
IEEE TRANSACTIONS ON MOBILE COMPUTING 1

Deep Learning Video Analytics Through Edge
Computing and Neural Processing Units on

Mobile Devices
Tianxiang Tan, Student Member, IEEE, and Guohong Cao, Fellow, IEEE,

Abstract—Many mobile applications have been developed to apply deep learning for video analytics. Although these advanced deep
learning models can provide us with better results, they also suffer from the high computational overhead which means longer delay
and more energy consumption when running on mobile devices. To address this issue, we propose a framework called FastVA, which
supports deep learning video analytics through edge processing and Neural Processing Unit (NPU) in mobile. The major challenge is
to determine when to offload the computation and when to use NPU. Based on the processing time and accuracy requirement of the
mobile application, we study three problems: Max-Accuracy where the goal is to maximize the accuracy under some time constraints,
Max-Utility where the goal is to maximize the utility which is a weighted function of processing time and accuracy, and Min-Energy
where the goal is to minimize the energy under some time and accuracy constraints. We formulate them as integer programming
problems and propose heuristics based solutions. We have implemented FastVA on smartphones and demonstrated its effectiveness
through extensive evaluations.

Index Terms—deep learning, video analytics, mobile computing

F

1 INTRODUCTION

D EEP learning techniques, such as Convolutional Neural
Network (CNN), have been successfully applied to

various computer vision and natural language processing
problems, and some of the advanced models can even
outperform human beings in some specific datasets [1].
Over the past few years, many mobile applications have
been developed to apply CNN models for video analytics.
For example, Samsung Bixby can help users extract texts
showing up in the video frames. Although these advanced
CNN models can provide us with better results, they also
suffer from the high computational overhead which means
long delay and more energy consumption when running on
mobile devices.

Most existing techniques [2]–[6] address this problem
through computation offloading. By offloading data/video
to the edge server and letting the edge server run these deep
learning models, energy and processing time can be saved.
However, this is under the assumption of good network
condition and small input data size. In many cases, when
the network condition is poor or for applications such as
video analytics where a large amount of data is processed,
offloading may take longer time, and thus may not be the
best option.

Recently, many companies such as Huawei, Qualcomm,
and Samsung are developing dedicated Neural Processing
Units (NPUs) for mobile devices, which can process AI
features. With NPU, the running time of these deep learn-
ing models can be significantly reduced. For example, the
processing time of the ResNet-50 model [1] is about one
second using CPU, but only takes about 50 ms with NPU.

• The authors are with School of Electrical Engineering and Computer
Science, Pennsylvania State University, University Park, PA 16802.
E-mail: {txt51, gxc27}@psu.edu.

Although NPUs are limited to advanced phone models at
this time, this technique has great potential to be applied
to other mobile devices, and even for IoT devices in the
future. Although GPUs on mobile devices can also be used
to run DNNs, they are not as powerful as those running
on desktops and servers. Compared to GPUs on mobile
devices, NPUs are much faster and more energy efficient
[7].

There are some limitations with NPU. First, NPU uses 16
bits or 8 bits to represent the floating-point numbers instead
of 32 bits in CPU. As a result, it runs CNN models much
faster but less accurate compared to CPU. Second, NPU has
its own memory space and sometimes the CNN models are
too large to be loaded into memory. Then, the CNN model
has to be compressed in order to be loaded by NPU and
then reducing the accuracy. For instance, HUAWEI mate 10
pro has limited memory space for NPU and many advanced
CNN models must be compressed at the cost of accuracy.

There is a tradeoff between the offloading based ap-
proach and the NPU based approach. Offloading based
approach has good accuracy, but may have longer delay
under poor network condition. On the other hand, NPU
based approach can be faster, but with less accuracy. In
this paper, we propose FastVA, a framework that combines
these two approaches for real time video analytics on mo-
bile devices. The major challenge is to determine when to
offload the computation and when to use NPU based on
the network condition, the video processing time, and the
accuracy requirement of the application.

Consider an example of a flying drone. The camera on
the drone is taking videos which are processed in real time
to detect nearby objects to avoid crashing into a building
or being trapped by a tree. To ensure no object is missed,
the detection result should be as accurate as possible. Here,

IEEE TRANSACTIONS ON MOBILE COMPUTING 2

the time constraint is critical and we should maximize
the detection accuracy under such time constraint. For
many other mobile applications such as unlocking a smart-
phone, making a payment through face recognition, or using
Google glasses to enhance user experience by recognizing
the objects or landmarks and showing related information,
accuracy and processing time are both important. Hence,
we should achieve a better tradeoff between them. Since
mobile devices are powered by battery, reducing energy
consumption is critical and we should minimize the energy
consumption under time and accuracy constraints.

Based on the accuracy, the processing time and the accu-
racy requirement of the mobile application, we study three
problems: Max-Accuracy where the goal is to maximize the
accuracy under some time constraints, Max-Utility where
the goal is to maximize the utility which is a weighted
function of accuracy and processing time, and Min-Energy
where the goal is to minimize the energy under the time and
accuracy constraints. To solve these three problems, we have
to determine when to offload the computation and when to
use NPU. The solution depends on the network condition,
the special characteristics of NPU, and the optimization
goal. We will formulate them as integer programming prob-
lems, and propose heuristics based solutions.

Our contributions are summarized as follows.

• We study the benefits and limitations of using NPU
to run CNN models to better understand the charac-
teristics of NPU in mobile.

• We formulate the Max-Accuracy problem for the
applications with strict time constraints, and propose
a heuristic based solution.

• We formulate the Max-Utility problem to achieve
a better tradeoff between accuracy and processing
time, and propose an approximation based solution.

• We identify the power, accuracy and processing time
tradeoffs between computation offloading based ap-
proach and NPU-based approach, formulate and
solve the Min-Energy problem.

• We implement FastVA on smartphones and compare
it with other techniques through extensive evalua-
tions.

The rest of the paper is organized as follows. Section
2 presents related work. Section 3 studies the benefits and
limitation of NPU and provides an overview of FastVA. We
formulate the Max-Accuracy Problem and propose a solution
in Section 4. In Section 5, we study the Max-Utility Problem
and give a heuristic based solution. In Section 6, we study
the Min-Energy Problem and propose a solution. Section 7
presents the evaluation results and Section 8 concludes the
paper.

2 RELATED WORK

Over past years, there have been significant advances on ob-
ject recognition with CNN models. For example, GoogleNet
[8] and ResNet [9] can achieve high accuracy. However,
these CNN models are designed for machines with power-
ful CPU and GPU, and it is hard to run them on mobile
devices due to limited memory space and computation
power. To address this issue, various model compression

techniques have been developed. For example, in [10], the
authors propose to separate convolutional kernels from the
convolutional layers and compress the fully-connected lay-
ers to reduce the processing time of CNN models. Liu et al.
[11] optimize the convolutional operations by reducing the
redundant parameters in the neural network. FastDeepIoT
[12] compresses the CNN models by optimizing the neural
network configuration based on the non-linear relationship
between the model architecture and the processing time. In
[13]–[15], the authors reduce the size and the processing
time of CNN models by using less number of bits to rep-
resent the parameters in these CNN models. Although the
efficiency can be improved through these model compres-
sion techniques, the accuracy also drops.

Offloading techniques have been widely used to ad-
dress the resource limitation of mobile devices. MAUI
[16] and many other works [17]–[23] are general offload-
ing frameworks that optimize the energy usage and the
computation overhead for mobile applications. However,
these techniques have limitations when applied to video
analytics where a large amount of video data has to be
uploaded to the server. To address this issue, researchers
propose offloading framework for deep learning applica-
tions. Teerapittayanon et al. [4] distribute the CNN model
computations across local device, edge server and cloud,
and insert early exit points to reduce the processing time.
In Neruosurgeon [24], the CNNs are divided into local pro-
cessing part and offloading part to reduce the latency and
energy consumption. Lu et al. [25] proposed a framework
which optimizes the video processing by combining the
CNN batch processing and offloading technique. Tan et al.
[26] designed algorithms which can combine offloading and
local processing to minimize the processing time for video
analytics using multiple CNN models. To reduce the data
offloading time, some local processing techniques have been
proposed to filter out the less important or redundant data.
For example, Glimpse [2] only offloads a frame when the
system detects that the scene changes significantly. Similar
to Glimpse, MARVEL [3] utilizes the inertial sensors to
detect and filter out the redundancy before offloading. How-
ever, both MARVEL and Glimpse may not work well when
the network condition is poor or when there are many scene
changes. To address this issue, other researchers consider
how to guarantee a strict time constraint by running differ-
ent CNN models locally under different network conditions
[5], [6].

Some recent work focuses on improving the execution
efficiency of CNN models on mobile devices through hard-
ware support. For example, Tan et al. [27] developed model
partitioning techniques to schedule some neural network
layers on CPU while executing other layers on NPU to
achieve better tradeoffs between processing time and accu-
racy Oskouei et al. [28] developed an Android library called
CNNdroid for running CNN models on mobile GPU. Cap-
puccino [29] optimizes computation by exploiting imprecise
computation on the mobile system-on-chip (SoC). DeepMon
[30] leverages GPU for continuous vision analysis on mobile
devices. DeepX [31] divides the CNN models into different
blocks which can be efficiently run on CPU or GPU. The
processing time is reduced by scheduling these blocks on
different processors, such as CPU and GPU. Different from

IEEE TRANSACTIONS ON MOBILE COMPUTING 3

them, we use NPUs.

3 PRELIMINARY

VGG ResNet YOLO0

1000

2000

3000

4000

Pr
oc

es
sin

g
Ti

m
e

(m
s)

CPU
NPU

(a) Processing Time Comparison

VGG ResNet YOLO
CNN Models

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

CPU
NPU

(b) Accuracy Comparison

Fig. 1: Performance Comparison of NPU and CPU.

A video frame can be processed locally by the NPU or
offloaded to the server. The decision depends on the appli-
cation requirements on the tradeoff among accuracy, energy
consumption and processing time. More importantly, the
decision depends on how various CNN models perform
on NPUs in terms of accuracy, processing time and power
consumption. In this section, we first show some results
on how various CNN models perform on NPUs and local
CPUs, and then we give an overview of the proposed
FastVA framework.

3.1 Understanding NPU
To have a better understanding of NPU, we compare the
accuracy and the processing time of running different CNN
models on NPU and CPU. The experiment is conducted on
HUAWEI mate 10 pro which has a NPU, and the results
are shown in Figure 1. Three CNN models are used in the
evaluations and the details are as follows.

• The VGG model [32] which is used for face recogni-
tion. In the experiment, we use the face images from
the LFW dataset [33].

• The ResNet-50 model [9] which is used for object
recognition. The evaluation was based on 4000 object
images randomly chosen from the VOC dataset [34],
and the results were based on the Top-1 accuracy.

• The YOLO Small model [35] which is designed for
detecting objects in an image. The evaluation was
based on 100 images randomly chosen from the
COCO dataset [36], and the results were based on
the F1-score.

As shown in Figure 1(a), compared to CPU, running
VGG, ResNet-50, or Yolo small on NPU can significantly
reduce the processing time, by 95%. As shown in Figure
1(b), the accuracy loss of using NPU is different for different
CNN models. For example, compared to CPU, using NPU
has similar accuracy when running VGC, 20% accuracy loss
when running ResNet, and the F1-score drops to 0.3 when
running YOLO Small.

The accuracy loss is mainly because NPU can only
support FP16 operations and store the intermediate result of
each layer using FP16, which may result in numerical insta-
bility. The numerical instability is caused by floating point
overflow or underflow. For some CNN models, the result

may even be NaN or 0, which is impossible to interpret. On
the other hand, using FP16 in NPU helps achieve an order
of magnitude speed and energy improvement with limited
memory space.

The accuracy loss also depends on the CNN models.
VGG compares the similarity between the two feature vec-
tors [x1, x2, . . . , xn] and [y1, y2, . . . , yn], which are extracted
from the face images. They belong to the same person if the
similarity is below a predefined threshold. The similarity
can be measured by the square of the Euclidean distance
between two vectors, where d =

∑n
i=1(xi − yi)

2. Since
NPU uses less number of bits to represent the floating
point numbers, some errors will be introduced. The error
introduced by NPU changes d to d′ =

∑n
i=1(xi−yi+εi)2. If

we consider εi as noise data with mean value 0, the expected
value of d′ is equal to E(d) +

∑
iE(ε2i). Since εi is small, it

will not change the relationship between d and the threshold
too much for most input data, and hence has the same level
of accuracy as CPU.

Suppose the feature vector extracted from an image is
~f1 = [x1, x2, . . . xn], ResNet-50 classifies the image based
on the largest element. Assume xp and xq are the two
largest elements in ~f1, and xp > xq . Then, the image will be
classified as the pth category image. The errors introduced
by NPU may change the elements to x′p = xp + ε1 and
x′q = xq+ε2. If the difference between xp and xq is small, x′q
may be larger than x′p due to errors ε1, ε2. Then, the object
will be classified as the qth category, and getting a wrong
result.

YOLO Small is much more complex than ResNet and
VGG. Its feature vector includes information related to
location, category and size of the objects, and a small error
in the feature vector can change the result. For instance,
Figure 2 shows the detection result of a test image using
CPU and NPU. Figure 2(c) shows the result with CPU,
where the bounding boxes accurately include the objects,
and the objects can be correctly recognized as horse and
person respectively. Figure 2(d) shows the result with NPU.
As can be seen, the detection result only includes part of the
objects. The center and the size of the objects are incorrect,
leading to wrong detection results.

From these evaluations, we can see that NPU runs much
faster than CPU; however, it may not always be the best
choice for running CNN models, especially when accuracy
is important.

3.2 FastVA Overview

The overview of FastVA is shown in Figure 3. FastVA
can process frames through offloading or local processing
with NPU. For offloading, FastVA may reduce the frame
resolution before transmitting so that more frames can be
uploaded at the cost of accuracy. Similarly, multiple CNN
models can be used, where a smaller CNN model can reduce
the processing time and energy consumption at the cost
of accuracy, and a larger model can increase the accuracy
at the cost of longer processing time and higher energy
consumption. If several CNN models are available, FastVA
will choose the proper one for processing under different
constraints. To provide real time video analytics, FastVA

IEEE TRANSACTIONS ON MOBILE COMPUTING 4

(a) The Original Image (b) Ground Truth (c) Detection Result on CPU (d) Detection Result on NPU

Fig. 2: Detection result with YOLO Small

Mobile Device

NPUNPU
Smartphone
Camera Feed
Smartphone
Camera Feed

Model Accuracy
Information

Network Condition

Offloading

Local Processing

R
et

u
rn

ed
 R

es
u

lt

Frame BufferFrame Buffer

Edge ServerEdge Server

Max-UtilityMax-Utility

Max-Accuracy

FastVA

Min-Energy

Max-Utility

Max-Accuracy

FastVA

Min-Energy

Fig. 3: FastVA overview

ensures that the processing of each video frame is completed
within a time constraint.

Different applications have different requirements on
accuracy, processing time, and energy. Since mobile de-
vices only have limited resources, i.e., computational power,
wireless bandwidth, and battery power, FastVA should be
carefully designed to satisfy these application requirements
under these resource constraints. In this paper, we study
three optimization problems: Max-Accuracy, Max-Utility,
and Min-Energy. For AR-based navigation or flying drones
which have real time requirements, processing time is more
important. Hence, we study the Max-Accuracy problem,
where the goal is to maximize accuracy under some time
constraint. For applications such as unlocking a smartphone
or making payment through face recognition, accuracy is
more important than processing time. Hence, we study the
Max-Utility problem, where the goal is to maximize the
utility which is a weighted function of accuracy and video
processing time. For applications which need to run for a
long time and recharging is not possible in the near future,
energy consumption is more important. Hence, we study
a Min-Energy problem, where the goal is to minimize the
energy consumption under accuracy and processing time
constraints. To solve these three problems, FastVA has to
determine when to offload the computation and when to use
NPU. The solution depends on the network condition, the
special characteristics of NPU, and the optimization goal. In
the following sections, we formulate and solve these three
optimization problems.

4 THE MAX-ACCURACY PROBLEM

In this section, we study the Max-Accuracy problem which
aims to maximize the accuracy under some time constraints.
We first formulate the problem and then propose a heuristic
based solution.

4.1 Problem Formulation

Notation Description
Ii the ith frame

S(Ii, r) the data size of the frame Ii in resolution r
T

npu
j The processing time of jth model on NPU
T o
j Processing time using the jth model on the server

a(j, r) The accuracy of the jth model with input images
in resolution r

Li Network latency of sending frame i between mobile
device and server

Bi upload bandwidth (data rate) of sending frame Ii
f video frame rate (fps)
γ the time interval between two consecutive frames
T the time constraint for each frame
n the number of video frames that needs to be processed

TABLE 1: Notation.

Assume the incoming frame rate is f , the time interval
between two consecutive video frames is γ = 1

f . For the
ith frame in the video, assume its arrival time is iγ and
FastVA needs to process it before T + iγ, where T is the
time constraint. For each frame, it can either be processed
locally by the NPU or offloaded to the server. Multiple CNN
models are used on the edge server and the mobile device to
process these frames. If the frame Ii is processed by the jth

model locally, the corresponding processing time is T npu
j . If

Ii is processed at the edge server, the data can be offloaded
with the original resolution or reduce the resolution to r
before uploading to save bandwidth. Let Bi denote the
upload bandwidth of sending Ii and let Li denote the
network latency between the edge server and the mobile
device. Then, it takes S(Ii,r)

Bi
+ T o

j + Li to transmit the ith

frame in resolution r and receive the result from the server.
Although the transmission time can be reduced by reducing
the frame to a lower resolution, the accuracy is lower.

The notations used in the problem formulation and the
algorithm design are shown in Table 1. The Max-Accuracy
problem can be formulated as an integer programming in
the following way.

max
1

n

n∑
i=0

∑
j

∑
r

a(j, r)Xj
i Y

r
i (1)

IEEE TRANSACTIONS ON MOBILE COMPUTING 5

s.t.
∑
k≤i

∑
j

T
npu
j Xj

k ≤ T + (i− k) ∗ γ, ∀i, k (2)

D(k) ≤ T + (i− k) ∗ γ, ∀i, k (3)∑
j

Xj
i = 1, ∀i (4)∑

r

Y ri = 1, ∀i (5)

Y ri , X
j
i ∈ {0, 1} ∀i, j (6)

Where D(k) =
∑
j(
∑
r

∑
k≤i

S(k,r)Y r
k

Bk
+ T oj X

j
k) + Li is the

offloading time for the frames that arrive between Ik and
Ii. X

j
i is a variable to show which model is used to process

the frame and Y ri is a variable to show which resolution the
frame is resized to before offloading. If Xj

i = 0, the frame
Ii is not processed by the jth model. If Xj

i = 1, the frame Ii
is run by the jth model. If Y ri = 1, the frame Ii is resized to
resolution r before offloading.

Objective (1) is to maximize the accuracy of the pro-
cessed frames in the time window. Constraint (2) specifies
that all local processed frames should be completed before
the deadline, and constraint (3) specifies that the results of
the offloaded frames should be returned within the time
constraint.

Theorem 1. The Max-Accuracy problem is NP-hard.

Proof. We reduce a well known NP-hard problem, the un-
bounded knapsack problem to the Max-Accuracy problem.
In the unbounded knapsack problem, there are n items
(p1, p2, p3, . . . , pn), each item pi with weight wi and a value
vi. Given a knapsack with a weight limit W , the goal is to
find a subset of items such that their total weight is no more
than W and their total value is maximized. Different from
the 0-1 knapsack problem, we can pick unlimited copies of
an item. For example, p1 can only be picked at most once
in the 0-1 knapsack problem, but it can be picked multiple
times in the unbounded knapsack problem.

For an arbitrary instance of knapsack problem, we can
construct an instance of our Max-Accuracy problem as
follows. We first construct a video clip with n′ frames,
where n′ = dmaxi

W
wi
e. For each frame, it can only be

offloaded to the server for processing. There are (n + 1)
possible resolution options and the data size of the frame Ik
is defined as

S(Ik, ri) =

{
0 if i = 0

Bwi if i ∈ [1, n]

All frames arrive at the frame buffer at time 0, andLi, T oj0
are set to be 0. The time constraint T is set to be W . There
is only one CNN model j0 running on the server and its
accuracy is defined as

a(j0, ri) =

{
0 if i = 0

vi if i ∈ [1, n]

A solution to this instance of Max-Accuracy prob-
lem maximizes

∑n′

k=1

∑n
i=1

∑
j a(j, ri)X

j
kY

ri
k . Since there is

only one model j0 is used,
∑
j X

j
k = Xj0

k = 1(k ∈ [1, n′]).∑n′

k=1 Y
ri
k can be seen as the number of frames which

are offloaded in resolution ri. Let Zi =
∑n′

k=1 Y
ri
k , the

Max-Accuracy actually maximizes
∑n
i=1 viZi, which is the

goal of unbounded knapsack problem. Moreover, the time
constraint must be satisfied, we have

n′∑
k=1

n∑
i=1

S(Ik, ri)

Bk
Y rik ≤ T

n∑
i=1

wiZi ≤W

Which is also the weight constraint in the unbounded
knapsack problem. Thus, the solution is also a solution
to the unbounded knapsack problem. This completes the
reduction and hence the proof.

4.2 Max-Accuracy Algorithm

Algorithm 1: Max-Accuracy Algorithm
Data: Video frames in the buffer
Result: Scheduling decision

1 The frame schedule list S ← {}
2 A← 0, ns ← the number of models on the server

side
3 for each possible resolution r do
4 Resize the I0 to the resolution r
5 A′ ← 0, S′ ← {}
6 Sort the remote models in the descending order

based on their accuracy a(j, r).
7 for j from 1 to ns do
8 if t+ T o

j + L0 ≤ T then
9 Add (0, j, r) to S′

10 A′ ← A′ + a(j, r)
11 break
12 nl ← bS(I0,r)B0∗γ c
13 Compute H(i, t) according to Equation 7 and 8

for i ∈ [1, nl] and t ∈ [γ, nl ∗ γ + T]
14 h′ ← maxtH(nl, t)
15 t′ ← argmaxtH(nl, t)
16 for i from nl to 1 do
17 for each local model j do
18 if H(i− 1, t′ − T npu

j) = h′ then
19 Add (i, j, rmax) to S′

20 t′ ← t′ − T npu
j , h′ ←

h′ − a(j, rmax), A′ ← A′ + a(i, j)
21 break
22 if A′

nl+1 > A then
23 A← A′

nl+1 , S ← S′

24 return S

A brute force method to solve the Max Accuracy Prob-
lem is to try all the possible scheduling options, and it
takes O((nc ∗ nr)n), where nc is the number of CNN
models available for processing the frames and nr is the
number of resolution options. Since the brute force method
is impractical, we propose a heuristic solution. The basic
idea is as follows. Since offloading based approach can
achieve better accuracy than NPU based approach for the
same CNN model, the arriving video frame should be

IEEE TRANSACTIONS ON MOBILE COMPUTING 6

offloaded as long as there is available bandwidth. Due to
limited bandwidth, some frames cannot be offloaded and
will be processed by the NPU locally. More specifically,
our Max-Accuracy algorithm consists of multiple rounds. In
each round, there are two phases: offload scheduling phase
and local scheduling phase. In both phases, the right CNN
model is selected to process the video frame within the time
constraint and maximize the accuracy.

4.2.1 Offload Scheduling
In this phase, the goal is to find out the CNN model that
can be used for processing the offloaded video frame within
time constraint and maximize the accuracy. Assume that the
network interface is idle and I0 is the new frame arriving at
the buffer. I0 will be resized to resolution r and offloaded
to the server. On the server side, the only requirement
for selecting the CNN model is the time constraint, which
requires the result must be returned in time. In other words,
the constraint S(I0,r)

B0
+ L0 + T o

j ≤ T must be satisfied
for the uploaded frame I0. A CNN model will be selected
if it can satisfy the time constraint and has the highest
accuracy on images with resolution r. Since video frames
arrive at a certain interval γ, nl = bS(I0,r)B0∗γ c frames will be
buffered while I0 is being transmitted. These frames will
be processed locally, and the local scheduling phase will be
used to determine their optimal scheduling decision.

4.2.2 Local Scheduling
In this phase, the goal is to find out the CNN model that
can be used for processing the video frame within time
constraint and maximize the accuracy. For each CNN model,
the video processing time and the accuracy vary. A simple
dynamic programming algorithm is used to find an optimal
scheduling decision. More specifically, let H(k, t) denote the
optimal accuracy for processing the first k frames with time
constraint t, where k ∈ [0, nl]. Then, frame I1 arrives at
the frame buffer at time γ and the last frame Inl

must be
processed before time nl ∗γ+T , thus t ∈ [γ, nl ∗γ+T]. If it
is impossible to process all k frames within t,H(k, t) = −∞.
Initially, since the frame I0 is offloaded to the server, H(0, t)
can be computed as follow:

H(0, t) =

{
−∞, if t < T idle

0 Otherwise
(7)

where T idle is the queuing time for I1.
For frame Ik(k > 0), it can be processed on one of the

local CNN model j. H(k, t) can be computed as follow:

H(k, t) =

{
−∞, if ∀j, kγ + T

npu
j < t

maxj(H(k − 1, t− T npu
j) + a(j, rmax)),Otherwise

(8)

Theorem 2. The proposed dynamic programming algorithm has
an optimal substructure.

Proof. LetH∗(nl, t) denote the optimal accuracy for process-
ing the nl frames with time constraint t. To show the optimal
substructure property, we prove the substructure H∗(k′, t′),
where k′ < nl, t

′ < t, is optimal for the subproblems.

Let A∗ denote the optimal accuracy that can be achieved
by processing the frames Ik′+1, Ik′+2, . . . Inl

within time
t−t′.H∗(nl, t) can be represented asH∗(k′, t′)+A∗. Assume
that the substructure H∗(k′, t′) is not optimal which means
that there exists H(k′, t′) so that H∗(k′, t′) < H(k′, t′).
Then, we have

H∗(nl, t) = H∗(k′, t′) +A∗

< H(k′, t′) +A∗

= H(nl, t)

Which contradicts the assumption that H∗(nl, t) is optimal
(i.e., has the maximum accuracy).

Based on the computed H(k, t), the scheduling decision
can be made by backtracking. The Max-Accuracy algorithm
is summarized in Algorithm 1. Lines 4-11 are the offload-
ing scheduling phase and Lines 12-21 are for the local
scheduling phase. In the algorithm, a variable A is used
for tracking the maximum accuracy that is found so far, and
its corresponding schedule decision is maintained in S′. The
frame schedule list S′ is a list of pair (i, j, r), which means
that frame Ii is processed by the jth model with resolution
r. The running time of our algorithm is O(nr ∗ nc ∗ n).

5 MAX-UTILITY PROBLEM

In this section, we study the Max-Utility problem. The goal
is to maximize the utility which is a weighted function of
accuracy and video processing time. We first formulate the
problem and then propose an approximated based solution.

5.1 Problem Formulation

With time constraint, FastVA may not be able to process
all frames using the CNN model with the highest accuracy.
To achieve high accuracy with limited resources, FastVA
may skip some frames whose queuing time is already close
to its time constraint. With the notations used in the last
section, the length of the video is nγ and

∑
i

∑
j X

j
i is the

total number of frames to be processed. Then, the video

is processed at a real frame rate of
∑

i

∑
j X

j
i

nγ . The average

accuracy can be computed as
∑

i

∑
j a(j,r)X

j
i Y

r
i∑

i

∑
j X

j
i

. Let α denote

the tradeoff parameter between accuracy and processing
time (measured with the frame processing rate). Then, the

utility can be computed as
∑
i

∑
j
Xj

i

nγ + α
∑

i

∑
j a(j,r)X

j
i Y

r
i∑

i

∑
j X

j
i

.

Similar to the Max-Accuracy problem, the Max-Utility
Problem can be formulated as an integer programming in
the following way.

max
n∑
i=0

∑
j

Xj
i

nγ
+ α

∑
i

∑
j a(j, r)X

j
i Y

r
i∑

i

∑
j X

j
i

(9)

s.t.
∑
k≤i

∑
j

T
npu
j Xj

k ≤ T + (i− k) ∗ γ, ∀i, k (10)

D(k) ≤ T + (i− k) ∗ γ, ∀i, k (11)∑
j

Xj
i ≤ 1, ∀i (12)

IEEE TRANSACTIONS ON MOBILE COMPUTING 7∑
r

Y ri ≤
∑
j

Xj
i , ∀i (13)

Y ri , X
j
i ∈ {0, 1}, ∀i, j (14)

Objective (9) maximizes the utility. Constraints (10) and
(11) specify that the frames must be processed within the
time requirement. Constraint (13) specifies that each frame
can at most be processed by a CNN model either remotely
or locally. Constraint (14) specifies that each image can only
be resized to a certain resolution.

Theorem 3. The Max-Utility problem is NP-hard.

Proof. We can reduce the Max-Accuracy problem to the
Max-Utility problem. The major difference between Max-
Accuracy and Max-Utility is the frame processing rate and
the parameter α in the objective function. For an arbitrary
instance of Max-Accuracy problem, we can select the param-

eter α properly so that the frame processing rate
∑
i

∑
j
Xj

i

nγ
has no impact on the objective (9).

More specifically, given any two solutions of the Max-
Utility problem S and S′ with frame processing rate fS , fS′

and accuracy AS , AS′ . If the frame processing rate has no
impact on the objective (9) and AS > AS′ , then we have

fS + αAS >fS′ + αAS′

α >
fS′ − fS
AS −AS′

Since fS′ , fS ∈ [1, f], fS′ − fS ≤ f . Let d to be
min
∀j,j′,r,r′

|a(j, r) − a(j′, r′)|. AS − AS′ ≥ d. Therefore, we

have
α ≥ f

d
>

fS′ − fS
AS −AS′

In the Max-Utility problem, set α to be f
d + 1, the frame

processing rate has no impact on objective (9). The optimal
solution of the Max-Utility problem is actually maximizing
the accuracy which is the goal of the Max-Accuracy prob-
lem. This completes the reduction and hence the proof.

5.2 Max-Utility Algorithm
Since the problem is NP-hard, we propose a heuristic based
algorithm (called the Max-Utility Algorithm) to solve it. The
basic idea of the algorithm is as follows. Since the offload-
ing based approach can achieve better accuracy than NPU
based approach for the same CNN model, our algorithm
first maximizes the utility by offloading the arriving video
frame with the available bandwidth. Due to the limited
bandwidth, some frames will not be offloaded and our
Max-Utility algorithm further improves the utility using a
dynamic programming algorithm to decide which frames
should be skipped and which frames should be processed
locally.

Assume the network interface is idle when a new frame
I0 arrives in the buffer. I0 will be resized to a resolution
r and offloaded to the server. The offloading time for this
frame is S(I0,r)

B0
, which means the frames are offloaded at

the frame rate B0

S(I0,r)
. The schedule decision for I0 is made

by solving maxr,j
B0

S(I0,r)
+α× a(j, r). Since the result from

the server should be received within the time limitation,

Algorithm 2: Max-Utility Algorithm
Data: Video frames in the buffer
Result: Scheduling decisions

1 The frame schedule list S ← {}
2 u← 0
3 for j from 1 to ns do
4 for each possible resolution r do
5 u′ ← B0

S(I0,r)
+ α× a(j, r)

6 if S(I0,r)
B0

+ T o
j + L0 ≤ T and u < u′ then

7 p← (0, j, r), u← u′

8 Add p to S
9 nl ← bS(I0,r)B0

c, U(0)← {(T idle, 0, 0)}
10 for i← 1 to nl do
11 for each (t, u,m) ∈ U(i− 1) do
12 Add (t, u,m) to U(i)
13 for each local model j do
14 t′ ← max(t, iγ) + T

npu
j

15 if t′ ≤ T + iγ and iγ < t then
16 A← m

m+1 (u−
m
nl∗γ) + αa(j,rmax)

m+1

17 Add (t′, A+ m+1
nl∗γ ,m+ 1) to U(i)

18 Remove the dominated pairs from U(i)
19 (t′, u′,m′)← argmax(t,u,m)∈U(nl) u
20 for i from nl − 1 to 0 do
21 for each pair (t, u,m) in U(i) do
22 for each local model j do
23 A← m

m′ (u− m
nl∗γ) + αa(j,rmax)

m′

24 if t+ T
npu
j = t′ and A+ m′

nl∗γ = u′ then
25 Add (i+ 1, j, rmax) to S
26 t′ ← t, u′ ← u,m′ ← m
27 break
28 return S

the constraint T ≥ S(I0,r)
B0

+ L0 + T o
j should be satisfied.

nl = bS(I0,r)B0
c frames will be buffered while I0 is being

transmitted. These frames will be processed locally, and a
dynamic programming algorithm is used to find out the
optimal solution.

In the algorithm, an array U(k) (k ∈ [0, nl]) is main-
tained to find the schedule for maximizing the utility. U(k)
is a list of triples, and each triple is denoted as (t, u,m),
where utility u is gained by processingm out of the k frames
locally within time t. Notice that not all possible triples are
maintained in U(k), and only the most efficient ones (i.e.,
with more utility and less processing time) are kept. More
specifically, a triple (t′, u′,m′) is said to dominate another
triple (t, u,m) if and only if t′ ≤ t, u′ ≥ u. Obviously,
triple (t′, u′,m′) is more efficient than triple (t, u,m) and
all dominated triples will be removed from the list of U(k).
Assume that T idle is the queuing time for I1. Initially,
U(0) = {(T idle, 0, 0)}. To add triples to the list of U(k),
we consider two cases: no processing, local processing.

No processing: In this case, the kth frame will not be
processed. Processing more frames may require a faster
local CNN model to be used for processing. In such cases,
the average accuracy decreases and the utility may also
decrease. A better solution is to skip this frame. Therefore,
we will add all the triples in U(k − 1) to U(k).

IEEE TRANSACTIONS ON MOBILE COMPUTING 8

Local Processing: In this case, it requires T npu
j time to

process the frame using the jth model locally. Since the
frame does not need to be resized, it is processed with
the maximum resolution rmax. The new average accuracy
can be computed as A = m

m+1 (u −
m
nl∗γ) + αa(j,rmax)

m+1 . For
each triple (t, u,m) ∈ U(k − 1), a new triple (max(t, kγ) +
T

npu
j , A+m+1

nl∗γ ,m+1) is added to the list of U(k). Notice that
all local processed frames should be finished within the time
constraint. Therefore, max(t, kγ)+T

npu
j ≤ kγ+T should be

satisfied for all new triples.
With the list of U(k), we can find a schedule to maximize

the utility. The complete description of our algorithm is
shown in Algorithm 2. In Lines 2-8, the algorithm maxi-
mizes the utility for the offloaded frame, and the schedule
decision is determined for the local processing frames in
Lines 9-27. The running time of the algorithm is O(n2 ∗ nc).

6 MIN-ENERGY PROBLEM

In this section, we study the Min-Energy problem, where
the goal is to minimize the energy consumption under the
time and accuracy constraints. We first identify the power,
accuracy and processing time tradeoffs between computa-
tion offloading based approach and NPU-based approach,
and then formulate and solve the Min-Energy problem.

NPU Offload0

500

1000

1500

2000

2500

3000

3500

Po
we

r (
m

W
)

Energy
Accuracy

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

(a) Accuracy and Power Consump-
tion

15 20 25 30 35 40 45
Bandwidth (Mbps)

20

30

40

50

60

70

80

Av
er

ag
e

En
er

gy
 (m

J)

NPU
Offload

(b) Energy consumption under dif-
ferent network conditions

Fig. 4: Accuracy and energy tradeoffs between NPU based
appraoch and offload based approach.

6.1 Motivation
To better understand the power, accuracy, and processing
time tradeoffs between NPU based approach and offloading
based approach, we compare the energy consumption of
both approaches. The measurement was done using the
HUAWEI Mate 10 pro and we utilized the battery fuel
gauge on smartphones to get the power information (i.e.,
the battery voltage and current). Such information can be
obtained through the BatteryManager Class in Android SDK
and we developed an Android application which runs as a
background process to record the instantaneous voltage and
current every 100ms.

To measure the power consumption of the offload based
approach, the smartphone continuously offload data to the
server through the wireless interface. To measure the power
consumption of the NPU based approach, ResNet-50 has
been used to continuously process 1000 different images
on NPU. As shown in Figure 4(a), the power consump-
tion of NPU based approach is about 60% less than the
offload based approach. However, processing data only on

NPU may not be the best option for the following reasons.
First, when the bandwidth is high, offloading can save
more energy since the the data transmitting time is much
shorter than the processing time on NPU. We perform an
experiment by measuring average energy consumption of
offloading 1000 images under different network conditions.
The images are offloaded in 224x224 pixels, which is the
input size of ResNet-50. As shown in Figure 4(b), offloading
saves more energy when the bandwidth is above 40 Mpbs.
Second, as shown in Figure 4(a), running ResNet-50 on NPU
has much lower accuracy than offloading based approach.
Although processing images on NPU is faster and more
energy efficient when the wireless bandwidth is low, some
images should be offloaded to satisfy the accuracy require-
ment. Therefore, it is a challenge to determine which image
should be offloaded and which one should be processed
locally to achieve a better tradeoff between energy and
accuracy.

6.2 Problem Formulation

Let Pnpu denote the power consumption of NPU and let
Ptran denote the power consumption of transmitting data
through the wireless interface. If a frame Ii is processed
by the jth model locally on NPU, the energy consumption
can be computed as PnpuT

npu
j . If a frame Ii is reduced

to resolution r and is offloaded to the edge server for
processing, the energy consumption can be computed as
Ptran

S(Ii,r)
Bi

. Our goal is to minimize the average energy
consumption of processing each frame and it can be com-

puted as 1
n

∑
i

∑
j(PnpuT

npu
j Xj

i +
∑
r Ptran

S(Ii,r)X
j
i Y

r
i

Bi
). In

addition to energy, FastVA needs to guarantee that the accu-
racy is above a predefined threshold set by the users. Let θa
denote the accuracy threshold and the accuracy constraint
1
n

∑
i

∑
j

∑
r a(j, r)X

j
i Y

r
i ≥ θa must be satisfied.

The Min-Energy problem can be formulated as an inte-
ger programming in the following way.

min
1

n

n∑
i=0

∑
j

(PnpuT
npu
j Xj

i +
∑
r

Ptran
S(Ii, r)X

j
i Y

r
i

Bi
)

(15)

s.t.
∑
k≤i

∑
j

T
npu
j Xj

k ≤ T + (i− k) ∗ γ, ∀i, k (16)

D(k) ≤ T + (i− k) ∗ γ, ∀i, k (17)
1

n

∑
i

∑
j

∑
r

a(j, r)Xj
i Y

r
i ≥ θa (18)∑

j

Xj
i ≤ 1, ∀i (19)∑

r

Y ri ≤
∑
j

Xj
i , ∀i (20)

Y ri , X
j
i ∈ {0, 1}, ∀i, j (21)

Objective (15) minimizes the energy consumption. Con-
straints (16) and (17) specify that the frames must be pro-
cessed within the time requirement. Constraint (18) specify
that the accuracy constraint must be satisfied. Constraint
(19) specifies that each frame can at most be processed by
a CNN model either remotely or locally. Constraint (20)

IEEE TRANSACTIONS ON MOBILE COMPUTING 9

specifies that each image can only be resized to a certain
resolution.

Theorem 4. The Min-Energy problem is NP-hard.

Proof. We reduce a well known NP-hard problem, the par-
tition problem to the Min-Energy problem. In the parti-
tion problem, there is a set U which includes n numbers
(p1, p2, p3, . . . , pn) and the goal is to partition the set into
two subsets S1 and S2 such that the sum of the numbers in
S1 equals to the sum of the numbers in S2.

For an arbitrary instance of the partition problem, we
can construct an instance of Min-Energy problem as follows.
A frame Ii is created for each number pi and the arrival
times of the frames are set to be 0. The time constraint T is
set to be 1

2

∑
pi∈U pi for all frames. In the constructed Min-

Energy problem, all frames must be offloaded to the server
and there are two possible resolution options r0 and r1. The
data size of the frame Ii is defined as

S(Ii, rk) =

{
0 if k = 0

pi ∗Bi if k = 1

There is only one CNN model j0 running on the server.
Ptran is set to be −n. Li, T oj0 , θa are set to be 0.

Since all frames are offloaded, the solution of Min-
Energy problem minimizes 1

n

∑
i

∑
r Ptran

S(Ii,r)Y
r
i

Bi
, and it

actually maximizes
∑
Y

r1
i =1 pi. Since the θa = 0, the accu-

racy constraint is satisfied in all solutions. Since the time
constraint must be satisfied, we have

∑
i

∑
r
S(Ii,r)Y

r
i

Bi
≤ T

which is equivalent to
∑
Y

r1
i =1 pi ≤ 1

2

∑
pk∈U pk.

A solution to this instance of Min-Energy problem max-
imizes

∑
Y

r1
i =1 pi. If

∑
Y

r1
i =1 pi =

1
2

∑
pk∈U pk, the feasible

solution of the partition problem can be constructed as
follow. The number pi will be put into S1 if Y r1i = 1;
otherwise it is put into S2. Thus, the solution to the Min-
Energy problem is also the solution to the partition problem.
This completes the reduction and hence the proof.

6.3 Min-Energy Algorithm
Since the Min-Energy problem is NP-hard, we propose a
heuristic based algorithm. The basic idea is as follows.
With two constraints (processing time and accuracy) in the
problem, it is difficult to minimize the energy consumption
while satisfying both constraints at the same time. Thus,
in our algorithm, these two constraints are handled in
two phases, initial scheduling and frame rescheduling. The
initial scheduling phase focuses on generating a schedule
with minimum energy consumption under the accuracy
constraint. Since the time constraint may not be satisfied, in
the frame rescheduling phase, some frames are rescheduled
to guarantee that both constraints are satisfied.

6.3.1 Initial Scheduling
In this phase, our goal is to minimize the energy consump-
tion under the accuracy constraint. Assume that the a new
frame arrives at the buffer and there are nb frames in the
buffer to be processed. For these nb frames, a dynamic
programming algorithm is used to find an optimal schedule
decision. More specifically, an array G(k)(k ∈ [0, nb]) is
maintained to find the schedule for minimizing the energy

consumption.G(k) is a list of pairs, and each pair is denoted
as (A,E); i.e., it costs energy E to achieve accuracy A by
processing the first k frames. Similar to the Max-Utility
algorithm, only the most efficient pairs are kept in the list
(i.e., with higher accuracy and less energy consumption).
A pair (A,E) is more efficient than (A′, E′) if and only if
A > A′, E < E′. Initially, G(0) = {(0, 0)}. To add the pairs
to the list of G(k), we consider two cases: offloading and
local processing.

Offloading: If a frame Ii is processed by the jth model
on the server, it takes S(Ii,r)

Bi
time to transmit the frame.

Therefore, for each pair (A,E) in G(k− 1), a new pair (A+

a(j, r), E + Ptran
S(Ii,r)
Bi

) is added to G(k).
Local Processing: If a frame Ii is processed by the jth

model locally on NPU, for each pair (A,E) in G(k − 1), a
new pair (A+ a(j, r), E + PnpuT

npu
j) is added to G(k).

With the list of G(k), we can find a schedule to mini-
mize the energy consumption under the accuracy constraint.
However, the schedule may not be feasible due to the time
constraint and the frame rescheduling phase will be used to
address this problem.

6.3.2 Frame Rescheduling
In this phase, the goal is to modify the schedule found in
the initial phase to satisfy the time constraint and minimize
the energy consumption. More specifically, Let S denote
the schedule found in the initial scheduling phase. Our
algorithm checks the time constraint for the frames one by
one in the ascending order of their arrival time. If the time
constraint is not satisfied for frame Ii, the frame will be
rescheduled and the following two cases are considered.

Case 1: If the frame is processed by the jth model locally
on NPU, it will be offloaded to the server for processing.
Since the accuracy constraint is already satisfied in the Initial
Scheduling phase, the nb frame should not be processed by
a model with lower accuracy after rescheduling. In other
words, if Ii is resized to resolution r′ and processed by
the model j′ on the server, a(j′, r′) ≥ a(j, rmax) must
be satisfied. Moreover, the time constraint (Eq. 17) must
be satisfied for the first i frames. A CNN model j′ and
resolution r′ will be selected if it can satisfy the time and
accuracy constraint and minimizes energy consumption for
frame Ii.

In this solution, we did not consider the option of using
a different local model to process the frame Ii since such
an option could not satisfy the accuracy constraint. More
specifically, a local CNN model used in S has higher ac-
curacy if its processing time is longer, since the list G(k)
only keeps the most efficient pairs. To satisfy the time con-
straint, Ii must be processed by another model j with lower
accuracy and shorter processing time on NPU. However,
this rescheduling will not satisfy the accuracy constraint
and it can be proved by contradiction. Assume that this
rescheduling is feasible and we can generate a new schedule
S′ based on S by only rescheduling Ii to be processed the
jth model on NPU. S′ consumes less energy than S and the
accuracy constraint is satisfied. However, it contradicts the
fact that S is the optimal solution in the initial scheduling
phase and thus S′ cannot satisfy the accuracy constraint.

Case 2: If the frame is offloaded in resolution r and
processed by the jth model on the server, it will be moved

IEEE TRANSACTIONS ON MOBILE COMPUTING 10

to NPU for processing. To guarantee that the accuracy
constraint is still satisfied after rescheduling, the constraint
a(j′, rmax) ≥ a(j, r) must be satisfied if Ii is processed by
j′th model on NPU. Moreover, the time constraint (Eq. 16)
must be satisfied for the first i frames. A local CNN model
j′ will be selected if it has the lowest energy consumption
and satisfies the time and accuracy constraints. Similar to
Case 1, we do not consider the option of reducing the frame
resolution or processing it with a lower accuracy model on
the server since such an option will not satisfy the accuracy
constraint.

Algorithm 3: Min-Energy Algorithm
Data: Video frames in the buffer
Result: Scheduling decision

1 The frame schedule list S ← {}
2 G(0)← {(0, 0, S)}
3 for i from 1 to nb do
4 for each (A,E, S) ∈ G(i− 1) do
5 for each local model j do
6 A′ ← A+ a(j, rmax)
7 E′ ← E + PnpuT

npu
j

8 S′ ← {(i, j, rmax)} ∪ S
9 Add (A′, E′, S′) to G(i)

10 Remove the dominated pairs from G(i)
11 Remove pair (A,E, S) from G(nb) if A < θa
12 (A,E, S)← argmin(A,E,S)∈G(nb)

E
13 for (i, j, r) ∈ S do
14 if Time constraint is not satisfied for Ii then
15 Emin ← +∞
16 if model j is on the server then
17 for each local model j′ do
18 E ← PnpuT

npu
j

19 if a(j, r) ≤ a(j′, rmax) and Emin > E
and Constraint (16) is satisfied for
Ik(k ∈ [1, i]) then

20 Replace (i, j, r) by (i, j′, rmax) in S
21 Emin ← E
22 else
23 for each possible resolution r′ do
24 for each model j on the server do
25 E ← Ptran

S(Ii,r
′)

Bi

26 if a(j, r) ≤ a(j′, r′) and Emin > E
and Constraint (17) is satisfied for
Ik(k ∈ [1, i]) then

27 Replace (i, j, r) by (i, j′, r′) in S
28 Emin ← E

29 return S

The complete description of our algorithm is shown in
Algorithm 3. Lines 1-12 are for the initial scheduling phase
and Lines 13-28 are for the frame rescheduling phase. The
running time of our algorithm is O(nb ∗ nr ∗ nc).

7 PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of the proposed
algorithms, Max-Accuracy, Max-Utility and Min-Energy,
and compare them with other approaches.

7.1 Experiment Setup

Currently, there are only a few smartphones on the market
with dedicated NPUs. In the evaluation, we use HUAWEI
Mate 10 pro smartphone because it is equipped with NPU
and it has a published HUAWEI DDK [37] for developers.
Since NPU has a different architecture from CPU, the ex-
isting CNN models have to be optimized before running
on NPU. The HUAWEI DDK includes toolsets to do such
optimization for NPU from CNN models trained by the
deep learning frameworks Caffe [38]. The HUAWEI DDK
also includes the APIs to run the CNN models, and a few
Java Native Interface (JNI) functions are provided to use the
APIs on Android. Since these JNI functions are hard coded
for running a specific model, we have implemented more
flexible JNI functions which can run different CNN models.

In FastVA, the frames are offloaded in the lossless PNG
format. FastVA periodically estimates the wireless band-
width based on the harmonic mean of the uploading data
rate of the past several frames [39]. The harmonic mean is
robust to large outliers and is used to minimize the impact of
wireless channel variations. Other estimation methods can
be found in [40], [41]. The edge server is a desktop with
AMD Ryzen 7 1700 CPU, GeForce GTX1070 Ti graphics card
and 16 GB RAM. We have installed the Caffe framework to
run the CNN models on GPU.

In the experiment, object classifications are performed
on mobile devices, which are common computer vision
tasks for many mobile applications. In our experiment, two
different object recognition CNN models are used, ResNet-
50 [9] and SqueezeNet [42], which are well known and are
widely used. Moreover, SqueezeNet has a compact structure
and it is much smaller than ResNet. It can be considered as
a compressed model that runs faster than ResNet at the cost
of accuracy. This allows the application to achieve tradeoffs
between accuracy and processing time under different net-
work condition and time constraint.

In the evaluation, we use a subset of videos from the
FCVID dataset [43], which includes many real-world videos.
These videos have been used for training models related to
object classification and activity recognition. In our exper-
iment, we focus on object classification, and thus activity
recognition clips are not used. Since the dataset is very large,
about 1.9 TB, we randomly select 40 videos from the dataset
and filter out the noisy data. Since the labels of FCVID and
ImageNet are different, we map the labels produced by the
CNN models to that used by the FCVID dataset.

We evaluate the proposed algorithms with different
frame rates. Most videos in the dataset use 30 fps, and thus
we have to change their frame rate by decoding/encoding.
For both CNN models (ResNet-50 and SqueezeNet), the
maximum resolution of the input image is 224x224 pixels.
This resolution can be downsized for some offloading im-
ages, and we consider 5 different resolutions: 45x45, 90x90,
134x134, 179x179 and 224x224 pixels. The time constraint
for each frame is set to be 200 ms in all the experiments. The
running time of Max-Accuracy and Max-Utility algorithm
is less than 1 ms on the smartphone and it is negligible
compared to the time constraint (100 ms level).

IEEE TRANSACTIONS ON MOBILE COMPUTING 11

CNN model Processing Time (ms) Transmission Time (ms) Top-1 Accuracy

ResNet Local 52 0 0.52
Server 69 39 - 242 0.67

SqueezeNet Local 17 0 0.41
Server 9 39 - 242 0.51

TABLE 2: The performance of the CNN models.

50 100 150 200
Resolution (pixel * pixel)

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

ResNet
SqueezeNet

Fig. 5: Accuracy vs. Resolution.

7.2 The Effects of CNN models

To have a better understanding of how the CNN models
perform, we run ResNet-50 and SqueezeNet on the edge
server and NPU with randomly selected 4000 images from
the VOC dataset. As shown in table 2, the accuracy of
ResNet-50 is about 30% better than SqueezeNet on the
server and it is about 25% better than SqueezeNet on the
NPU. However, SqueezeNet is 700% faster than ResNet-
50 on the server and it is 300% faster than ResNet-50 on
the NPU. Although running these CNN models has high
accuracy on the server, there is a network latency between
the server and mobile device. As shown in the table, the
transmission time can range from tens of milliseconds to
hundreds of milliseconds based on the network condition
and frame data size. When the network condition is poor,
offloading may take much longer time than running on
NPU.

Figure 5 shows the tradeoff between accuracy and reso-
lution. We note that the accuracy does not scale linearly with
the resolution. The data in Table 2 and Figure 5 are used for
making scheduling decisions in FastVA.

7.3 The Performance of Max-Accuracy

We compare the performance of Max-Accuracy with the
following schedule algorithms.

• Offload: In this method, all frames must be offloaded
to the edge server for processing. Each frame will
be resized to a resolution so that it can be offloaded
before the next frame arrives, and the server chooses
the most accurate model that can process the frames
and return the result within the time constraint.

• Local: In this method, all frames are processed lo-
cally. It uses the proposed dynamic programming
technique to find the optimal schedule decision for
local processing.

• DeepDecision: This is a simplified version of Deep-
Decision [5] which optimizes the accuracy and util-
ity within the time constraint. DeepDecision divides
time into windows of equal size. At the beginning of

0.5 1.5 2.5 3.5 4.5
Bandwidth (Mbps)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

Ac
cu

ra
cy

Offload
Local
DeepDecision
Max-Acc

(a) Frame Rate 30 fps

0.5 1.5 2.5 3.5 4.5
Bandwidth (Mbps)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

Ac
cu

ra
cy

Offload
Local
DeepDecision
Max-Acc

(b) Frame Rate 50 fps

Fig. 6: The performance of different methods under different
network conditions.

each time window, it picks a specific resolution and
CNN model to process all the frames within a time
window.

• Optimal: This shows the upper bound for all meth-
ods. It tries all possible combinations and chooses the
schedule that maximizes the accuracy. Notice that
this method cannot be used for processing videos
in real time since it takes too much time to search
all possible schedules. We can only find the optimal
solution offline by replaying the data trace.

The performance of the schedule algorithms depends on
several factors, the bandwidth, latency and the processing
time requirement specified by the applications.

In Figure 6, we compare Max-Accuracy with the Local,
Offload and DeepDecision method under different network
conditions. In the evaluation, we set the network latency
to be 100 ms. The Local method does not offload any
frames, and thus its performance remains the same under
different network conditions. The Local method can achieve
the same accuracy as the Max-Accuracy algorithm when the
bandwidth is low, since most of the video frames will be
processed locally and the Local method can find an optimal
solution. Notice that the Local method performs better than
DeepDecision when the bandwidth is low. The reason is as
follows. DeepDecision makes the same schedule decision for
frames within a time slot and NPU may not be fully utilized
if only SqueezeNet is used. In contrast, the Local method
achieves higher accuracy by using ResNet to process some
of the frames within the time slot. In Figure 6(b), the Offload
method is not capable of processing all frames when the
bandwidth is lower than 1.5 Mbps. When the network band-
width is low, the Offload method performs poorly since it
has to resized video frames into an extremely small size and
then reduce the accuracy. As shown in Figure 5, even with
an advanced CNN model, the accuracy is till low with these
low resolution images. As the network bandwidth increases,
the differences among the Max-Accuracy, DeepDecision and

IEEE TRANSACTIONS ON MOBILE COMPUTING 12

20 25 30 35 40 45 50
Frame Rate (fps)

0.05

0.15

0.25

0.35

0.45

0.55
Av

er
ag

e
Ac

cu
ra

cy

Offload
Local
DeepDecision
Max-Acc

(a) B = 2 Mbps

20 25 30 35 40 45 50
Frame Rate (fps)

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

Ac
cu

ra
cy

Offload
Local
DeepDecision
Max-Acc

(b) B = 3 Mbps

Fig. 7: The performance of different methods under different
frame rate requirements.

Bandwidth (Mbps)

1
2

3
4

Frame Rate (fps) 20

30

40

50

Avg Accuracy 0.4
0.5
0.6

(a) Performance of the Optimal
Bandwidth (Mbps)

1
2

3
4

Frame Rate (fps) 20

30

40

50

Accuracy Diff 0.0
0.1

0.2

(b) Difference between Max-
Accuracy and Optimal

Fig. 8: Comparison between optimal and Max-Accuracy

Offload become smaller since the mobile device can offload
most of the frames in high resolution and achieve better
accuracy.

In Figure 7, we evaluate the impact of frame rate for
different methods. As can be seen from the figures, the
performance of all methods drops when the frame rate is
high. As the frame rate requirement increases, more frames
have to be resized to lower resolutions. That is why the
Offload method suffers a 30% accuracy drop in the experi-
ments. In contrast, there is no significant accuracy drop in
Max-Accuracy, since they can avoid reducing the solution
by processing the video frames on NPU.

In Figure 8, we compare Max-Accuracy with the Optimal
method under various frame rates and network conditions.
As shown in Figure 8(a), the accuracy of Optimal increases
when the network bandwidth increases, because the mobile
device can upload more frames with higher resolution. To
support a higher frame rate, more frames must be processed
within the time constraint and the optimal method has to
use fast CNN models with low resolution or low accuracy,
resulting in low accuracy.

In figure 8(b), we plot the accuracy difference between
Optimal and Max-Accuracy. The accuracy difference is com-
puted using the accuracy of the Optimal method minus
that of Max-Accuracy. As can be seen from the figure, the
difference is almost 0 in most cases, which indicates that
Max-Accuracy is close to Optimal.

In Figure 9, we evaluate the impact of network latency
on accuracy. We set the uplink network bandwidth to be 3
Mbps and set the frame rate to be 30 and 50 fps. Since the
Local method does not offload any frames, its performance

75 100 125 150
Delay (ms)

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e

Ac
cu

ra
cy

Local
Offload
DeepDecision
Max-Acc
Optimal

(a) Frame Rate 30 fps

75 100 125 150
Delay (ms)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

Ac
cu

ra
cy

Local
Offload
DeepDecision
Max-Acc
Optimal

(b) Frame Rate 50 fps

Fig. 9: The performance of different methods under different
network latency.

1 2 3 4
Bandwidth (Mbps)

25
50
75

100
125
150
175
200

Ut
ilit

y

Local
Offload
DeepDecision
Max-Utility
Optimal

(a) α = 200

1 2 3 4
Bandwidth (Mbps)

25

35

45

55

65

75

85

Ut
ilit

y

Local
Offload
DeepDecision
Max-Utility
Optimal

(b) α = 50

Fig. 10: The impact of network bandwidth.

remains the same. A longer delay means that less frames can
be offloaded to the server for processing, since the result
must be returned within the time constraint. Therefore,
for the Offload, DeepDecision, Optimal and Max-Accuracy
algorithms, the performance drops as the network latency
increases. Compared to DeepDecision, Optimal and Max-
Accuracy, a significant accuracy drop can be observed in the
Offload method, when the network latency becomes larger.
This is because DeepDecision, Optimal and Max-Accuracy
can schedule frames to be processed locally at this time to
deal with the long network latency. Although the accuracy is
also dropped by processing the frames on NPU, the impact
is not as significant as that in the Offload method.

7.4 The Performance of Max-Utility

To evaluate the performance of Max-utility, we still compare
it to Offload, Local, and Optimal. Since we focus on utility
instead of accuracy in this subsection, these algorithms are
also modified to maximize utility instead of accuracy.

In Figure 10, we evaluate the impact of network band-
width for different methods. In the comparison, the frame
rate and the network latency are set to be 30 fps and 100
ms respectively, and the tradeoff parameter α is set to be
50 and 200. The Local approach cannot offload any video
frames to the server, and thus its utility remains the same in
different network conditions. When the bandwidth is low,
the Offload method may have to upload low resolution
frames, resulting in low utility, and thus it underperforms
the Local method. As the network bandwidth increases, the
performance difference among Offload, DeepDecision, Max-
Utility, and Optimal becomes smaller, since most frames

IEEE TRANSACTIONS ON MOBILE COMPUTING 13

20 25 30 35 40 45 50
Frame Rate (fps)

100

110

120

130

140

150
Ut

ilit
y

Offload
Local
DeepDecision
Max-Utility
optimal

(a) α = 200

20 25 30 35 40 45 50
Frame Rate (fps)

40

50

60

70

80

Ut
ilit

y

Offload
Local
DeepDecision
Max-Utility
optimal

(b) α = 50

Fig. 11: The effects of frame rates.

75 100 125 150
Delay (ms)

25
50
75

100
125
150
175
200

Ut
ilit

y

Local
Offload
DeepDecision
Max-Utility
Optimal

(a) α = 200

75 100 125 150
Delay (ms)

30

40

50

60

70

80

Ut
ilit

y

Local
Offload
DeepDecision
Max-Utility
Optimal

(b) α = 50

Fig. 12: The effects of network latency

can be transmitted with higher resolution to achieve better
accuracy.

As shown in the figure, when the network bandwidth
decreases, the performance of Offload, DeepDecision, Max-
Utility and Optical all drops. However, the performance of
DeepDecision, Max-Utility and Optimal drops much slower
than Offload. The reason is as follows. When α is large, as
shown Figure 10(a), the accuracy has more weight in cal-
culating the utility. Max-Utility achieves high accuracy and
then high utility by offloading when network bandwidth is
high and by local execution when the network bandwidth is
low. When α is small, as shown Figure 10(b), the processing
time (frame rate) has more weight in calculating the utility.
Max-Utility supports high frame rate and then achieves high
utility by offloading when network bandwidth is high and
by local execution when the network bandwidth is low.

Figure 11 shows the impacts of frame rate for different
methods. In the evaluation, we set the network bandwidth
to be 2.5 Mbps and the network latency to be 100 ms. As
shown in the figure, Max-Utility outperforms Offload, Local
and DeepDecision methods. When α is small, as shown
Figure 11(b), the processing time (frame rate) has more
weight in calculating the utility, and thus the utility of all
methods increases when the frame rate increases. When α is
large, as shown Figure 11(a), the accuracy has more weight
in calculating the utility, and thus the utility of all methods
does not increases too much when the frame rate increases.

Figure 12 shows the impact of network latency for dif-
ferent methods. We set the frame rate to be 30 fps and the
network bandwidth to be 2 Mbps. Since the Local method
does not offload any video frames to the server, its perfor-
mance remains the same. As the network latency increases,
less video frames can be offloaded to the server due to time

0.4 0.45 0.5 0.55 0.6
Accuracy Threshold a

0

10

20

30

40

Av
er

ag
e

En
er

gy
 (m

J)

Local
Offload

DeepDecision
Min-Energy

(a) B = 5Mbps

0.4 0.45 0.5 0.55 0.6
Accuracy Threshold a

0

5

10

15

20

25

Av
er

ag
e

En
er

gy
 (m

J)

Local
Offload

DeepDecision
Min-Energy

(b) B = 15Mbps

Fig. 13: The effects of the accuracy threshold θa.

constraints, and hence degrading the performance of the Of-
fload, DeepDecision, Max-Utility, and Optimal algorithms.

7.5 The Performance of Min-Energy
To evaluate the performance of Min-Energy, we compare
it to Local, Offload, DeepDecision and Optimal, where the
performance is measured in terms of energy consumption
under various accuracy and time constraints.

In Figure 13, we evaluate the impact of the accuracy
threshold θa for different methods. In the comparison, the
frame rate and the network latency are set to be 30 fps
and 100 ms respectively, and the bandwidth is set to be 5
Mbps and 15 Mbps. As the accuracy threshold increases,
more frames have to be offloaded in a higher resolution
or processed by a local CNN model with higher accuracy
and longer processing time. This explains why the energy
consumption of all methods increases when the accuracy
threshold increases.

As shown in Figure 13(a), when the accuracy threshold
is above 0.45, the Local method is not capable of processing
all frames and thus not shown in the figure; when the
accuracy threshold is above 0.5, the Offload and Deep-
Decision method cannot process all frames and thus not
shown in the figure. When the accuracy threshold and
the bandwidth is low, as shown in Figure 13(a), the Local
method has similar energy consumption to the Min-Energy
method since most frames are processed locally. Notice that
the Local method performs better than DeepDecision when
the accuracy threshold is low in Figure 13(a). This is because
DeepDecision makes the same schedule decision for frames
within a time slot and the energy consumption is higher if
the frames are only processed by the ResNet model on NPU.
In contrast, the Local method can further reduce the energy
consumption by using SqueezeNet to process some of the
frames within the time slot.

By comparing Figure 13(b) and Figure 13(a), we can see
that the Local method has the same energy consumption
(note that the scale on y-axis is different). This is because
the Local method does not offload any frame to the server
and then its performance is not affected by the network
bandwidth. This is different for the other three methods.
When the wireless bandwidth becomes higher, it costs less
energy to offload high resolution frames than processing
them locally on NPU. As a result, DeepDecision, Offload

IEEE TRANSACTIONS ON MOBILE COMPUTING 14

5 7 9 11 13 15
Bandwidth (Mbps)

5

10

15

20

25

30
Av

er
ag

e
En

er
gy

 (m
J)

Local
Offload
Min-Energy
DeepDecision

(a) θa = 0.4

5 7 9 11 13 15
Bandwidth (Mbps)

10

15

20

25

30

35

40

45

Av
er

ag
e

En
er

gy
 (m

J)

Offload
Min-Energy
DeepDecision

(b) θa = 0.6

Fig. 14: The impact of network bandwidth

20 25 30 35 40 45 50
Frame Rate (fps)

12

13

14

15

16

17

18

19

Av
er

ag
e

En
er

gy
 (m

J)

Local
Offload
Min-Energy
DeepDecision

(a) θa = 0.4

20 30 40 50
Frame Rate (fps)

20

25

30

35

40

Av
er

ag
e

En
er

gy
 (m

J)

Offload
Min-Energy
DeepDecision

(b) θa = 0.6

Fig. 15: The effects of frame rates

and Min-Energy performs much better when the network
bandwidth increases, as shown in Figure 13(b). Different
from the Offload method which offloads all frames to the
server, in Min-Energy, the frames with large data size are
processed locally on NPU to save energy and the frames
with small data size are offloaded in high resolution to
satisfy the accuracy constraint. As a result, Min-Energy has
the best performance.

In Figure 14, we compare the performance of Min-
Energy with the Local, Offload, and DeepDecision method
under different network conditions. In the evaluation, the
frame rate and the network latency are set to be 30 fps
and 100 ms, and the accuracy threshold θa is set to be
0.4 and 0.6. Since the Local method does not offload any
frames, its performance remains the same under different
network condition in Figure 14(a). As shown in Table 2,
the accuracy of the local models is below 0.6. As a result,
the Local method could not satisfy the accuracy constraint
(θa = 0.6) and it is not shown in Figure 14(b). When the
bandwidth increases, the energy consumption of Offload,
DeepDecision and Min-Energy drops. Compared to Figure
14(a), the energy consumption of Min-Energy drops more
significantly in Figure 14(b). The reason is as follows. When
θa is small, the local CNN models is used to save energy
and the accuracy constraint is satisfied. Min-Energy reduces
energy consumption by processing most frames locally.
When θa is large, Min-Energy has to spend more energy to
satisfy the accuracy constraint by offloading most frames to
the server. As a result, the network bandwidth has a larger
impact on the performance of Min-Energy in Figure 14(b).

Figure 15 shows the impacts of frame rate for different
methods. In the evaluation, the bandwidth and the network

50 75 100 125 150
Latency (ms)

10

12

14

16

18

Av
er

ag
e

En
er

gy
 (m

J)

Local
Offload

DeepDecision
Min-Energy

(a) θa = 0.4

50 75 100 125 150
Latency (ms)

18

20

22

24

26

28

30

Av
er

ag
e

En
er

gy
 (m

J)

Offload
DeepDecision

Min-Energy

(b) θa = 0.6

Fig. 16: The effects of network latency

Bandwidth (Mbps)

5
7

9
11

13
15

Accuracy Requirement(%)

35
40

45
50

55
60

Avg Energy (m
J) 0

10
20
30

(a) Performance of the Optimal

Bandwidth (Mbps)

5
7

9
11

13
15

Accuracy Requirement(%)

35
40

45
50

55
60

Energy Diff (m
J) 0

1
2
3

(b) Difference between Min-Energy
and Optimal

Fig. 17: Comparison between optimal and Min-Energy

latency are set to be 8 Mbps and 100 ms, and the accuracy
threshold θa is set to be 0.4 and 0.6. As can be seen from
the figures, the energy consumption of all methods drop
slightly when the frame rate increases. The reason is as
follows. In the experiment, the frames can only be offloaded
in five different resolutions and there are four different CNN
models used to process the frames. The average accuracy
of the processed frames is a little bit higher than accuracy
threshold θa and a small amount of energy is wasted to
increase the average accuracy above θa. When the frame
rate increases, more frames are processed within the same
amount of time. The average accuracy is closer to θa, and
less energy is used.

Figure 16 shows the impact of network latency for dif-
ferent methods. In the evaluation, the bandwidth and the
network latency are set to be 10 Mbps and 100 ms, and the
accuracy threshold θa is set to be 0.4 and 0.6. Since the Local
method does not offload any video frames to the server, its
performance remains the same. The performance of Offload,
DeepDecision and Min-Energy change slightly when the
network latency increases. This is because the frames have
to be offloaded in high resolution to satisfy the accuracy
requirement and the energy consumption of offloading the
high resolution frames remains the same under different
network latency.

In Figure 17, we compare Min-Energy with the Optimal
method under different accuracy thresholds and network
conditions. As shown in Figure 17(a), the average energy

IEEE TRANSACTIONS ON MOBILE COMPUTING 15

consumption of Optimal decreases when the network band-
width increases. This is because offloading the frames to the
server is more energy efficient than processing the frames on
NPU when the network bandwidth is high. To satisfy higher
accuracy constraint, the resolution of the offloaded frames
must be increased and the frames must be processed by the
models with higher accuracy and power consumption. As
a result, the average energy consumption increases as the
accuracy threshold increases.

In Figure 17(b), we show the average energy difference
between Optimal and Min-Energy. The energy difference is
computed using the average energy of Min-Energy minus
that of Optimal. As can be seen from the figure, the differ-
ence is within 1 mJ in all cases, which indicates that Min-
Energy is close to Optimal.

8 CONCLUSIONS

In this paper, we proposed a framework called FastVA,
which supports deep learning video analytics through edge
processing and Neural Processing Unit (NPU) in mobile.
We are the first to study the benefits and limitations of
using NPU to run CNN models to better understand the
characteristics of NPU in mobile. Based on the accuracy and
processing time requirement of the mobile application, we
studied three problems: Max-Accuracy where the goal is to
maximize the accuracy under some time constraints, Max-
Utility where the goal is to maximize the utility which is
a weighted function of processing time and accuracy, and
Min-Energy where the goal is to minimize the energy con-
sumption under the time and accuracy constraints. To solve
these problems, we have to determine when to offload the
computation and when to use NPU. The solution depends
on the network condition, the special characteristics of NPU,
and the optimization goal. We formulated them as inte-
ger programming problems and proposed heuristics based
solutions. We have implemented FastVA on smartphones
and demonstrated its effectiveness through extensive evalu-
ations.

ACKNOWLEDGEMENT

This work was supported in part by the National Science
Foundation under grant number 2125208.

REFERENCES

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving
Deep into Rectifiers: Surpassing Human-Level Performance on
Imagenet Classification. IEEE ICCV, 2015.

[2] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir
Bahl, and Hari Balakrishnan. Glimpse: Continuous, Real-Time
Object Recognition on Mobile Devices. ACM Sensys, 2015.

[3] Kaifei Chen, Tong Li, Hyung-Sin Kim, David E. Culler, and
Randy H. Katz. MARVEL: Enabling Mobile Augmented Reality
with Low Energy and Low Latency. ACM Sensys, 2018.

[4] Surat Teerapittayanon, Bradley McDanel, and HT Kung. Dis-
tributed Deep Neural Networks over the Cloud, the Edge and
End Devices. IEEE ICDCS, 2017.

[5] Xukan Ran, Haoliang Chen, Xiaodan Zhu, Zhenming Liu, and
Jiasi Chen. DeepDecision: A Mobile Deep Learning Framework
for Edge Video Analytics. IEEE INFOCOM, 2018.

[6] Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agar-
wal, Alec Wolman, and Arvind Krishnamurthy. Mcdnn: An
Approximation-Based Execution Framework for Deep Stream Pro-
cessing under Resource Constraints. ACM Mobisys, 2016.

[7] HiSilicon Kirin 970 Performance Overview.
https://www.anandtech.com/show/12195/hisilicon-kirin-
970-power-performance-overview/6.

[8] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke,
and Andrew Rabinovich. Going Deeper with Convolutions. IEEE
CVPR, 2015.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
Residual Learning for Image Recognition. IEEE CVPR, 2016.

[10] Sourav Bhattacharya and Nicholas D. Lane. Sparsification and
Separation of Deep Learning Layers for Constrained Resource
Inference on Wearables. ACM Sensys, 2016.

[11] Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and
Marianna Pensky. Sparse convolutional neural networks. IEEE
CVPR, 2015.

[12] Shuochao Yao, Yiran Zhao, Huajie Shao, ShengZhong Liu,
Dongxin Liu, Lu Su, and Tarek Abdelzaher. FastDeepIoT: Towards
Understanding and Optimizing Neural Network Execution Time
on Mobile and Embedded Devices. ACM Sensys, 2018.

[13] S. Han, H. Mao, and W. Dally. Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and
Huffman Coding. IEEE International Conference on Learning Repre-
sentations (ICLR), 2016.

[14] D. Lin, S. Talathi, and S. Annapureddy. Fixed Point Quantization
of Deep Convolutional Networks. International Conference on
Machine Learning, 2016.

[15] Z. Cai, X. He, J. Sun, and N. Vasconcelos. Deep Learning with Low
Precision by Half-Wave Gaussian Quantization. IEEE CVPR, 2017.

[16] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wol-
man, Stefan Saroiu, Ranveer Chandra, and Paramvir Bahl. MAUI:
making smartphones last longer with code offload. ACM Mobisys,
2010.

[17] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik,
and Ashwin Patti. Clonecloud: Elastic Execution between Mobile
Device and Cloud. ACM EuroSys, 2011.

[18] M. Barbera, S. Kosta, A. Mei, and J. Stefa. To Offload or Not
To Offload? The Bandwidth and Energy Costs of Mobile Cloud
Computing. IEEE INFOCOM, 2013.

[19] C. Shi, K. Habak, P. Pandurangan, M. Ammar, M. Naik, and
E. Zegura. COSMOS: Computation Offloading as a Service for
Mobile Devices. ACM Mobihoc, 2014.

[20] Yeli Geng, Wenjie Hu, Yi Yang, Wei Gao, and Guohong Cao.
Energy-efficient computation offloading in cellular networks.
IEEE ICNP, 2015.

[21] Yeli Geng, Yi Yang, and Guohong Cao. Energy-efficient com-
putation offloading for multicore-based mobile devices. IEEE
INFOCOM, 2018.

[22] Y. Kao, B. Krishnamachari, M. Ra, and F. Bai. Hermes: Latency
Optimal Task Assignment for Resource-Constrained Mobile Com-
puting. IEEE Transactions on Mobile Computing, 2017.

[23] Y. Geng and G. Cao. Peer-assisted computation offloading in
wireless networks. IEEE Transactions on Wireless Communications,
17(7):4565–4578, 2018.

[24] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang. Neurosurgeon: Collaborative Intelligence Between The
Cloud And Mobile Edge. ACM SIGARCH Computer Architecture
News, 2017.

[25] Zongqing Lu, Kevin Chan, and Thomas La Porta. A Computing
Platform for Video Crowdprocessing Using Deep Learning. IEEE
INFOCOM, 2018.

[26] T. Tan and G. Cao. Deep Learning Video Analytics on Edge
Computing Devices. IEEE SECON, 2021.

[27] T. Tan and G. Cao. Efficient Execution of Deep Neural Networks
on Mobile Devices with NPU . IEEE IPSN, 2021.

[28] L. Oskouei, S. Salar and H. Golestani and M. Hashemi and S.
Ghiasi. CNNdroid: GPU-Accelerated Execution of Trained Deep
Convolutional Neural Networks on Android. ACM international
conference on Multimedia, 2016.

[29] Mohammad Motamedi, Daniel Fong, and Soheil Ghiasi. Cap-
puccino: efficient CNN inference software synthesis for mobile
system-on-chips. IEEE Embedded Systems Letters, 2019.

[30] Loc N Huynh, Youngki Lee, and Rajesh Krishna Balan. Deepmon:
Mobile GPU-Based Deep Learning Framework for Continuous
Vision Applications. ACM Mobisys, 2017.

[31] Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio
Forlivesi, Lei Jiao, Lorena Qendro, and Fahim Kawsar. Deepx:

IEEE TRANSACTIONS ON MOBILE COMPUTING 16

A software accelerator for low-power deep learning inference on
mobile devices. IEEE IPSN, 2016.

[32] A. Zisserman O. M. Parkhi, A. Vedaldi. Deep Face Recognition.
British Machine Vision Conference, 2015.

[33] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-
Miller. Labeled Faces in the Wild: A Database for Studying Face
Recognition in Unconstrained Environments. Technical report,
University of Massachusetts, Amherst, 2007.

[34] E. Mark, E. SM Ali, V. Luc, W. Christopher KI, W. John, and Z. An-
drew. The Pascal Visual Object Classes Challenge: A Retrospective.
International Journal of Computer Vision, 2015.

[35] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi.
You Only Look Once: Unified, Real-Time Object Detection. IEEE
CVPR, 2016.

[36] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro
Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick.
Microsoft COCO: Common Objects in Context. European conference
on computer vision, 2014.

[37] HiAI. https://developer.huawei.com/consumer/en/devservice/
doc/2020315.

[38] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev,
Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor
Darrell. Caffe: Convolutional Architecture for Fast Feature Em-
bedding. ACM International Conference on Multimedia, 2014.

[39] Junchen Jiang, Vyas Sekar, and Hui Zhang. Improving Fairness,
Efficiency, and Stability in HTTP-Based Adaptive Video Streaming
with Festive. ACM International Conference on Emerging Networking
Experiments and Technologies, 2012.

[40] X. Xing, J. Dang, S. Mishira, and x. Liu. A Highly Scalable Band-
width Estimation of Commercial Hotspot Access Points. IEEE
INFOCOM, 2011.

[41] Z.Ahmed Hamdy, R. Darijo, and S. Cormac J. ArbMter+: Adap-
tive Rate-Based Intelligent Http Streaming Algorithm for Mobile
Networks. IEEE Transactions on Mobile Computing, 2018.

[42] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid
Ashraf, William J Dally, and Kurt Keutzer. SqueezeNet: AlexNet-
level accuracy with 50x fewer parameters and 0.5 MB model size.
arXiv preprint arXiv:1602.07360, 2016.

[43] Yu-Gang Jiang, Zuxuan Wu, Jun Wang, Xiangyang Xue, and Shih-
Fu Chang. Exploiting Feature and Class Relationships in Video
Categorization with Regularized Deep Neural Networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2018.

Tianxiang Tan received the BE degree from Sun
Yat-sen University and the MS degree in com-
puter science from University of Southern Cali-
fornia. He is currently working toward the PhD
degree in the Department of Computer Science
and Engineering, the Pennsylvania State Univer-
sity. His research interests include mobile cloud
computing, edge computing and deep learning.
He is a student member of the IEEE.

Guohong Cao received his B.S. degree in com-
puter science from Xi’an Jiaotong University, and
his Ph.D. in computer science from the Ohio
State University in 1999. Since then, he has
been with the Department of Computer Science
and Engineering at the Pennsylvania State Uni-
versity, where he is currently a Distinguished
Professor. He has published more than 200 pa-
pers in the areas of wireless networks, mobile
computing, machine learning, wireless security
and privacy, and Internet of Things, which have

been cited over 20000 times. He has served on the editorial board of
IEEE Transactions on Mobile Computing, IEEE Transactions on Wire-
less Communications, and IEEE Transactions on Vehicular Technology,
and has served on the organizing and technical program committees of
many conferences, including the TPC Chair/Co-Chair of IEEE SRDS,
MASS, and INFOCOM. He has received several best paper awards, the
IEEE INFOCOM Test of Time award, and the NSF CAREER award. He
is a Fellow of the AAAS and a Fellow of the IEEE.

