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ABSTRACT

Using a flash-based layer to serve the caching and buffering needs
of multiple workloads has become a common practice. In such
settings, resource demands will inevitably exceed available capac-
ity sometimes. “Fair” resource allocation may offer a systematic
way of partitioning resources across competing workloads during
such periods of scarcity. Existing works only offer fair allocation
strategies for a single resource (capacity or bandwidth) within a
flash device in isolation. However, since there exist multiple critical
resources that need to be partitioned within a flash device and they
are correlated to each other, fair allocation of a single resource may
result in a waste of other resource(s) or performance degradation
of workload(s). To this end, we make a case for multi-resource fair
allocation solutions for flash-based caches that consolidate multi-
ple workloads. Furthermore, we argue that device lifetime, which
depends on the behavior of running workloads, should also be con-
sidered as a first-class resource on par with capacity and bandwidth.
Specifically, we build upon existing ideas related to dominant re-
source fairness (DRF) to devise flash-specific multi-resource fair
algorithms: (i) nDREF, that jointly allocates capacity and bandwidth
taking their non-linear relationship into account; (ii) DRF, that
explicitly considers lifetime as well in its allocation; and (iii) several
variants of these. Our experimental evaluation offers important
findings: (i) both nDRF and ¢DRF result in superior performance
fairness compared to the state-of-the-art techniques that partition
capacity in isolation; (ii) DRF additionally offers improved device
“wear” behavior; and (iii) our algorithms combined with reasonable
demand prediction work very well in online settings with workload
dynamism and uncertainty.
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1 INTRODUCTION

Due to the proliferation of flash devices and their growing capacities,
consolidating multiple workloads on a single flash device — the
solid state drive (SSD) or flash array — is now a common practice.
While such consolidation improves resource utilization and enables
novel use-cases, it inevitably leads to more frequent occurrence of
scenarios wherein the resource needs of users (demand) may exceed
available capacity (supply). Three canonical approaches for resource
allocation in situations with such supply-demand mismatch are: (a)
the use of priorities, (b) the use of some notion of fairness, and (c)
the maximization of aggregate performance (when fairness is not
of interest). When priorities are identical, or for users (workloads)
within the same priority class, notions of fairness provide principled
ways for resource allocation under resource scarcity. This paper
explores possible ways of fairly allocating resources within a flash
device for consolidated workloads.

Just like a server or a router, a flash-based device is a composite
resource in the sense of being made up of multiple fundamental or
primitive resources; each can be separately allocated to users and
affects their performance in its own idiosyncratic manner. There-
fore, any consolidation strategy for a flash device must, in gen-
eral, worry about partitioning all relevant primitive resources. A
large body of work exists on systematically partitioning a flash
device’s primitive resources — most commonly, storage capacity
and/or network bandwidth (between host machine(s) and the flash
device) [4, 19, 23, 24, 28, 33, 36, 39, 40, 46, 50, 51]. However, these
approaches have two key shortcomings: (i) they only consider prim-
itive resources in isolation, and (ii) they assume that other resources,
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which are out of their interest, are ample, although in reality such
resources may be a bottleneck.

First, treating each resource in isolation may lead to unbalanced
allocations, which may be wasteful or performance-degrading [9,
13, 17, 18, 21, 22, 58]. Allocating a composite resource is a funda-
mentally more complex problem than merely applying separate
fair partitioning decisions to individual primitive resources, since
a workload’s needs for different resources are typically correlated
to each other. We note that Dominant Resource Fairness (DRF) [18]
offers a systematic definition and a solution to this multi-resource
fair allocation problem, and has been followed by several enhance-
ments [9, 13, 17, 21, 22, 58]. However, adapting DRF to our flash
context is not straightforward since DRF assumes that a workload’s
“demand vector” (i.e., a vector where each element represents the
workload’s demand for one primitive resource) always has indi-
vidual resources’ demands in a fixed proportion (e.g., 1 additional
CPU for every 2 additional GB of DRAM). This is not the case for
workloads’ demands for flash resources. In this paper, we identify
the relationship between a workload’s demands for different flash
resources, and enhance the DRF approach to take such complex
relationship into account.

Second, while prior work allows each of consolidated workloads
to consume as much flash lifetime as it wants (in allocating capacity
and/or bandwidth), we note that finite flash lifetime deserves to
be treated as a first-class resource on par with capacity and band-
width. In fact, device lifetime is one prime consideration when a
flash device is employed in a caching layer and needs to co-locate
multiple workloads [16, 54], since, in general, consolidated work-
loads collectively issue more device-external and internal writes
than a single workload does. In such a context, a recent work [12]
explores possible ways of fairly allocating flash lifetime to con-
solidated workloads; unfortunately, this work treats flash lifetime
in isolation and ignores its relationship with capacity and band-
width allocations to each workload. In this paper, we reveal how a
workload’s lifetime demand relates to its capacity and bandwidth
allocation, and present a comprehensive approach.

Target Scenario and Approach: Given a flash device (in a caching
layer) and a set of workloads (to be consolidated on the device), an
administrator needs to allocate the three major resources - capacity,
bandwidth, and lifetime — of the device to the consolidated work-
loads. In this context, an important problem is: How can one make
a fair allocation by taking the complex relationship between each
workload’s demands for these three different resources? In this work,
we demonstrate how DRF [18] can be adapted to accommodate
flash-specific characteristics of workloads’ resource demands. A
few important points related to our problem setting can be summa-
rized as follows:

o We consider flash being used for read caching and write buffering
above a slower hard disk-based storage layer (Section 2.3). Our
concerns and ideas related to multi-resource fairness hold for a
flash-based secondary storage layer as well but in a limited form.
Since such a storage layer must accommodate all write requests,
the allocation of lifetime becomes moot and the multi-resource fair
allocation only involves capacity and bandwidth.

o While there might be various possible ways of evaluating the
fairness, as suggested in [12], we evaluate it as how close perfor-
mance values (e.g., response times) of consolidated workloads are
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to one another. Since fixing the total amount of lifetime resource
in a certain period of time (limiting the number of writes that can
be serviced in the fast flash caching layer) results in performance
degradation, it would be meaningful to evaluate the fairness of
the distribution of the performance burden across the workloads
(Section 2.4).

o To perform DRF at runtime, one needs a separate mechanism to
predict bandwidth and lifetime demands under a given capacity.
While similar mechanisms proposed in prior work can be used, we
present a simple prediction technique (Section 5) to evaluate our
DREF in online settings. We confirm that the superiority of our DRF
demonstrated in offline settings is maintained in online settings as
well, even though the accuracy of the prediction technique is not
perfect.

Contributions and Findings: Our experimental study reveals
that a workload’s demands for different flash resources are related
to each other in complex, non-linear ways. Given this, we enhance
DRF and devise: (a) non-linearity aware DRF (nDRF) that jointly
allocates both capacity and bandwidth without considering lifetime,
(b) lifetime-aware DRF (¢/DRF) that explicitly considers lifetime as
well, and (c) several “baselines” that are representative of the state
of the art. Following this, we propose a runtime framework that
short-term predicts workloads’ resource demands, computes suit-
able fair resource allocations for the workloads, and enforces these
allocations using runtime mechanisms. An implementation of our
proposed solution would span the flash device (capacity and band-
width allocations) and the operating system (lifetime allocation
and write control); see Section 5.3 for more details of our imple-
mentation. We perform extensive experimental evaluations using
real-world workloads. Our key findings are as follows:

o The baselines or the lifetime-unaware nDRF can cause up to 23%
more writes than our lifetime-aware FDRF.

o /DRF outperforms other strategies with write management in pro-
viding performance fairness (specifically, more equitable response
times among workloads) for a variety of consolidation settings.

o In online settings, where near-term resource demands of work-
loads can be predicted, #DRF continues to provide superior perfor-
mance fairness. Prediction errors may lead to an increase in the
number of writes that may not be serviced by flash caching layer;
however, this increase is much smaller (up to 5x) with {DRF than
with the alternatives.

2 BACKGROUND AND RELATED WORK
2.1 Flash Device Basics

A flash device includes many blocks (the basic erase units); each
block is divided into pages (the basic read/write units).

Garbage Collection: Since data over-writing is not allowed, flash
employs an out-of-place update policy: when there is a data update
(write), the old version of data is marked as invalid, and the new
version of data is written into a clean page. This process gradually
decreases the number of clean pages, and as a result, there is a need
for reclaiming clean space to continue to serve incoming writes.
Towards this, garbage collection (GC) picks so called victim blocks,
moves valid pages in them to clean pages, and then erases them,
thereby rendering the pages in these erased blocks clean and ready
for writes.
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Figure 1: Flash/HDD access traffic in our system. RD: read;
WR: write; HDD: hard disk drive; LRU: least-recently used.

Limited Lifetime: Flash cells’ ability to secure data error-free
deteriorates as write and erase operations are repeated. As a result,
vendors specify the lifetime of their products as the number of
writes/erases a device can endure. As is a well-regarded practice,
we use the number of page writes remaining (or performed) as a
proxy for remaining lifetime (or consumed lifetime). Also, since we
view writes as a first-class resource, we use the phrases “consumed
or allocated writes” analogous to “consumed bandwidth,” “allocated
capacity,” etc. Among various write contributors (wear-leveling
[8, 38], parity update [32, 37], refresh [7, 35], etc.), we focus on (i)
host writes (directly issued by workloads) and (ii) GC writes (valid
page movements during GC), since they may be neither optional
nor deferrable, unlike wear-leveling and data-refresh.

2.2 Lifetime Management Knob

If a flash device needs to last for a desired amount of time (i.e., has a
desired lifetime), it needs to be able to control the number and inten-
sity of writes that occur on the device during appropriate periods of
times. A related work [12] refers to such a period of write control
as an “epoch”, and the limit on the overall writes itself as the “write
budget” for that epoch. Many reasonable policies are possible for
determining these budgets and epoch lengths. Generally, both are
time-varying quantities that can be adapted dynamically, to realize
the desirable performance and lifetime behaviors. We adopt the
same concepts for lifetime management in our work, but propose a
new lifetime allocation strategy in such a context.

2.3 Scope of Our Work

Storage System Targeted: Flash devices are widely employed as
part of a read-cache and write-buffer layer [14, 44, 48]. We target
flash devices in such layers. In this paper, we consider the two-
layer system shown in Figure 1: a flash device as a cache/buffer
(henceforth, we simply use the term cache, with the understanding
that the device will be used for both caching reads and buffering
writes), with a magnetic hard disk drive (HDD) based persistent
storage system in the next layer. Detailed cache operations and
traffic across this hierarchy will be described later in Section 3.1. A
key point to highlight is that this system employs a write throttling
mechanism, which is our knob to control the consumption of flash
lifetime. Throttled writes are directed to the HDD, and, therefore,
experience longer response times, while being prevented from con-
tributing to flash wear. In this work, we assume that bandwidth of
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Figure 2: An allocation example by progressive filling (along
dotted diagonal line) for two workloads/users sharing a single
congested resource with an available total amount C.

the HDD is not a bottleneck as it will serve fewer reads and writes
compared to the case where the caching layer is absent.

Flash Device Functionality Assumed: We assume a soft-partition
ed SSD! - an existing, popular consolidated flash design [10, 23, 24,
41]. The key capabilities our target soft-partitioned SSD possesses
are: (i) workload-awareness (given an I/O request, the device is able
to identify which workload generated it), (ii) per-block workload
ownership (the granularity of capacity sharing is a single block,
though we do allow a given physical block to be reallocated over
time), and (iii) per-workload GC invocation (each workload is re-
sponsible for invoking GC using its allocated user and OP blocks?).
With these capabilities, it becomes possible to limit a workload to
use only a specific set of flash blocks at a given time. Also, the num-
ber of writes due to each workload can be accurately determined.
Note that these capabilities are already offered in some devices on
the market (e.g., Samsung’s multi-stream SSDs [10]).

2.4 DREF and Flash

Dominant resource fairness (DRF) [18] is an attractive starting point
for us. DRF seeks an allocation that equalizes users’ “dominant
shares” and, in doing so, offers several desirable fairness proper-
ties. These properties are: (i) incentive compatibility, (ii) strategy-
proofness, (iii) envy-freeness, and (iv) Pareto efficiency; see [18] for
precise definitions of these properties and why/when they might
be desirable. A user’s dominant share is the maximum among her
fractional needs for different resources. Concretely, given m differ-
ent resources, let Cy be the total capacity of resource k and d; ;. be
user i’s need for resource k to serve a user-specific unit of work
(e.g., a job). Then, user i’s dominant share is s; = max]"  {d;x/Cg}-
Why We Can’t Simply Use DRF As Is: Adapting DRF to our
flash context is not straightforward as DRF assumes that user i’s
demands for different resources are always in the same propor-
tion (say, d; i /di, for resources k and t), regardless of the total
resources being procured. We observe from our experimental study
that a user’s demand for a flash resource tends to have a complex
non-linear relationship with its demand for other resources. We
implement a flash cache based on the least-recently used (LRU)

!Soft-partitioned SSDs allocate their capacity at a flash block granularity, while hard-
partitioned SSDs do so at a coarser granularity (channel or chip). Generally, soft-
partitioned SSDs are able to provide superior capacity utilization and degree of con-
solidation compared to their hard-partitioned counterparts [20, 30], but are prone to
poor performance isolation.

2Flash devices typically contain more capacity than the number of user-perceived
blocks. The main reason for this over-provisioned (OP) capacity is to relieve the high
GC overhead. In general, the more OP capacity a flash device has, the fewer valid pages
are moved during GC, and one consumes less bandwidth and needs fewer page writes.
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replacement policy using the Disksim simulator. As Figure 3 shows,
the lifetime demands of workloads are not linear functions of the
capacity allocations; in fact, they may not even be convex/concave.
This is because the flash writes due to a workload (its “write con-
sumption”) have two contributors, namely, read-miss induced writes
and GC induced writes, both varying significantly with capacity allo-
cations. Figure 4 shows that the bandwidth demands of workloads
are also not linear functions of capacity; the bandwidth demand of
a workload is determined by its read hit ratio, which depends on
the allocated capacity.

Why We Need A New Allocation Mechanism: Assuming that
there are m resource types and each workload (user) i has a re-
source demand vector d; = (dj 1, ..., di,m), DRF can be realized via
“progressive filling” (PF), where each active workload i is iteratively
allocated a small increment ed; until one of the resources is ex-
hausted. Due to the convexity of the set of feasible allocations that
holds for the DRF formulation in [18], it is guaranteed that the
allocation will be Pareto (i.e., no other allocation will give increased
benefit to all of the workloads). But, if the set of feasible allocations
is non-convex, it is possible that progressive filling will lead to non-
Pareto allocations (see Figure 2 for an illustrative example, where
we only show one of the n resources and 2 workloads).
Assessment of Fairness: While vanilla DRF provides the four
fairness properties mentioned above, our DRF-inspired allocation
schemes may not provably offer such fairness properties, since
our work is based upon more realistic demand modeling. To our
knowledge, most existing DRF-related works assume rigid demand
vectors and use the traditional PF algorithm to prove the fairness
properties. Instead, using a systematically-varied broad spectrum
of workloads, we empirically and heuristically explore how our
DRF-variants compare with state-of-the-art baselines in their abil-
ity to offer equitable performance. Specifically, as suggested in [12],
given that imposing a write budget results in performance degrada-
tion, we evaluate the fairness of the distribution of the performance
burden across the consolidated workloads, and thus, how equi-
table response times of the consolidated workloads are. Actually,
our empirical study demonstrates that our strategies can deliver
more equitable response times across consolidated workloads than
the state-of-the-art mechanisms. One may consider a related work
[59] which devises a user-specific utility function (Cobb-Douglas
production function) to estimate resultant performance under the
allocation of multiple resources, and examines whether it satisfies
the four fairness properties. However, such an approach is not appli-
cable to our problem, since the relationships of resource demands
for different flash resources are non-convex/concave in general.

2.5 Related Work

Flash Capacity Partitioning: There is a large body of work [2, 4,
15, 28, 33, 34, 36, 39] for consolidated flash capacity management.
A common high-level idea across these is to accurately identify the
working set of each workload to allow judicious use of the limited
flash capacity, and hence, save the limited flash capacity for other
workloads while maintaining high hit ratios. However, none of these
works accounts for multi-resource fairness or lifetime as a first-class
resource, thus assuming that other resources such as bandwidth and
lifetime are neither the bottleneck nor in need of management. We
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consider several allocation schemes representative of the state of
the art in Section 4.4, and compare our proposal against them in
Section 6.

Flash Bandwidth Partitioning: Another large body of work
[19, 40, 43, 46, 47, 50, 51] proposes techniques to provide a certain
performance service level to each workload. Instead of explicitly
partitioning flash-internal resources, they propose to re-schedule
I/O requests at various levels of queues towards increasing their
fairness metric values. Unfortunately, this group of work assumes
that flash resources such as capacity and lifetime are neither scarce
nor bottleneck, which may not work when a resource becomes the
bottleneck. In contrast, our approach explicitly partitions various
flash-internal resources that relate to each other, which can be still
effective under resource scarcity.

DRF-based Multi-Resource Fair Allocation: DRF has been em-
ployed or enhanced to solve multi-resource fair allocation problems
that exist in various domains [9, 13, 17, 18, 21, 22, 47, 58]. The mul-
tiple resources targeted by such works include {CPU, DRAM} in
clusters/data centers[9, 18], {CPU, DRAM, network bandwidth} in
heterogeneous servers [22, 58], bandwidths of multiple links in
cloud [13, 17], bandwidths of different storage types in cloud [47],
and capacities of different types of memories [21]. However, to our
knowledge, there has been no attempt to adapt DRF in the flash con-
text. We identify the multi-resource fair allocation problem in flash
and revise DRF to take flash-specific characteristics into account.
DREF for Flash: DRF has been employed in problems where flash
devices are involved [55-57]. However, these problems merely treat
a flash device (its bandwidth) as a resource in heterogeneous or hy-
brid storage systems where other storage types are involved as other
resources. In contrast, our main interest is on multiple different
resources within a flash device. One particular work to note [11]
uses vanilla DRF in the flash context, but for artificially-created
scenarios where resource demands are neither correlated nor non-
linear. In contrast, we develop practical DRF algorithms for more
realistic settings that embrace such correlation and non-linearity.
Flash Lifetime Allocation: There has been a recent work that
treats flash lifetime as a resource to be partitioned across consol-
idated workloads [12]. This work explores various ways of fairly
allocating a fixed number of writes to each workload. However, the
said work formulates a “single-resource” problem by treating flash
lifetime in isolation, which is based on the assumption that other
related resources are unlimited or not bottleneck. We remove this as-
sumption and consider all the relevant resources, lifetime, capacity,
and bandwidth, as a composite resource to be allocated at a time.
Non-linearity in Resource Demands: Many of the existing re-
source allocation techniques model the potential benefits under
different allocations to find an optimal allocation, which are gener-
ally non-linear functions. For example, utility functions (reduction
in cache misses vs cache sizes) used in a CPU cache partitioning
work [45], cacheability functions (read hit ratios vs cache sizes)
developed in a flash cache partitioning technique [3], and cost func-
tions (tail latencies vs IOPS tokens) leveraged in a local/remote flash
access management technique [27] are all non-linear. In contrast,
the non-linearity discussed in our work indicates the one observed
in relationship of a workload’s demands for different resources (e.g.,
lifetime vs capacity), which is exploited by DRF.
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Figure 4: The bandwidth (KB/s) three representative workloads consume under varying (SSD) cache capacities.

3 CHARACTERIZING FLASH RESOURCE
DEMANDS

We begin by characterizing how different workloads use different
primitive resources — capacity, bandwidth, and lifetime - on flash.
We are particularly interested in how, for different workloads, their
need for one primitive resource is related to their need for the others
and how these relationships are different from what DRF assumes.
To investigate the amount of resources that would be demanded
(needed) by a workload, we measure the amount of resources con-
sumed by the workload when executed in an unconsolidated setting
(i.e., with plentiful resources). We model bandwidth and lifetime
demands as functions of capacity.

3.1 Cache and Buffer Mechanisms Assumed

Figure 1a illustrates traffic to/from our flash cache. Although we
employ a simple cache mechanism based on LRU replacement, our
approach can be generalized to other replacement policies as well.
We disregard cold (read or write) misses.

e Write: In our experiments, all writes are serviced from the flash
layer (i.e., no write budgets are enforced). If a write invalidates an
old version but does not cause an LRU eviction, we label it a “write
hit” On the other hand, a “write miss” invalidates and evicts the
LRU data.

o Read: If the read data is found in the cache (hit), the read gets
serviced by the flash cache; otherwise (miss), it gets serviced by the
HDD, and the data is admitted into the cache by evicting the LRU
data.

3.2 Simulation Methodology

We use the DiskSim [6] simulator with SSD extensions [1]. While
there exist various possible ways of allocating storage capacity to

a workload, we set a unit capacity and increase the total capacity
by gradually allocating more unit capacities. In this experiments,
we set the unit capacity to 64MB (we choose this granularity based
on our empirical observations indicating that allocations at a finer
granularity do not have any significant impact on the nature of
our decision-making). We measure the number of page writes and
the amount of bandwidth used, by varying the capacity allocation
from 64MB (1 unit) to 768MB (12 units). We assume that 10% of the
allocated capacity is reserved as the OP capacity, with the remaining
90% being the user-perceived/accessible space that can be used for
caching/buffering. We execute 8 I/O traces from [31]. We present
results of three representative workloads — prxy, hm, and prn —
since resource demand patterns of the remaining workloads are
quite similar to one of these three.

3.3 Capacity vs Lifetime Demand Analysis

Figure 3 plots the number of page writes for each workload under
different capacity allocations from 1 to 12 units.

Contributors of Write Consumption: There are three sources
that contribute to the total number of writes (refer to the traffic
heading to flash device in Figure 1a). @ Host writes directly issued
by a workload are a major contributor. @ Each read miss leads
to a write for admitting the read data from HDD to flash; we call
this a read-miss induced write. @ The flash internally triggers GC
to secure clean space for continuing the write service, which is
another contributor.

Observations: We make the following observations:

o The total number of writes eventually decreases, as the capacity
allocation increases. This is because both the read-miss induced
writes (@) and GC writes (@) decrease with the increasing capacity.
Note also that the number of host writes (@) is workload-specific
and is not affected by any change in capacity. Specifically, the larger
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Table 1: Comparison of our four DRF-based resource allocation strategies and four non-DRF strategies.
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2 | EqualHR+MMF (§4.4) 4 ® h;: i’s hit ratio ® ¢;: i’s capacity e C: total capacity

E MaxCumHR (§4.4) 4 maximize Y h; subjectto Y c; <C,
MaxCumHR+MMF (§4.4) 4 ® h;: i’s hit ratio ® ¢;: i’s capacity ® C: total capacity

the capacity, the lower the read miss ratio (and fewer the read-miss
induced writes). Also, the larger the total capacity, the larger the OP
capacity (10% of the total capacity), and the fewer the GC writes.
e Interestingly, one can observe from Figure 3a that the number
of GC writes (and the total number of writes) increases as cache
capacity increases during certain regions. According to our analysis,
when cache capacity is very small, the newly-admitted data (which
are written into a block in order) are not referenced until they
become the LRU data and invalidated for eviction. Consequently,
when GC is invoked, most victim blocks include few valid pages to
move, which in turn significantly reduces the number of GC writes.
o The write (lifetime) demands of the workloads on flash cache are
not linearly related to their capacity allocations. In fact, they may
not even be convex/concave. This is because the number of both
read-miss induced writes and GC writes decreases at a non-uniform
rate as the cache capacity increases.

3.4 Capacity vs Bandwidth Demand Analysis

We are interested in the bandwidth of the interconnect between the
host and our flash cache, which has been reported to be a common
bottleneck [49]. This bandwidth is used to serve host read hits and
host write hits/misses (see the red arrows in Figure 1a). Figure 4
plots the bandwidth consumed by each workload under different
capacity allocations.

Observations: We make the following main observations.

e Across all workloads, the bandwidth consumption increases or
saturates as the capacity allocation increases. This is because, the
read miss ratios decrease and get closer to zero, and eventually
all reads get serviced from the flash cache. Note that all writes
get serviced by the flash regardless of hit/miss (which has a con-
stant impact on the bandwidth consumption). Consequently, their
contribution to bandwidth consumption is independent of capacity.
® The bandwidth demands of workloads are also notlinear functions
of capacity. This is because, as discussed above, the bandwidth
consumption of a workload is determined by its read hit ratio,
which depends on the allocated capacity.

4 PROPOSED RESOURCE ALLOCATION
STRATEGIES
We propose and evaluate four DRF-inspired strategies, and compare

them against four non-DRF strategies (ideal flash partitioning works
in offline settings), summarized in Table 1.

4.1 Non-Linearity Aware DRF (nDRF)

nDREF considers only capacity and bandwidth in its decision-making
and ignores lifetime. nDRF allocates the two different resource
types, namely, capacity and bandwidth, simultaneously. It modifies
the conventional PF as follows: it progressively allocates a unit
capacity increment® and its corresponding bandwidth increment
(determined by the gradient of bandwidth vs. capacity relationship
at the currently allocated capacity), instead of fixed capacity and
bandwidth increments. This iterative process continues until one
of the two resources is fully allocated. The resource demand rela-
tionships are empirically profiled in offline settings (Section 3.4)
and predicted in online settings (Section 5.2).

4.2 nDRF with Write Throttling

A natural way of adding lifetime management to nDRF is to pre-
scribe a write budget for an epoch and employ write throttling, i.e.,
not using flash for servicing write requests in excess of the current
epoch’s budget. We explore two throttling mechanisms that can be
combined with nDRF.

Even Throttling (nDRF+Even): We evenly divide the write bud-
get across consolidated workloads, and permit each workload to
consume only its allocated budget.

Max-Min Fair Throttling (nDRF+MMF): To allow for a fairer
allocation of the write budget, we propose to employ the notion
of max-min fairness (MMF) in dividing the total budget. Based
on the estimated write demand of each workload under the nDRF
allocation, we first attempt to allocate the number of writes that
are demanded by the workload in need of the fewest writes to all
the workloads. We then repeat this process, excluding the already-
allocated writes, until the total write budget is fully allocated. In
this manner, the writes that are not used by workloads in need of
fewer writes under nDRF+Even can be used by the other workloads
that are in need of more writes — nDRF+Even fails to offer this
behavior. Note that, if the total write demand is sufficiently small,
nDRF+MMF would be the same as nDRF+Even.

4.3 Lifetime-Aware nDRF (/DRF)

By considering lifetime as an explicit resource, DRF allocates the
three resource types, namely, capacity, bandwidth, and lifetime,
simultaneously. Since lifetime vs capacity relationship may be non-
convex/concave, a modified PF algorithm (as for nDRF) may work
3The suitable unit capacity depends on the specific consolidation setting (cache size, the

number of workloads, etc). We set it to 64MB (Section 3.2), as using a finer granularity
did not change resultant DRF allocations.
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Table 2: nDRF vs {DRF allocations in an example consolidation scenario where three workloads are co-located.

Tot Rsc Cap: 1,280MB, BW: 81,920 KB/s, Write: 100,000,000
Strategy nDRF {DRF
‘Workload Cap(MB) | BW(KB/s) | Dominant Rrc | Dominant Share Cap(MB) | BW(KB/s) Write(#) | Dominant Rsc | Dominant Share
prxy 640 24,180.30 Cap 0.500 64 23,973.71 45,538,103 Write 0.455
web 576 3,852.67 Cap 0.450 640 3,853.24 9,465,327 Cap 0.500
proj 64 42,278.53 BW 0.516 64 42,278.53 | 44,525,155 BW 0.516
Tot Alloc 1,280 70,311.50 768 70,105.48 | 99,528,585

poorly (Figure 2). Instead, we employ a grid search to solve

; 2

write glllggations Zi’j (st = sj) ’

where s; is the “dominant-resource share” of workload i, while
exploring all possible allocations. An allocation for a workload
consists of a multiple of the unit capacity and its corresponding
bandwidth and writes. Any capacity partition under which the sum
of resultant bandwidths or writes exceeds the total bandwidth or
write budget, respectively, is not feasible and excluded from our
consideration. Let ¢ and n be the total number of capacity units in
the device (to be partitioned) and the number of workloads; a fully-
exhaustive grid-search evaluates a total of (¢ _I)C(n_l) different
allocations. We find that, if one employs a large capacity unit (and
the number of possible capacity allocations is reduced), one may
be able to perform an exhaustive grid search, and subsequently an
exhaustive finer grid-search locally, all within a tolerable search
latency.

Remarks: We discuss some noteworthy features of {DRF:

© Non-Work Conservation: £DRF is inherently not “work-conserving”
That is, it may not allocate all available resources; thus, some work-
loads may not receive full service. This is a consequence of trying
to fairly allocate lifetime; and the throttling approaches may not
suffer from this issue as much. Further exploration of this trade-off
between /DRF and nDRF+MMF is a part of our future work.

o ¢{DRF in Online Settings: To perform ¢DRF in online settings, re-
source demands should be predicted for each workload, which may
not be accurate, and hence, it also needs a throttling mechanism to
prevent consolidated workloads from collectively consuming more
writes than the budget. To this end, we evaluate f/DRF+MMF in
online settings (Section 6.3).

4.4 Non-DRF Baseline Strategies

We introduce four non-DRF allocation strategies that can be ideal
in offline settings. State-of-the-art cache partitioning algorithms
also aim the following goals in online settings.

Equalizing and Maximizing Hit Ratios (EqualHR): This strat-
egy strives to equalize the hit ratios across the consolidated work-
loads while maximizing the aggregate hit ratio. We assume that
bandwidth is not a bottleneck resource (i.e., collective bandwidth
consumption < total bandwidth).

EqualHR with MMF Throttling (EqualHR+MMF): Since Equal
HR does not manage lifetime, one can employ write throttling as
nDRF+Even or nDRF+MMF does (Section 4.2). Noting its superiority
over the even partitioning of total write budget, this strategy uses
the MMF partitioning as write throttling policy.

Maximizing Cumulative Hit Ratios (MaxCumHR): Ignoring
fairness across the consolidated workloads, MaxCumHR seeks to

Table 3: Division of the total budget (100M) for write throt-
tling. The shaded workloads experience throttled writes.

[ Strategy I prxy | web | proj |
nDRF (Actual Demand) 53,635,289 | 9,526,917 | 44,525,155
nDRF (Even Division) 33,333,333 | 33,333,333 | 33333333
nDRF (MMF Division) 45,236,541 | 9,526,917 | 45,236,541

[ EqualHR (Actual Demand) ] 52,246,100 | 8,859,206 | 63,883,123 |

| EqualHR (MMF Division) [[ 745,570,397 | 8,859,206 | 45,570,397 |

[ MaxCumHR (Actual Demand) [ 52,246,100 | 8,859,206 | 63,883,123 |

[ MAxCumHR (MMF Division) [ 45,570,397 | 8,859,206 | 45,570,397 |

maximize the sum of hit ratios of all workloads. Note that, in this
case device lifetime is not considered.

MaxCumHR with MMF Throttling (MaxCumHR+MMEF): To
manage device lifetime while using MaxCumHR, this strategy em-
ploys write throttling based on the MMF division of the total write
budget.

4.5 An Example Consolidation Scenario

We show how nDRF and ¢DRF allocate flash resources using an ex-
ample workload consolidation scenario. We construct the scenario
by combining prxy, web, and proj from our workloads (Section 6.1).
For our current discussion, it suffices to note that the device has
a capacity of 1,280MB and a bandwidth to host 81,920KB/s. We
choose a write budget of 100M over a week, which would allow
the device to last about a year (if the write budget is fully utilized).
For details on the device and how we choose the write budget, see
Section 6.1. Table 2 gives the nDRF vs fDRF allocation results.

nDREF finds a resource allocation that equalizes dominant shares
of the three workloads by considering only capacity and band-
width (and ignoring write budget). Such an allocation consists of
(640MB, 576 MB, 64MB) capacity partition and the corresponding
(24,180.30KB/s, 3,852.67KB/s, 42,278.53KB/s) bandwidth partition.
Here, the dominant shares are (640MB/1,280MB=0.500, 576 MB/1,280
MB=0.450, 42,278.53 KB/s/81,920KB/s=0.516), which are close to one
another. The number of writes collectively consumed over a week
by the three workloads under this nDRF allocation is 117,687,361,
which is about 17.7% higher (more writes) than the given budget
(100M).

{DREF offers a very different resource allocation. Whereas nDRF
identifies the dominant resource of prxy as capacity, {DRF re-
gards its dominant resource as writes. The capacity allocation is
(64MB, 640MB, 64MB).4 The corresponding bandwidth and write
allocations are (23,973.71KB/s, 3,853.24 KB/s, 42,278.53KB/s) and

4We chose this example to also illustrate how ¢DRF is not work-conserving (Section 4.3)
- note that some capacity remains unallocated.
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Figure 5: Our epoch-based resource allocation framework.

(45,538,103, 9,465,327, 44,525,155), respectively. The dominant shares
(45,538,103/100,000,000=0. 455, 640MB/1,280MB=0.500, 42,278.53KB
/s/81,920KB/s=0.516) are close to one another.

Both EqualHR and MaxCumHR result in a capacity allocation
of (128MB, 768MB, 384MB), which is quite different from those of
nDRF and ¢DRF. This capacity allocation makes the three workloads
collectively consume a total of 124,988,429 writes, which is 25%
more than the given budget.

These strategies (in addition to nDRF) need to be combined with

write throttling to manage lifetime. However, this write throttling
has the potential to lead to unfairness across the workloads, as a re-
sult of the non-equitable degradation in response times as Section 6
will show. Table 3 lists the actual per-workload write demands
vs Even/MMF partitioning of the 100M budget under the three
allocation strategies. For each workload, further writes beyond
those allocated are throttled (the shaded cells of the table). The
MMF partitioning under nDRF is obviously better than the Even
partitioning.
Vanilla DRF: One might want to see what vanilla DRF allocation
would be for the same scenario. When assuming that resource
demands of the three workloads are linearly-increasing, the capacity
allocation is (512MB, 128MB, 128MB), which is entirely different
from that of /DRF. One cannot expect any benefit of DRF-like
approaches, since such an allocation identifies wrong bottleneck
resources.

5 ONLINE OPERATION

Workload consolidation scenarios can change dynamically, some
workloads may terminate/leave, while others may start/join. Even
for a given set of workloads, their resource demands can change
over time. Under such realistic online settings, how can one treat
different resources on an equal footing with one another, and allo-
cate them to consolidated workloads? To this end, we present an
online framework.

5.1 Epoch-based Resource Allocation
Framework

We propose to make new resource allocation decisions at every
“epoch,” which is a period of relative workload stationarity. Upon a
change in the workload consolidation scenario or any significant
change in workloads’ demand patterns, we end the current epoch
and begin a new one.

Figure 5 illustrates how our framework works for each epoch. Its
operation can be divided into three parts: ) (demand) prediction,
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@ (resource) allocation, and (3 (allocation) enforcement. At the
beginning of a given epoch, (@ our framework allocates the total
amounts of capacity, bandwidth, and given write budget to all the
consolidated workloads (Section 4). Here, note that, to make a DRF-
based allocation, one needs to be aware of the resource demands
(capacity vs bandwidth and capacity vs writes) of the workloads. To
this end, D our framework predicts workloads’ resource demands
by monitoring their patterns in the near-past epochs (Section 5.2).
Once resources are allocated, (3) our framework enforces the allo-
cation till the end of the epoch (Section 5.3).

5.2 Resource Demand Prediction

We first estimate the number of host reads and writes from the
past workload execution, and then use them to estimate capacity
vs bandwidth and capacity vs writes.

Predicting the Number of Host Requests: Among various pos-
sible predictors, we employ one that is second-order autoregressive,
e.g., [29]. Assuming a uniform-sized monitoring interval (e.g., 1
minute), our predictor slides a window that monitors a set of the
most recent past intervals (e.g., 10 intervals), and uses it to predict
the # of host requests for the nearest future interval. Note that
we use separate predictors for the # of host writes and the # of
host reads, since they are independent from each other. Specifically,
using a window whose size is W, the # of host requests for interval
n+ 1, x(n+ 1), is obtained by:

X(n+1) = xaog + bu(x(n) = Xavg) + bn-1(x(n - 1) = Xavg),

where
Xavg = Lizp_y X(0) | W,

where x (i) is the # of host requests monitored in interval i, and bt
is a weight representing the correlation between interval i and the
predicted interval n + 1, e.g., [29]. The accuracy of this predictor
depends on various parameters, including the order of predictor,
window size, and interval size. Motivated by our observation that
the interval size significantly impacts the prediction accuracy (i.e.,
finer the interval, more accurate the prediction), we set the size of
the interval to be much smaller than that of the epoch for which our
framework makes resource-allocation decisions - e.g., epoch and
interval can be set to 10 mins and 1 min, respectively (Section 6.3).
Predicting Capacity vs Writes and Capacity vs Bandwidth:
We model the estimated total number of writes 7§ as a function
of the number of host writes (xp,,) and given capacity (¢): § =
fw(xp4ys ). Once we obtain such a model, we can estimate capacity
vs writes, since we can predict the number of host writes (x3,,), as
discussed. Noting that we can collect a data sample like (x;, ¢;, y;)
for each of the past epochs, we cumulatively collect such data
samples and apply 2D Lagrange Interpolation [5] on them. Also, we
model bandwidth (2) as a function of the number of host reads (xp,.)
and given capacity (c): £ = f,(xp;, c).Recall from Section 3.4
that a workload’s bandwidth demand depends on the number of
its host reads and its read hit ratio, whereas the number of its host
writes has a constant impact. Using such a model, we can estimate
capacity vs bandwidth, as we can predict the number of host reads
(%p,)- As in the case of capacity vs writes, we interpolate the data
samples like (x;, ¢;, z;) collected from the past epochs.
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Figure 8: Performance of scenario A under different budgets.

5.3 Enforcement of Allocation during an Epoch

The three resources are managed in the following fashion:
Capacity Enforcement: Once a certain amount of capacity is
allocated to a workload, that amount is guaranteed to the workload
during the epoch. Specifically, the number of flash blocks, which a
workload can use during the epoch, is fixed. Due to wear-leveling
concerns, the physical blocks underlying a workload’s allocation
can vary over time (i.e., once a block that belongs to a workload is
erased, it may belong to another workload).

Bandwidth Enforcement: To limit the amount of traffic a work-
load can generate during an epoch, we employ a token bucket mech-
anism [42, 53]. Specifically, while the amount of per-second band-
width allocated to each workload is accumulated during the epoch
(tokens are periodically added to a limited-sized bucket), the work-
load consumes the accumulated bandwidth (tokens are consumed).
Write Budget Enforcement: To prevent a workload from con-
suming more than the allocated write budget, once the budget runs
out, we remove two sources of writes (as described in Figure 1b).
First, we stop serving (D host writes by employing write throttling,
which redirects further host writes to the HDD in the next layer.
Second, we give up (2) admitting the data into the cache for read
misses (i.e., read-miss induced writes), by just reading them from
the HDD. Consequently, these two actions collectively prevent (3)
GC (writes) from being generated any longer till the end of epoch.
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Figure 9: A scenario where 4 workloads are consolidated.

6 EVALUATION
6.1 Experimental Setup

Simulation Framework: We implement the eight allocation strate-
gies using MATLAB, which takes system’s total resources and work-
loads’ resource demands as inputs, and outputs a resource allocation.
The resulting allocation is used by our framework, which is built
using DiskSim [6] + SSD extension [1] simulator. Specifically, we
implement a soft-partitioned SSD (Section 2.3) and add an LRU-
based cache mechanism (Section 3.1) to use the SSD as a cache. We
finally add a module that predicts resource demands (Section 5.2)
and enforces an allocation (Section 5.3).

Device Configuration: While our framework is applicable to any
device capacity and workload consolidation scenario, we reduce
the problem size to be able to explore a large experimental space.
Note that the multi-resource fair allocation problem exists in any
situation where demands exceed capacity, regardless of the target
flash capacity. We assume a 2GB SSD that includes 1,920 blocks,
each consisting of 64 16KB pages. For the SSD latencies, we use
175us, 400us, and 3ms for read, write, and erase, respectively, from
the datasheet of a modern Micron 3D flash SSD device [52]. As
these values are measured at a drive level, we do not model a
separate built-in DRAM within the SSD. For per-workload GC and
system-wide wear-leveling, we employ, respectively, the widely-
used greedy [25] and static [38] algorithms. For the HDD-based
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Figure 10: The response times of 3 consolidated workloads under 3 different strategies, assuming perfect demand prediction.

(a) prxy
Figure 11: # writes under the
3 strategies over 6 epochs.

layer, we use read/write latencies of 2ms [26]. We choose our write
budgets as follows. We assume our SSD has 20K guaranteed P/E
cycles — this amounts to a total of 3,000M page writes. Assuming
we need to operate our SSD at least for a year, we distribute the
3,000M page writes the device can endure evenly over a year.” This
amounts to 10M writes per day, and 60K writes over an epoch of
10 minute duration.

Workloads: We construct various consolidation scenarios by com-
bining individual I/O traces from [31]. For online settings, to cope
with changes in resource demands over time, we divide each of the
I/O traces into 10-minute chunks (epochs).

Evaluated Strategies: We evaluate the four DRF-based and four
non-DREF strategies, discussed earlier in Section 4.

Metrics: We are interested in the following two metrics:

SCommonly used device refresh cycles are in the 1-3 year range. We leave more
sophisticated budget selection for future work.
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Figure 12: Actual # vs predicted # of host requests over 6 epochs for three workloads.

o Lifetime Management: Is adopting /DRF or employing a write
throttling for other strategies effective in suppressing the number
of writes within a prescribed budget? How many writes do consoli-
dated workloads collectively consume under the lifetime-unaware
strategies?

e Performance Fairness: Given that imposing a write budget
results in performance degradation, how can this burden be fairly
distributed across the consolidated workloads? To measure this, we
compare the response times of workloads.

6.2 Offline Setting Results

6.2.1 Lifetime Management Analysis. Figures 6a, 7a, and 7c show
the number of writes consumed by three consolidation scenar-
ios: A(prxy, web, proj) used in Section 4.5, B(hm, prn, web), and
C(mds, proj, usr). The results are normalized to the prescribed total
budget (red line).
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Figure 13: Actual vs predicted number of total writes under varying capacities for three workloads in each epoch.
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(a) The response times over six consecutive 10-min epochs (1 hour).
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(b) The number of throttled writes over six consecutive 10-min epochs (1 hour).

Figure 14: Three consolidated workloads under /DRF+MMF, based on our demand prediction.

o The three lifetime-unaware strategies without any write throt-
tling, nDRF, EqualHR, and MaxCumHR, consume much more writes
than the prescribed budget (up to 23%).

o Under the other five strategies, the number of consumed writes
never goes beyond the budget. Specifically, strategies with a throt-
tling that forces MMF division of the budget, namely, nDRF+MMF,
EqualHR+MMF and MaxCumHR+MMF, fully consume the budget,
whereas nDRF+Even and {DRF may leave many writes unused.
This is because, for the former, some workloads that generate rela-
tively fewer writes but are allocated evenly-divided budgets may
consume fewer writes than their allocations allow; for the latter, its
allocation aims at equalizing the dominant shares.

o To conclude, if the operator wants to manage her device’s lifetime,
she can impose a budget on the targeted workload consolidation,
and adopt /DRF or employ write throttling.

6.2.2  Performance Fairness Analysis. Figures 6b, 6¢c, and 6d plot
the average, write, and read response times, respectively, of the
scenario A(prxy, web, proj).

o Under the three strategies that do not manage lifetime (nDRF,
EqualHR, and MaxCumHR), the response times of the three work-
loads are close to one another. The response time of prxy with high
write-intensity remains relatively small, as all of its writes can get
serviced from the flash.

o Among the other five strategies that keep the number of consumed
writes from going over budget, /DRF outperforms the others with
write throttling. This is because DRF identifies prxy as a write
resource-dominant workload, thereby allocating more writes to it
than the others, while allocating more capacity or bandwidth to
the others. Figure 6¢ reveals that, under /DRF, all writes of prxy
get serviced from the flash.

o Figure 6d shows that the read performance of prxy significantly
suffers under /DRF. This is because #/DRF allocates a small capacity
to it (and in turn, many of its reads miss in the flash cache, and get
serviced from the HDD), while allocating more writes to it. Note
however that, prxy is a write-dominant workload whose reads are
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few, leading to a negligible impact on the overall response time
(Figure 6b).

e We observe across a wide range of scenarios that DRF is superior
in providing performance fairness across workloads when a write
constraint is imposed. For the two other consolidation scenarios, B
and C, fDRF renders the response times of all workloads close to one
another (see Figures 7b and 7d, respectively), while consuming only
the prescribed write budget (see Figures 7a and 7c, respectively).

6.2.3 Budget Sensitivity Analysis. We have also evaluated the per-
formance fairness provided by our strategies under varying budget
sizes. Figures 8a and 8b plot the response times of the workloads in
scenario A when 12M and 8M budgets are given, respectively. When
the budget size is large (i.e., each workload is likely to consume
as many writes as it wants), all lifetime management strategies
provide a certain level of performance fairness. However, when
the budget size is small (i.e., device lifetime is strictly managed
for a longer use), /DRF is the best option to achieve high levels of
performance fairness.

6.2.4 Degree of Consolidation Analysis. We evaluate our allocation
strategies by varying the number of workloads in a consolidation
set. As an example, we consider a new scenario where 4 workloads
are consolidated by adding prxy to the scenario B(hm, prn, web)
used above. Figure 9a shows that the number of writes collectively
consumed by the four workloads significantly increases (up to 81%
more writes than the budget) under the lifetime-unaware strategies.
When lifetime is considered, /DRF does an excellent job in providing
performance fairness, while the results get worse under the write
throttling-based strategies (Figure 9b).

6.3 Online Setting Results

Due to the space constraint, we present a representative scenario —
prxy, hm, and prn, are combined - in which workloads’ resource de-
mands are quite different from one another and change significantly
over time. The epoch is set to 10 mins and the budget for each epoch
is set to 60K (Section 6.1). Focusing on six consecutive epochs (60
mins) where the workloads’ demands change dynamically, we dis-
cuss our evaluation results under nDRF vs nDRF+MMF(Throttling)
vs ¢DRF.

6.3.1  With Perfect Prediction. Assuming that our demand predictor
(Section 5.2) is perfect, we execute our framework.

o Figure 11 shows the cumulative write consumption during the
six epochs, normalized to the cumulative budget. The two lifetime-
aware strategies, n(DRF+MMF and ¢DRF, do not consume any writes
beyond the budget, whereas nDRF consumes almost 2X more writes
than the allowed budget.

o Figures 10a, 10b, and 10d plot the response times of the three
workloads under nDRF, nDRF+MMF, and ¢DREF, respectively. {DRF
provides a high level performance fairness, which is very close
to that provided by nDRF. In contrast, one can observe that the
gap between the response times becomes significantly large under
nDRF+MMEF. Figure 10c plots the number of throttled writes under
nDRF+MMF, which causes an increase in response times.

6.3.2 Prediction Accuracy Analysis. We now evaluate our near-term
demand predictor.
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o Figures 12a, 12b, and 12c compare the actual vs predicted number
of host writes and reads for prxy, hm, and prn, respectively. For
prxy whose host I/O pattern does not change over epochs, our
prediction is accurate. For hm and prn, where the host I/O patterns
change dramatically over epochs, our prediction is quite accurate
as well. With tolerable errors, our predictor can detect increasing
or decreasing trends observed in the recent past, and quickly adapt
it for the near future.

e Figure 13 shows the actual vs predicted number of total writes
under varying capacities for the three workloads in each of the six
epochs. The prediction results are very accurate for some epochs
(e.g., epochs 1 and 5), while producing some errors in other epochs
(e.g., epochs 3 and 4). Errors in the latter originate from the errors
in the prediction of the number of host writes.

6.3.3  With Our Prediction. Considering such (tolerable) errors
from our predictor, does our framework still work well?

o For each of the six epochs, nDRF allocation using our prediction
is equal to that using the perfect prediction. This is because nDRF
does not consider capacity vs write demand that may be error-prone
when estimated.

o The performance fairness achieved by fDRF+MMTF (Figure 14a)
is not significantly different from that under /DRF with perfect
prediction (Figure 10d), except that workloads experience slight
write throttling in the last minutes of some epochs. Figure 14b shows
such throttled writes. One can also conclude that, fDRF+MMF
still outperforms nDRF+MMF, when comparing their number of
throttled writes (Figure 14b vs Figure 10c).

7 CONCLUDING REMARKS

We made the case that fair resource allocation in a flash-based
cache/buffer layer shared by multiple workloads is a novel and
complex problem for two main reasons. First, a workload’s capacity
and bandwidth are related in a non-linear fashion, which existing
theory on multi-resource fairness (DRF) does not accommodate.
Second, flash has a finite lifetime which may be viewed as a first-
class resource — doing so does not only improve device wear but
also has implications on performance fairness. We devised nDRF
and ¢DRF, enhancements to DRF, to capture these non-linearities.
Our evaluations with a diverse set of real-world workloads demon-
strated the consistent efficacy of our techniques over the state of
the art.
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