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ABSTRACT. We give a short introduction to the contact invariant in bordered Floer homology defined
by Foldvari, Hendricks, and the authors. This article surveys the contact geometry required to un-
derstand the new invariant but assumes some familiarity with bordered Heegaard Floer invariants.
The input for the construction is a special class of foliated open books, which are introduced carefully
and with multiple examples. We discuss how a foliated open book may be constructed from an open
book for a closed manifold, and how it may be modified to ensure compatibility with the contact
bordered invariant. As an application of these techniques, we give a “local proof” of the vanishing
of the contact invariant for overtwisted structures in the form of an explicit bordered computation.

1. INTRODUCTION

Contact geometry, often pitched as the odd-dimensional complement to symplectic geometry,
considers a (2k + 1)-dimensional manifold equipped with some additional structure. In dimen-
sion three — where we reside henceforth — this extra data is a nowhere-integrable plane field called
a contact structure. Adding this extra data prompts interesting new questions, but one of the
most intriguing features of the subject is that this “extra” data also offers insight into topological
structure apparently unrelated to plane fields at all. Two notable examples are the role of con-
tact geometry in the proof of the property P conjecture [KMO04] and the proofs that knot Floer
homology detects knot genus [OS04] and fiberedness [Ghi08, Ni07].

Contact structures themselves split into two mutually exclusive types, known as tight and over-
twisted. Overtwisted structures are determined by homotopical data, and so are easy to under-
stand. In contrast, tight contact structures are more mysterious: some, but not all, tight contact
structures arise naturally as the boundary of symplectic manifolds, and tight contact structures do
not satisfy an h-principle. Many existence and classification questions for tight contact structures
remain open, but significant progress has been made since the advent of Heegaard Floer homol-
ogy in the early 2000s and the subsequent development of Floer-theoretic contact invariants.

Like other Heegaard Floer invariants, the input data for these constructions is a Heegaard dia-
gram for the three-manifold, but in this setting, the Heegaard diagram is induced from an open book
decomposition, a topological decomposition of a three-manifold that captures the additional data
of an equivalence class of contact structure. Ozsvéth and Szab6 defined the first Heegaard Floer
invariant of closed contact three-manifolds in [OS05]. Given a closed, contact manifold (M, ¢),

this invariant is a class ¢({) in the Heegaard Floer homology fIF(—M ). In [HKMO09b], Honda,
Kazez, and Mati¢ gave an alternative description of ¢(£), again using open books. This “contact
class” gives information about overtwistedness: if { is overtwisted, then ¢(§) = 0, whereas if £ is
Stein fillable, then c¢(£) # 0 [OS05]. The contact class was used in the knot Floer homology proofs
noted above, and also to distinguish notions of fillability: Ghiggini used it to construct examples
of strongly symplectically fillable contact three-manifolds which do not have Stein fillings [Ghi05].
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In this paper, we discuss a recent extension of the contact class to three-manifolds with bound-
ary. Namely, in [AFH"20], a contact invariant was defined in the bordered sutured Floer homol-
ogy of a foliated contact three-manifold (17, ¢, ), which is a contact manifold with a certain type
of singular foliation on the boundary. We associate to a foliated contact three-manifold a bordered
sutured manifold (M, T, Z). The resulting sutures are particularly simple, so one can think of
(M,T, Z) as a bordered manifold (M, Z) of a type slightly more general than in [LOT18]. Below,
we rephrase the main results of [AFH*20], translating from “bordered sutured” to “multipointed”
language. Section 4 explores the correspondence between these two viewpoints in more detail.

Using a special decomposition of (M, &, F) called a sorted foliated open book, one can construct
an admissible multipointed bordered Heegaard diagram for the manifold (M, Z) and identify a
preferred generator. This preferred generator is an invariant of the contact structure.

Theorem 1 (cf. [AFH 20, Theorem 1]). Let (M, ¢, F) be a foliated contact three-manifold with associated
bordered manifold (M, Z). Then there are invariants cp(M, &, F) and ca(M,E, F) of the contact struc-
ture which are well defined homotopy equivalence classes in the multipointed bordered Floer homologies

CFD(—M, Z) and CFA(—M, Z), respectively.
Furthermore, this generator vanishes for overtwisted manifolds, in the following sense.

Theorem 2 (cf. [AFH 120, Corollary 4]). If (M, &, F) is overtwisted, then the classes cp(M, &, F) and
ca(M, &, F) are zero in H,(CFD(—M, Z)) and H,(CFA(—M, Z)), respectively.

Given a pair of foliated contact three-manifolds (M1, ¢&, FF) and (M %, ¢8| F') whose bound-
aries agree in an appropriate sense, there is a natural way to glue them to obtain a closed contact
three-manifold (M, €). The contact invariants of the two foliated contact three-manifolds pair to
recover the contact invariant of (M, &).

Theorem 3 (cf. [AFH*20, Theorem 2]). The tensor product co(M*, &%, FE)Rcp (M, €7, FR) recov-
ers the contact invariant ¢(M,§).

This paper offers a hands-on introduction to the bordered contact invariant, favoring geometric
intuition over the formal proofs that may be found in [LV20] and [AFH20]. We assume min-
imal background in contact geometry, so Section 2 focuses on understanding contact structures
via characteristic foliations. Section 4 introduces multipointed bordered Floer homology as a spe-
cial case of bordered sutured Floer homology, laying the groundwork for a simplified description
of the construction of the bordered contact invariant. Section 3 discusses open books, reviewing
the classical case for closed manifolds before introducing foliated open books for manifolds with
boundary. After exploring some topological examples we define the contact structure supported
by a foliated open book. We also define the technical condition “sorted” for a foliated open book
and explain how it may be achieved by stabilization preserving the supported contact structure.
We illustrate this in a carefully chosen example of a foliated open book for a neighborhood of an
overtwisted disk. In Section 5 we describe how to construct a Heegaard diagram from a sorted fo-
liated open book and define an associated generator that represents the contact invariant. Finally,
in Section 6 we extend the earlier example to construct a Heegaard diagram for an overtwisted
ball. A local computation, in conjunction with Theorem 3, then recovers the following vanishing
result:

Corollary 4 ( [OS05]). Let (M,&) be a closed contact three-manifold. If € is overtwisted, then c(§) = 0.

Note that [HKM09a] establishes the vanishing of the sutured contact class for a neighborhood
of an overtwisted disk. The TQFT gluing map from [HKMO08] then yields a sutured argument
that ¢(§) vanishes for overtwisted closed manifolds. Our local construction explicitly constructs
the “contact compatible” layer needed in the sutured setting, giving a bordered counterpart to the
argument.
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2. CONTACT MANIFOLDS AND SURFACES

A key aim of this paper is to render more accessible a new invariant in bordered sutured Floer
homology, but we’d like to start with a discussion of what this is an invariant of. Since its incep-
tion in the early 2000’s, Heegaard Floer theory has given rise to invariants for a large range of
mathematical objects; this one is distinguished not simply by its input, but also by the fact that the
algebraic invariant behaves well under a natural topological operation.

2.1. Contactstructures. Recall from the introduction that a contact structure is a nowhere-integrable
two-plane field. We will consider contact structures only on orientable three-manifolds, and we
further require that contact structures be cooriented. That is, each contact plane is oriented, so
there is a consistent choice of positive normal vector. It will be useful to reference a coordinate
model, so we introduce the standard contact structure on R3, where the contact plane at each point
is the kernel of the one-form dz — ydx. (A cooriented contact structure may always be described
as the kernel of such a contact form.) In this case, the vector field 0, coorients the contact planes.
We are primarily interested in studying contact manifolds up to contactomorphism, that is, up to
diffeomorphism preserving the plane fields.

Like topological manifolds, contact manifolds are locally simple but globally complicated. The
contact Darboux Theorem states that every point in a contact three-manifold has a neighborhood
contactomorphic to a neighborhood of the origin in the standard contact R3. In fact, some higher
dimensional substructures also have well behaved neighborhoods. For example, a curve segment
everywhere transverse to the contact planes has a neighborhood contactomorphic to a neighbor-
hood of the z-axis in the standard R®. In this paper, we will focus on the kind of two-dimensional
submanifolds with particularly nice neighborhoods: convex surfaces. We will characterize convex
surfaces by considering certain foliations they carry, but since codimension-one foliations are so
central to the rest of the paper, we briefly detour into some general discussion before returning
specifically to foliations on convex surfaces.

2.2. Foliations on surfaces. Throughout this article we will consider only oriented singular foli-
ations whose singularities are isolated and are either elliptic (see bottom right picture of Figure
3.1) or hyperbolic (see bottom left picture of Figure 3.1). We denote the set of elliptic singularities
by E, and the set of hyperbolic singularities by H. Unless explicitly noted, we assume that all
regular leaves of the foliation compactify to oriented intervals. Elliptic points are either sources, in
which case they are also called positive elliptic points, or sinks, which are also called negative elliptic
points. At a four-pronged hyperbolic singularity, the two opposite prongs oriented towards the
hyperbolic point form the stable separatrix, while the two prongs oriented away from the hyper-
bolic point form the unstable separatrix. The topological type of these foliations can be described
combinatorially by the embedded graph formed by the stable and unstable separatrices of the
hyperbolic points.

The foliations appearing in this paper will have additional structure given by assigning a sign
to each singular point. The signs of elliptic points have already been introduced, but the signs of
hyperbolic points are not visible from the combinatorics of the foliation. (The sign of a hyperbolic
point comes from the orientation of the surface and additional local data that depends on the
source of the foliation; see Sections 2.3 and 3.1.) A foliation with the properties above, together
with the extra partition of H = H, U H_ is called a signed singular foliation; in the following we
refer to oriented signed singular foliations simply as foliations.
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Given a foliation F on a surface F' satisfying the hypotheses imposed above, we say that a
multicurve I' C F'is a dividing set if I is everywhere transverse to the leaves of F and separates F’
into two subsurfaces, each of which contains all the singularities of a fixed sign. With this structure
in hand, we are ready to introduce the characteristic foliation on a surface in a contact manifold,
which is the key to the local neighborhood theorem mentioned above. We introduce the aspects
of this theory that we will need, and we recommend [Mas13] for further reading on the topic.

2.3. Convex surfaces. An oriented surface /' embedded in a contact three-manifold (M, &) inher-
its a characteristic foliation from &. Intersecting the contact plane with the tangent plane at each
point in the surface defines a line field, and the leaves of the characteristic foliation are the inte-
gral curves of these intersections. Characteristic foliations may be more general than the foliations
described above, admitting leaves that are circles or even non-manifolds. However, we will not
consider any cases where these phenomena arise. The orientation of the leaves follows from the
coorientation of the contact structure, while the signs of the singular points depend on whether
the coorientation of the contact structure is a positive or negative normal for F'.

A surface in a contact structure is convex if the contact structure is I-invariant in some product
neighborhood; a key result states that a surface is convex if and only if its characteristic foliation
admits a dividing curve I' [Gir91]. Remarkably, the local neighborhood of a convex surface is
determined by the dividing set alone. The property of admitting a dividing curve (and hence,
convexity) can be checked combinatorially, and in fact, convex surfaces are C'*°-generic [Gir91].
Another important aspect of this equivalence is Giroux’s flexibility, it describes the sense in which
I' captures the essential data of the contact structure in a neighborhood of F. Specifically, if I is
a dividing set on F' C (M, §), then any foliation divided by I' can be realized as the characteristic
foliation of some isotopic surface F” in a neighborhood of F'. Thus, given a separating multicurve
I' on a surface F, one may choose any foliation divided by I" and construct a compatible contact
structure on F' x I. If we choose another foliation, then Giroux’s flexibility implies this is the
characteristic foliation on some surface inside this neighborhood, so our original neighborhood in
fact contains the contact structure determined by this new foliation.

FIGURE 2.1. Local pictures of two characteristic foliations divided by the same
curve I', shown in green. Circles are elliptic points and the squares are hyperbolic
points.

Characteristic foliations may exhibit many leaf types, but we will restrict attention to the cases
where the hypotheses of Section 2.2 are satisfied; this is also a generic property. In addition, we
will require that each signed singular foliation has no closed leaves or leaves connecting two hy-
perbolic points, and any such foliation will admit a dividing set, thus ensuring convexity. To see
this, we introduce two graphs G+ embedded into F' and associated to F. The vertices of G are the
positive elliptic points, and the edges between them are the stable separatrices of positive hyper-
bolic points. The graph G_ is analogously defined using the negative elliptic points and unstable
separatrices. Observe that G, and G_ are disjoint and that the complement of their neighbor-
hoods N (G ) and N(G-) has no singularities and is thus foliated by intervals. The dividing curve
I" of such a foliation is given by the oriented boundary of N (G ), which is isotopic through curves
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transverse to the foliation to —9N(G_). When a foliation admits a dividing set, it is unique up to
isotopy, so we will often refer to “the” dividing set.

With the given restrictions on leaf types (i.e., only intervals and leaves containing a single hy-
perbolic point), the complement of the union of the separatrices is a collection of disks, each with
one positive and one negative elliptic point on its boundary. The interior of each disk is foliated by
an /-family of leaves from the positive to the negative elliptic point; this can be seen in Figure 2.1.

3. FOLIATED OPEN BOOKS

We saw in Section 2 that the dividing set on a convex surface suffices to determine the contact
structure in a neighborhood of the surface. Although the precise information about the charac-
teristic foliation is lost, enough data is retained to identify the relevant equivalence class. This
theme is pervasive throughout contact geometry, with open books being one of the most notable
illustrations. An open book decomposition of a contact manifold loses information about the
specific contact structure, but with the benefit that the isotopy class of the contact structure is de-
termined by a minimal amount of data. This economical encoding of the isotopy class was first
studied in the contact setting by Thurston-Winkelnkemper and rose in prominence with the work
of Giroux [TW75] [Gir02]. After recalling the classical construction, we will describe the foliated
open books first introduced in [LV20] as a new version of open books for contact manifolds with
convex boundary. Although the definition of a foliated open book will require us to keep track of
more data on the boundary than simply the dividing set, the payoff will be a more user-friendly
set of gluing theorems than seen with previous types of open books.

An abstract open book for a closed three-manifold is a pair (.S, 1), where S is a surface with bound-
ary and h an element of its mapping class group. This data suffices to construct an S-bundle over
S, and after collapsing the boundary in a controlled way, yields a closed three-manifold. A fo-
liated open book adapts this approach to the setting of a manifold with boundary. This time,
the data consist of a sequence of 2k topologically distinct surfaces and the maps identifying one
surface with the next. Analogously, this determines a manifold with foliated boundary.

3.1. Classical open books. This section reviews the definition of an open book decomposition of
a closed three-manifold, along with the notion of an open book foliation developed in [IK14].

Definition 3.1. An abstract open book is a pair (S, h) where S is a surface with boundary 0S5 = B
and h: § — Sis a diffeomorphism that preserves B pointwise.

An abstract open book determines a closed three-manifold M as follows. First, consider the
product S x I and identify the points (h(z),0) ~ (x,1) to form the mapping torus of h. Then
collapse each component of the boundary 95 x S to a circle via (z,t) ~ (z,t') whenever z € 95.
The image of 95 x S! is an oriented link called the binding and again denoted by B, while the
surfaces S x {t} become the pages. We will also make use of the function 7 : M \ B — S! that
sends each pointon S x {t} to ¢.

The simplest example of an open book is given by setting S = D?, so that h is necessarily iso-
topic to the identity. The pair (D?,id) determines S3; to see this, observe that N(B) and M \ N(B)
give a genus-one Heegaard splitting with meridional curves on the two solid tori intersecting
once. In fact, an open book determines not only a topological three-manifold, but actually a con-
tact three-manifold, but this will be explored in the next section. For now, we consider further
topological structure associated to an open book.

Suppose that M is the closed three-manifold built from (S, k). Then the pages of S induce a
foliation on a generic surface embedded in M. Assume that a surface Fis transverse to the binding
B, so that E = BN F is finite. Additionally, assume that the restriction 7 = 7|p: F'\ E — S!is
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an S'-valued Morse function with only one critical point for any critical value. Then the open book
foliation F on F is the foliation induced by the level sets of 7 together with the elliptic points
E. Equivalently, the leaves of the foliation are the intersections of F' with the pages of the open
book. As seen in Figure 3.1, such a foliation may have three types of singularities: the points in £
are elliptic points; the index 0 and 2 critical points of 7 are centers; and the index 1 critical points
are hyperbolic points. Each level set of 7 has at most one critical point, and there are no leaves
connecting hyperbolic points. Although closed leaves may arise, one may eliminate them via a
bigger isotopy of the surface [IK14].

FIGURE 3.1. The intersection of F' with the pages and binding (above) induces the
singularity of 7. (below). Left: the foliation on a disk transverse to the binding has
an elliptic point. Center: the foliation on a cup with one point tangent to a page
has a center. Right: the foliation on a saddle with one point tangent to a page has a
hyperbolic point.

As above, we can associate signs to the elliptic points depending on whether the binding coori-
ents F' or not, whereas the sign of a critical point of 7 is given by the sign of dn evaluated on
the normal to F. Just as characteristic foliations on convex surfaces determine the nearby contact
structure, open book foliations determine the open book decomposition near the surface.

3.2. Foliated open books. Intuitively, a foliated open book is the structure on a manifold with
boundary formed by cutting a classical open book along a surface with an open book foliation. We
consider two examples of this sort before carefully stating a definition in parallel to Definition 3.1.

Example 3.2. Consider the open book for S® described above with connected binding and disk
pages. Choose a neighborhood of a point on the binding and cut S® along the boundary of this
ball as shown in the center of Figure 3.2. Discarding the complement of this ball, one sees that it
inherits a binding and pages from the original open book, and that the new boundary is naturally
equipped with the foliation whose leaves are boundary intervals of the pages. This is the simplest
possible foliated open book.

For an example that is one step more interesting, cut S* along a pair of parallel spheres to get
a thickened sphere that intersects the binding in two intervals. The complement of these binding
intervals is a union of rectangles.

We will see more interesting examples after the formal definition.

Definition 3.3. [LV20, cf. Definition 3.12] An abstract foliated open book is a tuple ({S;}?%,, h) where
S; is a surface with boundary 95; = B U A4; l'and corners at E = B N A, such that

(1) for all i, A; is a finite union of intervals and B is a union of intervals or circles;

1By a slight abuse of notation we denote the “constant” part of the boundary of S; by B for all 4.
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FIGURE 3.2. Cutting the open book (D?,id) for S? (left) along a pair of parallel
spheres yields a (pair of) foliated book(s) for the three-ball(s) (center) and a foliated
open book for the thickened sphere (right, selected pages shown). On the boundary
spheres of the resulting foliated open books, each leaf of the open book foliation is
a line of longitude, and the only singularities are the two elliptic points at the poles.

(2) the surface S; is obtained from S;_; by either
e attaching a 1-handle along two points on A4;_;, or
e cutting S;_ along a properly embedded arc v; with endpointsin A;_; and then smooth-
ing.?
Furthermore, h: Sy, — Sy is a diffeomorphism between cornered surfaces that preserves B
pointwise.

We invite the reader to pause and compare Definitions 3.1 and 3.3. The latter has two levels
of complexity not seen in the classical definition: first, the definition replaces a single surface S
with a family of surfaces S; of distinct topological type, and second, the boundary of each surface
is partitioned into A;-intervals and B-intervals or -circles. This second feature was seen already
in Example 3.2: cutting each page in the open book for S along its intersection with the sphere
resulted in two new bigon pages each bounded by an A;-interval and a B-interval.

Example 3.4. To illustrate the differences between classical and foliated open books, we consider
a further example built by cutting the standard open book for S3 along a separating S?; See Fig-
ure 3.3. Here, the intersections between the indicated ball and the pages of the original open book
are not all homeomorphic. The points on the embedded S? where the changes in topological type
occur are labeled by squares on the figure; the right-hand side of the figure shows the distinct sub-
surfaces (the pages of the resulting abstract open book), labeled to match the (embedded) pages
in the original open book.

We now take on the full complexity of Definition 3.3 and describe how to build a manifold from
a sequence of pages of distinct topological types. Throughout, we will use subscript indices to dis-
tinguish topologicially distinct page types, referring to these as “abstract pages” for convenience.

Any pair of consecutively indexed abstract pages S; and S;;1 defines an elementary cobordism.
We build an analogue of the mapping torus by concatenating these elementary cobordisms and
gluing Soy, to Sy by the map h. More precisely, each abstract page S; yields a product S; x (4, 52),
for 0 <+ < 2k — 1, and consecutive products join smoothly along a singular page which is surface
with two points on its boundary identified. (Since h : Sy, — Sp is a diffeomorphism, we need
not assign a separate product to So;). After collapsing B x S! to a multicurve called the binding

and still denoted by B, the remaining boundary is decorated by the non-binding boundaries of

2The indices of ~; in this paper are shifted compared to [LV20], where the cutting arcs were denoted by ;1.
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FIGURE 3.3. A different foliated open book for a ball cut from S3.

the pages. With the above decomposition in mind, define a function 7: M \ B — S! so that on
each piece S; x (;—k, %), the function is projection to the second coordinate; here S 1 js identified

with [0,1]/(0 ~ 1). Below, we abuse notation a couple of times and write S; for 71(¢).

This construction induces a singular foliation F on M whose regular leaves are copies of A;,
oriented as the boundary of the pages, and whose singular leaves each contain a single four-
pronged hyperbolic point. Equivalently, leaves are level sets of the restriction of the function =
to 9S. The elliptic points I/ and the hyperbolic points H each come with signs: each interval
component of A; is oriented from a positive elliptic point towards a negative one. Hyperbolic
points associated to attaching a one-handle are negative, while hyperbolic points associated to
cutting along an arc are positive; for an illustration of the latter, refer to Figure 3.9.

We denote the resulting smooth object by the triple (M, M, F) and call it a manifold with foliated
boundary. We remember the identification of leaves with intervals on the boundary of abstract
pages, and, in particular, the foliation has a distinguished union of 0-leaves, which are always
regular. Because there are no closed leaves or saddle-saddle connections, we may use the signs of
the singular points to associate a dividing set to the foliation: as seen in Section 2.3, the boundary
of a neighborhood of the positive separatrices of positive hyperbolic points is a dividing set, and
this is unique up to isotopy transverse to the leaves. Note that a manifold with foliated boundary
does not have an associated foliated open book structure; rather, it has a boundary foliation that
is compatible with the existence of a foliated open book.

We conclude with one more topological example before turning attention to the relationship
between open books and contact structures.

Example 3.5. For a final example in this section, we describe a process for promoting a nicely
foliated surface F' to a foliated open book F' x I with the property that the open book foliation on
each F' x {s} is isotopic to the original foliation. This procedure is described in detail in [LV20,
Section 4.2], but we summarise it here for later use in this article.

The open book decomposition near a surface F' is completely determined by the open book
foliation F on F' [LV20, Corollary 4.6]. In the following, we describe this local structure by con-
structing a foliated open book for F' x [—1,1] that embeds into any other (foliated) open book
inducing F. Naively, one might try to cross the original surface with [—1, 1] and take the pages to
be the products of leaves with the interval. This works in the case of a foliation with only elliptic



A FRIENDLY INTRODUCTION TO THE BORDERED CONTACT INVARIANT 9

singularities, as in Example 3.2, but the process is more subtle in the case that the original foliation
has hyperbolic points.

We first briefly describe the open book determined by 7 near F' before using the foliation to
construct its abstract pages. The binding of the open book is transverse to F', so we can assume it
embeds as E x I in F x I, oriented by 2 (respectively, —2) for positive (negative) elliptic points.
Recall that I' denotes the dividing set for a signed foliation. Away from a neighborhood of I" x I,
each page S; is the union of the leaves 7 1(t + es) x {s} C F x {s}, where the sign depends
on whether we are in F; or F_, and ¢ is sufficiently small so that no page contains more than
one hyperbolic point. We connect these across I' x I by bands which twist to compensate for the
shearing of leaves in opposite directions as |s| increases. (Figure 8 in [LV20] provides local models
for this construction near I and E.)

As noted above, when ¢ is not near a singular point, this yields pages which are simply thick-
ened copies of the original interval leaves; when F is closed, these are rectangular pages with two
binding intervals separating a pair of leaves, one on each of F' x {+1}. This is illustrated by the
thickened sphere in Example 3.2.

To see what happens near a singular value ¢, for the original foliation, consider the page which
contains the corresponding hyperbolic point on F' x {0}. The boundary of this page on F' x {—1}
is a copy of the 7 (ty — ¢) leaf in which the saddle resolution has not yet happened, while the
boundary of this page on F' x {1} is a copy of the 7~ !(¢¢ + ¢) leaf where the saddle resolution has
already occurred. This gives a recipe for writing down abstract pages: starting from the regular
value 0, set So = 7 1(0) x I. To form S}, perform the first cut/add operation on the corresponding
F x {1} edges of Sp; to form Sy, perform the corresponding add/cut operation on the F' x {—1}
edges of S;. Note that Sy can be thought of as 71 (¢o + €) x I, where t; is the first singular value
encountered after 0. We can continue to obtain a pair of pages for each hyperbolic point in the same
way. If the original foliation had n hyperbolic points, the new foliated open book will therefore
have 2n + 1 pages. Each even-indexed page is a thickened regular leaf, while odd-indexed pages
interpolate between these. Finally, note that the monodromy h will always be trivial, as the first
and last pages are simply unions of disks.

3.3. Foliated open books and contact structures. With the topological constructions well in hand,
we are ready to recall the compatibility between foliated open books and contact structures.

Definition 3.6. [LV20, Definition 3.7] The abstract foliated open book ({S;}, h) supports the contact
structure £ on (M, 0M, F) if

(1) TB is positively transverse to &;

(2) there exists a nowhere zero vector field everywhere transverse to the interior of each page
and to £ whose flow preserves &;

(3) there is a topological isotopy of dM taking F to the characteristic foliation F¢ such that
some I' is a dividing set for each foliation throughout the isotopy.

We will often want to consider a manifold with foliated boundary (M, 0M, F) together with
a contact structure £ supported by a foliated open book inducing the boundary foliation; we call
this a foliated contact three-manifold and denote it by the triple (M, ¢, F).

As above, we may ignore the third condition to recover the classical definition of a contact
structure supported by an open book decomposition of a closed manifold. If a three-manifold M
has both an open book decomposition (B, 7) and a contact structure { supported by this open
book, then a sufficiently generic surface will carry both a characteristic foliation 7 and an open
book foliation F¢. A priori these foliations are unrelated, but if the open book foliation has no
circle leaves, then the contact structure can be isotoped so that the characteristic foliation and the
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open book foliation have the same combinatorics and further, that the singular points agree [IK14].
This is the key observation that gives the boundary criteria for foliated open books.

In the examples produced by cutting an honest open book along a separating surface, observe
that the open book foliations on the two new boundaries match, but with the signs of all singular
points reversed. Conversely, any two foliated open books with matching, sign-reversed boundary
foliations may be glued to produce a closed manifold with an open book structure. In fact, these
cutting and gluing results respect the contact structures supported by each of the open books in
the sense of Definition 3.6 [LV20, Theorems 6.1, 6.2].

In the remainder of this section, we construct several additional foliated open books for spe-
cific contact manifolds. Example 3.7 constructs foliated open books for a pair of distinct contact
structures on the three-ball. In this case, as in the examples above, the foliated open books are
identified as submanifolds of an open book for a closed three-manifold. Finally, Example 3.8 is
a specific instance of the procedure described in Example 3.5 above; we endeavor to provide a
plausible construction here while referring the reader to [LV20] for the technical details.

Example 3.7. Different open book decompositions of a fixed topological manifold may determine
different contact structures, and the same holds true in the case of foliated open books. In this
example we consider a pair of open books for S?, one of which supports the unique tight contact
structure and the other of which supports an overtwisted contact structure. Cutting each of these
along a separating S? yields foliated open books for tight and overtwisted balls.

Let (A, h*) denote the open book for $* with annular pages and monodromy a single Dehn
twist of the indicated sign. The binding of the associated open book decomposition is a positive
(resp. negative) Hopf link, denoted by H* (resp. H~). To picture this, consider the genus one
Heegaard splitting of S® = H; Uy (—Hz) into two solid tori where HT (resp. H~) is embedded
on the Heegaard torus as in Figure 3.4. Here 771([0, 1]) = H; and 7~ !([3,1]) = H». The positive
twist monodromy induces the tight contact structure on 53, while the negative twist monodromy
induces an overtwisted structure.

FIGURE 3.4. Left: H" embedded in 0H; in a tight S3. Center: H~ embedded
in 9H; in an overtwisted S3. Right: the open book foliation on the boundary of a

neighborhood of the spanning arc in the shaded annulus; as in Figure 2.1, elliptic
points are drawn as circles, and hyperbolic ones as squares.

In each of these open books, consider the embedded S? bounding a neighborhood of the orange
arc in 7~!(1) shown in Figure 3.4. Discard this ball, leaving a pair of foliated open books for the
complementary tight and overtwisted balls. The open book foliation on the boundary sphere has
four elliptic points and two hyperbolic points as in the right hand picture of Figure 3.4. The pages
of these foliated open books are shown as the shaded subsurfaces in Figure 3.5. The Dehn twists
from the original open book restrict to Dehn twists on the annular pages of the foliated open
books.
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FIGURE 3.5. Removing a neighborhood of the orange arc from S? yields the shaded
pages for a foliated open book for the three-ball. Each abstract page is shown em-
bedded into an annular page for the open book (A, h*), where h™ is a positive (resp.
negative) Dehn twist around the core of the annulus. These twists restrict to the cor-
nered annulus Ss as the monodromy for the foliated open books ({Sy, S1, Sa2}, ')
for a tight three-ball and ({Sy, S1, S2}, h™) for an overtwisted three-ball. The light
and dark blue curves are sorting arcs, which are introduced in Section 3.4.

Example 3.8. In this example we construct a foliated open book for a ball supporting an over-
twisted contact structure. This example is borrowed from [LV21], following the procedure sum-
marized in Example 3.5. The motivation for including this intially-opaque construction is that it
will allow us to characterise any foliated open book for an overtwisted contact manifold in terms
of a particular embedded foliated open book. To begin this process, we introduce a non-standard
definition of overtwistedness:

Definition 3.9. A contact manifold (M, €) is overtwisted if it contains an embedded disk whose
boundary is everywhere transverse to £ and whose characteristic foliation is as shown in Fig-
ure 3.6.

FIGURE 3.6. The left-hand picture shows the top of an overtwisted disk with trans-
verse boundary; elliptic and hyperbolic points are again drawn as circles and
squares, respectively. The right-hand picture labels the singularities of the char-
acteristic foliation on the underside of the disk; the two points in the pairs (4, D),
(B,E), and (C, F) coincide, but the sign of each singular point is reversed when
viewed from the opposite side.

Overtwistedness is more commonly characterized in terms of the existence of an embedded
disk with a different characteristic foliation, but it’s a consequence of Giroux Flexibility that the
existence of a disk with this foliation is equivalent to the existence of disks with related charac-
teristic foliations. We choose Definition 3.9 with a later application in mind. We now apply the
construction sketched in Example 3.5 to build a foliated open book for a neighborhood of this
disk; it follows that inside any overtwisted contact manifold, we may find an overtwisted ball that
admits this foliated open book.
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The existence of a transverse boundary requires us to slightly modify the construction, smooth-
ing the boundary of pages associated to leaves that terminate on OF'. Thus a regular leaf connect-
ing an elliptic point e to OF will give rise to a bigon with one e x [—1, 1] component and one A4;
component connecting e x {£1}.

We now apply this construction to the overtwisted disk shown in Figure 3.6, yielding an abstract
foliated open book with five abstract pages. We set ¢ = 0 to consist of the leaves where intervals
connect (1) elliptic points A and B, and (2) elliptic point C' to the boundary. The first leaf becomes
a rectangular page with two boundary intervals, one connecting A x {1} and B x {1} and the
other connecting D x {—1} with E x {—1}. The leaf connecting C' to the boundary becomes
a bigon whose boundary interval connects C' x {1} with F' x {—1}. See Figure 3.7. Around a
positive elliptic point, ¢ increases in the positive direction; following the procedure outlined in
Example 3.5, the first hyperbolic singularity corresponds to adding a handle to connect these two
pages. Figrue 3.7 shows all the abstract pages of the resulting foliated open book.

A B A B
A F ¢ B A B
D F E , D E
E/L D C_, 3D E 4
C A C
E B D C F D
F D F

FIGURE 3.7. The pages of a foliated open book for a neighborhood of the disk in
Figure 3.6. Each hyperbolic point in the original foliation induces a pair of hy-
perbolic points of opposite sign in the foliated open book. (The labeled arcs are
explained in Example 3.11.)

Since each component of each page is a disk, there is a unique (up to isotopy) way to identify
successive pages, and the foliated open book is completely determined by this data. One may also
reconstruct the dividing set on the ball. One component encircles B on the “top” of the ball, while
two further components bound an annulus containing D, F, and the two positive hyperbolic
points on the “bottom” of the ball. In contrast, the foliated open book for the overtwisted ball
constructed in Example 3.8 has a connected dividing set.

To illustrate how this ball might embed in an overtwisted contact manifold, we consider the
open book for an overtwisted S* from Example 3.7. Recall that the pages are annuli and the
monodromy is a left-handed Dehn twist. The top half of Figure 3.8 shows a ball intersecting two
representative pages of this open book. The elliptic points are labeled to identify these subsurfaces
with the first and third abstract pages from Figure 3.7; although we find it difficult to visualise
further pages embedded in S3, it is not difficult to embed the foliated open book pages in abstract
pages, as shown below.

3.4. Sorted foliated open books. Foliated open books will be our means to associating a Floer-
theoretic invariant to a three-manifold with foliated boundary. However, in order to generate a
multipointed Heegaard diagram, we will need to require the further technical condition that our
foliated open book is sorted. Since the notation to verify this condition is somewhat involved, we
pause to motivate it first.

The definition of a foliated open book requires successive pages to evolve by cutting or by glu-
ing, but we may equivalently think of this as the condition that evolution is always by addition,
but in either direction: either S; is obtained from \S;_; by a one-handle addition or else S; is ob-
tained from S, by a one-handle addition. One-handles associated to negative hyperbolic points
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FIGURE 3.8. The foliated open book for the minimal overtwisted ball embeds in
the simplest open book for an overtwisted S3. The monodromy is a left-handed
Dehn twist.

are those already described in Definition 3.3 as “adds”, while positive hyperbolic points corre-
spond to adding a handle as the page index decreases. We will call a foliated open book sorted
if a one-handle, after being added with respect to some direction (i.e., increasing or decreasing
indices), persists for all subsequent pages with respect to that direction. See Figure 3.9.

FIGURE 3.9. Here S;_; is obtained from S; by adding the shaded one-handle,
inducing a positive hyperbolic singularity at the saddle point. The sorted condition
requires that this handle persist for all S; with 0 < j < i. Note that the binding has
been blown up as B x I for ease of viewing.

Recall that the elliptic points E = A; N B partition as £ = E L E_, where each interval is
oriented from a point e; € E, to a point e_ € E_. We impose the following conventions on the
cutting and gluing arcs that govern how the pages evolve:

o If S; — Si41 cuts S; along a properly embedded arc, the endpoints of the arc lie near the
e+ end of the intervals of A;. We decorate S; and all prior pages with a copy of the cutting
arc and label these arcs as ;. If S; is decorated with multiple cutting arcs near the same
point e, the indices decrease with the orientation of A;.

e If S, — S;11 adds a one-handle to S;, the points of the attaching sphere separate any v+
endpoints from the e~ on the intervals of A;. We decorate S;; and all subsequent pages
with a copy of the cocore of the attached one-handle and label these arcs as v, . If S;
is decorated with multiple cocores near the same point e_, the indices decrease with the
orientation of A;.
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If we take the perspective that gluing is simply cutting in with the order of the indices reversed,
then the second bullet point can be phrased in identical language to the first. Figure 3.10 illustrates
these conventions in an example.

Definition 3.10. A foliated open book is sorted if the arcs v~ U~ are mutually disjoint on all the
pages where they appear. We denote a sorted foliated open book by ({S;}%£,, b, {}).

A foliated open book which is sorted has a ghost page: a minimal surface formed by cutting
along all of the arcs. Although this surface may not actually coincide with any S; in the foliated
open book, it embeds as a subsurface in each abstract page. Keeping this in mind may help in
understanding the following notation-heavy definition.

Suppose ({S;}?*,,h,{7"}) is a sorted foliated open book for foliated contact three-manifold
(M, €&, F). On each page S;, let P; be the complement of a “cornered” neighborhood of A; U
(Uie; ’y;r) U (U;s;7; ), with corners at E. This P; is the ghost page and exists as subsurface of
each S;. The copies of P; may be identified via the flow of a vector field transverse to the pages,
and we denote the composition of these identifications from Py C Sy onto P, C So, by ¢.

+ +
m
€t -

€

FIGURE 3.10. An indicative interval of A,,. Here i > j > n > m. The arcs %‘+ and
y;r show arcs that will be cut along on higher-index pages. The bold dot indicates
where a one-handle could be attached on some later page, while the arc v,, is the
cocore of a handle already attached.

3.5. Sorting by stabilization. In this subsection we examine the operation of positive stabilization
on a foliated open book and show how it can be used to render a non-sorted foliated open book
sorted. The idea is straightforward: each stabilization adds a one-handle to every page of the
foliated open book by taking a connect sum with a foliated open book for the standard tight S°.
For a simple example, we note that the foliated open book for a tight three-ball constructed in
Example 3.7 is a positive stabilization of the foliated open book from Example 3.2.

The number of sorting arcs 7= is controlled by the foliation, and hence unchanged by stabi-
lization. Repeating the process sufficiently many times gives the sorting arcs more space in the
enlarged page to avoid each other. Of course, the arcs that guide the stabilization must be chosen
carefully, and we explain how to do this below. The formal proof that this is always possible may
be found in [LV20].

As shown in [LV20], stabilization may be understood as a concrete example of gluing two foli-
ated open books. Choose an arc (y, 97) embedded in a fixed page (.S;, B) of a foliated open book.
A regular neighborhood of this arc may be chosen so that its boundary is a sphere whose signed
singular foliation has two hyperbolic singularities. Choosing such neighborhoods in two separate
foliated open books yields manifolds with matching foliated boundaries. Since we can only glue
foliations where the singularities match, but with opposite signs, shifting the ¢ coordinate by 3
allows us to glue the two spheres to construct a foliated open book for the connect sum of the two
original manifolds; the new pages are Murasugi sum of the pages of the original foliated open
books. If one of the manifolds was an open book with annular pages supporting the tight contact
structure on S3, then the contactomorphism type of the manifold is unchanged and we say that
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the foliated open book has been positively stabilized. The open book in Example 3.7 with positive
Hopf twist binding is a stabilization of the elementary open book for S from Example 3.2.

The description above applies with minor modification to all versions of open books, but a
distinguishing feature of foliated open books is the non-homogeneity of the pages. An arc on .S;
may not persist to some later page Sy, or Sy may have a non-trivial mapping class group even
though S; was a collection of disks. This highlights that there are two choices to be made when
defining a stabilization of a foliated open book: which page, and which arc?

With a goal of removing intersections of the form ~;" N 7; » choose a regular page between the
hyperbolic points A and h; . We will stabilize along an arc in this page so that as ;" rises up
through the manifold, the subinterval that would collide with the descending ~;" picks of the

monodromy of the foliated open book for S? and instead undergoes a Dehn twist around the core
of the annular Murasugi summand of the page.

Example 3.11. Example 3.8 introduced a foliated open book for an overtwisted ball which embeds
into any overtwisted contact manifold. Examining Figure 3.7 more closely will show that it is not
sorted, and this example will perform the sorting stabilizations.

The first hyperbolic singularity is negative and corresponds to adding a one-handle to .Sy as
shown; on the second page S;, the cocore of the one-handle is recorded as an arc v; . However,
the second hyperbolic singularity is positive and corresponds to cutting the second page along the
arc labelled 5 to get the third page. As shown in the figure, v; and 5 intersect.

To remove this obstruction to sortedness, choose a copy of S; and stabilize along an arc that
crosses 75 and 7; once. The result is shown in Figure 3.11. One can think of 7; as undergoing a
right-handed twist as it ascends or v, as undergoing a left-handed twist as it descends, and since
the two curves now avoid each other, we may proceed with increasing ¢ until v; and ~; intersect
on the new S3 page.

D

)

C c
B a A B
3 4

/ N > E—>D
6 C

D < F
C D F

E B

FIGURE 3.11. The stabilization of the foliated open book from Figure 3.7. Note
that 75 and ~; intersect on the new page Ss, so the foliated open book remains
unsorted.

A

es!

To remove the intersection 73 N+, , we analogously stabilize along an arc intersecting each of
these curves once. Finally, a sorted foliated open book is seen in Figure 3.12. Since the gluing map
is inherited from the original foliated open book, it remains translation in the page as drawn.

For any i, cutting along all the sorting arcs on S; yields a pair of disks, the “ghost page” de-
scribed in the previous section.
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B

v :

FIGURE 3.12. A sorted foliated open book for a neighborhood of an overtwisted
disk, obtained from the foliated open book in Figure 3.7 by a sequence of two sta-
bilizations.

4. MULTIPOINTED BORDERED FLOER HOMOLOGY

As a stepping stone for defining link Floer homology, Ozsvath and Szab6 defined a multipointed
version of HF denoted by HF [OS08]. This version is defined using Heegaard diagrams with
multiple basepoints, and, given a closed, oriented three-manifold )/, it is related to f]?(M ) by the
isomorphism

HF(M,n) =~ HF(M)®@ V"',

Here, n is the number of basepoints and V' is a 2-dimensional graded Z/2Z-vector space with
generators in gradings 1 and 0; i.e., V = H,(S1).

In [JuhO6], Juhasz defines an extension of HF for non-closed three-manifolds whose boundary

is sutured, called sutured Floer homology. Note that both ffF(M ) and EF(M ,n) are sutured Floer
homologies of specific sutured manifolds corresponding to M. Specifically, let M (n) be the su-
tured manifold obtained from M by removing n pairwise disjoint balls and adding as a suture
one oriented simple closed curve on each resulting sphere boundary component. Then, we have

HF(M) = SFH(M (1)) while HF (M,n) = SFH (M (n)).

Lipshitz, Ozsvath, and Thurston define bordered Floer homology as an extension of HF for
three-manifolds with parametrized boundary [LOT18]. First, they associate a differential graded
algebra A(OM) to the parametrization. Then, they define an A.,-module, or fype A structure,
@(M ) over A(OM), or equivalently, a type D structure (roughly, a dg module) @(M ) over
A(—0M). These invariants are constructed to satisfy a nice gluing formula which recovers HF.
Specifically, if M is a closed three-manifold obtained by a gluing M; Uy Mo, then the derived tensor
product @(Ml)é A(OMy) C/*F\D(M2) (which often has a smaller model denoted X) is homotopy
equivalent to ﬁ(M ).

A generalization of bordered Floer homology, called bordered sutured Floer homology, was de-

fined by Zarev [Zar(09]. It is an invariant of three-manifolds whose boundary is “part sutured, part
parametrized”. This invariant satisfies a gluing formula which recovers sutured Floer homology.

In this section, we introduce a multipointed theory for bordered Floer homology as a special case
of bordered sutured Floer homology. First, we recall the definition of the boundary parametriza-
tion in bordered Floer homology. Let M be a three-manifold with boundary of genus k. A
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parametrization for M consists of a disk D C 0M; a basepoint z € 9D; and 2k pairwise dis-
joint properly embedded arcs 112, 6; in OM \ Int(D) such that M \ (D UII? ;) is an open disk.
The parametrization data is recorded by a pointed matched circle Z = (Z, a, m), where Z = 0D
with z € Z, a = 0(112%,§;) union of 4k points on Z, and M is a matching on a that pairs endpoints
of the same arc 9;.

Definition 4.1. A pointed matched multicircle is a triple Z = (Z, a, m) where Z = II?"_, Z; is a union of
n circles with a basepoint z; on each Z;, a C Z is a set of an even number of points, and m: a — ais
a matching. Given a three-manifold M with boundary of genus k, a (multipointed) parametrization
of OM is a pointed matched multicircle Z with |a| = 4n + 4k — 4, along with an embedding of Z
and of pairwise disjoint arcs § = 112”2725, into M, satisfying the following:

(1) The image of each Z; bounds a disk D; in M whose interior is disjoint from the arcs ¢; for
all 4.
(2) 06 = a and each 09¢; is a pair of points matched by m.

3) OM \ ((H;‘lei) U (H?ﬁf%_zéi)) is the union of n open disks such that each disk contains
exactly one of the marked points z; fori =1,...,n.

We call the three-manifold with multipointed parametrized boundary a bordered manifold, as in
[LOT18], and denote it by (M, Z), omitting from the notation the implicit data of how the arcs ¢;
are embedded on OM.

A three-manifold with multipointed parametrized boundary (M, Z) can be reinterpreted as a
bordered sutured manifold (M, I, Z°) where 1" , D; is the sutured part while its complement is
the parametrized part, and Z° is the arc diagram obtained from Z by removing neighborhoods
of the basepoints. Thus, Zarev’s construction associates a type A structure BSA(M, I, Z°) over
A(Z) == A(Z°), or equivalently a type D structure BSD(M, T, Z°) over A(—Z2). The construction
uses a Heegaard diagram presentation H = (3, a, 3, Z°) for the bordered sutured manifold. The
arc diagram Z° is embedded on 0 so that there is one interval on each component of 9H. The
structures BSA and BSD are generated by certain sets of intersection points in o N 3 on the Hee-
gaard diagram and they have structure maps defined by counting certain holomorphic curves in
¥ x I x R whose projection onto ¥ avoids the regions of 3 \ (o U 3) containing 0H \ Z°.

The embedding of Z° on OH can be extended to an identification of Z with OH, by reinserting
the basepoints, one in each component of OH \ Z°. The result is a multipointed bordered Heegaard
diagram for (M, Z). Since there is no loss of information when moving from one perspective to
the other, we denote Z° 31mp1y by Z in this paper. We will denote the structures BSA(M r,z°)
and BSD(M r,Z°) by CFA(M Z) and CFD(M Z), respectively. Explicitly, given a multipointed
bordered Heegaard diagram, these structures are defined by counting the “usual” holomorphic
curves; the condition of “avoiding the basepoints” is equivalent to “avoiding 0H \ Z°”. The gluing
formula for bordered sutured Floer homology implies that if the closed three-manifold M with
multiple basepoints is obtained by gluing mult1pomted bordered three-manifolds M; Uy Ms, with
M, parametrized by Z and M, by —Z, then CFA(Ml) X A(z) CFD(MQ) is homotopy equivalent to

CF (M, n).
5. THE BORDERED CONTACT INVARIANT

Let (M, &, F) be a foliated contact three-manifold. In [AFH'20], a sorted foliated open book for
(M, &, F) was used to construct a Heegaard diagram for an associated bordered sutured manifold
(M,T, Z), along with a preferred generator of the diagram. The homotopy equivalence class of
this generator in the resulting bordered sutured Floer homology is an invariant of the foliated
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contact three-manifold [AFH 20, Theorem 1]. In particular, the class is independent of the choice
of open book. We recall the construction next, slightly rephrasing to use multipointed bordered
Floer homology, and we work out a small example.

As explained in Section 4, we can convert the data of a bordered sutured manifold (M, T, Z)
to multipointed bordered data for a simpler perspective. We describe the parametrization on the
boundary of the resulting bordered manifold (M, Z) directly below.

We use the foliation to define a natural parametrization of M via a pointed matched multicircle
Z = (Z,a,m). Recall that the data of the foliation remembers the page index associated to each
leaf, and in particular, that there is a distinguished union of regular leaves denoted by Aj. Let
D C OM be a closed neighborhood of Ay, and let Z = 9D. Note that D is a union of n disks,
where 2n is the number of elliptic points in the foliation. Let J; be subarc of the positive (resp.
negative) separatrix for h;" (resp. h; ) that lies in M \ (intD). Define a C Z to be the set of points
that are the boundaries of §; and let m be the matching induced on the points in a by §;. For each
component of Z, mark a basepoint with a smallest possible (0, 27)-coordinate. See Figure 5.1 for
an example. It is easy to check that Z = (Z,a,m) together with the embedding of the arcs J;
parametrizes OM.

FIGURE 5.1. The bordered three-manifold associated to the foliated ball that is the
neighborhood of the orange arc from Example 3.7. The two grey disks make up D,
their boundary is Z, the two acs 9; are drawn in blue and labelled on the figure,
and the basepoints are drawn in green.

Now, fix an abstract sorted foliated open book ({S;}?*,, h, {7;*}) for the foliated contact three-
manifold (M, £, F). The sortedness condition ensures that the first page of the open book, together
with its (indexed) ’y;r arcs; the last page together with its (indexed) 7, arcs; and the monodromy
h tully describe the manifold. In fact, the union of the first and last page naturally describes a
(cornered) handlebody decomposition for M. Using the data of ({S;}, h, {7;*}), we describe a
multipointed bordered Heegaard diagram H = (¥, a, 3, Z) for this handlebody decomposition,
along with a preferred generator. We outline the construction below; cf. [AFH"20, Section 3].

Let g; be the genus of S; and let n; be the number of boundary components of S;. Recall that the
boundary of the cornered surface S; is B U A;, where B is a union of circles and arcs, and 4; is a
union of intervals only.

Welet X = Sy Up —Sp. In order to distinguish the two copies, we will write
X =5.Ug -9,
but we emphasize that S, can be identified with Sy. The surface ¥ has genus 2go + no — 1 and | Ag|
boundary components.

For i € H_, consider the Sy copies of the sorting arcs 7, , and let 37 = —h(y; ) on —Sy. For
i € H,, consider the S, copies of the sorting arcs ~;". The endpoints of ~;" lie near the £ end of
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intervals of A.. Isotope the arcs {7;"} (simultaneously, to preserve disjointness) near the endpoints
along —03 until they all lie in I, C Ay; the isotopy stops after crossing . and before encoun-
tering Uje_ — h(fyj_) C —Sp. Call the resulting arcs 3;". Define a set of arcs 3% = {8¢,... 8%}
by

)

m:{@ ifieH,,

B; ifie H_.
As in [AFH"20], we use the notation 3¢ or A if i € H interchangeably.
Letb = {b1,...,bagy+no+|4o|—k—2) be a set of cutting arcs for P. C S, disjoint from 3 and with

endpoints on B, so that each connected component of S\ (bUB?) is a disk with exactly one interval
of A on its boundary. (In [AFH'20], we show this can always be achieved.) In other words, b is
a basis for H;(P., B). Recalling the identification S. = Sy, we may push b; C Sy through M to lie
on Sy again and define

Bi = biU—hou(b;) CScUp —Sp,
where ¢ is the identification of Py with Py, from Section 3.4. Write B8° = {81, . . ., Bagytno+|Ao|-k—2}-

For each cutting arc b; € b on S, let a; be an isotopic curve formed by pushing the endpoints
negatively along the boundary so that a; and b; intersect once transversely. Similarly, for each arc
bl = SN 5;2 let a; be an isotopic curve formed by pushing the endpoints negatively along the
boundary so that a; and b (and equivalently a; and B;T) intersect once transversely. We “double”
each of these arcs to form the a-circles which define the handlebody Sy x [0, €]. Namely, define

oa; =a;U—a; CS.Ug —Sy
&j =a;U—a; C Se Up —So,
and write a® = {@; }ien, U{a1,. .., ag)4no+|4o|—k—2}- Place a basepoint on each interval of A. C
Se C 2. Write
zZ = {zl,...,z‘AJ}
for the set of basepoints.

We say that a multipointed bordered Heegaard diagram H = (X, o, 3, Z) constructed as above
is adapted to the sorted abstract foliated open book ({S;}, %, {7;"}) and to the corresponding foli-
ated contact three-manifold (M, ¢, F).

Let  be a multipointed bordered Heegaard diagram adapted to ({S;},h, {7;"}). In [AFH20],
we show that any such diagram is admissible. (In fact, in [AFH*20] neighborhoods of basepoints
are drilled out to obtain a bordered sutured diagram for a certain bordered sutured manifold natu-
rally associated to (M, &, F), but we suppress this discussion here.) Using the notation introduced
above, define

X = {21, Togysno+|Ao|—k—2} U{z; i€ Hy}
to be the set of unique intersection points

r,=aq;Nb;€S.CX
zf =a;Nbf €S, ifieH,.

We will use x to define two contact invariants in multipointed bordered Floer homology.

By [AFH 20, Proposition 3.4] and [Zar10, Section 3.4], the diagram H = (%, 3, o, Z) obtained
by exchanging the roles of the two sets of curves and formally replacing the arc diagram Z of
B-type (which is to say, parametrized by arcs which are part of the second set of curves) with the
identical arc diagram Z of a-type (parametrized by arcs which are part of the first set of curves)

is a multipointed bordered diagram for (—M, Z). Write Z = (Z,a,m). We have the following
proposition.
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Proposition 5.1 (cf. [AFH"20, Proposition 3.5]). The above x gives a well defined generator
Xp =X € C%(ﬁ)

with Ip(x) = I(H_) and §'(xp) = 0, and a well defined generator
XA =X E E?FZ(W)

with I4(xa) = I(Hy) and miy1(xa,a(py), ..., a(p;)) = 0 forall i > 0 and all sets of Reeb chords p; in
(Z,a).

Example 5.2. We illustrate the construction outlined above using the (sorted) foliated open book
in Figure 3.5. Recall that the three pages depicted in Figure 3.5 in fact can be used to construct
different foliated open books, depending on the choice of monodromy 7", for n € Z, where 7 is a
positive Dehn twist along the core of the annular page Ss.

First, consider the foliated open book with pages depicted in Figure 3.5 and monodromy 7 (this
was denoted by it in Figure 3.5). Figure 5.2 shows the associated Heegaard diagram H*. We

) PGS
[ NS

Se =50
FIGURE 5.2. The Heegaard diagram for the sorted foliated open book
({So, S1, S2}, ht) from Figure 3.5. The monodromy A" is a positive Dehn twist,
so the images 8, = —h™'(v; ) and —h™ o 1(b;) are the dark and medium-dark blue
curves on —.S, respectively. Intersection points are labelled differently from the
above definition, for convenience. The contact generator x is the pair {1,y }, or
x1y; for short.

label the intersection points in the Heegaard diagram H* by z1, 29, y1, and y» as in Figure 5.2. The
diagram has two generators — x;y; and z2y2, where 1y, is the special generator x defined above.
Let p; and ps be the algebra elements in A(9HT) corresponding to the Reeb chords on the inside
and outside boundary components of the Heegaard diagram, respectively, as seen on Figure 3.5.

The type D structure C%(F) is generated by z1y; and x2y2, and has structure maps
§Hz1y1) =0
6! (zay2) = (p1 + p2) @ T1Y1.

The contact class cp (B3, £, F) is the homotopy equivalence class of z1y;.

Next, consider the foliated open book with pages depicted in Figure 3.5 and monodromy 7!

(which was denoted h~ in Figure 3.5). Figure 5.3 shows the associated Heegaard diagram H~.
We label the intersection points in H~ by x}, x, =%, 4, ¥}, ¥4, ¥4, and v} as in Figure 5.3. Let
p1,p2 € A(OH™) be as in the previous example. The type D structure C%(F) is generated by
iyl 2hyh, 2yl 2hyl, whyh, ahyl, xhys, oyt oy, and 2y}, and has structure maps
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FIGURE 5.3. The Heegaard diagram for the sorted foliated open book
({So, 51,52}, h™) from Figure 3.5. The monodromy A~ is a negative Dehn twist,
so the images 3, = —h™ (7, ) and —h™ o ¢(by) are the dark and medium-dark blue
curves on —S, respectively. The contact generator x is 2} y.

5 (ahyy) =0

5 (zhyh) = pr @ iy

5 (2hyh) = p2 @ i

5 (zhy) = T @ )y}

5 (ahyh) = p1 @ Thy) + I ® 2y
5 (o) = I © Ty + p2 ® Thy)
5" (ahys) =0

S (whyy) = T @ 2hyh

oM (whyh) = T @ ayh + I © alyys
oM () = T © 2hyy + p2 @ xhy)

In particular, §'(z4y}) = I ® 2}y, implies that there is a type D homotopy equivalence from
CFD(H™) to an equivalent structure, carrying zy} to zero.

6. VANISHING OF THE CONTACT CLASS FOR OVERTWISTED STRUCTURES — A LOCAL ARGUMENT

In this section, we illustrate the power of invariants compatible with cut-and-paste construc-
tions by providing a local argument that the contact class ¢(§) for closed contact manifolds van-
ishes if the contact structure is overtwisted.

We begin by showing that the bordered contact invariant vanishes for a neighborhood of an
overtwisted disk. Specifically, we consider the foliated open book constructed in [LV21] for a
three-ball neighborhood (B3, ¢ot, For). In Example 3.8, we stabilized the foliated open book
from [LV21] to a sorted one. We now construct the Heegaard diagram H associated to the resulting
sorted foliated open book from Figure 3.12. For convenience, in Figure 6.1 we display again the
pages Sy and —S,, along with the sorting arcs decorations.

Figure 6.2 shows the associated Heegaard diagram .
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— O

™~

FIGURE 6.1. The first page (to the left) and the mirror of the last page (to the right)
of the sorted foliated open book in Figure 3.12.

xy

FIGURE 6.2. The Heegaard diagram for the sorted foliated open book in Figure
3.12. The monodromy # is the identity, so the images ;" = —h(y; ) are simply the
sorting arcs ; on —Sp. Intersection points are labelled differently from the above
definition, for convenience. The contact generator x is the triple {x;,y1,w;}, or
x1y1wy for short.

The generator z1y,w; € C/']}T?(ﬁ) represents the contact class. We claim that there is a unique
holomorphic curve that avoids the basepoints and is asymptotic to zy;w4 at —oo, and this curve
ends at z1yw;.

Indeed, x; and y; cannot be starting moving coordinates for a holomorphic curve; the only
non-basepointed regions at these intersection points are the thin strips supported on the S, part
of the diagram, but the orientation on these strips is into z; and y;. So any holomorphic curve
starting from z;y; w4 must only have w4 as a moving coordinate. A curve that hits the boundary
of the Heegaard diagram would need to have a moving coordinate on a #-arc. Since wy is on a
B-circle, all holomorphic curves starting from z,y;w4 project to the interior of the diagram. Thus,
any such curve with a single moving coordinate projects to an immersed bigon. By counting
local coefficients, the yellow bigon from zy; w4 to z1y1w; in Figure 6.2 represents the unique such
curve.

Thus, considering C%(ﬁ), we have 6! (z1yjws) = I ® z1yjw. Or, if one prefers to consider
EFZ(%), we have m (z1y1w4) = x1y1w1, whereas higher products m; vanish on zy;w4. It follows
that there is a type D (resp. type A) homotopy equivalence from C%(ﬁ) (resp. ﬁ(ﬁ)) to an
equivalent structure, carrying x;y,w; to zero.

Recall from the introduction that we claimed the Ozsvath-Szabé vanishing result for over-
twisted contact manifolds can be recovered from gluing properties of the bordered contact in-
variant. In fact, the necessary technical results have already been established, and we conclude by
assembling them into the promised proof.

Proof of Corollary 4. Suppose (M, &) is a closed overtwisted three-manifold. As discussed in Sec-
tion 3.3, (M, &) contains an overtwisted disk whose neighborhood is contactomorphic to the con-
tact three-ball (B3, £ot, For) studied in Example 3.8. Thus, (M, ) decomposes as the union of two
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foliated contact three-manifolds, one of which is (B3, £or, For).The computation, above, together

with Theorem 3 and functoriality for X, implies that ¢(§) = 0. O
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