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ABSTRACT
There is a growing rise of applications that need to support a
library of models with diverse latency-accuracy trade-offs on
a Pareto frontier, especially in the health-care domain. This
work presents an end-to-end system for training and serving
weight-sharing models. On the training end, we leverage
recent research in creating a family of models on the latency-
accuracy Pareto frontier that share weights, reducing the total
number of unique parameters. On the serving (inference
end), we propose a novel accelerator FastSwitch that extracts
weight reuse across different models, thereby providing fast
real-time switching between different models.

1. INTRODUCTION
A significant fraction of machine learning (ML) and deep

learning (DL) literature has so far been focused on optimizing
for accuracy as the primary objective or minimizing accu-
racy loss while optimizing for other efficiency metrics, such
as forward pass inference latency and various measures of
cost (energy, power, area, dollars). ML models individually
architected, trained, tuned, and accelerated can then be re-
garded as individual points in a multi-dimensional tradeoff
space of accuracy and latency. Far less attention has been
given to mechanisms and policies to navigate this tradeoff
space efficiently. The importance of making such tradeoffs
dynamically can be exemplified by prediction tasks targeting
clinical environments, such as Intensive Care Units (ICU)
or Emergency Room (ER) triage. In such cases real-time
model serving is equally if not more important than accu-
racy, because ICU patient care is simultaneously more urgent
and more expensive. Clinical decisions and the timeliness
of those decisions affect both the quality of care for patients
and the cost of care. In some cases (e.g., prediction of sep-
tic shock, cardiac arrest, or respiratory distress), it can be a
matter of life and death. To compound the challenge, clinical
environments typically feature multiple tiers of inference de-
ployment, including bedside compute, limited on-site cluster
resources, and HIPAA-compliant cloud resources. Devel-
oping individual models for each of these latency tiers is
cumbersome, costly, and redundant. Even for the exact same
deployment target and for the exact same latency-sensitive
application, the dynamics of inference query ingest, variable
network bandwidth, and the variability in the volume of pa-
tients as a function of time — all call for different points of
optimality to be accessible for inference at any given time.
Concretely, under low volume load and well behaved network
conditions, costlier and more accurate models can be served.
With load spikes (e.g., ER patient influx, rapidly evolving
medical phenomena), lighter-weight faster models are best
suited to keep up with real-time demand.

The rise of applications that can benefit from variable
latency-accuracy choices is luckily met with a nascent re-

search effort [1, 8] to co-train large model families that si-
multaneously target a large span of deployment scenarios.
OFA [1] initially proposed a mechanism to simultaneously
train ≈ 1019 Convolutional Neural Networks (CNNs) with
a progressive shrinking technique that amortized the cost
of training for all possible latency/accuracy choices. Im-
portantly, it decoupled training this SuperNet structure from
extracting a Pareto optimal frontier for specific target deploy-
ment. CompOFA [8] subsequently improved on the efficiency
of training CNN SuperNet, by reducing the search space with-
out sacrificing accuracy, Pareto optimality, or the density of
the resulting Pareto Frontier. Fundamentally, this work lends
us the ML mechanisms for developing neural network (NN)
constructs that capture the entire latency-accuracy tradeoff
space while matching the accuracy for individual points in
this space at a fraction of the training cost.

This SuperNet structure is achieved by sharing the over-
lapping weights for NN subgraphs, also referred to as Sub-
Nets. [1,8] enable the extraction of individual subgraphs along
the Pareto-optimal frontier for specified latency or accuracy
thresholds. It’s important to note that these SubNet NNs
partially share their weights, with significant weight over-
lap. In fact, the SuperNet itself is equivalent to the largest
SubNet, corresponding to the costliest and the most accurate
maximum network. Once the whole SuperNet (with shared
weights) is trained, no further re-training is necessary for any
SubNets to be used. In fact, these SubNets can be directly
activated for forward pass inference that will only use the
specified SubNet configuration. Figure 1 shows the overall
flow of the proposed system.

In this paper, we propose the next logical step — ability
to serve (i.e., run inference on) these SuperNets after select-
ing the appropriate SubNet for the target latency-accuracy
tradeoff. Current DNN accelerators can support the afore-
mentioned multi-DNN switching scenario via two mecha-
nisms, (1) spatial switching — where the entire SuperNet
is deployed, making all SubNets simultaneously available,
and routing queries (i.e., input activations) to the appropriate
SubNet in real-time. This approach would require memory ca-
pacity larger than the sum of weights for all possible SubNets
either via an extremely high-capacity memory or several ac-
celerators (one per SubNet) making this solution impractical
and non-scalable. (2) temporal switching — re-loading the
appropriate SubNet that offers the pareto-optimal choice w.r.t.
a specified latency constraint. This would be most memory-
efficient (and our baseline), but requires model-switching
latency coming into the critical path of the inference latency.

This work proposes a third alternative, that we call spatial-
temporal switching—leveraging the weight-shared structure
of the SuperNet mechanism by minimizing weights loaded
on the critical path of the queries, while maximizing the reuse
of the weights shared between SubNet DNNs. We assert that
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Figure 1: Overview of the proposed system enabling weight-shared training and fast model switch serving.

the spatio-temporal approach to adaptive navigation of the
tradeoff space offers the optimal choice with respect to several
success metrics, including the fraction of queries that satisfy
their latency deadlines (Service Level Objective attainment).

To the best of our knowledge, no DNN accelerator today
supports the idea of spatio-temporal model switching. Recall
that the efficiency of an accelerator comes from its ability
to leverage reuse from inputs, weights, and outputs within a
single model via its dataflow strategy [2, 3, 5]. We show that
spatio-temporal switching adds another dimension of reuse -
namely SubNet reuse. To this end, we propose FastSwitch—
the first DNN inference accelerator design enabling fast Sub-
Net switching through spatio-temporal model weight reuse,
reducing the total amount of data movement between off-chip
and on-chip when switching SubNets. FastSwitch has the
following features.
• FastSwitch is a parameterizable architecture template

consisting of scalable execution unit architecture and on-
chip buffer organization to leverage all potential reuse
opportunities, including SubNet weight reuse.

• We develop a design space exploration (DSE) framework
to explore the best HW parameters for FastSwitch under
a given sequence of DNNs and on-chip memory budget.

• The proposed FastSwitch template implemented with
the best DSE choice on both an embedded FPGA board
and a cloud FPGA enables end-to-end query serving,
outperforming the temporal model switching alternative
by 8% ∼ 12%.

2. SYSTEM OVERVIEW
2.1 Weight-sharing Network Serving Flow

Figure 1 illustrates the proposed weight-sharing training
and serving flow with 4 key challenges addressed.

Training Phase. While OFA [1] proposed a mechanism
for producing weight shared supernetworks in a centralized
fashion, we train the supernetworks in a federated fashion.
Unlike conventional federated learning (FL), where a whole
model is shared between participating clients, weight shared
FL training requires a framework for SubNet distribution
and subsequent weight aggregation for overlapping model
parameters during FL training. Importantly, the outcome of
both FL and centralized weight shared training is a supernet-
work that can be served by FastSwitch during the deployment
phase. For each FL training round, different SubNets can be
assigned to different clients based on their compute resources

or data heterogeneity (C1). At the end of each local client’s
training epoch, the updated weights for the given SubNet are
sent to the server to be aggregated into the joint SuperNet
(e.g. residing on the central server or in the cloud Figure 1).
Weight shared training amortizes the cost of training a family
of DNNs individually, incurring the O(1) training cost, while
any choice of k Pareto-optimal points requires ≈ O(k) cost.

Deployment Phase. Once trained to convergence, the
SuperNet undergoes Neural Architecture Search (NAS) to
extract a set of Pareto optimal SubNet configurations at de-
sired density/granularity, thereby creating the desired la-
tency/accuracy tradeoff space (C2). The system is then ready
to serve queries, each requesting specific point on the ex-
tracted Pareto frontier, fulfilling (C3). We assume a policy
engine at a higher level making SubNet choice decisions and
focus on the mechanism of serving them efficiently in this
paper. To enable (C4), we directly serve the SuperNet using
our novel hardware accelerator FastSwitch (prototyped on
FPGA) with the following novel features. First, due to our
weight-shared training approach, the storage and loading time
overheads for the entire SuperNet (i.e., family of SubNets)
is comparable to the largest SubNet. Second, we build an
optimal dataflow and memory hierarchy within the acceler-
ator to reuse shared weights across different weight-shared
pareto-optimal SubNets to amortize the loading overheads
and enable rapid, real-time DNN switching on a single accel-
erator more efficiently.

In the interest of space, we do not go into details of our FL
training and pareto-optimal NAS in this paper; we focus on
the architecture of our accelerator for addressing C4.

2.2 Data Reuse Opportunities in Accelerator
The serving latency consists of both the SubNets switching

latency and inference latency of a single SubNet. To reduce
SubNets switching latency, the hardware architecture design
must reduce the amount of data being transferred between
off-chip and on-chip, i.e. to reuse data fetched from off-chip
as much as possible. Further, to reduce inference latency, the
hardware needs to improve the throughput by introducing
parallelism, which could be also achieved by reusing data
locally in computation logic. Therefore, the essential goal
of reducing data movement when switching SubNets is to
increase data reuse on-chip.

We show all possible data reuse related to convolution in
Figure 2. Here we refers input activation, weights and output
activation as iAct, weight and oAct, separately.
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Figure 2: Data reuse opportunities in serving different SubNets leveraged within FastSwitch.

• iAct Reuse - Sliding Window Overlap (Figure 2a): With
the kernels sliding over the input feature map by a step of
specific number of pixels (termed as stride), the input acti-
vation in the overlap regions of different sliding windows
could be stored on-chip and reused by a single kernel at
different sliding window locations.

• iAct Reuse - Multi-Kernel (Figure 2b): All kernels need
to convolve with input feature map in the same sliding
fashion. The input feature map could be stored inside on-
chip storage and reused when multiple kernels are sliding
together in the same pace.

• oAct Reuse - Partial Sum Accumulation (Figure 2c):
For layers deep inside the neural network, the number of
channel will usually explode to thousands which exceeds
the accumulation range of the execution units. And thus
part of the partial sum has to be sent back to off-chip
memory for temporal storage. Then they will go back to
on-chip buffer for final accumulation.

• Weights Reuse - Multi-iAct Tiles (Figure 2b): Different
iAct tiles will convolve with same kernels so that weights
of kernels are reused.

• Weights Reuse - SubNets (Figure 2d): The weight-sharing
feature renders different SubNets sharing some weights
in common, which could sit inside the on-chip storage
and reused by different SubNets.

Table 1 contrasts FastSwitch against some prior arts in
terms of leveraging reuse opportunities.

Table 1: Reuse comparison (prior works v.s. FastSwitch).
Work iActs Reuse

Sliding Window Overlap
iActs Reuse
Multi-Kernel

oAct Reuse
Partial Sum

weights Reuse
iAct Tiling

Weights Reuse
SubNets

MAERI [5] ✓ ✗ ✗ ✓ temporal ✗
NVDLA [6] ✗ ✓ ✓ ✓ temporal ✗
Eyeriss [2] ✓ ✓ ✗ ✓ temporal ✗

Xilinx DPU [10] ✗ ✓ ✓ ✓ temporal ✗
FastSwitch ✓ ✓ ✓ ✓ spatial temporal ✓

3. FASTSWITCH ARCHITECTURE
Figure 3 shows a high-level architecture of FastSwitch.

3.1 Compute Array
Dot Product Engine (DPE). The key building block of

DNN accelerators is the ability to compute dot-products. The
Google TPU systolic array [4] computes fixed-size dot prod-
ucts in each column by keeping weights stationary and for-
warding (streaming) inputs from one column to the other,
NVDLA [6] employes dedicated dot product engines (DPEs)
of size 64, while flexible accelerators [5,7] have DPEs of con-
figurable sizes (enabled via all-to-all connectivity between
the buffers and PEs). In this work, we picked fixed size DPEs
of size 9, inspired by the common case of 3×3 filters in most
CNNs, to keep hardware cost simple. Within the DPEs, we
leveraged an adder-tree for reduction, similar to NVDLA.

Dataflow. To further increase the throughput, we instan-
tiate a 2D array of DPEs to boost the parallelism as shown

in the Fig. 3. In the vertical axis, iActs pass through DPEs
of different rows in the store-and-forward fashion. In the
horizontal axis, weights of kernel are broadcasted to all DPEs
in the same row such that DPE at different columns share the
same weights. These weights remain stationary. Therefore,
the number of row indicates the total number of kernels in
DPE Array targeting iAct Reuse - Multi-Kernels (Fig. 2b),
noted by KP. While the number of column stands for total
number of iAct sliding windows, i.e. iAct Reuse - Sliding
Window Overlap (Fig. 2a), noted as YP.

3.2 On-chip Buffers
We designed a custom on-chip buffer hierarchy to tile the

overall workload, both for reordering tiles for DPE Array and
leveraging other reuse opportunities in tiles not supported by
the DPE Array. The on-chip buffers are divided into multiple
groups as illustrated by different colors in Figure 3.
3.2.1 On-chip Buffers for Weights

Persistent Buffer (PB). The PB is designed to target at
enabling Weights Reuse - SubNets in Figure 2d, i.e. store
the common weights from different SubNets such that the
hardware does not need to fetch them when incoming queries
request to change SubNets. For example, the kernel 1 in Fig-
ure 2d will be stored inside PB and reused when FastSwitch
switching from SubNet 1 into SubNet 2 such that kernel 1
will not be fetched from off-chip memory again.

Dynamic Buffer (DB). The DB is a typical on-chip storage
to store the weights of requested SubNet. By adopting a PB,
only non-common weights need to be fetched from off-chip
to the on-chip storage. For example, all kernels except the
common part (kernel 2 to kernel N) will be stored in DB
when targeting at SubNet 1, and will be replaced by kernel M
to kernel M+N when switching into SubNet 2.

Data Accessing for PB and DB. An example of weights
storage on-chip is shown in Figure 4, weights are firstly tiled.
After that, dynamic weights will be fetched from DRAM into
DB such that the common weights are shared across different
queries. All weights in DB and PB will finally be unified and
supplied to DPE Array.

3.2.2 On-chip Buffer for iActs and OActs
Streaming Buffer (SB) is designed to store the entire iAct

tile and thus support multiple kernels iAct reuse (Figure 2b).
Line Buffer (LB) is designed to support iAct reuse in mul-

tiple sliding windows (Figure 2a) [9]. We extend the original
line buffer stride supporting through skipping consecutive
sliding windows when stride is larger than 1.

Output Buffer (OB) provides in-place accumulation for
oAct of different channel such that only the final oActs will
be sent off-chip to reduce the data movement.

3.2.3 Size of On-chip Buffers
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Figure 4: Weights Storage Breakdown in PB and DB.
Table 2: Dimensions of 2D on-chip Buffers

Buffer Width Height
DB DBW = KP · (R ·S+1) ·DW DBH = TK ·TC/KP

SB SBW = YP · stridemax ·DW SBH = TC ·TX · ⌈ TY
YP ·stridemax

⌉
LB LBW = YP · stridemax ·DW LBH = R · ⌈ TY

YP ·stridemax
⌉

OB OBW = ⌈BW/ODW⌉ ·ODW OBH = (TX −R+1) · ⌈ TY −S+1
YP

⌉ ·KP/OBW

PB PBW = KP · (R ·S+1) ·DW PBH = Custom Value
Note: R: Filter rows, S: Filter cols, DW : iAct or weight datawidth, ODW : oAct

datawidth, stridemax: max stride in workload. All the buffers are organized in 2D array
(depth = total number of data, width = bandwidth), BW : off-chip bandwidth.

On-chip buffers are designed to provide temporal on-chip
storage for iAct tiles and weight tiles. Therefore, the maximal
sizes of iAct tile (TC,TX ,TY ) and weight tile (TK ,TC,R,S)
determine sizes of on-chip buffers as shown in Table 2.

3.3 Design Space Exploration
The design space of FastSwitch is large with multiple trade-

off considerations. We design a two-phase DSE framework.
In the first phase, we determine the appropriate size of the
DPE array under the hardware resource budget, essentially
determining YP and KP. In the second phase, the sizes of on-
chip buffers are determined (Sec. 3.2.3). We currently employ
a brute-force grid-search through all parameters, optimizing
for minimizing overall latency.

4. PRELIMINARY EVALUATION
Deployment Platform. We implemented the proposed

FastSwitch on two FPGA boards, Ultra 96, ZCU104 and
Alevo U280. Then we model the proposed FastSwitch in DSE
tool and evaluate the ideal potential performance delivered
through PB and impact of different components.

Workload. We adopt the elastic weight-sharing ResNet-
50 as the overall SuperNet [1], and sizes of SubNets ranges
from the minimal SubNet (i.e. weights are reused by all
other SubNets, 24.95 MB) to the maximal SubNet (i.e. Super-
Net, 183.51 MB). For different SubNets, the shared weights
could take up 13% ∼ 100% of entire weights. To evaluate
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FastSwitch with all possible cases, a sequence of 9 SubNets
with sizes uniformly sampled from the minimal SubNet to
SuperNet is generated as evaluation workload.

Inference Latency Results. Figure 5 shows the proposed
FastSwitch v.s. baseline (FastSwitch without PB) on the both
two devices. With common weight preloaded in PB, only
non-common (Figure 2d) weights get fetched on-chip such
that the overall latency could be reduced by 8% ∼ 12 %.

Impact of Different Reuse on Performance. Figure 6
presents performance of all design choices implementing
FastSwitch on Ultra 96 board, the less the x-value is, the
faster the design choice achieve. On the right-hand size,
OB dominates on-chip storage breaking the balance among
on-chip buffers thus achieving bad performance. On the left-
hand size, none of reuse dominates achieving balance among
different reuse and thus delivering best performance.

5. CONCLUSION
This work introduces a system for training weight-shared

NNs and serving them in real-time, deployed on FPGAs. We
identify a new opportunity for weight reuse - across SubNets,
that we exploit via an accelerator called FastSwitch. Prelimi-
nary results show 8-12% speedup over a SOTA baseline.
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