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Abstract. In this paper, we obtain an isometry between the Fock–Sobolev
space and the Gauss–Sobolev space with the same order. As an appli-
cation, we use multipliers on the Gauss–Sobolev space to characterize
the boundedness of an integral operator on the Fock–Sobolev space.
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1. Introduction

In this paper, we study the Fock space and Fock–Sobolev spaces. First, we
set some notations and recall the necessary objects. Let C

n be the complex
n dimensional space and dv be the ordinary volume measure on C

n. If z =
(z1, . . . , zn) and w = (w1, . . . , wn) are points in C

n, we write

z · w =
n∑

j=1

zjwj , |z| = (z · z)1/2.

Let

dλ(z) = π−ne−|z|2dv(z)

be the Gaussian measure on C
n. Denote by L2(Cn, dλ) the set of square inte-

grable functions with respect to dλ. The Fock space F 2 := F 2 (Cn) consists
of all entire functions f on the complex Euclidean space C

n such that

‖f‖F 2 =
(∫

Cn

|f(z)|2dλ(z)
) 1

2

< ∞.
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F 2 is a closed subspace of the Hilbert space L2(Cn, dλ) with inner product

〈f, g〉F 2 =
∫

Cn

f(z)g(z)dλ(z).

The orthogonal projection P : L2(Cn, dλ) → F 2 is given by

Pf(z) =
1
πn

∫

Cn

f(w)K(z, w)e−|w|2dv(w),

where K(z, w) = ez·w is the reproducing kernel of F 2.
Next, we introduce Fock–Sobolev spaces. In what follows we use some

standard multi-index notations. For an n-tuple α = (α1, . . . , αn) of non-
negative integers, we write

|α| = α1 + · · · + αn, α! = α1! . . . αn!.

If z = (z1, . . . , zn) , then zα = zα1
1 . . . zαn

n and ∂α = ∂α1
1 . . . ∂αn

n , where ∂j

denotes the partial differentiation with respect to the j-th component. For
any positive integer m we consider the space F 2,m, called the Fock–Sobolev
space, consisting of entire functions f on C

n such that

‖f‖F 2,m :=
∑

|α|≤m

‖∂αf‖F 2 < ∞,

where ‖ · ‖F 2 is the norm in F 2.
One reason that we need to study Fock–Sobolev spaces is to study Cre-

ation and annihilation operators. Creation and annihilation operators on the
Fock space are important operators in quantum field theory. However, these
two operators are unbounded operators on the Fock space. In general, it is
important to understand the domain of the definition of an unbounded op-
erator. In the particular case of creation and annihilation operators, because
they involved differentiation, they are bounded from Fock–Sobolev spaces to
the Fock space.

A useful tool for the analysis on the Fock space is the Bargmann trans-
form which acts as an isometry between L2(Rn) and the Fock space F 2(Cn).
By connecting these spaces through the Bargmann transform, tools from one
side can be transported to the other for analysis. A natural question arises:
Is the Bargmann transform an isomorphism between the Fock–Sobolev space
F 2,m and the classical Sobolev space W 2,m(Rn)? Addressing this question is
one of the goals of this paper. To address this question we will explore the
connection with Gauss–Sobolev spaces in Gaussian harmonic analysis.

Next, we introduce the Gauss Sobolev space. Let Gaussian measure dγ
on R

n be given by

dγ(x) =
1

(2π)
n
2

e− |x|2
2 dx.

For any positive integer m, the Gauss–Sobolev space W 2,m(γ) is the comple-
tion of C∞

0 (Rn) with respect to the norm

‖f‖W 2,m(γ) =
∑

0≤|α|≤m

[∫

Rn

|∂αf(x)|2dγ(x)
] 1

2

.
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In [1], some properties of the Gauss–Sobolev space W 2,m(γ) are discussed.
The study of Gaussian harmonic analysis arises from probability the-

ory, quantum mechanics, and differential geometry. The Riesz transforms
associated with the Gaussian measure, and a key operator in the theory of
Gaussian harmonic analysis is the Ornstein–Uhlenbeck operator. From the
Ornstein–Uhlenbeck operator, we can define the Gaussian Bessel potential
which is important to our proof, see [8] and [5]. In Sect. 2, we will obtain an
isometry between the Fock–Sobolev space F 2,m and the Gauss–Sobolev space
W 2,m(γ). Because of the isometry between the Fock–Sobolev space F 2,m and
the Gauss–Sobolev space W 2,m(γ), we will connect questions on these two
spaces together.

As an application of the results we obtained, we will study a class of
integral operators. For ϕ ∈ F 2, we consider the integral operator

Sϕf(z) =
∫

Cn

f(w)ez·wϕ(z − w)dλ(w),

for any f ∈ F 2,m. In [11], Zhu used the Bargmann transform to transfer
some singular integral operators to Sϕ and proposed an open question about
the boundedness of Sϕ. In [3], the authors gave a necessary and sufficient
condition for Sϕ to be bounded on F 2. In this paper, we consider the same
problem in Fock–Sobolev spaces.

In Sect. 3, we will study multipliers on Gauss–Sobolev spaces. Then, in
Sect. 4, we will obtain an isomorphism between multipliers on the Gauss–
Sobolev space W 2,m(γ) and the set of bounded Sϕ on F 2,m. Then we use the
conclusion on the Gauss–Sobolev space to characterize the boundedness of
the integral operator on the Fock–Sobolev space and study other properties.

Multipliers on Sobolev spaces has been studied in [6]. In [4], the au-
thors studied the Gaussian Capacity theory in the Gauss–Sobolev space with
order 1. In this paper, we will use the idea in [6] and some operators in
Gaussian Harmonic analysis to obtain the boundedness of multiplication op-
erators between two Gauss–Sobolev spaces. Then we can apply conclusions
in Gauss–Sobolev spaces to Fock–Sobolev spaces.

2. Gauss–Sobolev Spaces

In this section, we introduce the Gauss–Bargmann transform and show that
the Gauss–Bargmann transform is an isometry that maps the Gauss–Sobolev
space to the Fock–Sobolev space. On the other hand, we show that the
Bargmann transform is not an isomorphism between the Fock–Sobolev space
and the Sobolev space.

For any multi-index β = (β1, . . . , βn), the Hermite function is defined
to be

Hβ(x) =
n∏

i=1

(−1)βiex2
i

∂βi

∂xβi

i

(
e−x2

i

)
.
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Then the normalized Hermite function with respect to the Gaussian measure
is given by

hβ(x) =
1

(2|β|β!)1/2
Hβ

(
x√
2

)
.

That is to say
∫

Rn

hβ(x)hα(x)dγ(x) = δαβ ,

where δαβ = 1 if α = β and δαβ = 0 if α 	= β.
For any multi-index α, one easily computes that

∂αhβ(x) =

⎧
⎪⎨

⎪⎩

(
n∏

j=1

βj (βj − 1) . . . (βj − αj + 1)

)1/2

hβ−α(x), if αj ≤ βj ,

0, otherwise.

By [1, Proposition 1.5.4], we know that the linear space generated by Hermite
polynomials is dense in W 2,m(γ).

For z ∈ C, let eβ(z) = zβ√
β!

be the basis of the Fock space, we know that

∂αeβ(z) =

⎧
⎪⎨

⎪⎩

(
n∏

j=1

βj (βj − 1) . . . (βj − αj + 1)

)1/2

eβ−α(z), if αj ≤ βj ,

0, otherwise.

From these two observations, we know that

‖eβ‖F 2,m = ‖hβ‖W 2,m(γ), (2.1)

for any β. We define the Gauss–Bargmann transform G mapping the linear
span of {hβ} to F 2,m such that

Ghβ = eβ .

Theorem 2.1. Let m be a non-negative integer. The Gauss–Bargmann trans-
form G is an isometry from the Gauss–Sobolev space W 2,m(γ) to the Fock–
Sobolev space F 2,m.

Proof. We know that {eβ} and {hβ} are complete orthogonal sets in F 2,m

and W 2,m(γ) respectively. The statement then follows from (2.1). �

We want to contrast this new transform with the more well-known
Bargmann transform. Recall that the Bargmann transform is an isometry
from L2(Rn, dx) to F 2 such that

Bf(z) =
(

2
π

)n
4
∫

Rn

f(x)e2x·z−x2− z2
2 dx,

where z2 = z21 + z22 + · · · + z2n, x2 = x2
1 + x2

2 + · · · + x2
n and x · z = x1z1 +

x2z2 + · · · + xnzn. Let

h̃β =
(

2
π

)n
4 1√

2ββ!
e−|x|2Hβ(

√
2x),
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we know that Bh̃β = eβ , see [10, Theorem 6.8]. That is to say

eβ = Bh̃β(z)

=
(

2
π

)n
4
∫

Rn

(
2
π

)n
4 1√

2ββ!
e−|x|2Hβ(

√
2x)e2x·z−x2− z2

2 dx

=
(

2
π

)n
2
∫

Rn

1√
2ββ!

e
−|x|2

4 Hβ

(
x√
2

)
ex·z− x2

4 − z2
2

1
2n

dx

=
∫

Rn

1√
2ββ!

Hβ

(
x√
2

)
ex·z− z2

2 dγ(x)

=
∫

Rn

hβ(x)ex·z− z2
2 dγ(x).

By the argument above, we know that for any f ∈ W 2,m(γ), we have

Gf(z) =
∫

Rn

f(x)ex·z− z2
2 dγ(x).

Similarly, for any g ∈ F 2,m, we have

G−1g(x) =
∫

Cn

g(z)ex·z− z2
2 dλ(z).

Next, we will discuss the relationship between the Gauss–Bargmann trans-
form and the Bargmann transform. The key point will be that the order of
smoothness matters for these operators.

Let C 1
2

be the composition operator from L2(Rn, dx) to L2(Rn, dx)
such that C 1

2
f(x) = f(x

2 ), for any f ∈ L2(Rn, dx). Let M(π
2 )

n
4 exp

(
|x|2
4

) be

the multiplication operator from L2(Rn, dx) to L2(Rn, dγ) such that

M(π
2 )

n
4 exp

(
|x|2
4

)f(x) =
(π

2

)n
4

exp
( |x|2

4

)
f(x).

For simplicity of notation, we denote M(π
2 )

n
4 exp

(
|x|2
4

) with M .

Proposition 2.2. The relationship between the Bargmann transform B and
the Gauss–Bargmann transform G is given by

B = GMC 1
2
.

Proof. This is simply a computation from the definitions of the operators
involved. For any f ∈ L2(Rn, dx), we have

GMC 1
2
f(z) =

∫

Rn

(π

2

)n
4

exp
( |x|2

4

)
f
(x

2

)
ex·z− z2

2 dγ(x)

=
∫

Rn

(π

2

)n
4

exp
( |x|2

4

)
f
(x

2

)
ex·z− z2

2
1

(2π)
n
2

e− |x|2
2 dx

= Bf(z)

to complete the proof. �
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To discuss the relationship between Sobolev spaces, Gauss–Sobolev spaces
and Fock–Sobolev
spaces, we need some basic facts about Fock–Sobolev spaces. The following
theorem is a special case of [2, Theorem 11].

Theorem 2.3. Suppose m is a non-negative integer, and f is an entire func-
tion on C

n . Then f ∈ F 2,m if and only if every function zαf(z) is in F 2,
where |α| = m . Moreover, there is a positive constant c such that

c−1
∥∥|z|mf

∥∥
F 2 ≤ ‖f‖F 2,m ≤ c

∥∥|z|mf
∥∥

F 2

for all f ∈ F 2,m.

Let Aj and A∗
j be two unbounded operators on F 2 such that Ajf(z) =

∂zj
f(z) and A∗

jf(z) = zjf(z). By [10, Lemma 6.13], we have

B∂xj
B−1 = Aj − A∗

j and BMxj
B−1 =

1
2
(Aj + A∗

j ). (2.2)

For any f ∈ F 2,m, by Theorem 2.3, we have

‖A∗
jf‖F 2,m−1 = ‖zjf‖F 2,m−1 � ‖|z|m−1zjf‖F 2 � ‖f‖F 2,m .

We obtain that A∗
j is bounded from F 2,m to F 2,m−1. That Aj is bounded

from F 2,m to F 2,m−1 follows from the definition of Fock–Sobolev spaces.
We also need a theorem about Sobolev spaces. We define the (p,m)-

capacity of a compact set K ⊂ R
n by

Cp,m(K) = inf
{

‖f‖p
Lp(Rn) : f ∈ Lp(Rn), f ≥ 0, Bmf ≥ 1 on K

}
,

where Bm is the Bessel potential of order m. By [6, p. 16], we have

Cp,m(K) ≈ inf
{

‖u‖p
W p,m(dx) : u ∈ C∞

0 (Rn), u ≥ 1 on K
}

. (2.3)

Recall that C∞
0 (Rn) is the set of smooth functions on R

n with compact
support.

Theorem 2.4. ([6, Theorem 1.2.2]) Let p ∈ (1,∞),m ∈ N and let μ be a
measure in R

n. Then the best constant C in∫

Rn

|u(x)|pdμ(x) ≤ C‖u‖p
W p,m(dx), u ∈ C∞

0 (Rn),

is equivalent to

sup
K

μ(K)
Cp,m(K)

,

where K is an arbitrary compact set in R
n.

The following proposition tells us the property of the Bargmann trans-
form on Sobolev spaces.

Proposition 2.5. The inverse of the Bargmann transform is bounded from the
Fock–Sobolev space F 2,m to the Sobolev space W 2,m(dx). However, if m ≥ 1,
the image of the Bargmann transform B on W 2,m(dx) is not contained in
F 2,m.
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Proof. Suppose f ∈ F 2,m, we have B−1f = C−1
1
2

M−1G−1f. We only need to

prove that M−1G−1f ∈ W 2,m(dx). For any α = (α1, . . . , αn) with |α| ≤ m,
there is a set of constants {cβ : β = (β1, β2, . . . , βn)} such that

∥∥∂αM−1G−1f
∥∥

L2(Rn,dx)
=

∥∥∥∥∥∥

∑

β≤α

cβxβM−1∂α−β(G−1f)

∥∥∥∥∥∥
L2(Rn,dx)

�
∑

β≤α

∥∥xβM−1∂α−β(G−1f)
∥∥

L2(Rn,dx)

�
∑

β≤α

∥∥xβ∂α−β(G−1f)
∥∥

L2(Rn,dγ)

�
∑

β≤α

∥∥GxβG−1G∂α−β(G−1f)
∥∥

F 2 .

By direct computation, we know that

Mxβ = 2βMC 1
2
Mxβ C−1

1
2

M and ∂α−β =
1

2α−β
MC 1

2
∂α−βC−1

1
2

M.

Then

‖∂αM−1G−1f‖L2(Rn,dx) �
∑

β≤α

‖BxβB−1B∂α−βB−1f‖F 2 .

By (2.2), we have ‖∂αM−1G−1f‖L2(Rn,dx) � ‖f‖F 2,|α| , which means that

‖B−1f‖W 2,m(dx) � ‖f‖F 2,m .

Next, we prove the second part of this theorem by contradiction. Suppose
Bg ∈ F 2,m for any g ∈ W 2,m(dx), that is to say GMC 1

2
g ∈ F 2,m(γ). Then,

for any g ∈ W 2,m(dx), we have Mg ∈ W 2,m(γ). Since m ≥ 1, we have
‖∂x1Mg‖L2(Rn,dγ) < ∞. Since

‖∂x1Mg‖L2(Rn,dγ) = ‖M∂x1g +
x1

2
Mg‖L2(Rn,dγ)

and ‖M∂x1g‖L2(Rn,dγ) = ‖∂x1g‖L2(Rn,dx) ≤ ‖g‖W 2,m(dx), we have

‖x1g‖L2(Rn,dx) = ‖x1Mg‖L2(Rn,dγ) < ∞.

We have proved that Mx1g ∈ L2(Rn, dx) for any g ∈ W 2,m(γ). Since Mx1 is
a closed operator, we know that Mx1 is a bounded operator from W 2,m(dx)
to L2(Rn, dx).

Let dμ = |x1|2dx. For any positive N , let KN = B(0, N), there is a
uN ∈ C∞

0 (Rn) with uN = 1 on KN and uN = 0 on Bc(0, N + 1) such that

sup
|α|≤m

sup
x

|∂αuN (x)| ≤ c < ∞,

where c is independent of N . Thus we have

‖uN‖2W 2,m(dx) � |B(0, N + 1)| ≈ (N + 1)n.

By (2.3), we have

C2,m(KN ) � (N + 1)n.



22 Page 8 of 24 B. D. Wick, S. Wu IEOT

Then

sup
K

μ(K)
C2,m(K)

≥ μ(KN )
C2,m(KN )

�
∫

KN
|x1|2dx

(N + 1)n
.

Since [− N√
n
, N√

n
]n ⊂ KN , we have
∫

KN

|x1|2dx ≥
∫

[− N√
n

, N√
n
]n

|x1|2dx � Nn+2.

That is to say supK
μ(K)

Cp,m(K) = ∞, which is a contradiction by
Theorem 2.4. �

3. Multipliers on Gauss–Sobolev Spaces

In this section, we study multipliers on Gauss–Sobolev spaces. First, we re-
call the definition of Gauss–Bessel potentials. Some similar conclusions about
the multipliers for classical Sobolev spaces have been proved in [6]. How-
ever, in the Gauss–Sobolev spaces, we need some properties of the Ornstein–
Uhlenbeck differential operator.

The Ornstein–Uhlenbeck differential operator is defined as

L =
n∑

j=1

∂2
xj

−
n∑

j=1

xj∂xj
.

Let Cn be the closed subspace of L2 (γ) generated by the linear combinations
of {hβ : |β| = n} . For any s ≥ 0, we consider the Gaussian-Bessel potentials
defined by

(I − L)−s/2f =
∞∑

n=0

(1 + n)−s/2Jnf, for f ∈ L2(γ), (3.1)

where Jn is the orthogonal projection from L2(γ) to Cn. The Gauss–Bessel
potential space with order s is

L2,s(γ) = {f ∈ L2(γ) : f = (I − L)− s
2 u for some u ∈ L2(γ)}.

The norm is defined as

‖f‖L2,s(γ) = ‖u‖L2(γ), if f = (I − L)− s
2 u.

Theorem 3.1. ([5]) If s is a non-negative integer, then

W 2,s(γ) = L2,s(γ).

We also need a theorem of interpolation for Gauss–Sobolev spaces. Let

S = {w ∈ C : 0 ≤ Re(w) ≤ 1}.

Given a compatible pair of Banach spaces X0 and X1, let F (X0,X1) be the
space of all functions F from S̄ into X0 + X1 with the following properties:

1. F is bounded and continuous on S̄ and analytic in S;
2. y → F (k + iy) with k = 0, 1 are continuous from the real line into Xk.
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F (X0,X1) is clearly a vector space. We provide F = F (X0,X1) with the
norm

‖F‖F = max
{

sup
y∈R

‖F (iy)‖X0 , sup
y∈R

‖F (1 + iy)‖X1

}
.

Given 0 ≤ θ ≤ 1, let Xθ be the space of vectors v in X0 + X1 such that
v = f(θ) for some f in F (X0,X1) . We norm Xθ with ‖v‖θ = inf
{‖f‖F : v = f(θ)} .

Theorem 3.2. Let 0 ≤ θ ≤ 1 and m0 ≤ mθ ≤ m1 be three non-negative
constants with

mθ = m0(1 − θ) + m1θ,

then
[
L2,m0(γ), L2,m1(γ)

]
θ

= L2,mθ (γ),

where
[
L2,m0(γ), L2,m1(γ)

]
θ
is the interpolation space between L2,m0(γ) and

L2,m1(γ).

Proof. Since L2,m1 ⊂ L2,m0 , we know that L2,m1 + L2,m0 = L2,m0 . If u ∈
L2,mθ (γ), then there is f ∈ L2(γ) such that

u = (I − L)−mθ/2f.

For any z ∈ {w : 0 ≤ Re(w) ≤ 1}, we define

F (z) =
∞∑

n=0

(
1√

1 + n

)m0(1−z)+m1z

Jnf.

It is easy to check that F (z) is a vector-valued function from {w : 0 ≤
Re(w) ≤ 1} to L2,m0(γ) which is continuous on {w : 0 ≤ Re(w) ≤ 1} and
analytic on {w : 0 < Re(w) < 1}. We know that

F (θ) = u,

Then we have

‖u‖θ ≤ ‖F‖F ≤ ‖f‖L2(γ) = ‖u‖L2,mθ (γ).

Conversely, if u ∈ [
L2,m0(γ), L2,m1(γ)

]
θ
, then for any ε > 0, there is a

Fε ∈ F(L2,m0(γ), L2,m1(γ)).

with Fε(θ) = u such that

‖Fε‖F ≤ ‖u‖θ + ε.

For any g ∈ L2(γ), l ∈ N and z ∈ S , we define

H(z) =
l∑

n=0

(
√

1 + n)m0(1−z)+m1z〈Fε(z), Jng〉L2(γ).
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It is easy to show that H(z) is bounded and continuous on S and analytic in
S. We consider

|H(ix)| =

∣∣∣∣∣∣

〈
l∑

n=0

(
√

1 + n)m0(1−ix)+m1ixJnFε(ix), g

〉

L2(γ)

∣∣∣∣∣∣
.

Since Fε(ix) ∈ L2,m0(γ) for any x ∈ R
n, we know that there is fx ∈ L2(γ)

such that

Fε(ix) = (I − L)− m0
2 fx =

∞∑

n=0

(
1√

1 + n

)m0

Jnfx.

Then, we have

sup
x∈R

∥∥∥∥∥

l∑

n=0

(
√

1 + n)m0(1−ix)+m1ixJnFε(ix)

∥∥∥∥∥
L2(γ)

= sup
x∈R

∥∥∥∥∥

l∑

n=0

(
√

1 + n)−ixm0+m1ixJnfx

∥∥∥∥∥
L2(γ)

≤ sup
x∈R

‖fx‖L2(γ) = sup
x∈R

‖Fε(ix)‖W 2,m0 (γ)

≤ ‖Fε‖F .

Then supx∈R |H(ix)| ≤ ‖Fε‖F‖g‖L2 . Similarly, we can obtain

sup
x∈R

|H(1 + ix)| ≤ ‖Fε‖F‖g‖L2(γ).

By the Three Lines Lemma, see [9, p. 28], we have |H(θ)| ≤ ‖Fε‖F‖g‖L2(γ).
That is to say

∣∣∣∣∣∣

〈
l∑

n=0

(
√

1 + n)mθJnu, g

〉

L2(γ)

∣∣∣∣∣∣
≤ ‖Fε‖F‖g‖L2(γ),

for any l ∈ N and g ∈ L2(γ). We obtain
∑∞

n=0(
√

1 + n)mθJnu ∈ L2(γ) and
∥∥∥∥∥

∞∑

n=0

(
√

1 + n)mθJnu

∥∥∥∥∥
L2(γ)

≤ ‖Fε‖F .

Since u = (I − L)− mθ
2

[∑∞
n=0(

√
1 + n)mθJnu

]
, we have

‖u‖L2,mθ ≤
∥∥∥∥∥

∞∑

n=0

(
√

1 + n)mθJnu

∥∥∥∥∥
L2(γ)

≤ ‖u‖θ + ε

to complete the proof. �

Before proving the next lemma, we need some additional notations. For
two multi-indexes α = (α1, . . . , αn) and β = (β1, . . . , βn), if for all k =
1, . . . , n we have αk ≤ βk, then we write

α ≤ β.
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For any u ∈ L1
loc, let Mu denote the multiplication operator on W 2,m(γ).

Then u is called a multiplier on W 2,m(γ) if Mu is bounded on W 2,m(γ). Let
M

(
W 2,m(γ) → W 2,m′

(γ)
)

denote the set of bounded multiplication opera-

tors from W 2,m(γ) to W 2,m′
(γ). If m = m′, we write M

(
W 2,m(γ) → W 2,m(γ)

)

as MW 2,m(γ). We have following simple lemma.

Lemma 3.3. For any u ∈ C∞(Rn), we have

‖u‖MW 2,m(γ) �
∑

|α|≤m

sup
x

|∂αu(x)|.

Proof. The proof is obvious as it follows from the definition of the norm of
W 2,m(γ), the product rule for differentiation and immediate estimates. �
Lemma 3.4. Suppose that

u ∈ MW 2,m(γ) ∩ ML2(γ).

Then, for any multi-index α of order |α| ≤ m, we have

∂αu ∈ M
(
W 2,m(γ) → W 2,m−|α|(γ)

)
.

Furthermore, for any ε, there is a constant c(ε) such that

‖∂αu‖M(W 2,m(γ)→W 2,m−|α|(γ)) ≤ ε‖u‖ML2(γ) + c(ε)‖u‖MW 2,m(γ).

Proof. If α = 0, the conclusion is obvious. We suppose that α 	= 0. By [6,
p. 39], for any g ∈ W 2,m(γ), just using the product rule applied to ug and
rearranging, we have

g∂αu =
∑

{β:α≥β≥0}

α!
β!(α − β)!

∂β(u(−∂)α−βg).

Then

‖g∂αu‖W 2,m−|α|(γ) �
∑

{β:α≥β≥0}
‖u∂α−βg‖W 2,m−|α|+|β|(γ)

≤
∑

{β:α≥β≥0}
‖u‖MW 2,m−|α|+|β|(γ)‖∂α−βg‖W 2,m−|α|+|β|(γ)

≤
∑

{β:α≥β≥0}
‖u‖MW 2,m−|α|+|β|(γ)‖g‖W 2,m(γ).

Thus, by Theorems 3.2 and 3.1, we have
‖∂αu‖M(W 2,m(γ)→W 2,m−|α|(γ))

≤
∑

{β:α≥β≥0}
‖u‖MW 2,m−|α|+|β|(γ)

≤
∑

{β:α≥β≥0}
‖u‖

m−|α|+|β|
m

MW 2,m(γ)‖u‖
|α|−|β|

m

ML2(γ)

≤
∑

{β:α>β≥0}
‖u‖

m−|α|+|β|
m

MW 2,m(γ)‖u‖
|α|−|β|

m

ML2(γ) + ‖u‖MW 2,m(γ).

(3.2)
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For any ε > 0, by Young’s inequality, we have
∑

{β:α>β≥0}
‖u‖

m−|α|+|β|
m

MW 2,m(γ)‖u‖
|α|−|β|

m

ML2(γ)

=
∑

{β:α>β≥0}
ε

|β|−|α|
m ‖u‖

m−|α|+|β|
m

MW 2,m(γ)(ε‖u‖)
|α|−|β|

m

ML2(γ)

�
∑

{β:α>β≥0}

[m + |β| − |α|
m

ε
|α|−|β|

m−|α|+|β| ‖u‖MW 2,m(γ) +
|α| − |β|

m
ε‖u‖ML2(γ)

]

to complete the proof. �

Lemma 3.5. For any non-negative integer m and g ∈ L2(γ), there is a set of
functions {gα : |α| ≤ m} such that

g =
∑

|α|≤m

∂αgα and ‖gα‖W 2,m(γ) � ‖g‖L2(γ).

Proof. If m = 0, then the conclusion is true. Suppose that the conclusion is
true for m = k, we will prove that the conclusion is true for m = k + 1. For
any g ∈ L2(γ), we know that

g =
∑

|β|≤k

∂βgβ ,

where g ∈ W 2,k(γ) and ‖gβ‖W 2,k(γ) � ‖g‖L2(γ). Then gβ = (I − L)(I −
L)−1gβ . Since

I − L =
n∑

j=1

∂xj
(Mxj

− ∂xj
) − (n − 1)I,

we have

gβ =
n∑

j=1

∂xj
(Mxj

− ∂xj
)(I − L)−1gβ − (n − 1)(I − L)−1gβ .

By Theorem 3.1, we know that (I − L)−1 is bounded from W 2,k(γ) to
W 2,k+2(γ), then (I−L)−1gβ ∈ W 2,k+2(γ). By (2.2), we know that (Mxj

−∂xj
)

is bounded from W 2,k+2(γ) to W 2,k+1(γ). We then obtain

g =
∑

|β|≤k

∂β

⎡

⎣
n∑

j=1

∂xj
(Mxj

− ∂xj
)(I − L)−1gβ − (n − 1)(I − L)−1gβ

⎤

⎦ ,

where

‖(Mxj
− ∂xj

)(I − L)−1gβ‖W 2,k+1(γ) � ‖gβ‖W 2,k(γ) � ‖g‖L2(γ)

and

‖(n − 1)(I − L)−1gβ‖W 2,k+1(γ) � ‖(I − L)−1gβ‖W 2,k+2(γ) � ‖g‖L2(γ).

We have completed the proof. �
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For any b ∈ R
n, let Wb be an operator on F 2 such that

Wbh(z) = h(z − b)ez·b− b2
2 ,

for any h ∈ F 2. This operator is the analogue of translation in the Fock space
setting.

Lemma 3.6. For any b ∈ R
n, Wb is a bounded operator on F 2,m and

‖Wb‖F 2,m ≤ cm,n

⎛

⎝
m∑

j=0

|b|2j

⎞

⎠ ,

where cm,n is a constant that depends only on m and n.

Proof. For any h ∈ F 2,m, we have

‖Wbh‖F 2,m � ‖|z|mWbh‖F 2

=
[∫

Cn

|z|2m|h(z − b)|2e2z·b−b2dλ(z)
]1/2

=
[∫

Cn

|z + b|2m|h(z)|2dλ(z)
]1/2

≤
[∫

Cn

2m(|z|2 + |b|2)m|h(z)|2dλ(z)
]1/2

�

⎛

⎝
m∑

j=0

|b|2j

⎞

⎠ max
0≤k≤m

{‖|z|kh‖F 2}

�

⎛

⎝
m∑

j=0

|b|2j

⎞

⎠ ‖h‖F 2,m ,

where the last inequality is due to Theorem 2.3. �

Lemma 3.7. Suppose that u ∈ MW 2,m(γ) for some m ≥ 0, let

ur(x) =
∫

Rn

r−nK(r−1t)u(x − t)dt,

where K ∈ C∞
c (Bn), K ≥ 0 and 0 ≤ r ≤ 1. Then we have

sup
0<r≤1

‖ur‖MW 2,m(γ) ≤ cm,n‖u‖MW 2,m(γ)

and

sup
0<r≤1

‖∂αur‖M(W 2,m(γ)→L2(γ)) ≤ c′
m,n‖∂αu‖M(W 2,m(γ)→L2(γ))

for any α with |α| ≤ m, where cm,n and c′
m,n are constants that depend only

on m and n.

Proof. For any g ∈ W 2,m(γ), by Minkowski’s inequality, we have

‖urg‖W 2,m(γ) =
∑

|α|≤m

‖∂α(urg)‖L2(γ)
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=
∑

|α|≤m

[∫

Rn

∣∣∣∣
∫

Rn

r−nK(r−1t)∂α
(
u(x − t)g(x)

)
dt

∣∣∣∣
2

dγ(x)

] 1
2

≤
∑

|α|≤m

∫

Rn

r−nK(r−1t)
[∫

Rn

|∂α
(
u(x − t)g(x)

)|2dγ(x)
] 1

2

dt.

Let τt be the translation operator such that τtu(x) = u(x − t) and Mτtu be
the multiplication operator, then

‖urg‖W 2,m(γ) ≤
∑

|α|≤m

∫

Rn

r−nK(r−1t)‖Mτtug‖W 2,m(γ)dt

≤ cm‖g‖W 2,m(γ)

∫

|t|≤r

r−nK(r−1t)‖Mτtu‖MW 2,m(γ)dt.

We claim that Mτtu = G−1W t
2
GMuG−1W−t

2
G, then

‖Mτtu‖MW 2,m(γ) ≤ ‖W t
2
‖F 2,m‖u‖MW 2,m(γ)‖W−t

2
‖F 2,m .

By Lemma 3.6, we have

sup
0<r≤1

‖ur‖MW 2,m(γ)

≤ sup
0<r≤1

cm

∫

|t|≤r

r−nK(r−1t)‖W t
2
‖F 2,m‖W−t

2
‖F 2,mdt‖u‖MW 2,m(γ)

≤ cm,n‖u‖MW 2,m(γ)

for some constant cm,n.
Next, we prove the claim Mτtu = G−1W t

2
GMuG−1W−t

2
G. First, we

show that G−1W t
2
G = M

exp[x· t
2− t2

4 ]
τt. For any g ∈ W 2,m(γ), we have

(W t
2
Gg)(z) = ez· t

2− t2
8

∫

Rn

g(x)ex·(z− t
2 )−

(z− t
2 )2

2
1

(2π)
n
2

e− |x|2
2 dx

= ez· t
2− t2

8

∫

Rn

g(x − t)e(x−t)·(z− t
2 )−

(z− t
2 )2

2
1

(2π)
n
2

e− |x−t|2
2 dx

= e− t2
4

∫

Rn

g(x − t)ex· t
2 ex·z− z2

2 dγ

= e− t2
4 G[g(x − t)ex· t

2 ](z).

Thus, we have

(G−1W t
2
Gg)(x) = ex· t

2− t2
4 g(x − t).

Direct computation shows that

Mτtu = G−1W t
2
GMuG−1W−t

2
G,

which completes the proof of the claim.
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Similarly, for any α with |α| ≤ m and g ∈ L2(γ), we have

‖(∂αur)g‖L2(γ)

≤
∫

Rn

r−nK(r−1t)‖Mτt∂αug‖L2(γ)dt

≤ cm‖g‖W 2,m(γ)

∫

|t|≤r

r−nK(r−1t)‖Mτt∂αu‖
M
(
W 2,m(γ)→L2(γ)

)dt.

By the argument above, for any α with |α| ≤ m, we have

‖Mτt∂αu‖
M
(
W 2,m(γ)→L2(γ)

)

= ‖G−1W t
2
GM∂αuG−1W−t

2
G‖

M
(
W 2,m(γ)→L2(γ)

)

≤ ‖G−1W t
2
G‖

M
(
L2(γ)→L2(γ)

)‖M∂αu‖
M
(
W 2,m(γ)→L2(γ)

)

× ‖G−1W−t
2

G‖
M
(
W 2,m(γ)→W 2,m(γ)

)

≤ c′
m,n‖∂αu‖

M
(
W 2,m(γ)→L2(γ)

)

for some constant c′
m,n, which completes the proof. �

Proposition 3.8. If u ∈ MW 2,m(γ)
⋂

u ∈ ML2(γ) and |α| = m then ∂αu ∈
M

(
W 2,|α|(γ) → L2(γ)

)
. Moreover, we have

∑

|α|=m

‖∂αu‖M(W 2,|α|(γ)→L2(γ)) + ‖u‖M(L2(γ)) � ‖u‖MW 2,m(γ).

Proof. First, we suppose that u ∈ ML2(γ). For any g ∈ W 2,m(γ) and multi-
index α with |α| = m, we have

‖(∂αu)g‖L2(γ)

= ‖∂α(ug) −
∑

β:0≤β<α

∂βu∂α−βg‖L2(γ)

≤ ‖ug‖W2,|α|(γ) + ‖
∑

β:0≤β<α

∂βu∂α−βg‖L2(γ)

≤ ‖u‖MW2,|α|(γ)‖g‖W2,|α|(γ) +
∑

β:0≤β<α

‖∂βu∂α−βg‖L2(γ)

≤ ‖u‖MW2,|α|(γ)‖g‖W2,|α|(γ) +
∑

β:0≤β<α

‖∂βu‖M(W2,|β|(γ)→L2(γ))‖∂α−βg‖W2,|β|(γ)

≤
⎡

⎣‖u‖MW2,|α|(γ) +
∑

β:0≤β<α

‖∂βu‖M(W2,|β|(γ)→L2(γ))

⎤

⎦ ‖g‖W2,m(γ).

By Lemma 3.4, for any ε > 0 there is a constant c(ε) such that

‖∂βu‖M(W 2,|β|(γ)→L2(γ)) ≤ ε‖u‖ML2(γ) + c(ε)‖u‖MW 2,|β|(γ).

Further, by Theorem 3.2, we have

‖u‖MW 2,|α|(γ) � ‖u‖ML2(γ) + ‖u‖MW 2,m(γ).
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Thus, we obtain
∑

|α|=m

‖∂αu‖M(W 2,m(γ)→L2(γ)) � ‖u‖ML2(γ) + ‖u‖MW 2,m(γ).

Next, we will prove that ‖u‖ML2(γ) � ‖u‖MW 2,m(γ), which implies the con-
clusion.

For any g ∈ L2(γ), we have the decomposition g =
∑

|α|≤m ∂αgα in
Lemma 3.5. Then

‖ug‖L2(γ) ≤
∑

|α|≤m

‖u∂αgα‖L2(γ)

=
∑

|α|≤m

∥∥∥
∑

{β:α≥β≥0}

α!
β!(α − β)!

∂β(gα(−∂)α−βu)
∥∥∥

L2(γ)

�
∑

|α|≤m

∑

{β:α≥β≥0}

∥∥ ∂β(gα(−∂)α−βu)
∥∥

L2(γ)

�
∑

|α|≤m

∑

{β:α≥β≥0}

∥∥ gα(−∂)α−βu
∥∥

W 2,m−|α|+|β|(γ)

�
∑

|α|≤m

∑

{β:α≥β≥0}

∥∥∂α−βu
∥∥

M
(
W 2,m(γ)→W 2,m−|α|+|β|(γ)

)‖gα‖W 2,m(γ)

�
∑

|α|≤m

∑

{β:α≥β≥0}

∥∥∂α−βu
∥∥

M
(
W 2,m(γ)→W 2,m−|α|+|β|(γ)

)‖g‖L2(γ).

By Lemma 3.4 and the inequality above, for any 0 < ε < 1, there is a constant
c(ε) such that

‖u‖ML2(γ) � ε‖u‖ML2(γ) + c(ε)‖u‖MW 2,m(γ).

Then, we have ‖u‖ML2(γ) � ‖u‖MW 2,m(γ).
Next, we remove the hypothesis. For any r > 0, let ur be the function in

Lemma 3.7. Thus ur is in C∞(Rn). We can choose a set of smooth function
φr such that φr(x) = 1 when |x| ≤ 1

r , φr(x) = 0 when |x| > 1
r + 1 and

∑

|α|≤m

sup
x

|∂αφr(x)| ≤ c,

where c is independent with r. We know that φrur is bounded, thus φrur ∈
ML2(γ). By the conclusion above we know that

‖φrur‖ML2(γ) ≤ c′‖φrur‖MW 2,m(γ),

where c′ is an absolute constant. Since limr→0 φrur = u almost everywhere.
Thus for any g ∈ L2(γ), we have

‖ug‖L2(γ) ≤ lim inf
r→0

‖φrurg‖L2(γ).

Then by Lemmas 3.7 and 3.3, we have

‖u‖L2(γ) ≤ lim inf
r→0

‖φrur‖L2(γ) � lim inf
r→0

‖φrur‖MW 2,m(γ)

≤ lim inf
r→0

‖φr‖MW 2,m(γ)‖ur‖MW 2,m(γ) ≤ cm,nc‖u‖MW 2,m(γ)

to complete the proof of the claim. �
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To prove our main theorem in the next section, we need the following
theorem about multipliers on the Gauss–Sobolev space W 2,m(γ).

Theorem 3.9. If |α| = m and u ∈ ML2(γ), then u ∈ MW 2,m(γ) if and only
if ∂αu ∈ M

(
W 2,|α|(γ) → L2(γ)

)
. In this case, we have

‖u‖MW 2,m(γ) �
∑

|α|=m

‖∂αu‖M(W 2,|α|(γ)→L2(γ)) + ‖u‖ML2(γ).

Proof. If ∂αu ∈ M
(
W 2,|α|(γ) → L2(γ)

)
for any |α| = m and u ∈ ML2(γ).

Let ur be the function corresponding to u as in Lemma 3.7. Since u ∈
ML2(γ), we know that u is bounded. It is easy to prove that

∑

|α|≤m

sup
x

|∂αur(x)| < ∞

for any r > 0, thus ‖ur‖MW 2,m(γ) < ∞. Then for any g ∈ W 2,m(γ), we have

‖urg‖W 2,m(γ)

=
∑

|α|≤m

‖∂α(urg)‖L2(γ)

≤
∑

|α|≤m

∑

0≤β≤α

‖∂βur∂
α−βg‖L2(γ)

=
∑

|α|≤m

∑

0≤β≤α

‖∂βur‖
M
(
W 2,|β|(γ)→L2(γ)

)‖∂α−βg‖W 2,|β|(γ)

� ‖g‖W 2,m(γ)

∑

0≤|β|<m

‖∂βur‖
M
(
W 2,|β|(γ)→L2(γ)

)

+ ‖g‖W 2,m(γ)

∑

|β|=m

‖∂βur‖
M
(
W 2,|β|(γ)→L2(γ)

).

By Lemma 3.4 and Theorem 3.2, for any ε > 0, there is a c(ε) such that
∑

0≤|β|<m

‖∂βur‖M(W 2,|β|(γ)→L2(γ)) �
∑

{β:0≤|β|<m}
‖ur‖MW 2,|β|(γ)

� ε‖ur‖MW 2,m(γ) + c(ε)‖ur‖ML2(γ).

Then we obtain

‖ur‖MW 2,m(γ)

� ε‖ur‖MW 2,m(γ) + c(ε)‖ur‖ML2(γ) +
∑

|β|=m

‖∂βur‖
M
(
W 2,|β|(γ)→L2(γ)

).

Let ε be small enough, then we get

‖ur‖MW 2,m(γ) � ‖ur‖ML2(γ) +
∑

|β|=m

‖∂βur‖
M
(
W 2,|β|(γ)→L2(γ)

).
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By Lemma 3.7, we have

‖u‖MW 2,m(γ) ≤ lim inf
r→0

‖ur‖MW 2,m(γ)

� lim inf
r→0

‖ur‖ML2(γ) + lim inf
r→0

∑

|β|=m

‖∂βur‖
M
(
W 2,|β|(γ)→L2(γ)

)

� ‖u‖ML2(γ) +
∑

|β|=m

‖∂βu‖
M
(
W 2,|β|(γ)→L2(γ)

).

The converse is due to Proposition 3.8. �

4. Applications to Certain Operators on the Fock–Sobolev
Space

In this section, we study the boundedness of Sϕ. We need several lemmas.
Let Ci and C−i be composition operators on F 2 such that for any f ∈ F 2

Cif(z) = f(iz) and C−if(z) = f(−iz).

It is easy to show that Ci and C−i are isometries on F 2,m for any m ∈ N.

Lemma 4.1. For any a ∈ R
n, let Me−ia·x be the multiplication operator on

W 2,m(γ). If Sϕ is bounded on F 2,m, then G−1C−iSϕCiG commutes with
Me−ia·x .

Proof. By [3, Lemma 3.3], we know that Sϕ commutes with Wa on F 2. Since
Wa is bounded on F 2,m, we know that Sϕ commutes with Wa on F 2,m. Then
G−1C−iSϕCiG commutes with G−1C−iWaCiG. We only need to show that

G−1C−iWaCiG = Me−ia·x .

For any f ∈ F 2,m and z ∈ C
n, we have

C−iWaCif(z) = f(z − ia)e−iz·a− a2
2 .

On the other hand

Me−ia·xG−1f(x) = e−ia·x
∫

Cn

f(z)ex·z− z2
2 dλ(z)

= e−ia·x
∫

Cn

f(z)ex·z− z2
2 π−ne−|z|2dv(z)

= e−ia·x
∫

Cn

f(z − ia)ex·(z−ia)− (z−ia)2

2 π−ne−|z−ia|2dv(z)

=
∫

Cn

f(z − ia)e−iz·a− a2
2 ex·z− z2

2 dλ(z)

= G−1[f(z − ia)e−iz·a− a2
2 ](x).

Then

GMe−ia·xG−1f(z) = g(z − ia)e−iz·a− a2
2 = C−iWaCif(z),

which completes the proof. �
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Let C∞
p (Rn) denote the set of smooth function f such that there is a

positive number N = Nf , such that

f(x + 2Ny) = f(x)

for any x ∈ [−N,N ]n and y ∈ Z
n, moreover, f(x) = 0 when x ∈ [−N,N ]n \[

− N
2
√

n
, N
2
√

n

]n

. We call Nf the period of f .

Lemma 4.2. For any f ∈ C∞
p (Rn), there is a sequence fn ∈ span{eia·x : a ∈

R
n} such that

lim
n→∞ ‖Mfn

− Mf‖MW 2,m(γ) = 0.

Proof. By [7, Theorem 2.11 and Corollary 1.9, Chapter 7], there is a sequence
of functions {fn} ⊂ span{eia·x : a ∈ R

n} such that

lim
n→∞ sup

x
|∂αf(x) − ∂αfn(x)| = 0,

for any α ∈ R
n with |α| ≤ m. By Lemma 3.3, we obtain the conclusion. �

Lemma 4.3. C∞
p (Rn) is a dense subset of W 2,m(γ).

Proof. First, we show that C∞
p (Rn) is contained in W 2,m(γ). For any f ∈

C∞
p (Rn) and any α ∈ N

n, let N = Nf be the period of f , we have
∫

Rn

|∂αf(x)|2dγ(x)

=
∑

y∈Zn

∫

[−N,N ]n+2Ny

|∂αf(x)|2dγ(x)

=
∑

y∈Zn

∫

[−N,N ]n
|∂αf(x)|2 1

(2π)
n
2

e− |x+2Ny|2
2 dx

=
∑

y∈Zn\{0}

∫

[−N,N ]n
|∂αf(x)|2 1

(2π)
n
2

e− |x+2Ny|2
2 dx +

∫

[−N,N ]n
|∂αf(x)|2dγ(x)

=
∑

y∈Zn\{0}

∫
[
− N

2
√

n
, N
2

√
n

]n
|∂αf(x)|2 1

(2π)
n
2

e− |x+2Ny|2
2 dx

+

∫
[
− N

2
√

n
, N
2

√
n

]n
|∂αf(x)|2dγ(x).

When x ∈
[
− N

2
√

n
, N
2
√

n

]n
and y ∈ Z

n \ {0}, we have

|x| ≤ N

2
≤ N |y|

2
.

Then

e− |x+2Ny|2
2 ≤ e− |x|2

2 +2N N|y|
2 |y|−2N2|y|2 ≤ e− |x|2

2 −N2|y|2 .
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That is to say
∑

y∈Zn\{0}

∫
[
− N

2
√

n
, N
2

√
n

]n
|∂αf(x)|2 1

(2π)
n
2

e− |x+2Ny|2
2 dx

≤
∑

y∈Zn\{0}
e−N2|y|2

∫
[
− N

2
√

n
, N
2

√
n

]n
|∂αf(x)|2dγ(x).

Since
∑

y∈Zn\{0}
e−N2|y|2 ≤

n∑

j=0

∑

y∈Zn,yj 
=0

e−N2|y|2

= n

∞∑

y1=1

∞∑

y2=0

· · ·
∞∑

yn=0

e−N2|y|2

= n(
∞∑

y1=1

e−N2|y1|2)(
∞∑

y2=0

e−N2|y2|2) . . . (
∞∑

yn=0

e−N2|yn|2)

≤ ne−N2

(1 − e−N2)n
,

which implies that
∫

Rn

|∂αf(x)|2dγ(x) ≤
(

ne−N2

(1 − e−N2)n
+ 1

)∫
[
− N

2
√

n
, N
2

√
n

]n
|∂αf(x)|2dγ(x) < ∞.

On the other hand, since C∞
0 (Rn) is dense in W 2,m(γ), we only need to

approximate any g ∈ C∞
0 (Rn). For any ε > 0, there is an positive integer N

such that

g(x) = 0, when x ∈ R
n \

[
− N

2
√

n
,

N

2
√

n

]n

and
∑

y∈Zn\{0}
e−N2|y|2

∫

Rn

|∂αg(x)|2dγ(x) ≤ ε2,

for any α ∈ N
n with |α| ≤ m. Let

f(x) =
∑

y∈Zn

g(x + 2Ny).

Then, we know that f ∈ C∞
p (Rn) and

f(x) = g(x), when x ∈
[
− N

2
√

n
,

N

2
√

n

]n

.
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Then

‖g − f‖W 2,m(γ) =
∑

|α|≤m

[∫

Rn

|∂αg(x) − ∂αf(x)|2dγ(x)
]1/2

=
∑

|α|≤m

[∫

Rn\[−N,N ]n
|∂αf(x)|2dγ(x)

]1/2

.

By the argument above, we know that
∫

Rn\[−N,N ]n
|∂αf(x)|2dγ(x)

≤
∑

y∈Zn\{0}
e−N2|y|2

∫
[
− N

2
√

n
, N
2

√
n

]n
|∂αf(x)|2dγ(x)

=
∑

y∈Zn\{0}
e−N2|y|2

∫

[− N
2

√
n

, N
2

√
n
]n

|∂αg(x)|2dγ(x)

≤
∑

y∈Zn\{0}
e−N2|y|2

[∫

Rn

|∂αg(x)|2dγ(x)
]

≤ ε2.

Then, we have

‖g − f‖W 2,m(γ) ≤ cmε,

where cm = card{α : |α| ≤ m}. We have completed the proof. �

We can now give a characterization of the boundedness of Sϕ on F 2,m.
This is the analogue of the result in [3] obtained for the Fock space F 2.

Theorem 4.4. Let m be a positive integer, then Sϕ is bounded on F 2,m if and
only if

Sϕ = CiGMuG−1C−i,

where u is a multiplier on W 2,m(γ). In this case, we have

ϕ(z) =
∫

Rn

u(2x)e−2(x− i
2 z)·(x− i

2 z)dx.

Proof. Recall that G and Ci are isometries. If Sϕ = CiGMuG−1C−i, where
u is a multiplier, then Sϕ is bounded.

On the other hand, suppose that Sϕ is bounded. By Lemmas 4.1 and
4.2, we know that for any h ∈ C∞

p (Rn), G−1C−iSϕCiG commutes with Mh.
Let

u = G−1C−iSϕCiG1.

Then

G−1C−iSϕCiGh = G−1C−iSϕCiGMh1 = Mhu = Muh.

Since C∞
p (Rn) is a dense subset of W 2,m(γ), by Lemma 4.3, we know that

G−1C−iSϕCiG = Mu.
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That is to say Sϕ = CiGMuG−1C−i, where u is a multiplier on W 2,m(γ).
Next, we prove the second part. By Theorem 3.9, we know that u is in

ML2(γ) = L∞. Thus Sϕ = CiGMuG−1C−i is bounded on F 2. Then, by [3,
Proposition 3.6 and Theorem 1.1], we have

Sϕ = BF−1MvFB−1 and ϕ(z) =
∫

Rn

v(x)e−2(x− i
2 z)·(x− i

2 z)dx,

where F is the Fourier transform and Mv is a multiplication operator with
v ∈ L∞(Rn). On the Fock space, by [3, Lemma 2.3], we have Ci = BF−1B−1.
By Proposition 2.2, we have

Sϕ = CiGMuG−1C−i

= BF−1B−1GMuG−1BFB−1

= BF−1C−1
1
2

M−1G−1GMuG−1GMC 1
2
FB−1

= BF−1C−1
1
2

MuC 1
2
FB−1

= BF−1MC−1
1
2

uFB−1.

By the argument above we obtain v(x) = C−1
1
2

u = u(2x). �

4.1. Other Operator Theoretic Properties

According to the theorems above, we can obtain some properties of Sϕ on
Fock–Sobolev spaces.

Corollary 4.5. For any m > 0, if Sϕ is bounded on F 2,m, we have following
conclusions.

1. The set of operators {Sϕ : Sϕ is bounded} is a commutative algebra.
2. Sϕ is compact on F 2,m if and only if Sϕ = 0.
3. Sϕ is invertible on F 2,m if and only if 1

u is essentially bounded, where
u is the multiplier on W 2,m(γ)corresponding to Sϕ in Theorem 4.4.

Proof. (1) follows from Theorem 4.4 and the fact that the set of multiplication
operators is a commutative algebra.

To prove (2), we need a fact. For any smooth function η with compact
support, there is a sequence of functions fn such that

fn → 0 weakly and ‖fn‖W 2,m(γ) = ‖η‖L2(γ) + O(n−1).

Moreover, if u ∈ MW 2,m(γ), then we have

‖ufn‖W 2,m(γ) = ‖uη‖L2(γ) + O(n−1).

For the construction see [6, p. 270]. Although the construction is made for
the Sobolev space, the proof is also valid for the Gauss–Sobolev space. If
u ∈ MW 2,m(γ) is compact, then

lim
n→∞ ‖ufn‖W 2,m(γ) = 0.

That is to say ‖uη‖L2(γ) = 0 for any η, which implies that u = 0. By Theo-
rem 4.4, we get the conclusion.
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Next we prove (3). If 1
u is essentially bounded, we claim that 1

u is also
a multiplier on W 2,m(γ). For any α with |α| = m, we have

∂α 1
u

=
∑

β1+···+βm≤α

cβ1,...,βm,α
∂β1

u . . . ∂βm

u

um+1
,

where {cβ1,...,βm,α} are some constants. By Lemma 3.4, we have ∂β1
u . . . ∂βm

u
is a multiplier from W 2,m(γ) to L2(γ) for any β1, . . . , βm with β1 + · · · +
βm ≤ α , which implies that ∂α 1

u is a multiplier from W 2,m(γ) to L2(γ). By
Theorem 3.9, we obtain that 1

u is a multiplier on W 2,m(γ). Then M 1
u

is the
inverse operator of Mu, which implies that Sϕ is invertible.

On the other hand, if Sϕ is invertible on F 2,m, then Mu is invertible on
W 2,m(γ). For any g ∈ W 2,m(γ), there is a f ∈ W 2,m(γ) such that g = uf .
Then 1

ug = f ∈ W 2,m(γ). Since M 1
u

is a closed operator, we have M 1
u

is
bounded on W 2,m(γ). By Theorem 3.9, we know that M 1

u
is bounded on

L2(γ). That is to say 1
u is essentially bounded. �
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