the cascaded
channel parameters.

Against the above background, in this paper we propose
an effective three-stage channel estimation method with low
pilot overhead starting from an RIS-aided single-antenna MU
mmWave communication system, in which the BS and RIS are
both equipped with a UPA. Then, we extend the protocol to
the multi-antenna user case, where the users are also equipped
with UPAs. This is the first work that investigates the UPA-
type MU MIMO case. The main contributions of this work
are summarized as follows:

• We develop a three-stage uplink channel estimation pro-
tocol for an RIS-aided mmWave communication system
with a multi-antenna UPA-type BS, a multi-element UPA-
type RIS and multiple users. The protocol is divided
into two parts: full CSI estimation in the first coherence
block consisting of Stage I and Stage II, and estimation
of updated gains in the remaining coherence blocks
consisting of Stage III. In Stage I, only a typical user

sends pilots to the BS for channel estimation, from
which we obtain estimated gains and angle information
that is used to reduce the pilot overhead in the next
stage. In particular, angle rotation operation is adopted
to deal with the power leakage issue when estimating
common AoAs in this stage. In Stage II, we exploit the
correlation among different users’ cascaded channels and
construct a re-parameterized common RIS-BS channel
using the estimated CSI of the typical user, based on
which we obtain the channel estimates of other users.
Next, in Stage III during the remaining coherence blocks,
only the cascaded channel gains for different users are re-
estimated since the angle information remains constant.

• We propose an effective low-complexity one-dimensional
(1-D) search method to achieve the angle rotation oper-
ation in Stage I. In [21], a two-dimensional (2-D) DFT
together with a 2-D search method was used to compen-
sate for the leaked power, which has high computational
complexity. To reduce the complexity, we exploit the
structure of the steering vectors at the BS and then intro-
duce an equivalent Fourier matrix and rotation matrices
to divide the 2-D search into two 1-D searches.

• We extend the estimation protocol to the case of users
with UPAs. The angles-of-departure (AoDs) at the users
and the common angles-of-arrival (AoAs) at the BS are
estimated via the proposed orthogonal matching pursuit
(OMP)-based method and DFT-based method, respec-
tively. Then the estimation of a multi-antenna channel
with J scatterers is decomposed into the estimation of J
single-scatterer channels. The cascaded AoDs at the RIS
and the channel gains can be estimated using methods
similar to those developed for the single-antenna case.
This is the first approach proposed in the literature that
exploits the correlation between different users in the
multi-antenna user case. The overall number of pilots for
both the single- and multi-antenna case is also analyzed.

The rest of this paper is organized as follows. Section II
introduces the system model and the three-stage based channel
estimation protocol. Section III presents the full CSI estimation
algorithm in Stage I and Stage II for the single-antenna-
users case. Channel gain estimation in Stage III is discussed
in Section IV. Section V applies the protocol to the multi-
antenna-users case. Simulation results are given in Section VI.
Finally, Section VII concludes this work.

Notations: Vectors and matrices are denoted by boldface
lowercase letters and boldface uppercase letters, respectively.
For a matrix A of arbitrary size, A∗, AT, AH and A†

stand for the conjugate, transpose, conjugate transpose and
pseudo-inverse of A. For a square full-rank matrix A, A−1

denotes its inverse. The symbols ||A||F , ||a|| represent the
Frobenius norm of matrix A and the Euclidean norm of vector
a, respectively. ∠ (·) denotes the angle of a complex number.
Diag{a} is a diagonal matrix with the entries of vector
a on its diagonal. vec(A) denotes the vectorization of A
obtained by stacking the columns of matrix A. E {·} denotes
the expectation operation. [a]m denotes the m-th element
of the vector a, and [A]m,n denotes the (m, n)-th element
of the matrix A. The n-th column and the m-th row of matrix
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A are denoted by A(:,n) and A(m,:) respectively. �a� rounds
up to the nearest integer. The inner product between two
vectors a and b is denoted by 〈a,b〉 � aHb. Additionally,
the Kronecker product, Hadamard product, Khatri-Rao product
and transposed Khatri-Rao product between two matrices A
and B are denoted by A ⊗ B, A � B, A � B and A • B,1

respectively. i �
√−1 is the imaginary unit.

II. SYSTEM MODEL AND ESTIMATION PROTOCOL

A. System Model

We consider a narrow-band time-division duplex (TDD)
mmWave system, in which K single-antenna users commu-
nicate with a BS equipped with an N = N1 × N2 antenna
UPA, where N1 is the number of antennas in the vertical
dimension, and N2 in the horizontal dimension. To improve
communication performance, an RIS equipped with a passive
reflecting UPA of dimension M = M1 × M2 (M1 vertical
elements and M2 hoirzontal elements) is deployed. The chan-
nels are assumed to be block-fading, and hence constant in
each coherence block. In addition, we assume that the direct
channels between the BS and users are blocked. Otherwise
first estimate the direct channels by turning off the RIS, and
then the cascaded channel can be estimated by removing the
direct channel’s contribution from the received signal.

The Saleh-Valenzuela (SV) model in [23] is used to
represent the channels due to the limited scattering char-
acteristics in the mmWave environment. Consider a typical
P = P1 × P2 UPA whose steering vector aP (z, x) ∈ CP×1

can be represented by

aP (z, x) = aP1(z) ⊗ aP2(x), (1)

where aP1(z) = [1, e−i2πz, . . . , e−i2π(P1−1)z]T and aP2(x) =
[1, e−i2πx, . . . , e−i2π(P2−1)x]T are the steering vectors with
respect to z-axis (vertical direction) and x-axis (horizontal
direction) of the UPA, respectively. The variables z and x can
be regarded as the corresponding equivalent spatial frequency
with respect to z-axis and x-axis of the UPA, respectively.
Denote � ∈ [−90o, 90o) and ξ ∈ [−180o, 180o) as the signal
elevation and azimuth angles of the UPA, respectively. There
exists a relationship between the spatial frequency pair (z, x)
and the physical angle pair (�, ξ):

z =
d

λc
cos(�), x =

d

λc
sin(�) cos(ξ), (2)

where λc is the carrier wavelength and d is the element spac-
ing. Assuming that d ≤ λc/2, there is a one-to-one relationship
between the spatial frequencies and the physical angles on one
side of the UPA. We will assume this relationship to hold in the
remainder of the paper, and we will refer to the arguments of
the steering vectors interchangeably as either angles or spatial
frequencies.

Using the geometric channel model, the channel matrix
between the RIS and the BS, denoted by H ∈ CN×M , and

1The transposed Khatri-Rao product is known as the “row-wise Kronecker
product”, which utilizes the row-wise splitting of matrices with a given
quantity of rows. Specifically, for given matrices A ∈ CQ×M and B ∈
CQ×N , A • B is a Q × MN matrix of which each row is the Kronecker
product of the corresponding rows of A and B.

the channel matrix between user k and the RIS, denoted by
hk ∈ CM×1, can be written as

H =
L∑

l=1

αlaN (ψl, νl)aH
M (ωl, μl), (3a)

hk =
Jk∑

j=1

βk,jaM (ϕk,j , θk,j), ∀k ∈ K, (3b)

where L denotes the number of propagation paths (scatterers)
between the BS and the RIS, and Jk denotes the number of
propagation paths between the RIS and user k. In addition, αl,
(ψl, νl) and (ωl, μl) are the complex path gain, AoA, and AoD
of the l-th path in the RIS-BS channel, respectively. Similarly,
βk,j and (ϕk,j , θk,j) represent the complex path gain and
AoA of the j-th path in the user k-RIS channel, respectively.
Moreover, the channel models in (3) can be written in a more
compact way as

H = ANΛAH
M , (4)

hk = AM,kβk, ∀k ∈ K, (5)

where AN = [aN (ψ1, ν1), . . . ,aN (ψL, νL)] ∈ CN×L,
AM = [aM (ω1, μ1), . . . ,aM (ωL, μL)] ∈ CM×L and Λ =
Diag{α1, . . . , αL} ∈ CL×L are the AoA steering (array
response) matrix, AoD steering matrix and complex gain
matrix of the common RIS-BS channel, respectively, and
AM,k = [aM (ϕk,1, θk,1), . . . ,aM (ϕk,Jk

, θk,Jk
)] ∈ CM×Jk

and βk = [βk,1, . . . , βk,Jk
]T ∈ CJk×1 are the AoA steering

matrix and complex gain vector of the specific user-RIS
channel for user k, respectively.

Denote et ∈ CM×1 as the phase shift vector of the RIS
in time slot t and define the user set as K = {1, . . . , K}.
Assume that users transmit pilot sequences of length τk one
by one for channel estimation. During the uplink transmission,
in time slot t, 1 ≤ t ≤ τk, the received signal from user k at
the BS can be expressed as

yk(t) = HDiag{et}hk
√

psk(t) + nk(t), (6)

where sk(t) is the pilot signal of the k-th user,
nk(t) ∈ CN×1 ∼ CN (0, δ2I) represents additive white
Gaussian noise (AWGN) with power δ2 at the BS when user k
is transmitting. The scalar p denotes the transmit power of each
user. Assume the pilot symbols satisfy sk(t) = 1, 1 ≤ t ≤ τk,
so that Eq. (6) can be expressed as

yk(t) = HDiag{hk}et
√

p + nk(t) � Gket
√

p + nk(t). (7)

Here, Gk = HDiag{hk} is regarded as the cascaded user-
RIS-BS channel of user k, which is the channel to be estimated
in this work. Combining (4) and (5), Gk can be rewritten as

Gk = ANΛAH
MDiag{AM,kβk}, ∀k ∈ K. (8)

Stacking the τk time slots of (7), the received matrix
Yk = [yk(1), . . . ,yk(τk)] is given by

Yk =
√

pGkEk + Nk ∈ CN×τk , (9)

where Ek = [e1, . . . , eτk
] ∈ CM×τk can be treated as

the phase shift training matrix of the RIS for user k and
Nk = [nk(1), . . . ,nk(τk)] ∈ CN×τk .
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Fig. 1. The proposed three-stage channel estimation protocol.

B. Three-Stage Channel Estimation Protocol

The main idea of the proposed channel estimation protocol
are depicted in Fig. 1, where “Pilot” and “Data” represent
the phases for uplink channel estimation, and downlink data
transmission at the BS side, respectively. Our work focus
on the uplink channel estimation of the cascaded channels.
Specifically, in Stage I, only one user’s cascaded channel
is estimated. For convenience, this user is referred to as
the typical user.2 Information regarding the common RIS-BS
channel from the estimate of the typical user’s CSI is extracted
in order to reduce the pilot overhead of channel estimation for
other users in the next stage. Then, in Stage II, the cascaded
channel of other users is divided into two parts, a common part
and a unique part. The common parts can be readily obtained
with the estimated angle information and cascaded gains of the
typical user obtained in the first stage. This can help reduce
the pilot overhead of estimating the other users’ cascaded
channel since only a few pilots are required for estimating
their unique parts. Finally, it is observed that in the quasi-
static situation, the positions of the BS and the RIS are fixed,
and the changes in the physical positions of the users and
their surrounding obstacles are negligible over milliseconds,
corresponding to several channel coherence blocks [25], [26].
This observation leads to the reasonable assumption that the
angles remain unchanged for multiple coherence blocks while
the gains change from block to block. Hence, Stage III is used
for estimating the varying channel gains for all users.

In the following sections, we can conclude that the pilots
required for different users depend on the number of paths
between the user side and the RIS, which can be estimated by
the BS in this work. This needs BS to determine the typical
user, allocate the pilot slots required for different users, and
inform the users of this knowledge before the next estimation
period. The details of the adopted protocol will be discussed
later, first for the single-antenna user case and then finally for
the multi-antenna user case.

III. ESTIMATION IN THE FIRST COHERENCE BLOCK:
STAGE I AND STAGE II

In this section, we start from the single-antenna user case to
describe the details of full CSI estimation of all users in the
first coherence block, formulating it as two sparse recovery

2The user closest to the RIS is generally chosen as the typical user since its
reflected channel suffers from less severe path loss. Thus, the received signal
at the BS is stronger to ensure high estimation performance. The location
of users can be obtained using the global position system (GPS) [24], for
example.

problems in Stage I and Stage II. Then, we analyze the
pilot overhead and computational complexity of the proposed
method. This section lays the foundation for the extension to
the multi-antenna user case in Section V.

A. Stage I: Estimation of Full CSI for Typical User

In this subsection, we provide details on full CSI estimation
for a typical single-antenna user, denoted as user 1, where the
common AoAs are first estimated and then the cascaded gains
and AoDs are obtained.

1) Estimation of Common AoAs: Due to the UPA deployed
at the BS and the RIS, the direct DFT approach in [17]
and [21] cannot be used for AoA estimation from Y1 in (9).
Therefore, we propose a modified DFT approach utilizing the
properties of the Kronecker product to estimate the common
AoAs at the BS of the cascaded channel, i.e., AN in (4).
To this end, we first provide two lemmas as follows.

Lemma 1: When N1 → ∞ and N2 → ∞, the following
property holds

lim
N→∞

1
N

aH
N (ψj , νj)aN (ψi, νi) =

{
1 ψj = ψi, νi = νj

0 otherwise,
(10)

where N = N1×N2. (10) implies that AH
NAN = NIL where

IL is the identity matrix with dimension L × L.
Proof: Please refer to Appendix A.

Define an equivalent Fourier matrix ŨN� UN1⊗UN2 ∈
CN×N , where UN1 and UN2 are the DFT matrices with

(n, m)-th entries [UN1 ]n,m = 1√
N1

e−i
2π(n−1)(m−1)

N1 and

[UN2 ]n,m = 1√
N2

e
−i 2π(n−1)(m−1)

N2 , respectively. It can be

readily verified that ŨN is a symmetric and unitary matrix
according to its definition. Now we show an asymptotic
property of AN via the linear transformation ŨH

N .
Lemma 2: When N1 → ∞ and N2 → ∞, if the condition

dBS
λc

≤ 1
2 holds,3 then the linear transformation ŨH

NAN is
a tall sparse matrix with only one nonzero element in each
column, i.e.,

lim
N→∞

[ŨH
NAN ]nl,l �= 0, ∀l, (11)

where

nl = (n1(l) − 1)N2 + n2(l), (12)

and

n1(l) =

⎧⎪⎨⎪⎩
N1ψl + 1 ψl ∈ [0,

dBS

λc
)

N1 + N1ψl + 1 ψl ∈ [−dBS

λc
, 0),

n2(l) =

⎧⎪⎨⎪⎩
N2νl + 1 νl ∈ [0,

dBS

λc
)

N2 + N2νl + 1 νl ∈ [−dBS

λc
, 0).

(13)

Proof: Please refer to Appendix B.
Since typically L � N1, N2, Lemma 2 means that matrix
ŨH

NAN is a row sparse matrix with full column rank.
By substituting (8) into (9), we observe that ŨH

NY1 is an
asymptotically row-sparse matrix with L nonzero rows, and

3This condition holds to avoid AoA ambiguity.
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each row corresponds to one of the AoA pairs i.e., (ψl, νl).
Based on this fact, the estimation of the common AoAs
is equivalent to finding the indices of the nonzero rows of
ŨH

NY1. Note that n1(l), n2(l) are integers, and can be derived
from (12) as follows

n1(l) =
⌈

nl

N2

⌉
, n2(l) = nl − N2(n1(l) − 1). (14)

By combining (14) with Lemma 2, the AoA spatial frequency
pairs {(ψl, νl)}L

l=1 can be readily estimated. Due to the fact
that different scatterers have different angles, we can draw the
conclusion that any two nonzero elements are not in the same
row, i.e., nl �= ni for any l �= i.

2) Low-Complexity Angle Rotation for Suppressing Power
Leakage: To improve the angle estimation accuracy, the power
leakage issue [21] should be considered. In practice, finite
values for N1 and N2 lead to power leakage, which means
that the resolution of the estimated AoA (ψl, νl) is limited by
half of the DFT interval, i.e., 1

2N1
and 1

2N2
. To mitigate the

power leakage, an angle rotation operation is adopted and the
rotation matrix is defined as

R(Δψ, Δν) = R1(Δψ) ⊗ R2(Δν), (15)

where the diagonal matrices R1(Δψ) and R2(Δν) are respec-
tively given by

R1(Δψ) = Diag{1, e−iΔψ, . . . , e−i(N1−1)Δψ}, (16a)

R2(Δν) = Diag{1, e−iΔν, . . . , e−i(N2−1)Δν}, (16b)

where Δψ ∈ [− π
N1

, π
N1

] and Δν ∈ [− π
N2

, π
N2

]. We construct
L rotation matrices R(Δψl , Δνl ) to compensate for the L
estimated AoAs (ψl, νl). After angle rotation, the central point,
denoted as the (nl, l)-th element of ŨH

NR(Δψl , Δνl )AN , is
calculated as

[ŨH
NR(Δψl , Δνl)AN ]nl,l

= [UH
N1

R1(Δψl )aN1(ψl)]n1(l)⊗[UH
N2

R2(Δνl )aN2(νl))]n2(l)

= (
√

1
N1

N1∑
m=1

e−i2π(m−1)(ψl+
Δψl
2π −n1(l)−1

N1
))

× (
√

1
N2

N2∑
m=1

e−i2π(m−1)(νl+
Δνl
2π −n2(l)−1

N2
)). (17)

It can be found that the entries of ŨH
NR(Δψl , Δνl )AN have

only L nonzero elements when

Δψl = 2π(
n1(l) − 1

N1
− ψl), Δνl = 2π(

n2(l) − 1
N2

− νl).

(18)

The (Δψl, Δνl) in (18) are the required optimal angle rotation
parameters for (ψl, νl), which concentrates the power of the
respective frequency points and suppress power leakage. The
optimal angle rotation parameters (Δψ̂l, Δν̂l) can be found
via a 2-D search over the very small region Δψl ∈ [− π

N1
, π

N1
]

and Δνl ∈ [− π
N2

, π
N2

] [21], as follows:

(Δψ̂l, Δν̂l) = arg max
Δψl∈[− π

N1
, π

N1
],Δνl∈[− π

N2
, π

N2
]

||[ŨN ]H:,nl
R(Δψl , Δνl )Y1||2. (19)

The accuracy of the AoA estimation depends on the
number of grid points. The complexity of the 2-D search is
approximately O(Lg1g2), where g1 and g2 denote the number
of grid points in the interval [− π

N1
, π

N1
] and [− π

N2
, π

N2
],

respectively. Obviously, large values for g1 and g2 lead to high
computational complexity. Therefore, we exploit the structure
of the steering vector and propose a 1-D search method to
reduce the complexity of angle rotation. We note that the first
elements of the steering vectors, i.e., aN1(ψl) or aN2(νl), are
equal to 1. Using this fact, we can divide the 2-D search
into two 1-D searches. Specifically, we construct two rotation
matrices shown below to rotate ψ and ν, as

R̃1(Δψ)� R1(Δψ)⊗DN2 , R̃2(Δν)� DN1⊗R2(Δν), (20)

where R1(Δψ) and R2(Δν) are defined in (16). The matrices
DN1 ∈ CN1×N1 and DN2 ∈ CN2×N2 are diagonal whose
(1, 1) entry is equal to 1 and whose other elements are 0.
Defining Ũ1� UN1⊗DN2 and Ũ2� DN1⊗UN2 , we have the
following proposition.

Proposition 1: The angle estimation operation for the
l-th AoA pair (ψl, νl) shown in (17) can be divided into
two independent angle rotation operations with the (n1l, l)-
th element of ŨH

1 R̃1(Δψl)AN , and the (n2l, l)-th ele-
ment of ŨH

2 R̃2(Δνl)AN , where n1l and n2l denote the
nonzero element of the l-th column of ŨH

1 R̃1(Δψl)AN and
ŨH

2 R̃2(Δνl)AN , respectively, and satisfy

n1l = (n1(l) − 1)N2 + 1, n2l = n2(l). (21)

Proof: Please refer to Appendix C.
Based on Proposition 1, the optimal angle rotation parameters
(Δψ̂l, Δν̂l) for (ψl, νl) can be found by solving the two sep-
arate 1-D search problems shown in (22), which significantly
reduces the complexity to O(L(g1 + g2)):

Δψ̂l = arg max
Δψl∈[− π

N1
, π

N1
]
||[Ũ1]H:,n1l

R̃1(Δψl)Y1||2, (22a)

Δν̂l = arg max
Δνl∈[− π

N2
, π

N2
]
||[Ũ2]H:,n2l

R̃2(Δνl)Y1||2. (22b)

Denote the estimated angle rotations as {(Δψ̂l, Δν̂l)}L
l=1,

then the estimated AoA spatial frequency pair of the l-th path
is given by

ψ̂l =

⎧⎪⎪⎨⎪⎪⎩
n1(l) − 1

N1
− Δψ̂l

2π
n1(l) ≤ N1

dBS

λc

n1(l) − 1
N1

− 1 − Δψ̂l

2π
n1(l) > N1

dBS

λc
,

(23a)

ν̂l =

⎧⎪⎨⎪⎩
n2(l) − 1

N2
− Δν̂l

2π
n2(l) ≤ N2

dBS

λc
n2(l) − 1

N2
− 1 − Δν̂l

2π
n2(l) > N2

dBS

λc
.

(23b)

With the estimated spatial frequency pairs for the AoAs,
{(ψ̂l, ν̂l)}�Ll=1, we can obtain an estimate of the common
AoA steering matrix ÂN = [aN (ψ̂1, ν̂1), . . . ,aN (ψ̂

�L, ν̂
�L)] ∈

CN×�L. AoA estimation of the different paths at the BS
is summarized in Algorithm 1, where Γ(z) represents the
operation of searching the peak power of vector z and L̂ is
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the estimated number of propagation paths in step 3.4 ΩN ,
ΩN1 , and ΩN2 are the sets with cardinality L̂, and denote the
position indices of the nonzero rows for ŨH

NAN , UH
N1

AN1 ,
and UH

N2
AN2 , respectively.

Algorithm 1 Low-Complexity Angle Rotation Based AoA
Estimation
Input: Y1.
1: Calculate linear transformation of Y1: Ỹ1 = ŨH

NY1;
2: Calculate the sum power of each row: z(n) =

||[Ỹ1]n,:||2, ∀n = 1, 2, . . . , N ;
3: Find the rows with the peak power: (ΩN , L̂) = Γ(z), where

ΩN = {nl, l = 1, · · · , L̂};
4: Construct two sets: ΩN1 = {n1(l), l = 1, · · · , L̂}, ΩN2 =

{n2(l), l = 1, · · · , L̂} via (14);
5: for 1 ≤ l ≤ L̂ do
6: Calculate n1l and n2l respectively via (21);
7: Find Δψ̂l and Δν̂l via (22);
8: Estimate ψ̂l and ν̂l according to (23);
9: end for

Output: {(ψ̂l, ν̂l)}�Ll=1 and ÂN .

Remark 1: Since the common AoA steering matrix AN is
shared by all users in MU scenario, the received signals from
K users in Stage I and Stage II during the first coherence
block can be utilized jointly to estimate AN . Accordingly, the
input of Algorithm 1 is given by Y = [Y1,Y2, . . . ,YK ] ∈
CN×(

�K
k=1 τk). In this case, the number of measurements

used for the estimation of AN increases, which enhances the
estimation performance and alleviates the error propagation
effect in the following stages.

3) Estimation of the Cascaded Spatial Frequencies and
Gains: By substituting AN = ÂN + ΔAN and applying
Lemma 1, we take the linear transformation 1

N
√

pÂ
H
N of the

received signals to eliminate the effects of the common AoAs,
i.e.,

1
N
√

p
ÂH

NY1 = ΛAH
MDiag{h1}E1 +

1
N
√

p
ÂH

N (N1

+
√

pΔANΛAH
MDiag{h1}E1). (24)

Here, ΔAN � AN − ÂN is treated as the estimation error
between the common AoA and its estimate, and the third
term ( 1

N ÂH
NΔANΛAH

MDiag{h1}E1) represents the corre-
sponding negative error propagation effect. Clearly, ΔAN can
be reduced effectively via the MU joint estimation strategy
discussed in Remark 1.

Now we define the transpose of 1
N

√
pÂ

H
NY1 as an equiva-

lent measurement matrix Y1 ∈ Cτ1×L shown below

Y1 � (
1

N
√

p
ÂH

NY1)H

= EH
1 Diag{h∗

1}AMΛ∗ + N1 = EH
1 HRIS + N1, (25)

4If the power of the row is lager than that of its neighbor rows, and
far exceeds the minimum power of z(n) based on a adjustable predefined
ratio threshold, we put this row index into set ΩN . Alternately, classical
minimum description length (MDL) and novel signal subspace matching
(SSM) schemes [27] can be adopted as a pre-processing operation before
Algorithm 1 to determine the �L.

where HRIS �Diag{h∗
1}AMΛ∗ and N1 is the corresponding

transpose of the second term in Eq. (24), seen as the equivalent
noise. By exploiting the structure of HRIS, we have

HRIS = h∗
1 • (AMΛ∗) = (AM,1β1)

∗ • (AMΛ∗)
= (A∗

M,1 • AM )(β∗
1 ⊗ Λ∗), (26)

where A∗
M,1 • AM = [aM (ω1 − ϕ1,1, μ1 − θ1,1), aM (ω2 −

ϕ1,1, μ2 − θ1,1) . . . ,aM (ωL −ϕ1,J1 , μL − θ1,J1)] ∈ CM×J1L,
and the last equality uses the identity (A • B)(C ⊗ D) =
(AC)• (BD) [28]. To extract the cascaded directional spatial
frequency pairs {(ωl − ϕ1,j , μl − θ1,j)}J1L

j=1,l=1 and gains
(β∗

1 ⊗ Λ∗) from Y1, (25) could be approximated using the
virtual angular domain (VAD) representation and converted
into a J1L-sparse recovery problem via vectorization [13], but
this approach has high complexity and performance loss.

Instead, another method is developed as follows. We first
estimate J1 cascaded spatial frequency pairs and gains from a
typical column vector of Y1 using CS, and then estimate the
remaining parameters by exploiting the correlation between
the typical column and other columns. Specifically, denote yr

as the r-th column of Y1, which is given by

yr = EH
1 Diag{h∗

1}[AMΛ∗]:,r + nr

= EH
1 h∗

1 • (α∗
raM (ωr, μr)) + nr

= EH
1 (A∗

M,1 • aM (ωr, μr))α∗
rβ

∗
1 + nr, (27)

where A∗
M,1 • aM (ωr, μr) = [aM (ωr − ϕ1,1, μr −

θ1,1), . . . ,aM (ωr − ϕ1,J1 , μr − θ1,J1)] ∈ CM×J1 and nr is
the r-th column of N1. Note that Diag{h∗

1}[AMΛ∗]:,r is
the r-th column of HRIS, which we denote as hRIS,r . Since
{(ωr − ϕ1,j)}J1

j=1 and {(μr − θ1,j)}J1
j=1 lie in the interval

[−2 dRIS
λc

, 2 dRIS
λc

], we can formulate (27) as a J1-sparse signal
recovery problem

yr = EH
1 (A1 ⊗ A2)br + nr, (28)

where A1 ∈ CM1×D1 and A2 ∈ CM2×D2 are over-
complete dictionary matrices (D1 ≥ M1, D2 ≥ M2)
with resolutions 1

D1
and 1

D2
, respectively, and the columns

of A1 and A2 contain values for aM1(ωr − ϕ1,j)
and aM2(μr − θ1,j) on the angle grid, i.e., A1 =
[aM1(−2 dRIS

λc
), aM1((−2+ 4

D1
)dRIS

λc
), . . . ,aM1((2− 4

D1
)dRIS

λc
)]

and A2 = [aM2(−2 dRIS
λc

), aM2 ((−2+ 4
D2

)dRIS
λc

), . . . ,aM2((2−
4

D2
)dRIS

λc
)].

In addition, br ∈ CD1D2×1 in (28) is a sparse vector with
J1 nonzero entries corresponding to the cascaded channel
path gains {α∗

rβ
∗
1,j}J1

j=1. To obtain the best possible CS
performance, the RIS phase shift training matrix E1 should
be designed to ensure that the columns of the equivalent
dictionary EH

1 (A1 ⊗ A2) are orthogonal. A detailed design
of E1 that achieves this goal can be found in [17]. A simpler
method is to choose the random Bernoulli matrix as E1, i.e.,
randomly generate the elements of E1 from {−1, +1} with
equal probability [16]. Later in Section VI, we will show
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that this random method has near-optimal performance, and
provides a nearly orthogonal equivalent dictionary.5

Using CS, we obtain the cascaded AoD pair, i.e.,
(ωr −ϕ1,j , μr − θ1,j). The corresponding cascaded AoD, i.e.,
(ωr − ϕ1,j) and (μr − θ1,j), can be obtained similarly using
the properties of the Kronecker product. Assume that the m-th
element of sparse vector br is nonzero, then the m-th column
of (A1 ⊗ A2) is the corresponding cascaded steering vector.
The corresponding indices in A1 and A2, denoted as m1 and
m2, can be derived as

m1 =
⌈

m

D2

⌉
, m2 = m − D2(m1 − 1). (29)

Finally, we obtain the estimate of the cascaded AoD, i.e.,
{( ̂ωr − ϕ1,j)}Ĵ1

j=1 and {( ̂μr − θ1,j)}Ĵ1
j=1. As a result, ĥRIS,r

is obtained according to (27). Estimates of the other columns
of HRIS, i.e., {hRIS,l}L

l�=r, can be obtained by exploiting
the correlation among different columns. To illustrate the
correlation relationship, a compensation matrix ΔHl with
respect to the reference index r is defined as

ΔHl =
α∗

l

α∗
r

Diag{aM (ωl − ωr, μl − μr)}
= γlDiag{aM (Δωl, Δμl)}, (30)

where Δωl, Δμl are rotation factors and γl is a gain scaling
factor given by

Δωl = ωl − ωr, Δμl = μl − μr, γl =
α∗

l

α∗
r

. (31)

Clearly, Δωl, Δμl ∈ [−2 dRIS
λc

, 2 dRIS
λc

]. Then, we have

ΔHlhRIS,r

= ΔHlDiag{h∗
1}(α∗

raM (ωr, μr))
= ΔHlDiag{aM (ωr, μr)}(α∗

rh
∗
1)

= γlDiag{aM (Δωl,Δμl)}Diag{aM1(ωr)⊗aM2(μr)}(α∗
rh

∗
1)

= (Diag{aM1(Δωl)}Diag{aM1(ωr)})
⊗ (Diag{aM2(Δμl)}Diag{aM2(μr)})(α∗

l h
∗
1)

= Diag{aM1(ωl)} ⊗ Diag{aM2(μl)}(α∗
l h

∗
1) = hRIS,l.

This equality shows that we can estimate the compensation
matrix ΔHl instead of directly estimating hRIS,l. Specifically,
hRIS,r is estimated by applying CS to (28), and hRIS,l can be
rewritten as

hRIS,l = γlDiag{aM (Δωl, Δμl)}hRIS,r

= Diag{hRIS,r}aM (Δωl, Δμl)γl. (32)

We define cl(Δωl, Δμl) = EH
1 Diag{ĥRIS,r}aM (Δωl, Δμl).

Then, by replacing hRIS,r with ĥRIS,r + ΔhRIS,r, the l-th

5Please note that the number of scatterers in the user 1-RIS channel,
i.e., the sparsity level for the sparse recovery problem associated with (28),
denoted as J1, is estimated via the selected CS-based techniques. For example,
in Section VI, the proposed estimation protocol adopts OMP as the recovery
algorithm. In this case, the stopping criteria for this algorithm is based on the
power of the residual error, i.e., the algorithm is stopped when the residual
energy is smaller than a predefined threshold. Thus the number of iterations
is treated as the estimate of J1.

column of Y1 in (25) is given by

yl = EH
1 Diag{hRIS,r}aM (Δωl, Δμl)γl + nl

= EH
1 Diag{ĥRIS,r}aM (Δωl, Δμl) + nnoise, (33)

where nnoise � EH
1 Diag{ΔhRIS,r}aM (Δωl, Δμl) + nl rep-

resents the corresponding noise vector and ΔhRIS,r is the
estimation error of hRIS,r.6

To find the optimal rotation factors (Δωl, Δμl), a simple
2-D search method can be used:

(Δω̂l, Δμ̂l) = arg max
Δω,Δμ∈[−2

dRIS
λc

,2
dRIS

λc
]

|〈yl, cl(Δω, Δμ)〉| .

(34)

The gain scaling factor γl can be determined as the solution
to the least square (LS) problem

γ̂l = argmin
x

||yl − cl(Δω̂l, Δμ̂l)x||, (35)

whose solution is γ̂l = (cH
l (Δω̂l, Δμ̂l)cl(Δω̂l, Δμ̂l))−1

cH
l (Δω̂l, Δμ̂l)yl. Substituting the solutions of (34) and (35)

into (32), we can obtain ĥRIS,l, (1 ≤ l ≤ L, l �= r). Finally,
the estimated cascaded channel of user 1 is given by

Ĝ1 = ÂNĤH
RIS, (36)

where ĤRIS = [ĥRIS,1, · · · , ĥRIS,L]. Furthermore, the cas-
caded AoD in hRIS,l can be obtained as

ωl − ϕ1,j = (ωr−ϕ1,j)+Δωl, μl−θ1,j = (μr−θ1,j)+Δμl,

(37)

where the estimate of (ωr − ϕ1,j , μr − θ1,j) and (Δωl, Δμl)
can be readily obtained from (27) and (34), respectively. The
overall estimation of G1 is summarized in Algorithm 2.

Algorithm 2 Estimation of Full CSI for Typical User
Input: Y1.
1: Return the estimated number of paths between BS and RIS

L̂ and AoA steering matrix ÂN from Algorithm 1;
2: Calculate equivalent measurement matrix Y1 =

[y1, . . . ,y�L];
3: Choose the typical reference index r and estimate hRIS,r

by solving sparse recovery problem associated with (28);
4: for 1 ≤ l ≤ L̂, l �= r do
5: Estimate (Δωl, Δμl) according to (34);
6: Estimate γl according to (35);
7: Estimate hRIS,l according to (32);
8: end for

Output: Ĝ1 = ÂN [ĥRIS,1, · · · , ĥRIS,�L]H.

6To reduce the error propagation, the reference index r can be chosen based
on the maximum received power criterion, i.e., r = arg max

i∈[1,�L]
||yi||2.
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B. Stage II: Estimation of Full CSI for Other Users

In this subsection, the property that all users share the
common RIS-BS channel is invoked for reducing the pilot
overhead of channel estimation. First, we re-exploit the struc-
ture of the cascaded channel Gk, and then divide it into
two parts, i.e., a common part and a unique part. Then, only
re-estimating the unique part is necessary for obtaining the
full CSI of the other users.

1) Re-Express Cascaded Channel: In order to illustrate the
necessity of re-expressing cascaded channel Gk, let us recall
its structure and see why the common RIS-BS channel H
cannot be obtained in Stage I. According to (8), all users
share the common H consisting of three matrices, i.e., AN ,
Λ and AM . The first, AN , is estimated in Stage I. However,
Λ and AM cannot be extracted separately from G1 since
we can only estimate the spatial frequencies of the cascaded
AoDs, i.e., (ωl−ϕ1,j), (μl−θ1,j) and the cascaded gains, i.e.,
αlβ1,j for any l and j. If other users only utilize the obtained
ÂN , the estimation for these users is the same as that of the
typical user, and thus the pilot overhead cannot be decreased
further. Therefore, we aim to fully exploit the structure of
H so as to utilize the common channel’s information from
Λ and AM .

Motivated by this, we decompose the cascaded channel Gk

into two parts, i.e., a common part and a unique part, where
the common part can be obtained from the estimation of G1 in
Stage I. The constructed common part has the full information
of AN , and the re-parameterized information of Λ and AM ,
so as to achieve the full exploitation of H. Then, we only need
to re-estimate the unique part of the cascaded channel for the
other users. To this end, we denote the common part of Gk

as Hs ∈ CN×M , which can be regarded as a substitute for
H from G1. Similarly, the unique part of Gk is denoted by
hs,k ∈ CM×1, which can be regarded as a substitute for hk.
Then, Gk can be re-expressed as

Gk = HsDiag{hs,k} ∈ CN×M , ∀k ∈ K. (38)

In the following, we first construct the common part Hs

with the knowledge obtained in Stage I. Then, we estimate
each user’s unique part hs,k.

2) Construction of Common Part: Define the average value
of user 1’s complex gains β1 as β = 1

J1
1T

J1
β1, then we have

Λ = Diag{α1, α2, . . . , αL} = αrDiag{γ∗
1 , γ∗

2 , . . . , γ∗
L}

=
1
β

βαrDiag{γ∗
1 , γ∗

2 , . . . , γ∗
L} � 1

β
Λs. (39)

Here, Λs = ( 1
J1

1T
J1

β1αr)Diag{γ∗
1 , γ∗

2 , . . . , γ∗
L}. Obviously,

β1αr can be obtained by solving the sparse recovery problem
corresponding to (27) and γl can be obtained according to (35).
Thus, the constructed matrix, Λs, can be readily calculated.

Similarly, the matrix AM can be rewritten as

AM = [aM (ω1, μ1), . . . ,aM (ωL, μL)]
= Diag{aM (ωr, μr)}AΔM , (40)

where AΔM = [aM (Δω1, Δμ1), . . . ,aM (ΔωL, ΔμL)]. Note
that the rotation factors Δωl, Δμl can be obtained by Algo-
rithm 2, but we need to find (ωr, μr), which is not possible.

Instead, we introduce two parameters, ωs = 1
J1

∑J1
j=1(ωr −

ϕ1,j) and μs = 1
J1

∑J1
j=1(μr − θ1,j) as substitutes for ωr

and μr, which can be readily obtained since (ωr − ϕ1,j)
and (μr − θ1,j) for ∀j ∈ {1, . . . , J1} have been estimated
in Algorithm 2.

Then, define ϕ1 as (− 1
J1

∑J1
j=1 ϕ1,j) and θ1 as

(− 1
J1

∑J1
j=1 θ1,j). The following relationship exists between

(ωs, μs) and (ωr, μr):

ωs =
1
J1

J1∑
j=1

(ωr − ϕ1,j) = ωr + ϕ1, (41a)

μs =
1
J1

J1∑
j=1

(μr − θ1,j) = μr + θ1. (41b)

Based on the above definitions, Diag{aM (ωr, μr)} in (40) can
be represented as

Diag{aM (ωr, μr)}
= Diag{aM (ωs − ϕ1, μs − θ1)}
= Diag{aM1(ωs − ϕ1) ⊗ aM2(μs − θ1)}
= (Diag{aM1(−ϕ1)} ⊗ Diag{aM2(−θ1)})

(Diag{aM1(ωs)} ⊗ Diag{aM2(μs)})
= Diag{aM (−ϕ1,−θ1)}Diag{aM (ωs, μs)}.

Then, combining this equality with (40), AM is rewritten as

AM = Diag{aM (−ϕ1,−θ1)}Diag{aM (ωs, μs)}AΔM

� Diag{aM (−ϕ1,−θ1)}As, (42)

where As = Diag{aM (ωs, μs)}AΔM can be readily esti-
mated using Algorithm 2. Based on (39) and (42), the common
RIS-BS channel matrix H in (4) is re-expressed as

H = ANΛAH
M = AN

1
β
ΛsAH

s Diag{aM (ϕ1, θ1)}

� 1
β
HsDiag{aM (ϕ1, θ1)}, (43)

where Hs = ANΛsAH
s is the common part of the cascaded

channel that can be estimated using Algorithm 1 and Algo-
rithm 2. Then, combining (43) with (38), we have

Gk = HDiag{hk} =
1
β
HsDiag{aM (ϕ1, θ1)}Diag{hk}

= HsDiag{ 1
β

Diag{aM (ϕ1, θ1)}hk} = HsDiag{hs,k},
(44)

where hs,k = 1
β
Diag{aM (ϕ1, θ1)}hk is the unique part of

user k’s channel, that needs to be obtained. Next we will
show how to estimate the unique part and present the channel
estimation strategy for other users, leading to a significant
reduction in the pilot overhead.

3) Estimation of Unique Part: Denote the estimate of Hs

as Ĥs = ÂN Λ̂sÂH
s where ÂN , Λ̂s, and Âs are the estimates

of AN , Λs, and As, respectively. By replacing Hs with Ĥs +
ΔHs where ΔHs represents the error between Hs and its
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estimate, user k’s received data Yk after eliminating the effects
of the estimated common AoAs is expressed as

1
N
√

p
ÂH

NYk =
1
N

ÂH
NHsDiag{hs,k}Ek +

1
N
√

p
ÂH

NNk

= Λ̂sÂH
s Diag{hs,k}Ek +

1
N
√

p
ÂH

NNk

+
1
N

ÂH
NΔHsDiag{hs,k}Ek. (45)

For the estimation of hs,k, define wk = vec( 1
N

√
pÂH

NYk) ∈
CLτk×1. Then, we have

wk = vec(Λ̂sÂH
s Diag{hs,k}Ek) + ñk

= (ET
k � Λ̂sÂH

s )hs,k + ñk = Wkhs,k + ñk, (46)

where Wk � (ET
k � Λ̂sÂH

s ) and ñk is the correspond-
ing equivalent noise vector given by vec( 1

N
√

pÂ
H
NNk +

1
N ÂH

NΔHsDiag{hs,k}Ek) ∈ CLτk×1. The second equality
is obtained via vec(ADiag{b}C) = (CT � A)b [29]. Then,
substituting hk = AM,kβk in (5) into hs,k, we have

hs,k =
1
β

Diag{aM (ϕ1, θ1)}AM,kβk

= (aM (ϕ1, θ1) • AM,k)
1
β

βk, (47)

where aM (ϕ1, θ1) • AM,k = [aM (ϕk,1 + ϕ1, θk,1 +
θ1), . . . ,aM (ϕk,Jk

+ ϕ1, θk,Jk
+ θ1)] ∈ CM×Jk . Since both

ϕk,l + ϕ1 and θk,l + θ1 lie within [−2 dRIS
λc

, 2 dRIS
λc

], we can
formulate (46) as a Jk-sparse signal recovery problem

wk = Wkhs,k + ñk = Wk(aM (ϕ1, θ1) • AM,k)
1
β

βk + ñk

= Wk(A1 ⊗ A2)dk + ñk. (48)

Here A1 ∈ CM1×D1 and A2 ∈ CM2×D2 are overcomplete
dictionary matrices similar to (28) satisfying D1 ≥ M1

and D2 ≥ M2, and dk ∈ CD1D2×1 is a sparse vector
with Jk nonzero entries corresponding to { 1

β
βk,j}Jk

j=1. Hence,
the angle estimation problem corresponding to (48) can be
solved using CS-based techniques. To improve the estimation
performance, the alternating optimization (AO) method in [17]
can be adopted to optimize the RIS phase shift training matrix
Ek so as to ensure the near column-orthogonality of the
equivalent dictionary Wk(A1⊗A2). In addition, the estimate
of the number of scatterers between user-RIS channel for
user k, i.e., the sparsity level for the sparse recovery problem
associated with (48) Jk, is obtained by the selected CS-
based techniques, similarly to the estimation of J1 discussed
before. Note that we obtain the equivalent AoA pair of user
k’s user-RIS channel, i.e., (ϕk,j + ϕ1, θk,j + θ1), by solving
angle estimation problem based on (48). The corresponding
equivalent AoAs, i.e., (ϕk,j + ϕ1) and (θk,j + θ1), can be
obtained similar to (29). Assume that the p-th element of
sparse vector dk is nonzero, then the corresponding indices
in A1 and A2 in (48), denoted by p1 and p2, are derived as

p1 =
⌈

p

D2

⌉
, p2 = p − D2(p1 − 1). (49)

Finally, we obtain an estimate of the equivalent AoA
spatial frequencies for user k’s user-RIS channel, i.e.,

{( ̂ϕk,j + ϕ1)}Ĵk
j=1 and {( ̂θk,j + θ1)}Ĵk

j=1. Furthermore, user
k’s cascaded AoDs, i.e., (ωl − ϕk,j) and (μl − θk,j), for
∀l ∈ {1, . . . , L} and ∀j ∈ {1, . . . , Jk}, can be also obtained
as follows:

ωl − ϕk,j = ωr + ϕ1 − (ϕ1 + ϕk,j) + ωl − ωr

= ωs − (ϕ1 + ϕk,j) + Δωl, (50a)

μl − θk,j = μr + θ1 − (θ1 + θk,j) + μl − μr

= μs − (θ1 + θk,j) + Δμl. (50b)

Based on (31), (41) and (48), the parameters Δωl, Δμl,
ωs, μs, (ϕ1 + ϕk,j) and (θ1 + θk,j) for ∀l ∈ {1, 2, . . . , L}
and ∀j ∈ {1, 2, . . . , Jk} can be readily estimated. Finally, the
completed CS-based estimation of Gk for 2 ≤ k ≤ K is
summarized in Algorithm 3. As shown in Algorithm 3, the
obtained common part of cascaded channel Hs allows us to
estimate the unique part hs,k with reduced pilot overhead.

Algorithm 3 Estimation of Full CSI for Other Users

Input: Yk, ÂN .
1: Obtain the estimate Λ̂s based on (39);
2: Obtain the estimate Âs based on (42);
3: Obtain the estimate of the common part, i.e., Ĥs =

ÂN Λ̂sÂH
s ;

4: for 2 ≤ k ≤ K do
5: Calculate wk = vec( 1

N
√

pÂH
NYk);

6: Calculate equivalent dictionary Wk(A1⊗A2) according
to (46);

7: Estimate unique part hs,k by solving sparse recovery
problem associated with (48);

8: Obtain the estimate of cascaded channel, i.e.,
Ĝk = ĤsDiag{ĥs,k};

9: end for
Output: Ĝk, 2 ≤ k ≤ K .

C. Pilot Overhead and Computational Complexity Analysis

In this subsection, we first analyze the pilot overhead
required for the full CSI estimation. Then, the correspond-
ing computational complexity is evaluated. For simplicity,
J1 = J2 = · · · = JK = J is assumed.

1) Pilot Overhead Analysis : Clearly, the number of pilot
symbols directly affects the sparse recovery performance for
equations (28) and (48). According to [30], to find a l-sparse
complex signal (vector) with dimension n, the number of
measurements m is required to be on the order of O(l log(n)),
which is proportional to the sparsity level l.

Based on this fact, we first analyze the number of pilots
required for the typical user, i.e., user 1. For the sparse
recovery problem associated with (28) in Stage I, the dimen-
sion of the equivalent sensing matrix F1 � EH

1 (A1 ⊗ A2)
is τ1 × D1D2 where D1 ≥ M1 and D2 ≥ M2, and the
corresponding sparsity level is J1, thus the pilot overhead
required for user 1 should satisfy τ1 ≥ O(J1 log(D1D2)) ≥
O(J1 log(M1M2)) = O(J1 log(M)).
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For the sparse recovery problem associated with (48) in
Stage II, the dimension of the equivalent sensing matrix
Fk � Wk(A1 ⊗ A2) is Lτk × D1D2 where D1 ≥
M1 and D2 ≥ M2, and the corresponding sparsity level
is Jk, thus user k needs τk ≥ O(Jk log(D1D2)/L) ≥
O(Jk log(M1M2)/L) = O(Jk log(M)/L) pilot symbols.
Therefore, the overall required pilot overhead in the first
coherence block is O(J log(M) + (K − 1)J log(M)/L).

2) Computational Complexity Analysis: For the estimation
of the typical user in Stage I shown in Algorithm 2, the
computational complexity mainly stems from Algorithm 1 in
Step 1, the CS-based method for the estimation of hRIS,r in
Step 3 and the correlation based scheme in Step 5. Specifically,
the dominant complexity for Algorithm 1 are calculating the
matrix multiplication in its Step 1 with computational com-
plexity of O(N2τ1) and implementing the angle rotation in its
Step 7 with computational complexity of O(Nτ1L(g1 + g2)).
We take OMP as the recovery algorithm, whose corresponding
dominant complexity is O(mnl) [17], where m is the length of
the measurements, and n is the length of the sparse signal with
sparsity level l. Hence, the complexity for estimating hRIS,r

is O(τ1D1D2J1). Additionally, the computational complexity
of the correlation based scheme is given by O(Mτ1(L −
1)d1d2), where d1 and d2 represent the search grids for
Δωl and Δμl within [−2 dRIS

λc
, 2 dRIS

λc
], respectively. The overall

computational complexity in Stage I is O(τ1D1D2J +N2τ1+
Nτ1L(g1 + g2) + Mτ1(L − 1)d1d2).

Then, we analyze the computational complexity for the
estimation of other users in Stage II shown in Algorithm 3,
which mainly stems from the CS-based method for estimation
of hs,k in Step 7. Similarly, we choose OMP to solve the
sparse recovery problem associated with (48), and thus the
corresponding computational complexity is O(τkLD1D2Jk).
Consider (K − 1) users in total, the overall computational
complexity in Stage II during the first coherence block is
O((K − 1)τkLD1D2J).

IV. CHANNEL ESTIMATION IN REMAINING

COHERENCE BLOCKS

After the first coherence block, we adopt the LS estimator
to re-estimate the cascaded gains since the angles remain
unchanged during the remaining coherence blocks. Later we
will see the required pilot overhead can be reduced further in
this stage.

Without loss of generality, we consider an arbitrary k from
K and show how to re-estimate user k’s channel gains. Similar
to (25), we first take user k’s equivalent measurement matrix
Yk, i.e., Yk = ( 1

N
√

pÂH
NYk)H ∈ Cτk×L, where ÂN has been

acquired in Stage I. Then, following the same derivations as
for (27), the r-th column of Yk, denoted as yk,r , is given by

yk,r = EH
k (A∗

M,k • aM (ωr, μr))α∗
rβ

∗
k + nk,r

� EH
k Vk,rα

∗
rβ

∗
k + nk,r. (51)

Here, Vk,r � A∗
M,k • aM (ωr, μr)=[aM (ωr − ϕk,1, μr −

θk,1), . . . ,aM (ωr − ϕk,Jk
, μr − θk,Jk

)] ∈ CM×Jk

and nk,r is the r-th column of [ 1
N

√
pÂ

H
N (Nk +√

pΔANΛAH
MDiag{hk}Ek)]H. We have already obtained

an estimate of Vk,r , denoted by V̂k,r , in the first coherence
block. Specifically, for the typical user, i.e., user 1,
{(ωr − ϕ1,j , μr − θ1,j)}J1

j=1 are estimated from (27) and (37)
in Stage I, while for other users, {(ωr − ϕk,j , μr − θk,j)}Jk

j=1

are estimated from (50) in Stage II.
The updated cascaded channel gain β∗

kα∗
r in (51) can be

found using the LS estimator

β̂∗
kα∗

r = (V̂H
k,rEkEH

k V̂k,r)−1V̂H
k,rEkyk,r. (52)

Then, following the same operation shown in (36), and
substituting (52) into (51), the estimate of user k’s cascaded
channel during the remaining coherence blocks is given by

Ĝk = ÂNĤH
RIS,k = ÂN [ĥRISk,1, . . . , ĥRISk,L]H

= ÂN [V̂k,1β̂
∗
kα∗

1, . . . , V̂k,Lβ̂∗
kα∗

L]H, (53)

where hRISk,r represents the r-th column of HRIS,k.
For the pilot overhead analysis, we assume J1 = J2 = · · · =

JK = J as before. For the LS problem in (51), τk ≥ Jk should
hold for user k. Thus, the minimum number of pilot symbols
can be chosen as τk = Jk, which is less than that required
in Stage II. Given K total users, the overall minimum pilot
overhead is JK . On the other hand, the dominant complexity
of LS problem in (51) is O(τkJ2). Since obtaining the entire
cascaded channel, i.e., Gk, needs to solve the LS problem
L times, the total computational complexity for user k is
O(τkJ2L). Thus the overall computational complexity in each
remaining coherence block is O(τkJ2LK).

V. EXTENSION TO MULTI-ANTENNA USER CASE

In this section, we extend the full CSI estimation method in
the first coherence block to the multi-antenna user case.7 First,
the system model and corresponding two-phase channel esti-
mation strategy are described. Then, we adopt an OMP-based
method to estimate the AoDs at the users in Phase I. The
remaining parameters including the common AoAs at the BS,
the cascaded AoDs at the RIS, and the cascaded gains are
estimated in Phase II, similarly to the methods developed for
the single-antenna user case in Section III. Lastly, the required
pilot overhead and computation complexity for the proposed
method are analyzed.

A. Multi-Antenna Users Model and Channel Estimation
Strategy

1) System Model: We assume that K users are present with
an Qk = Qk1 ×Qk2 UPA for user k, while the other settings
are the same as in the single-antenna user case. Then, hk in (3)
and (5) can be modified as

Hk =
Jk∑

j=1

βk,jaM (ϕk,j , θk,j)aH
Qk

(ηk,j , χk,j)

= AM,kBkAH
Q,k ∈ CM×Qk , ∀k ∈ K, (54)

7The re-estimation of channel gains in the remaining coherence blocks can
be extended to the multi-antenna-users case in a straightforward way, and thus
will not be explicitly considered.
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where (ηk,j , χk,j) represents the AoD of the j-
th path in the user k-RIS channel, and AQ,k =
[aQk

(ηk,1, χk,1), . . . ,aQk
(ηk,Jk

, χk,Jk
)] ∈ CQk×Jk and

Bk = Diag{βk,1, . . . , βk,Jk
} ∈ CJk×Jk are the AoD steering

matrix and complex gain matrix of user k, respectively.
Other parameters are as defined in Section II. With Hk , the
transmission model in (6) becomes

yk(t) = HDiag{et}Hk
√

psk(t) + nk(t), (55)

where sk(t) ∈ CQk×1 is the pilot vector for user k in time
slot t. Vectorizing (55), we have

yk(t) =
√

p(sT
k (t) ⊗ IN )vec(HDiag{et}Hk) + nk(t)

� √
p(sT

k (t) ⊗ IN )Gket + nk(t), (56)

where IN represents the N × N identity matrix, and Gk =
HT

k � H is the cascaded user-RIS-BS channel of user k that
is to be estimated. The above equality is also obtained via
vec(ADiag{b}C) = (CT � A)b. Combining (54) with (4),
Gk can be rewritten as

Gk = (AM,kBkAH
Q,k)T � (ANΛAH

M )

= (A∗
Q,k ⊗ AN )(BT

k ⊗ Λ)(AT
M,k � AH

M )

= (A∗
Q,k ⊗ AN )(Bk ⊗ Λ)(AM,k • A∗

M )T, (57)

where the above equalities are obtained using (A ⊗ B)(C �
D) = (AC) � (BD) and AT � BT = (A • B)T [28], [29].
The third term (AM,k •A∗

M ) accounts for the cascaded AoDs
at the RIS, similar to the single-antenna user case.

2) Channel Estimation Strategy: For the full-CSI estimation
of any user k, a two-phase estimation strategy is adopted,
where the AoDs at the users, i.e., AQ,k, is estimated in Phase
I, after which the remaining parameters in (57) are estimated
in Phase II. Specifically, in this strategy, Υk blocks of time
slots are used for the channel estimation of user k, and the i-th
block has V

(i)
k time slots. The RIS phase shift vector remains

invariant for each time slot within a given block, and is denoted
by e(i) for ∀i ∈ {1, 2, . . . ,Υk}. Later we will see that Phase
I only occurs in the first block, and V

(i)
k can be different for

different users or/and different blocks, while Phase II consists
of the whole blocks.

B. Estimation in Phase I: Angle Estimation at Users

In this subsection, we describe the estimation of the AoDs
at the users.

During the first block, user k transmits the pilot sequence

S(1)
k =

[
s(1)
1 , . . . , s(1)

V
(1)

k

]
∈ CQk×V

(1)
k , and the received signal

matrix Y(1)
k =

[
y(1)

k (1), . . . ,y(1)
k (V (1)

k )
]
∈ CN×V

(1)
k at the

BS is given by

Y(1)
k =

√
pHDiag{e(1)}HkS

(1)
k + N(1)

k

=
√

pANΛAH
MDiag{e(1)}AM,kBkAH

Q,kS
(1)
k + N(1)

k .

(58)

AQ,k can be directly obtained from (58).
Specifically, for the estimation of AQ,k, an OMP-based

method can be adopted, which takes the transpose of (58)

and formulates it as a simultaneously sparse approximation
problem [18], [31]

(Y(1)
k )H = (S(1)

k )HAQ,kΓk + (N(1)
k )H ∈ CV

(1)
k ×N , (59)

where Γk represents the remaining terms according to (58).
Similar to equations (28) and (48), by using the VAD repre-
sentation, (59) can be approximated as

(Y(1)
k )H = (S(1)

k )H(AQ,1 ⊗ AQ,2)Γ̃k + (N(1)
k )H, (60)

where AQ,1 ∈ CQk1×D1 and AQ,2 ∈ CQk1×D2 are over-
complete dictionary matrices (D1 ≥ Qk1, D2 ≥ Qk1) similar
to (28), and contain values for aQk1 (ηk,j) and aQk2(χk,j).
Γ̃k ∈ CD1D2×N is a row-sparse matrix with Jk non-zero
rows. Similar to the single-antenna user case in Section III,
the sparsity level for the sparse recovery problem associated
with (60) Jk, is obtained by OMP. Therefore, the AoDs at
user k, i.e., {ηk,j}Jk

j=1 and {χk,j}Jk

j=1 can be obtained similar

to (29). Assume the q-th row of the sparse matrix Γ̃k is
nonzero, then the corresponding indices in AQ,1 and AQ,2

in (60), denoted by q1 and q2, are derived as

q1 =
⌈

q

D2

⌉
, q2 = q − D2(q1 − 1). (61)

C. Estimation in Phase II: Estimation of Remaining
Parameters

In this subsection, we estimate the remaining parameters
in (57) by converting the estimation problems into several
equivalent problems as in the single-antenna user case, which
can be solved using the methods in Section III.

First, denote the typical user as user 1 and stack the
total (

∑Υ1
i=1 V

(i)
1 ) slots, the received signal matrix is obtained

as Y1 =
[
Y(1)

1 , . . . ,Y(Υ1)
1

]
∈ CN×(

�Υ1
i=1 V

(i)
1 ). Then, the

common AoAs in (57), i.e., AN , can be readily estimated
via DFT-based method by calculating ŨH

NY1 since Lemma 2
holds.

With ÂQ,k obtained in Phase I and ÂN obtained in Phase
II, considering the i-th time block and replacing AN and AQ,k

with ÂN + ΔAN and ÂQ,k + ΔAQ,k, respectively, Y(i)
k ∈

CN×V
(i)

k can be processed as

Y̌(i)
k � 1

N
√

p
ÂH

NY(i)
k (ÂH

Q,kS
(i)
k )†

=
1

N
√

p
ÂH

N{(ÂN + ΔAN )ΛAH
MDiag{e(i)}

AM,kBk(ÂQ,k + ΔAQ,k)HS(i)
k + N(i)

k }(ÂH
Q,kS

(i)
k )†

= ΛAH
MDiag{e(i)}AM,kBk + Ň(i)

k ∈ CL×Jk , (62)

where ΔAN and ΔAQ,k stand for the estimation errors of AN

and AQ,k, respectively. Ň(i)
k represents the remaining terms

of the second equality. As discussed in Remark 1, all users are
allowed to estimate the common AN jointly so as to acquire
the MU diversity gains to alleviate the error propagation effects
caused by ΔAN . Accordingly, the input of Algorithm 1 is
given by Y = [Y1,Y2, . . . ,YK ] ∈ CN×(

�K
k=1
�Υk

i=1 V
(i)

k ).
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In the following, we decompose the estimation of a multi-
antenna user, i.e., user k, with a channel composed of Jk

scatterers, into the estimation of Jk channels with a single
path for a virtual single-antenna user, i.e., user (k, j) for
j ∈ {1, . . . , Jk}. The j-th column of Y̌(i)

k is given by

[Y̌(i)
k ](:,j) = ΛAH

MDiag{e(i)}[AM,k](:,j)βk,j + [Ň(i)
k ](:,j)

= ΛAH
MDiag{[AM,k](:,j)βk,j}e(i) + [Ň(i)

k ](:,j).
(63)

Stacking Υk blocks of (63), we have[
[Y̌(1)

k ](:,j), . . . , [Y̌
(Υk)
k ](:,j)

]
= ΛAH

MDiag{[AM,k](:,j)βk,j}Ẽk

+
[
[Ň(1)

k ](:,j), . . . , [Ň
(Υk)
k ](:,j)

]
= ΛAH

MDiag{h̃{k,j}}Ẽk

+
[
[Ň(1)

k ](:,j), . . . , [Ň
(Υk)
k ](:,j)

]
, (64)

where Ẽk =
[
e(1), . . . , e(Υk)

] ∈ CM×Υk . The term h̃{k,j} �
[AM,k](:,j)βk,j ∈ CM×1 is treated as the channel between
the RIS and the virtual single-antenna user (k, j), which only
contains one scatterer.

1) Estimation for Typical User: This part is the extension
of Section III-A for the typical user, i.e., user 1. Denote the
transpose of (64) for user 1 as Ỹ{1,j} ∈ CΥ1×L, which is
given by

Ỹ{1,j} = ẼH
1 Diag{h̃∗

{1,j}}AMΛ∗ + Ñ{1,j}. (65)

We note that the channel estimation problem for (65) has
a form similar to that for (25), and can be solved follow-
ing the steps developed in Section III-A. Thus the virtual
single-antenna cascaded AoDs for user (1, j), i.e., {(ωl −
ϕ1,j)}L

l=1 and {(μl − θ1,j)}L
l=1, and the cascaded gains

{αlβ1,j}L
l=1 can be estimated.

It is unnecessary for us to repeat the steps shown in
Section III-A J1 times to solve the angle estimation problem
connected with (65). That is because we have obtained the
rotation factors (Δωl, Δμl) and gain scaling factor γl defined
in (31) after the estimation procedure for the first virtual
single-antenna user, user (1, 1). This allows us to solve
the sparse recovery problem corresponding to (27) without
performing additional operations for the channel estimation
of the other virtual single-antenna users (1, j) for j �= 1.8 In
particular, for user (1, j), the quantities (ωr−ϕ1,j), (μr−θ1,j)
and α∗

rβ
∗
1,j can be obtained via the solution to (27). Then,

{(ωl − ϕ1,j)}l�=r, {(μr − θ1,j)}l�=r and {α∗
l β

∗
1,j}l�=r can be

directly obtained with the known (Δωl, Δμl) and γl obtained
in the estimation for user (1, 1). Based on this, the estimates
of user 1’s cascaded gains and cascaded AoDs at the RIS, i.e.,
αlβ1,j , (ωl − ϕ1,j) and (μl − θ1,j), for ∀l ∈ {1, . . . , L} and

8The virtual single-antenna users (1, j) for j �= 1 can be treated as other
users and the corresponding parameters can be estimated by the method shown
later. However, the pilot overhead for virtual users (1, j) for any j should be
the same, depending on the the number of time blocks Υ1. So we still solve
problem corresponding to (27).

∀j ∈ {1, . . . , J1}, are obtained, which allows us to determine
G1 in (57).

2) Estimation for Other Users: Following the idea of the
virtual single-antenna user, we convert the channel estima-
tion for the other multi-antenna users into the estimation
of

∑K
k=2 Jk single scatterer channels for the other single-

antenna users. The idea of constructing the common part as in
Section III-B still applies, using the common RIS-BS channel
to reduce the pilot overhead.

Specifically, after eliminating the effects of the common
AoAs at the BS, and the unique AoDs at the users estimated
in Phase I, and following (45), [Y̌(i)

k ](:,j) in (63) can be
reformulated as

[Y̌(i)
k ](:,j) = ΛAH

MDiag{h̃{k,j}}e(i) + [Ň(i)
k ](:,j)

= Λ̃sÃH
s Diag{h̃s,{k,j}}e(i) + [Ň(i)

k ](:,j), (66)

where Λ̃s = αrβ1,1Diag{γ∗
1 , γ∗

2 , . . . , γ∗
L} and Ãs =

Diag{aM (ωr − ϕ1,1, μr − θ1,1)}AΔM can be constructed
using the estimated parameters of the virtual single-antenna
user (1, 1).9 The matrix AΔM can be determined by (40).
Accordingly, h̃s,{k,j} = 1

β1,1
Diag{aM (−ϕ1,1,−θ1,1)}h̃{k,j}

is the unique part of the cascaded channel for virtual single-
antenna user (k, j) that is to be estimated. Stacking Υk time
blocks of (66) and vectorizing, we have

w̃{k,j} � vec(
[
[Y̌(1)

k ](:,j), . . . , [Y̌
(Υk)
k ](:,j)

]
)

= (ẼT
k � Λ̃sÃH

s )h̃s,{k,j} + ñ{k,j} ∈ CLΥk×1, (67)

where ñ{k,j} is the corresponding equivalent noise for
virtual user (k, j). The last equality is obtained via
vec(Λ̃sÃH

s Diag{h̃s,{k,j}}Ẽk) = (ẼT
k � Λ̃sÃH

s )h̃s,{k,j}. Since
the form of (67) is similar to (46), h̃s,{k,j} can be estimated
similarly to what was done for (48).

With the estimates of the multi-antenna user k’s cascaded
gains and cascaded AoDs, i.e., αlβk,j , (ωl − ϕk,j) and (μl −
θk,j), for ∀l ∈ {1, . . . , L}, ∀j ∈ {1, . . . , Jk}, obtained by
solving the problem connected with (67) Jk times, Gk in (57)
can be determined for ∀k ∈ {2, 3 . . . , K}.

D. Pilot Overhead Analysis

In this subsection, we analyze the pilot overhead of the
full CSI estimation algorithm for the multi-antenna user case,
assuming J1 = J2 = · · · = JK = J and Q1 = Q2 = · · · =
Qk = Q.

Similar to the analysis in Section III-C.1, for user 1, the
number of time slots in Phase I should satisfy V

(1)
1 �

O(J1 log(D1D2)) � O(J1 log(Q11Q12)) = O(J1 log(Q1))
so as to ensure the J1-sparse recovery problem associated with
(60). In Phase II, the number of time slots within each block
V

(i)
1 , should satisfy V

(i)
1 � J1, otherwise the right inverse

(AH
Q,1S

(i)
1 )† does not exist. On the other hand, the number of

blocks, Υ1, is determined by sparse recovery applied to (65).
The angle estimation associated with (65) can be implemented

9When user (1, 1) is the typical user, it can be verified that ωs and
μs defined in (41) are (ωr − ϕ1,1) and (μr − θ1,1), respectively, and
1

J1
1T

J1
β1αr in (39) is αrβ1,1.
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by a 1-sparse recovery problem, and thus we have Υ1 ≥
O(log(M)). As shown before, J1 virtual single-antenna users
share the same blocks and can be processed simultaneously.
In addition, the first block is also used for Phase II. Hence
the total pilot overhead required for user 1 should satisfy
τ1 =

∑Υ1
i=1 V

(i)
1 = V

(1)
1 +

∑Υ1
i=2 V

(i)
1 ≥ O(J1 log(Q1)) +

(O(log(M)) − 1)J1.
For the other users 2 ≤ k ≤ K , we have the inequalities

V
(1)
k � O(Jk log(Qk)) and V

(i)
k � Jk, for the same reasons as

for user 1. As before, the angle estimation problem connected
with (67) can be treated as a 1-sparse recovery problem,
and Jk virtual single-antenna users simultaneously share the
same blocks, where the number of time blocks for user k
satisfies Υk ≥ O(log(M)/L). Therefore, the total number
of pilot symbols required for user k should satisfy τk =
V

(1)
k +

∑Υk

i=2 V
(i)
k ≥ O(Jk log(Qk))+(O(log(M)/L)−1)Jk.

Finally, the overall pilot overhead for the multi-antenna
users is given by O(JK log(Q) + J log(M) + (K −
1)J log(M)/L)−JK . Table I summarizes the total number of
pilots of the proposed method and other existing algorithms for
full-CSI estimation. It is observed that the proposed method
achieves a significant reduction in the pilot overhead for both
the single-antenna and multi-antenna user cases, owing to the
exploitation of the correlation among different users.

VI. SIMULATION RESULTS

In this section, simulation results are provided to evaluate
the performance of the proposed three-stage channel esti-
mation protocol for both the single-antenna user case and
multi-antenna user case. We assume that channel gains αl and
βk,j follow a complex Gaussian distribution with zero mean
and variance of 10−3d−2.2

BR and 10−3d−2.8
RU , respectively. Here,

dBR is defined as the distance between the BS and the RIS,
while, dRU is defined as the distance between the RIS and the
users. The antenna spacing at the BS and the element spacing
at the RIS are assumed to satisfy dBS = dRIS = λc

2 . The
random Bernoulli matrix is chosen as the initial RIS phase
shift training matrix E, i.e., the elements are selected from
{−1, +1} with equal probability [16]. The transmitted power
is set to p = 1 W. It is assumed that the propagation angles
change every ten channel coherence blocks, while the gains
change for each coherence block. Unless otherwise specified,
for the single-antenna user case, the dimensions of the UPAs
deployed on the BS and the RIS are N1 = N2 = 10 and
M1 = M2 = 10, respectively. dBR and dRU are set to
10 m and 100 m [16], respectively. The number of users
is set to K = 4. The number of scatterers between the BS
and the RIS, and that between the RIS and users are set to
L = 5 and J1 = · · · = JK = 4. For the multi-antenna user
case, the corresponding parameter settings are N1 = N2 = 8,
M1 = M2 = 8, dBR = 80m, dRU = 40m, L = 3 and
J1 = · · ·Jk = 2. In addition, we set the number of users to
K = 6 and all the users adopt 36-antenna UPAs with 6 rows
and 6 columns, i.e., Qk1 = Qk2 = 6 for ∀k ∈ K. The antenna
spacing at the user equipments still satisfies dUE = λc

2 . The
normalized mean square error (NMSE) is chosen as the main
metric for evaluating estimation performance, which is defined
by NMSE = E{(∑K

k=1 ||Ĝk − Gk||2F )/(
∑K

k=1 ||Gk||2F )}.

We compare the proposed three-stage channel estimation
protocol with the following channel estimation methods,
in which Direct-OMP [13] and DS-OMP [16] were developed
for the single-antenna user case while CS-EST OMP [18] was
developed for the multi-antenna user case.

• Direct-OMP [13]: By directly formulating the VAD rep-
resentation of the cascaded channel as a sparse recovery
problem using the vectorization operation, the authors
in [13] used OMP to reconstruct the channels. We extend
this method to UPA-Type BS in our simulation.

• DS-OMP [16]: By exploiting the common row-block
sparsity and common column-block sparsity of the cas-
caded channel to formulate a sparse recovery problem, the
authors in [16] adopted OMP to reconstruct the channels.

• CS-EST OMP [18]: The authors of [18] proposed an
OMP-based three-stage channel estimation in ULA-type
MIMO case, which estimated AoDs at the users in
Stage I, AoAs at the BS in Stage II, and cascaded channel
gains in Stage III. We extend the method in [18] to UPA
-type MIMO case and regard it as the benchmark.

• Proposed full-CSI: During the first coherence block, full
CSI for all users is estimated using Algorithm 2 in Stage I
and Algorithm 3 in Stage II assuming a UPA-type RIS
and a UPA-type BS. OMP is adopted to solve the sparse
recovery problems in these two stages.

• Oracle full-CSI: This method is treated as the perfor-
mance upper bound of the Proposed full-CSI method
assuming that perfect angle information is known by the
BS, providing perfect knowledge of the support of the
sparsity recovery problems. In this case, the channels are
estimated using the LS estimator in Stage I and Stage II.

• Proposed gains-only: During the remaining coherence
blocks, only the gains are updated using the LS method
shown in Section IV for Stage III. Here, the angle
information is known and estimated using the proposed
full-CSI method with an average pilot overhead of T =
15 (The number of pilots for typical user, i.e., τ1, is set
to 36 in Stage I, while that for other users, i.e., τk, for
2 ≤ k ≤ K , are set to 8 in Stage II).

• Oracle gains-only: This method is regarded as the perfor-
mance upper bound of the Proposed gains-only method
during the remaining coherence blocks, and assumes that
the BS perfectly knows the angle information when using
the LS estimator.

A. Single-Antenna User Case

In this subsection, the following four figures compare
the performance of different estimation methods for the
single-antenna user case. In particular, due to the different
number of pilots allocated to the typical user and other users
in the first coherence block for the Proposed full-CSI method,
we consider the users’ average pilot overhead as a measure
of pilots, denoted as T . To reduce the error propagation,10 we
allocate more pilots to the typical user and fewer pilots to the

10As shown in Section III, the estimation error of the typical user in Stage I
leads to unavoidable error propagation for the estimation of other users in
Stage II.
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TABLE I

TOTAL NUMBER OF PILOTS OF VARIOUS METHODS

Fig. 2. NMSEs vs. Average pilot overhead T of each user with SNR = 0 dB.

other users. Specifically, in Fig. 3, Fig. 4, and Fig. 5, 36 pilots
and 8 pilots are allocated to the typical user and the other
users, respectively, thus the average number of pilots for the
proposed method is given by T = 15.

Fig. 2 illustrates the relationship between NMSE perfor-
mance and pilot overhead of the various methods, where
the signal-to-noise ratio (SNR) is set to 0 dB. We increase
the pilot overhead for the typical user mainly for less error
propagation. It can be clearly seen that an increase in the
number of pilots improves the performance of all algorithms.
In order to achieve the same estimation performance, e.g.,
NMSE = 10−2, the required average pilot overhead of the
Proposed full-CSI method is much lower than the methods in
[13] and [16] during the first coherence block. On the other
hand, during the remaining coherence blocks, we note that
the Proposed gains-only method only needs T = 12 pilots
to achieve the same performance as the Direct-OMP and DS-
OMP methods with T = 26. Additionally, it is observed that
the Proposed gains-only method performs generally the same
as its upper bound, i.e., Oracle gains-only method, which
implies that the Proposed full-CSI method with the average
pilot overhead T = 15 during the first coherence block
can provide accurate angle estimation information for the
Proposed gains-only method to estimate the updated channel
gains during the remaining coherence blocks.

Fig. 3 depicts the NMSE performance as a function of
the number of antennas at the BS, where we set the SNR
to 0 dB and assume N1 = N2. It can be observed that as
the number of antennas at the BS increases, the estimation
accuracy of the Proposed full-CSI method with fewer average

Fig. 3. NMSEs vs. Number of antennas at BS side: N = N1 × N2,
N1 = N2.

pilots, T = 15 (36 pilots allocated to the typical user and
8 pilots allocated to the other users), is improved significantly,
and achieves nearly the same performance as the Oracle
full-CSI method when N is larger than 144 (12 × 12).
This is because the Proposed full-CSI method must first
estimate the number of scatterers in the RIS-BS link from
the received signal. The estimation accuracy of this step is
determined by the asymptotic property shown in Lemma 2
and the resolution of the rotation matrices defined in (20). The
asymptotic property in Lemma 2 requires that both N1 and N2

be sufficiently large. In addition, we observe the gap between
the Proposed gains-only method and the Oracle gains-only
method is large when N = 36 (6×6). This behavior illustrates
that with small scale antenna array, the Proposed full-CSI
method provides inaccurate angle estimation information for
the estimation of gains during the remaining coherence blocks,
which deteriorates the estimation accuracy of the Proposed
gains-only method further. Fortunately, with the increase of
the number of antennas, the gap becomes marginal, which
means that the angle information has been estimated perfectly
in the first coherence block with large scale antenna array.

Fig. 4 illustrates the NMSE performance of algorithms with
different pilot overhead versus the number of scatterers in the
RIS-BS link, where the SNR is set to 0 dB. As shown in Fig. 4,
the estimation accuracy decreases as the number of scatterers
increases. The reasons for this behavior can be summarized
as follows. First, the number of unknown parameters (angles
and gains) to be estimated increases, and thus the OMP-based
estimation performs worse for the same pilot overhead.
Second, since the number of scatterers is unknown in our
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Fig. 4. NMSEs vs. Number of scatterers in RIS-BS link.

Fig. 5. Performance of Optimized vs. Non-Optimized RIS phase shift training
matrices.

Proposed full-CSI UPA-type based method, the estimation
accuracy of the Proposed full-CSI method is relatively more
sensitive to an increase of the number of scatterers than the
other methods, which further deteriorates the performance of
the Proposed gains-only method in the remaining coherence
blocks. By contrast, the NMSEs of the DS-OMP method and
the Direct-OMP method with T = 26 pilots increases only
moderately with the increase of the number of scatterers since
the parameters including the numbers of scatterers between
the RIS-BS link and the user-RIS link are known by BS for
these two methods.

Fig. 5 illustrates whether the optimization of the RIS phase
shift training matrix E provides a significant benefit for
the estimation performance. “Type I RIS Pattern” refers to
choosing the random Bernoulli matrix as the training matrix,
i.e., generating the initial training matrix with elements from
{−1, +1} with equal probability [16]. “Type II RIS Pattern”
refers to generating the initial training matrix with elements as
[et]m = exp (i∠(a + ib)) where a and b follow independent
and identically uniform distribution U(0, 1). It is observed that
the performance of the Type I training matrix is essentially
the same as that of the optimized training matrix, and far
outperforms that of the Type II training matrix. This behavior
can be explained by exploring the mutual coherence property
of the equivalent sensing matrices for problems associated
with (28) and (48). For a given matrix D, the maximal
coherence of D, denoted as μ(D), is defined as

μ(D) = max
i�=j

|DH
(:,i)D(:,j)|

||D(:,i)||||D(:,j)||
, (68)

Fig. 6. NMSEs vs. SNR.

which is the largest absolute inner product between any
two columns of D. According to the compressive sensing
theory [32], the sensing matrix with smaller μ(D) could
provide better recovery performance for sparse vectors. The
random Bernoulli matrix, which is a typical sensing matrix
with lower correlation of its columns and satisfies the constant
modulus constraint, is chosen as the Type I training matrix.
Furthermore, numerical results validate that the maximal
coherence of the sensing matrices generated by the Type I
training matrix is significantly lower than that generated by
the Type II training matrices, and nearly the same as that
generated by the optimized training matrix. Since optimization
of the training matrix requires extra computational complexity,
this result suggests that "Type I RIS Pattern" be chosen for the
RIS phase shift training matrix.

B. Multi-Antenna User Case

In this subsection, the NMSE and weighted sum rate (WSR)
of the multi-antenna user case are respectively shown in Fig. 6
and Fig. 7 by using different estimation methods. The users’
average pilot overhead is considered for the proposed method
in the multi-antenna user case, similar to that in the single-
antenna user case. Specifically, for estimating the AoDs at the
users, we allocate 10 slots to all the users including the typical
user and other users in Phase I, i.e., V

(1)
k = 10 for ∀k ∈ K.

In phase II, additional 3 blocks of time slots are allocated
to the typical user and each block has 4 slots, i.e., V

(2)
1 =

V
(3)
1 = V

(4)
1 = 4. Therefore, the pilot overhead allocated to

the typical user and other users are 22 and 10, respectively.
The average pilot overhead for the proposed method is given
by T = 12. In addition, for fairness, CS-EST OMP consumes
the same number of slots for the estimation of AoDs at the
users.

Fig. 6 displays the NMSE performance of different methods
versus SNR. It is observed that the gap between the Proposed
full-CSI method and its upper bound, i.e., the Oracle full-
CSI method, becomes smaller with the increase of SNR.
In particular, when the SNR is larger than 5 dB, the NMSE of
the proposed method with T = 12 exceeds that of the CE-EST
OMP method with T = 28, and has the same trend as that of
the Oracle full-CSI method, i.e., the NMSEs decrease linearly
with the SNR. This behavior implies the angle information
can be obtained accurately by the Proposed full-CSI method at
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Fig. 7. WSR vs. SNR.

large SNR region. In this case, the NMSE differences between
the proposed method and its upper bound mainly results from
the estimation errors of channel gain information. By contrast,
the NMSE of the CS-EST OMP method still has a performance
bottleneck in the high SNR region even under the scenario of
up to 28 pilots per user.

Fig. 7 shows the WSR performance of the MU MIMO
system based on the channels estimated using different algo-
rithms. The weighting factors, the maximum BS power, and
the number of data streams are set to �k = 1 for ∀k ∈ K,
Pmax = 1 W, and d = 16, respectively. The details of the
calculation for WSR can refer to [33, Appendix D]. In Fig. 7,
the case with perfect CSI is adopted as the upper bound of
the Proposed full-CSI and CE-EST OMP methods. As can be
observed, the WSR achieved by the proposed method with
T = 12 pilots is always larger than that achieved by the
CS-EST OMP method with the same number of pilots of
T = 12. When SNR = 5 dB, the proposed method outperforms
the other three CS-EST OMP methods. To achieve the same
WSR, the pilot overhead required by the proposed method
is less than half that of the CE-EST OMP method. With the
further increase of the SNR, the gap between the proposed
method and the upper bound becomes smaller gradually,
which implies that extension of the proposed full-CSI method
to the multi-antenna user case can achieve high estimation
accuracy.

VII. CONCLUSION

In this paper, we adopted a novel three-stage uplink channel
estimation protocol that leads to a significant reduction in
the number of pilots for a UPA-type RIS-aided mmWave
system with a UPA-type BS. The proposed estimation methods
were developed starting from the single-antenna user case,
and were shown to fully exploit the correlation among the
channels of different users. To reduce the power leakage
problem during the common AoA estimation in Stage I,
a low-complexity 1-D search method was developed. Then
we extended the protocol to the UPA-type multi-antenna user
case. An OMP-based method was proposed for estimation of
the AoDs at the users. Numerical results showed that choosing
the random Bernoulli matrix as the RIS training matrix has
near-optimal performance. Simulation results validated that
the proposed methods outperform other existing algorithms in

terms of pilot overhead. In addition, the proposed algorithms
approach the genie-aided upper bound in the high SNR
regime.

Future studies can include the application of learning-based
approaches to our proposed channel estimation protocol. With
the increase of the number of RIS elements and BS/users
antennas, the computational complexity for the conventional
model-driven estimation methods becomes inevitably high.
This fact motivates the development of data-driven or hybrid
approaches for the proposed protocol in the future, which
can obtain the estimates with reduced complexity, and the
correlation relationship among multi-user cascaded matrices
is still utilized for pilot overhead reduction.

APPENDIX

Appendix can be found in [33, Appendix].
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