
Energy-Efficient 360-Degree Video Streaming on
Multicore-Based Mobile Devices

Xianda Chen and Guohong Cao
Department of Computer Science and Engineering

The Pennsylvania State University
E-mail: {xuc23, gxc27}@psu.edu

Abstract—360◦ video streaming becomes increasingly popu-
lar on video platforms. However, streaming (downloading and
processing) 360◦ video consumes a large amount of energy on
mobile devices, but little work has been done to address this
problem, especially considering recent advances in the mobile
architecture. Through real measurements, we found that existing
systems activate all processor cores during video streaming,
which consumes a great deal of energy, but this is unnecessary
since most heavy computations in 360◦ video processing are
handled by the hardware accelerators such as hardware decoder,
GPU, etc. To save energy, we propose to selectively activate
the proper processor cluster and adaptively adjust the CPU
frequency based on the video quality. We model the impacts
of video resolution and CPU frequency on power consumption,
and model the impacts of video features and network effects
on Quality of Experience (QoE). With the developed models,
we formulate the energy and QoE aware 360◦ video streaming
problem as an optimization problem with the goal of maximizing
QoE and minimizing energy. We then propose an efficient
algorithm to solve this optimization problem. Evaluation results
demonstrate that the proposed algorithm can significantly reduce
the energy consumption while maintaining QoE.

I. INTRODUCTION

360◦ video has become increasingly popular on many video
platforms such as YouTube [1, 2]. 360◦ video is created by
capturing scenes in all directions (i.e., panoramic views), and
it provides immersive experience to users by allowing them to
freely change the viewing orientation during video playbacks.
Due to the panoramic nature of 360◦ videos and the limited
Field of View (FoV) of the end devices (typically 90◦ to 120◦

[3]), only a small portion of the downloaded video is viewed
by the user at a given time. Thus, 360◦ videos are much
larger than conventional videos for the same user perceived
quality [4, 5]. For example, for a FoV of 90◦, to achieve
the same perceived quality as viewing a planar video with
resolution of 960x960, the 360◦ video has to be encoded at
resolution of 3840x1920 (i.e., eight times larger than the planar
video). Therefore, streaming (downloading and processing)
360◦ video over wireless networks consumes a great deal of
energy on mobile devices.

The energy consumption of video processing (decoding
and rendering) is mainly related to the complexity of video
processing, which is determined by the resolution and the
frame rate of the video [5]. As 360◦ video is much larger,
i.e., with much higher resolution, video processing consumes
a large amount of energy. Unfortunately, little work has been

done to address this problem, especially considering recent
advances in the mobile architecture.

Modern mobile devices feature multiple cores in a tri-
cluster processor architecture which includes three processor
clusters and each cluster is designed for efficiently handling
different kinds of workloads. For example, Samsung S20
features eight cores in a tri-cluster configuration consisting of
two big cores, two middle cores, and four little cores. Existing
systems activate all these cores during video streaming, which
consumes a large amount of energy, but unnecessary. This is
because, in modern mobile devices, due to the use of many
hardware accelerators such as hardware decoder, GPU, and
display processing unit, the workload of the CPU can be
significantly reduced. As a result, it is not necessary to activate
all eight cores of CPU. In fact, based on real experiments
and measurements, we found that the little core processor
cluster, with the help of hardware accelerators, has enough
computational capacity to handle the workload of 360◦ video
processing. Moreover, the default CPU governor sets the CPU
at high frequency even when processing low resolution videos.
To further save energy, we should properly adjust the CPU
frequency based on the video resolution and the hardware
characteristics of the mobile device.

To support 360◦ video streaming on mobile devices, both
energy efficiency and user perceived Quality of Experience
(QoE) are important. The energy consumed for video down-
loading and video processing is related to the video quality and
the CPU frequency used to process the video. Thus, to save
energy while maintaining QoE, we should download video at
the right quality, and adjust the CPU frequency based on the
video resolution and the hardware characteristics of the mobile
device. Base on real measurements, we model the impact of
video resolution and CPU frequency on power consumption,
and model the impact of video features (i.e., video resolution
and video bitrate) and network effects (i.e., rebuffering events)
on QoE. With these developed models, we formulate the
energy and QoE aware 360◦ video streaming problem as
an optimization problem with the goal of maximizing QoE
and minimizing energy. Since the optimal solution to this
optimization problem requires perfect knowledge of future
tasks which is not available in practical scenarios, we further
propose a heuristic based algorithm for 360◦ video streaming.

The paper has the following main contributions.
• Through real measurements, we identify the energy inef-



ficiency problem of 360◦ video streaming on multicore-
based mobile devices, and propose to save energy by
selectively activating the proper processor cluster and
adaptively adjusting the CPU frequency.

• We formulate the energy and QoE aware 360◦ video
streaming problem as an optimization problem, and pro-
pose an efficient algorithm to solve it.

• We evaluate the performance of the proposed algorithm
with real measurements. The evaluation results demon-
strate that the proposed algorithm can significantly reduce
the energy consumption while maintaining QoE.

In the reminder of this paper, we introduce background and
motivation in Section II, and present the video, QoE, and
power models in Section III. Section IV formalizes and solves
the energy and QoE aware 360◦ video streaming problem.
Section V presents evaluation results. We discuss related work
in Section VI, and conclude the paper in Section VII.

II. BACKGROUND AND MOTIVATION

Different from conventional video, 360◦ video provides
users with immersive experience, i.e., a user can navigate in a
virtual world by looking around and interact with the virtual
world. 360◦ video can be viewed with dedicated head mounted
display, like Oculus [6] and HTC Vive [7], or by placing
smartphones in headsets such as Google Cardboard [8] and
Samsung Gear VR [9].

Fig. 1 shows the 360◦ video processing pipeline, where
hardware accelerators in modern mobile devices, such as hard-
ware decoder, GPU, and display processing unit, are leveraged
for processing 360◦ video. More specifically, the device first
receives encoded 360◦ video from the video servers (e.g.,
YouTube [1], Facebook-360 [2], etc), or loads the video from
local storage. With a hardware decoder, the video is decoded
to retrieve the original 360◦ frames, which are buffered in the
video buffer, waiting to be rendered. Unlike the conventional
2D video processing where the decoded frames can be directly
displayed on the screen, in 360◦ video processing, the actual
viewing video content (called FoV frame) is rendered before
being displayed. Based on the user’s head orientation, a
coordinated projection is performed to map the 3D coordinates
of the viewing area to 2D coordinates, based on which the
FoV frames are generated. In modern mobile devices, GPU is
leveraged to accelerate the rendering process. After projection,
the display processor reads the generated FoV frames from the
video buffer and displays on the screen.

Recently, more and more smartphone manufactures such
as Samsung, LG, Huawei, etc., are adopting the tri-cluster
processor architecture which consists of three processor clus-
ters, suitable for different kinds of workloads. For example,
the Samsung Galaxy S20 smartphone uses Exynos 990 SoC
with quad-core ARM Cortex-A55 (i.e., little cores 0 to 3),
dual-core ARM Cortex-A76 (i.e., middle cores 4 and 5), and
dual-core Mongoose-M5 (i.e., big cores 6 and 7). The Cortex-
A55, Cortex-A76, and Mongoose M5 cores can operate in a
frequency range from 442 MHz to 2.002 GHz, from 507 MHz
to 2.504 GHz, and from 546 MHz to 2.73 GHz, respectively.

Fig. 1: A 360◦ video processing pipeline on a mobile device.

To better understand the characteristics of heterogeneous
CPU processor architecture, we measure the average energy
consumption of 360◦ video processing (i.e., local playing
video). The experiment was conducted using a rooted Samsung
S20. The energy consumption was calculated as the difference
between the energy consumed for 360◦ video local playback
and the energy consumed when the video player is turned on
but no video is played. The videos are locally cached in the
smartphone, and encoded at different qualities, i.e., resolution
of 144p and 2160p. The videos are encoded at 30 frames per
second. We compare two approaches, AllCore which is the
default configuration, and LittleCore which only uses little
cores.

As shown in Figure 2(a) (b), compared to the AllCore ap-
proach, using only the cores within the same processor cluster
can save energy for processing 360◦ video. Compared to the
AllCore approach, the LittleCore approach can reduce the
energy consumption by 23.6% and 24.5% for video encoded
at resolution of 144p and 2160p, respectively.

Observation and Insight: In modern mobile devices, due
to the use of many hardware accelerators such as hardware
decoder, GPU, and display processing unit, the workload of
the CPU can be significantly reduced. As a result, it is not
necessary to activate all eight cores of CPU. Using only the
little cores has enough computational capacity to handle the
workload of 360◦ video processing, and hence save energy.

The energy can be further reduced by CPU frequency
scaling. The CPU frequency and the CPU voltage can be
adjusted at run-time, which is referred to as Dynamic Voltage
and Frequency Scaling (DVFS). The CPU frequency can be
adjusted based on the CPU governor. However, the default
CPU governor in most smartphones sets the CPU at high
frequency to provide better performance, which may waste
a great deal of energy. To better understand the relationship
between CPU frequency and energy consumption for process-
ing 360◦ video, we conducted experiments by setting different
CPU frequencies (details see Section III-B).

Figure 2(c) illustrates the energy consumption of the Lit-
tleCore approach with different CPU frequencies for playing
a 360◦ video with resolution of 144p. Here, the energy is
normalized based on that of the AllCore approach. When
setting the CPU cores at 442 MHz, the LittleCore approach
can save energy by 51.9% compared to AllCore. That is,
by reducing the CPU frequency to 442 MHz, LittleCore can
further save 28.3% energy, compared to working at a higher
CPU frequency based on the default CPU governors. Note



(a) Energy consumption (144p) (b) Energy consumption (2160p) (c) Energy w.r. CPU frequency (144p) (d) Energy w.r. CPU frequency (2160p)

Fig. 2: Comparisons of energy consumption for processing 360◦ video using all cores (default configuration) and using only
the little cores. There are no video stalls in both approaches.

that in both approaches, there are no video stalls and hence
the Little cores have enough computation capacity to handle
the video processing workload with the help of hardware
accelerators.

Fig. 2(d) compares the energy consumption for playing
2160p 360◦ video. Processing high resolution video requires
more computational capacity. Although the computation in-
tensive tasks such as decoding and rendering are handled by
the dedicated hardware accelerators, the CPU has to coordinate
them, which increases its workload. As the workload increases,
using the lowest CPU frequency may not always be the best
option to save energy, since low CPU frequency may mean
more CPU utilization and then increase the energy consump-
tion. As a result, the best CPU frequency to save energy may
not be the highest or lowest. As shown in Fig. 2(d), setting the
CPU frequency at 1.157GHz, the LittleCore approach can save
the energy consumption by 40.4% compared to AllCore. That
is, the LittleCore approach can further save 15.9% energy for
processing 2160p 360◦ videos by dynamically adjusting the
CPU frequency.

Observation and Insight: The default CPU governor uses
high CPU frequency even when processing low resolution
videos, which consumes a great deal of energy. To further save
energy, we should properly adjust the CPU frequency based
on the video resolution and the hardware characteristics of
the mobile device.

Based on the above observations and insights, to save energy
while maintaining QoE, we should download video at the
right quality, and adjust the CPU frequency based on the
video resolution and the hardware characteristics of the mobile
device. In this paper, base on real measurements, we model
the impact of video resolution and CPU frequency on power
consumption, and model the impact of video features and
network effects on QoE. With these developed models, we
formulate the energy and QoE aware 360◦ video streaming
problem and propose an efficient algorithm to solve it.

III. VIDEO, POWER AND QOE MODELS

A. Video Model

On the server side, the video is divided into a sequence of n
video segments, where each segment contains a fixed duration
of video content (e.g., L seconds). Each video segment is
encoded as V copies corresponding to V different qualities
(i.e., different video resolutions and encoding bitrates). For
example, similar to the common settings in YouTube, the

videos are encoded into eight quality levels. Based on the
network condition, the video player at the client requests a
segment with a specific quality level. The 360◦ video stream-
ing process can be considered as n tasks which corresponds
to downloading and transmitting n video segments. Let Tk

denote the kth task which streams the kth video segment. Let
T v
k denote the kth task where the video segment is encoded

at quality level v (v ∈ {1, 2, ..., V }). Let Bk denote the video
length (in seconds) of the downloaded but not yet viewed video
in the buffer, when the client requests the kth video segment.
To avoid rebufferings (or video stall), the video segment should
be completely downloaded before the video player runs out of
buffer.

B. Power Model

The power consumed for 360◦ video streaming on mobile
devices includes two parts: video downloading (Pd) and video
processing (Pp). The downloading energy is related to the
video quality level and the wireless link interface, and the
processing energy is related to the video quality level and the
hardware characteristics of the mobile device. To measure the
power consumed by the wireless interface Pd, we conduct a
number of experiments with a wget daemon running in the
background (the screen is off) to download data from the
server. Since all other background tasks are turned off and only
one data downloading app is running, the measured power for
data downloading minus the base power without data down-
loading will be the power for the wireless link interface. The
measurement is based on Samsung Galaxy S20, and the power
level is calculated as the battery voltage times the current,
which can be read from the /sys/class/power supply/battery/
files in the virtual file system. To model Pp, we measure
the power consumption when using little cores with different
CPU frequencies for playing 360◦ video encoded at different
quality levels. Table I shows the encoding details of the videos.
Specifically, we use the same video resolutions as YouTube,
which has eight resolutions for 360-degree video, i.e., 144p,
240p, 360p, 480p, 720p, 1080p, 1440p, 2160p. Since the
videos are locally cached, Pp models the impact of the video
quality and the CPU frequency on power consumption.

When watching 360◦ video with a specific video quality,
we consider the following two cases. In case 1 (i.e., the
baseline case), the video player is turned on but no video
is played. In case 2 (i.e., the playback case), the CPU cores
are manually controlled by setting the CPU frequency value



Fig. 3: The power models for 360◦ video processing.

TABLE I: The resolution and bitrate for video encoding.
Level Resolution Bitrate (Mbps)

2160p 3840x2160 19.69
1440p 2560x1440 13.24
1080p 1920x1080 9.89
720p 1280x720 7.97
480p 852x480 4.82
360p 640x360 2.75
240p 424x240 1.78
144p 256x144 0.98

in /sys/devices/system/cpu/[cpu#]/cpufreq. The power
difference between case 2 and case 1 represents the power con-
sumption of video processing under a specific CPU frequency
(i.e., Pp(f)). Note that Pp(f) does not consider the power
consumption of the screen (i.e., since the screen is turned on
for both case 1 and case 2), since it depends on the screen
size of the specific smartphone and the screen brightness set
by the user. By running the least squares regression method,
we can draw the fitted curve in Figure 3. The power models
for processing 360◦ videos with different quality levels are
summarized in Table II, where the CPU frequency f is in
GHz and the power is in mW.

With the developed power models, the energy consumed for
downloading and processing a video segment can be calculated
as follows.

E(T v
k ) = Ed(T

v
k ) + Ep(T

v
k ) (1)

where Ed(T
v
k ) and Ep(T

v
k ) are the energy consumption for

downloading and processing the kth video segment, respec-
tively. Ed(T

v
k ) which can be calculated as Ed(T

v
k ) = Pd ·

S(T v
k )

Rk
, where Pd is the wireless interface power, as shown

in Table III, S(T v
k ) is the segment data size when the kth

video segment is encoded at quality level v, and Rk is the
network bandwidth used to download the video segment.
Ep(T

v
k ) are related to the duration of each video segment L,

i.e., Ep(T
v
k ) = Pp(f) · L.

C. QoE Model

The user’s perceived QoE for watching a video is defined
as the average QoE values for all video segments. For each
video segment k, similar to [4, 10, 11, 12], the QoE model
quantifies the user perceived quality by considering the fol-
lowing metrics: average video quality, quality variation, and
rebuffering. The QoE model is defined as follows:

TABLE II: The power models for video processing.
Video Quality Power (mW)

144p Pp(f) = 108.4f + 236.5
240p Pp(f) = 95.9f + 280.2

360p Pp(f) =

{
−113.5f + 445.6, if f ≤ 0.65

89.6f + 308.2, otherwise

480p Pp(f) =

{
−188.7f + 515.3, if f ≤ 0.65

104.1f + 318.8, otherwise

720p Pp(f) =

{
−113.7f + 536.7, if f ≤ 0.949

120.2f + 315.4, otherwise

1080p Pp(f) =

{
−120.6f + 581.9, if f ≤ 0.949

116.5f + 353.8, otherwise

1440p Pp(f) =

{
−154.4f + 692.4, if f ≤ 1.157

157.9f + 334.3, otherwise

2160p Pp(f) =

{
−172.8f + 832.4, if f ≤ 1.157

220.8f + 358.7, otherwise

TABLE III: The power models for wireless interfaces.
Interface Power (mW)

Wifi Pd = 1201.8± 29.9

Q(T v
k ) = Qo(T

v
k )− ωcIc(T

v
k )− ωrIr(T

v
k ) (2)

where Qo(T
v
k ) is the “original” video quality without consid-

ering any quality impairment, Ic(T v
k ) is the quality impairment

caused by quality change between two consecutive segments,
Ir(T

v
k ) is the quality impairment caused by rebuffering event,

and ωc and ωr are the weights for quality change and rebuffer-
ing, respectively. The following gives the details of Qo, Ic, and
Ir.

• Average Quality. Since only video content in the viewing
area contributes to user perceived quality, the average
quality in the viewing area is considered to calculate Qo.

Qo(T
v
k ) = q(Vk) (3)

where Vk denotes the average video quality (i.e., video
bitrate, in Mbps) in the viewing area, q(.) is a map-
ping function which maps the video quality to the
user perceived quality. Similar to [10, 13], Qo is mod-
eled with a Michaelis-Menten function, i.e., Qo =
max(1,min(5, 1+4· c1·Vk

c2+Vk
)), where Vk is the bitrate, and

c1 and c2 are the model parameters. We use the parameter
values from [10], i.e., c1 = 1.036 and c2 = 0.429. These
values are set up based on subjective quality assessment
experiments.

• Quality variation. With quality variations between con-
secutive video segments, users may feel discomforts
such as dizziness. Thus, the QoE model should consider
quality variations.

Ic(T
v
k ) =

max(Vk−1 − Vk, 0)

Vk

·Qo(T
v
k ) (4)

where Vk−1 and Vk are the video bitrate in the view-
ing area for the (k − 1)th and kth video segment. Ic
quantifies the quality impairment due to bitrate drop (i.e.,
max(Vk−1−Vk, 0) < 0; a sudden large bitrate drop may



lead to severe QoE degradation. For the case of bitrate
increase, due to network variations, a sudden large bitrate
increase may generate rebuffering events.

• Rebuffering Effect. When rebuffering occurs, the video
will freeze and hence significantly affecting the QoE.

Ir(T
v
k ) =

max(S(T v
k )/Rk −Bk, 0)

Bk
·Qo(T

v
k ) (5)

where S(T v
k ) is the segment data size when the kth

video segment is encoded with quality level v, Rk is the
downloading throughput, and Bk is the amount of video
data in the buffer when the client starts to request the kth

segment.
For 360◦ video streaming on mobile devices, streaming

a video segment encoded at higher quality can improve the
Qo factor in the QoE model. However, because of network
variations, a sudden large bitrate increase may cause frequent
quality changes (i.e., larger Ic) and more rebuffering events
(i.e., larger Ir), and then in turn affect the user QoE. Moreover,
streaming video at higher quality requires much more data
to be downloaded and processed on smartphones and thus
consuming a great deal of energy.

IV. ENERGY AND QOE AWARE 360◦ VIDEO STREAMING

In this section, we formulate and solve the energy and QoE
aware 360◦ video streaming problem.

A. Problem Formulation

We use two binary variables (ηkv and δkvf ) in our problem
formulation, where ηkv = 1 if the kth video segment is
encoded at quality level v. Different implementations of het-
erogeneous processor architecture may have different clusters
of CPU cores, with different number of CPU frequencies.
To simplify the formulation, we map different pairs of core
and frequency to a set of processing levels {1, 2, ..., F},
and δkvf = 1 if the CPU cores are set at frequency f ∈
{1, 2, ..., F} to process video segment k. Then, we have the
following optimization problem, where the goal is to minimize
energy and maximize QoE by selecting the right quality level
and processing level for each video segment.

min
n∑

k=1

V∑
v=1

ηkv(γ
F∑

f=1

δkvf
E(T v,f

k )

E(TV,F
k )

− (1− γ)
Q(T v

k )

Q(TV
k )

)

(6)

s.t.
V∑

v=1

F∑
f=1

ηkv · δkvf = 1, ∀k (6a)

V∑
v=1

ηkv · S(T v
k ) ≤ R ·Bk, ∀k (6b)

where E(.) and Q(.) are the energy model and QoE model.
T v
k is the kth task to stream the video segment encoded with

quality level v, S(T v
k ) is the data size, R is the network

bandwidth, Bk is the duration of video content that are
buffered but not yet viewed at the time of requesting video

segment k. Constraint (6a) enforces that only one quality level
is selected for every video segment, and only one process-
ing level is used to process the downloaded video segment.
Constraint (6b) ensures that the video segment is successfully
transmitted before being viewed. Because E(T v,f

k ) and Q(T v
k )

use different units, we normalize them with the highest energy
consumption (E(TV,F

k )) and QoE (Q(TV
k )) obtained by using

the highest processing level and the highest quality level. We
also introduce a weighting factor γ, where more weights are
given to maximize QoE with a smaller γ, and more weights
are given to minimize energy when γ is larger.

B. The Optimal Solution

In 360◦ video streaming, finding the optimal quality level
and processing level for each video segment (task) can be
mapped to the shortest path problem [14, 10].

Let node Ts represent the start and let Te represent the end
of the 360◦ video streaming process. With V bitrates and F
frequencies, V ∗ F nodes are added for each task (Tk). Let
T v,f
k denote the video segment downloaded in Tk, encoded

with bitrate index v, and processed with CPU frequency f . Fig.
4 illustrates how the graph is constructed. More specifically,
edges are added from Ts to each node in task T1, and from
each node in task Tn to Te. An edge is also added from
each node in task Tk to all nodes in the next task. By taking
into consideration of QoE and energy, the edge weight is as
follows: (γ E(Tv,f

k )

E(TV,F
k )

− (1− γ)
Q(T v,f

k )

Q(TV,F
k )

). For edges from nodes
of the last video downloading task Tn to node Te, we set their
weights to 0.

The constructed graph considers all possible cases of (v, f)
tuples for each task and all schedule paths between tasks,
and hence each path from Ts to Te can be mapped to the
selection of bitrate and frequency in video streaming, and
vice versa. Thus, the shortest path from Ts to Te will be the
optimal selection of (v, f) tuples for all tasks in the 360◦

video streaming to achieve the goal of maximizing QoE and
minimizing energy.

Dijkstra’s algorithm can be applied to find the shortest
path in this graph. For a video streaming problem with n
tasks, the graph has O(nV F ) nodes and O(n(V F )2) edges.
Dijkstra’s algorithm can be solved with the complexity of
O((N+E)logN), where N denotes the number of nodes and
E denotes the number of edges, and hence the optimal solution
has a time complexity of O(n(V F )2log(nV F )). Since V
and F are small, the algorithm can quickly find the optimal
selection of (v, f) tuples.

C. The Heuristic Based Algorithm

The optimal algorithm can only provide a performance
upper bound for comparison purposes, and it cannot be
implemented in practice since it requires information about
all future tasks. As a result, we propose a heuristic based
algorithm which is described in Algorithm 1. In this algorithm,
similar to [15, 10], the network bandwidth is estimated with
the harmonic mean of the downloading throughput of the last



Fig. 4: The energy and QoE aware 360◦ video streaming
problem is mapped to a shortest path problem.

several segments. More bandwidth estimation techniques can
be found in [16, 17, 18], which is not the focus of this paper.

Based on the available bandwidth, the algorithm finds the
right bitrate and processing frequency for each video seg-
ment. More specifically, it calculates the energy consumption
(E(T v,f

k )) and the QoE (Q(T v,f
k )) when downloading the

kth video segment encoded with bitrate v and the video
segment is processed with CPU frequency f . To achieve
the goal of maximizing QoE and minimizing energy, the
algorithm determines the quality level and the processing
frequency in a greedy manner, i.e., based on the values of
(
(1−γ)·Q(Tv,f

k )

Q(TV,F
k )

)/(
γ·E(Tv,f

k )

E(TV,F
k )

) (called objective values).
Since the network bandwidth may frequently change, in-

creasing the bitrate too much may create more video stalls
and frequent bitrate changes, and decreasing the bitrate too
much may lead to severe QoE degradation. To address these
issues, we apply a gradual bitrate change strategy. Specifically,
the algorithm sorts the tuples of (v, f) in descending order
of their objective values, and if two tuples of (v, f) have
the same objective values, the one with larger v will be
sorted first. The (v, f) tuple with maximum objective value
is called the reference tuple. The algorithm searches from the
reference tuple to determine the final (v, f) tuple, considering
the following two cases.

The first case is related to bitrate increase. If the reference
bitrate is one level higher than that of the previous video
segment, the reference (v, f) tuple is selected. Otherwise, if
the reference bitrate is multiple levels higher than that of the
previous segment, a search starts from the reference tuple to
find the first (v, f) tuple whose bitrate is one level higher than
its previous video segment (lines 4-5 in Algorithm 1). This
gradual bitrate change can reduce the QoE degradation caused
by frequent bitrate updates. If the network bandwidth remains
high for multiple continuous segments, the video bitrate will
be gradually increased to the reference bitrate.

The second case is related to bitrate drop. If the reference
bitrate is one level lower than that of the previous video
segment, the reference (v, f) tuple is selected. Otherwise, if
the reference bitrate is several levels lower than its previous

Algorithm 1: The Heuristic Based Algorithm
Input : γ, Bk, previous bitrate vk−1

Output: (vk, fk): bitrate level and processing frequency for
video segment k

1 Estimate available bandwidth R̂k

2 Create a set Π of (v, f) tuples in descending order of their
objective values and in descending order of bitrate level if
they have the same objective values

3 foreach (v⋆k, f
⋆
k ) ∈ Π do

4 if v⋆k > vk−1 then
5 vk ← vk−1 + 1
6 else
7 vk ← max {v|v∈{v⋆k, ..., vk−1} and (

S(Tv
k )

R̂k
≤ Bk)}

8 // S(T v
k ): data size of segment k at bitrate v

9 end
10 end
11 return (vk, fk)

segment, a search starts from the bitrate of the previous
segment to the reference bitrate, to find the first (v, f) tu-
ple whose bitrate is capable of being used to successfully
download the video segment before the buffer runs out (lines
6-9 in Algorithm 1). If the network bandwidth remains low
for multiple continuous segments, the video bitrate will be
gradually reduced to the reference bitrate.

V. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of our energy
and QoE aware 360◦ video streaming algorithm, and compare
it with other approaches.

A. Experiment Setup

We collect traces by watching seven videos using a Samsung
S20 smartphone. The videos have various lengths and they
are encoded with different quality levels. Table IV shows
the details of these seven videos, where the video bitrates
correspond to the common video resolutions in YouTube,
i.e., {144p, 240p, 360p, 480p, 720p, 1080p, 1440p, 2160p}.
Similar to [4, 19, 12], each video is divided into a sequence of
video segments, and each has one second of video. The user
viewing area is determined by the viewing center and the FoV
of the end device, which is set to 100 degrees horizontally and
vertically [20, 21, 22]. For the QoE model, similar to [4, 11],
the weights are set to (ωv , ωr) = (1, 1). The power models
are built based on real measurements using a rooted Samsung
Galaxy S20, as shown in Section III-B. We set the playback
buffer to five seconds, and set the weight factor γ = 0.5.

The network traffic is generated based on forty throughput
traces with varying patterns [23]. To consider different network
conditions, we linearly scale the trace to generate three traces,
called low, medium, and high bandwidth traces. Fig. 5 shows
the bandwidth CDF of the three traces. For the high bandwidth
traces, we take the original forty throughput traces and elimi-
nate the throughput records which are less than 2Mbps. Then,
the medium bandwidth traces are linearly down scaled by half
from the high bandwidth traces, and the low bandwidth traces
are a quarter of the high bandwidth traces.



TABLE IV: Video traces for performance evaluations.

Video Length (sec) Video bitrates (Mbps)

1 243 [0.78, 1.11, 2.15, 3.68, 6.78, 8.45, 10.28, 18.62]
2 337 [1.57, 2.34, 3.25, 5.38, 7.82, 9.56, 13.24, 20.36]
3 435 [1.17, 2.23, 3.25, 5.86, 9.72, 11.12, 14.53, 19.46]
4 538 [0.77, 1.31, 2.45, 4.48, 7.87, 9.31, 12.22, 18.96]
5 674 [1.23, 2.45, 3.24, 5.46, 8.86, 10.12, 13.65, 20.75]
6 734 [0.87, 1.83, 3.11, 4.36, 9.24, 10.17, 12.54, 18.44]
7 863 [0.98, 1.78, 2.75, 4.82, 7.97, 9.89, 13.24, 19.69]

Fig. 5: The CDF distribution of the network traces.

With the collected traces, we evaluate and compare the
following approaches.

• Baseline: The default 360◦ video streaming approach
used in many video platforms, where the video segments
are downloaded at their highest possible bitrate under
the current network condition, and processed using the
default CPU governor on mobile devices (i.e, using all
CPU cores).

• DefFreq: The video segments are downloaded at their
highest possible bitrate under the current network condi-
tion, and the video is processed using only the little cores.
The CPU frequency is determined by the default CPU
governor, which tends to set the CPU at high frequency.

• AdaFreq:The video segments are downloaded at their
highest possible bitrate. The CPU frequency is deter-
mined based on the video resolution, i.e., for a specific
video quality, the CPU frequency is set to be optimal,
i.e., can minimize the energy consumption according to
the power models shown in Section III-B.

• EQA: The proposed Energy and QoE Aware (EQA) 360◦

video streaming algorithm, which selects the right video
bitrate and CPU frequency for each video segment such
that the energy is minimized and the QoE is maximized.

• Optimal: The optimal requires complete knowledge of
all future tasks. Note that it is impossible to achieve the
optimal in practice, and it only provides a performance
upper bound for comparison purposes.

B. Energy Comparisons
The energy consumed for video streaming consists of the

energy consumed for video processing and video downloading.
For EQA and Optimal, the power models presented in Section
III-B are used to calculate the energy of video processing. For
Baseline, DefFreq, and AdaFreq, Table V is used, which shows
the measured power consumption when different quality 360◦

videos are processed. The energy of video downloading for
these approaches is calculated based on the power model of
the wireless interface in Table III.

TABLE V: Power consumption (mW) for processing 360◦

videos using different approaches.

Type 144p 240p 360p 480p 720p 1080p 1440p 2160p

Baseline 586.8 614.5 623.9 694.9 728.7 808.3 878.5 987.6
DefFreq 448.3 491.8 529.2 570.3 586.6 647.6 681.8 745.7
AdaFreq 282.1 323.6 371.8 392.7 429.1 467.2 518.5 622.2

In Figure 6, we compare the energy consumption of differ-
ent approaches under various network conditions, i.e., with
low, medium, and high bandwidth traces. In general, our
EQA algorithm has very low energy consumption which is
very close to Optimal, and significantly outperforms other
approaches.

As shown in Fig. 6, Baseline consumes the highest amount
of energy, since it downloads video using the highest possible
bitrate and processes video using the default CPU governor.
The default CPU governor activates all CPU cores across
different processor clusters, and thus consumes more energy.
By only activating the little cores, DefFreq can save energy
compared to Baseline. Compared to DefFreq, AdaFreq can
further save energy by adjusting the CPU frequency based
on the video quality. EQA significantly outperforms other
approaches, since it selects the right video bitrate and CPU
frequency to minimize energy and maximize QoE.

From Figure 6, we can see that the energy saving increases
when the network bandwidth increases, especially for EQA.
For example, for video 7, as the network bandwidth increases
from low to high, the energy saving of EQA compared to Base-
line increases from 20.4% to 50.8%. This is because, when
the network bandwidth is high, Baseline downloads video at
very high bitrate which leads to more energy consumption for
video downloading, and processes the video at very high CPU
frequency which leads to higher energy consumption for video
processing. In contrast, EQA selects the right video bitrate and
CPU frequency to minimize energy and maximize QoE.

Figure 7 shows the overall energy saving compared to
the Baseline approach. Since the Baseline approach has the
highest energy consumption, all four approaches can further
save energy. The proposed EQA can save similar amount of
energy as the optimal approach, and both perform much better
than DefFreq and AdaFreq. Specifically, the EQA approach can
save energy by 21.0%, 37.0%, and 50.7% on average when
the network bandwidth is low, medium, and high, respectively.

Video Downloading vs. Video Processing: To further ana-
lyze the energy consumption of different components, we di-
vide it into two parts: energy consumed for video downloading
and video processing. The energy consumed for downloading
is calculated as the power of the wireless interface multiplies
the time duration of video downloading. The energy consumed
for processing is calculated as the video processing power
multiplies the length of the video.

In Figure 8, we compare the energy consumed for video
downloading and video processing by different approaches,
using video 1 as an example. For video downloading, Baseline,
DefFreq, and AdaFreq download the highest possible bitrate
under the current network conditions, and thus consume much
more energy than EQA. EQA consumes less energy with



(a) Low bandwidth (b) Medium bandwidth (c) High bandwidth
Fig. 6: Energy consumption for videos under different bandwidth traces.

Fig. 7: Energy saving over all videos (Samsung S20).

(a) Baseline (b) DefFreq

(c) AdaFreq (d) EQA
Fig. 8: Energy consumed for downloading and processing
video 1.

high bandwidth trace than that with low bandwidth trace.
This is because the average downloading data rate in the
high bandwidth trace is four times higher than that in the
low bandwidth trace. Then, the downloading time, and the
downloading energy, can still be reduced even when higher
bitrate video is downloaded.

For video processing, Baseline consumes the highest
amount of energy, because it has to process a large amount
of data when downloading high quality video, and process
the video using all cores across different processor clusters.
Compared to Baseline, DefFreq can save energy since it
uses only the little cores for video processing. Compared
to DefFreq which always sets the CPU at high frequency,
AdaFreq can adaptively adjust the CPU frequency based on
the video quality and then save energy. EQA significantly
outperforms other approaches, since it considers minimizing
energy and maximizing QoE for determining the video bitrate
for video segments, and adaptively adjusts the CPU frequency
for processing the video.

Energy Consumption for Other Phones: We also conducted
experiments using other Android based phones such as Pixel

Fig. 9: Energy saving over all videos (Pixel 6).

devices. Figure 9 shows the energy saving of various ap-
proaches compared to the Baseline approach using Google
Pixel 6, which adopts the tri-cluster processor architecture
similar to Samsung S20, consisting of little cores, middle
cores and big cores. As shown in the figure, by leveraging the
proposed optimization techniques, energy can be significantly
reduced for 360◦ video streaming on Pixel 6. Specifically,
the overall energy saving for the EQA approach is 15.7%,
30.2%, and 40.4% on average when the network bandwidth
is low, medium, and high, respectively. We can also see that
the proposed EQA can save similar amount of energy as the
optimal approach, and both perform much better than DefFreq
and AdaFreq, especially when the network bandwidth is high.

C. QoE Comparisons

In Figure 10, we compare the QoE of all approaches under
different network traces. As shown in the figure, our EQA
algorithm can achieve very high QoE, and the QoE gap
between EQA and others is very small.

Figure 11 draws the overall QoE degradation of different
approaches compared to Baseline. In general, the QoE degra-
dation for EQA is very small (almost zero), especially for low
bandwidth traces where all approaches request videos encoded
at low bit rate. When network conditions become better,
for example, for high bandwidth traces, Baseline downloads
videos at the highest possible bit rate, while EQA determines
the right video bit rate and CPU frequency for video segments
to minimize energy and maximize QoE. From Figure 11,
we can see that the average QoE degradation for EQA is
0.2%, 1.1%, and 4.6% for low, medium, and high bandwidth
traces, respectively. Thus, our EQA approach significantly
saves energy (i.e., 50.7% for high bandwidth traces) at the cost
of very small QoE degradation (i.e., 4.6% for high bandwidth
traces).

VI. RELATED WORK

Tiled-based 360◦ Video Streaming. There has been con-
siderable research on tile-based 360◦ video streaming [4, 5,



(a) Low bandwidth (b) Medium bandwidth (c) high bandwidth

Fig. 10: QoE when watching videos under different bandwidth traces.

Fig. 11: QoE degradation over all videos.

11, 12, 21, 24, 25]. By cutting the video segment into tiles,
only the tiles covering users’ viewing area are downloaded
with high quality, and other tiles are downloaded with low
quality or not delivered at all to save bandwidth. Although
tile-based 360◦ video streaming can improve QoE with limited
wireless bandwidth, processing many small tiles consume a
large amount of energy on mobile devices. This is because
applying many concurrent decoders to accelerate video decod-
ing makes the video decoding pipeline much complex, which
leads to high computational overhead and thus high energy
consumption on mobile devices. In this paper, for performance
evaluations, we consider the 360◦ video format similar to that
used in common 360◦ video platforms such as YouTube [1]
and Facebook [2], where the video is encoded at different
resolutions matching the corresponding video qualities. Note
that our algorithms can also be applied to other video formats
such as tile-based 360◦ video streaming, since the pipeline for
processing tile-based 360◦ video is the same as that for general
360◦ video streaming, except that the dedicated hardware
decoder will have to handle the tasks of decoding multiple
tiles.

Energy Consumption. There are a number of studies on
saving energy for video streaming in mobile environments.
One way is to reduce the power consumed by the wireless
interface when streaming video from the video server [26, 27].
For instance, Hu et al. [26] proposed techniques to reduce
energy consumption based on whether users will stick on
watching the video, skip video watching or abandon watching
early. Wu et al. [27] proposed techniques to save energy for
video streaming in heterogeneous networks. Other researchers
studied how to save energy for video processing on the client
devices [14, 10, 28]. In [14], an adaptive CPU frequency
adjustment approach was proposed to reduce the energy
consumption of video streaming. In [10], the environment
factor (vibration or shaking impact) during video streaming is
leveraged to design video bitrate adaptation algorithms to save

energy. In [29], considering the distance between the user’s
eyes and the screen, a resolution dynamic scaling method is
proposed to reduce energy consumption. In [28], the brightness
of the display screen is dynamically adjusted to save energy.

Recently, some researchers start to look into energy effi-
ciency issues in 360◦ video streaming or virtual reality applica-
tions [30, 31]. In [30, 32], the authors proposed to save energy
by reducing the less important video frames in each segment.
In [31], energy is saved by reusing pixel values to reduce
the computation overhead during video rendering. However,
none of them considers to save energy by leveraging today’s
heterogeneous multicore architecture on mobile devices, which
is the focus of this paper.

VII. CONCLUSIONS

In this paper, we identified the energy inefficiency problem
of 360◦ video streaming on mobile devices, and proposed
energy efficient 360◦ video streaming algorithms. Based on
extensive experiments, we found that existing systems activate
all CPU cores during video streaming, which consumes a large
amount of energy, but it is unnecessary since most heavy
computations in 360◦ video processing are handled by the
hardware accelerators such as hardware decoder, GPU, and
display processing unit. We also found that the default CPU
governor sets the CPU at high frequency even when processing
low resolution videos, which consumes more energy. To save
energy, we propose to selectively activate the proper processor
cluster and adaptively adjust the CPU frequency based on
the video quality. We modeled the impact of video resolution
and CPU frequency on power consumption, and modeled the
impact of video features and network effects on QoE. Then, we
formulated the energy and QoE aware 360◦ video streaming
problem as an optimization problem, and proposed an optimal
solution. Since the optimal solution is impossible in practice,
we further proposed a heuristic based algorithm. Through
extensive evaluations, we demonstrated that the proposed EQA
algorithm can dramatically reduce the energy consumption
(e.g., 21% for low bandwidth and 50.7% for high bandwidth
traces) with very small QoE degradation (e.g., 0.2% for low
bandwidth and 4.6% for high bandwidth traces).

VIII. ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation under grants 2215043 and 2125208.



REFERENCES

[1] Google. YouTube Live in 360 Degrees Encoder Settings, July
2022. https://support.google.com/youtube/answer/6396222.

[2] Facebook. Facebook 360, July 2022.
https://facebook360.fb.com/.

[3] Comparison of Virtual Reality Headsets.
https://en.wikipedia.org/wiki/Comparison of virtual reality headsets.

[4] F. Qian, B. Han, Q. Xiao, and V. Gopalakrishnan. Flare:
Practical Viewport-Adaptive 360-Degree Video Streaming for
Mobile Devices. In ACM MobiCom, 2018.

[5] J. He, M. A. Qureshi, L. Qiu, J. Li, F. Li, and L. Han. Rubiks:
Practical 360-Degree Video Streaming for Smartphones. In
ACM MobiSys, 2018.

[6] Oculus. https://www.oculus.com/.
[7] HTC Vive. https://www.vive.com/.
[8] Google Cardboard. https://arvr.google.com/cardboard.
[9] Samsung Gear VR. https://www.samsung.com/global/galaxy/gear-

vr/.
[10] X. Chen, T. Tan, G. Cao, and T. La Porta. Context-Aware and

Energy-Aware Video Streaming on Smartphones. IEEE Trans.
on Mobile Computing, March 2022.

[11] Y. Zhang, P. Zhao, K. Bian, Y. Liu, L. Song, and X. Li. DRL360:
360-Degree Video Streaming with Deep Reinforcement Learn-
ing. In IEEE INFOCOM, 2019.

[12] X. Chen, T. Tan, and G. Cao. Popularity-Aware 360-Degree
Video Streaming. In IEEE INFOCOM, 2021.

[13] K. Yamagishi and T. Hayashi. Parametric Quality-Estimation
Model for Adaptive-Bitrate-Streaming Services. IEEE Trans.
on Multimedia, February 2017.

[14] Y. Yang, W. Hu, X. Chen, and G. Cao. Energy-Aware CPU
Frequency Scaling for Mobile Video Streaming. IEEE Trans.
on Mobile Computing, November 2019.

[15] J. Jiang, V. Sekar, and H. Zhang. Improving Fairness, Efficiency,
and Stability in HTTP-based Adaptive Video Streaming With
FESTIVE. IEEE/ACM Trans. on Networking, February 2014.

[16] A. H. Zahran, D. Raca, and C. Sreenan. ARBITER+: Adaptive
Rate-Based Intelligent HTTP Streaming Algorithm for Mobile
Networks. IEEE Trans. on Mobile Computing, December 2018.

[17] C. Yue, R. Jin, K. Suh Y. Qin, B. Wang, and W. Wei. Link-
forecast: Cellular Link Bandwidth Prediction in LTE Networks.
IEEE Trans. on Mobile Computing, July 2018.

[18] Gerui Lv, Qinghua Wu, Weiran Wang, Zhenyu Li, and Gaogang
Xie. Lumos: towards Better Video Streaming QoE through
Accurate Throughput Prediction. In IEEE INFOCOM, 2022.

[19] Y. Guan, C. Zheng, X. Zhang, Z. Guo, and J. Jiang. Pano:

Optimizing 360 Video Streaming with a Better Understanding
of Quality Perception. In ACM SIGCOMM, 2019.

[20] A. Mahzari, A. T. Nasrabadi, A. Samiei, and R. Prakash. FoV-
Aware Edge Caching for Adaptive 360◦ Video Streaming. In
ACM Int’l Conf. on Multimedia, 2018.

[21] C. Zhou, M. Xiao, and Y. Liu. ClusTile: Toward Minimizing
Bandwidth in 360-Degree Video Streaming. In IEEE INFO-
COM, 2018.

[22] M. Xiao, S. Wang, C. Zhou, L. Liu, Z. Li, Y. Liu, and S. Chen.
MiniView Layout for Bandwidth-Efficient 360-Degree Video.
In ACM Int’l Conf. on Multimedia, 2018.

[23] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems,
P. Rondao Alface, T. Bostoen, and F. De Turck. HTTP/2-Based
Adaptive Streaming of HEVC Video over 4G/LTE Networks.
IEEE Communication Letters, November 2016.

[24] L. Sun, Y. Mao, T. Zong, Y. Liu, and Y. Wang. Flocking-
based Live Streaming of 360-Degree Video. In ACM Multimedia
Systems Conference (MMSys), 2020.

[25] Lei Zhang, Yanyan Suo, Ximing Wu, Feng Wang, Yuchi Chen,
Laizhong Cui, Jiangchuan Liu, and Zhong Ming. TBRA: Tiling
and Bitrate Adaptation for Mobile 360-Degree Video Streaming.
In ACM Int’l Conf. on Multimedia (ACMMM), 2021.

[26] W. Hu and G. Cao. Energy-Aware Video Streaming on Smart-
phones. In IEEE INFOCOM, 2015.

[27] J. Wu, B. Cheng, M. Wang, and J. Chen. Energy-Efficient
Bandwidth Aggregation for Delay-Constrained Video over Het-
erogeneous Wireless Networks. IEEE J. Selected Areas in
Communications, January 2017.

[28] Z. Yan and C. W Chen. RnB: Rate and Brightness Adaptation
for Rate-Distortion-Energy Tradeoff in HTTP Adaptive Stream-
ing over Mobile Devices. In ACM MobiCom, 2016.

[29] S. He, Y. Liu, and H. Zhou. Optimizing Smartphone Power
Consumption through Dynamic Resolution Scaling. In ACM
MobiCom, 2015.

[30] X. Chen and G. Cao. Energy-Efficient and QoE-Aware 360-
Degree Video Streaming on Mobile Devices. In IEEE Int’l
Conf. on Distributed Computing Systems (ICDCS), 2022.

[31] Shulin Zhao, Haibo Zhang, Sandeepa Bhuyan, Cyan Subhra
Mishra, Ziyu Ying, Mahmut T Kandemir, Anand Sivasub-
ramaniam, and Chita R Das. Déja view: Spatio-temporal
compute reuse for ‘energy-efficient 360 vr video streaming. In
ACM/IEEE Int’l Symposium on Computer Architecture (ISCA),
2020.

[32] X. Chen, T. Tan, and G. Cao. Macrotile: Toward QoE-Aware
and Energy-Efficient 360-Degree Video Streaming. IEEE Trans.
on Mobile Computing, To appear.


