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Integral Operators on Fock—Sobolev Spaces
via Multipliers on Gauss—Sobolev Spaces
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Abstract. In this paper, we obtain an isometry between the Fock—Sobolev
space and the Gauss—Sobolev space with the same order. As an appli-
cation, we use multipliers on the Gauss—Sobolev space to characterize
the boundedness of an integral operator on the Fock—Sobolev space.
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1. Introduction

In this paper, we study the Fock space and Fock—Sobolev spaces. First, we
set some notations and recall the necessary objects. Let C™ be the complex
n dimensional space and dv be the ordinary volume measure on C™. If z =
(#1,...,2n) and w = (w1, ..., w,) are points in C"™, we write

n
Z-W= szﬁj, 2] = (z-2)V2.
j=1

Let
d\(z) = 777”67|Z|2dv(z)

be the Gaussian measure on C". Denote by L?(C™, d)\) the set of square inte-
grable functions with respect to d\. The Fock space F? := F? (C") consists
of all entire functions f on the complex Euclidean space C™ such that

Il = ([ 110P0G) <.
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F? is a closed subspace of the Hilbert space L?(C™,d\) with inner product
(f9)p2 = g f(2)g(2)dA(z).

The orthogonal projection P : L?(C",d\) — F? is given by
1
Pi(z)= = [ F@)K(zw)e ! do(w),
s cn
where K (z,w) = €™ is the reproducing kernel of F2.
Next, we introduce Fock—Sobolev spaces. In what follows we use some
standard multi-index notations. For an n-tuple « = (aq,...,a,) of non-

negative integers, we write
o =1+ +apn, al=al...al.

If 2= (#z1,...,2n), then 2% = 2" ... 2% and 9% = O7*...05", where 0,
denotes the partial differentiation with respect to the j-th component. For
any positive integer m we consider the space F>™, called the Fock-Sobolev

space, consisting of entire functions f on C™ such that

flpzm =D 0% fll = < o0,

la|<m

where || - || g2 is the norm in F2.

One reason that we need to study Fock—Sobolev spaces is to study Cre-
ation and annihilation operators. Creation and annihilation operators on the
Fock space are important operators in quantum field theory. However, these
two operators are unbounded operators on the Fock space. In general, it is
important to understand the domain of the definition of an unbounded op-
erator. In the particular case of creation and annihilation operators, because
they involved differentiation, they are bounded from Fock—Sobolev spaces to
the Fock space.

A useful tool for the analysis on the Fock space is the Bargmann trans-
form which acts as an isometry between L?(R™) and the Fock space F?(C™).
By connecting these spaces through the Bargmann transform, tools from one
side can be transported to the other for analysis. A natural question arises:
Is the Bargmann transform an isomorphism between the Fock—Sobolev space
F2™ and the classical Sobolev space W2™(R™)? Addressing this question is
one of the goals of this paper. To address this question we will explore the
connection with Gauss—Sobolev spaces in Gaussian harmonic analysis.

Next, we introduce the Gauss Sobolev space. Let Gaussian measure dry
on R™ be given by

1 2
dy(z) = ——e 2 du.
(2m)>
For any positive integer m, the Gauss—Sobolev space W?2™(v) is the comple-
tion of C§°(R™) with respect to the norm

lweniy = 3 | [ los@Par]|

0<|af<m
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In [1], some properties of the Gauss—Sobolev space W™ () are discussed.

The study of Gaussian harmonic analysis arises from probability the-
ory, quantum mechanics, and differential geometry. The Riesz transforms
associated with the Gaussian measure, and a key operator in the theory of
Gaussian harmonic analysis is the Ornstein—Uhlenbeck operator. From the
Ornstein—Uhlenbeck operator, we can define the Gaussian Bessel potential
which is important to our proof, see [8] and [5]. In Sect. 2, we will obtain an
isometry between the Fock—Sobolev space F'>™ and the Gauss—Sobolev space
W?2™(v). Because of the isometry between the Fock—Sobolev space F2™ and
the Gauss—Sobolev space W2™(y), we will connect questions on these two
spaces together.

As an application of the results we obtained, we will study a class of
integral operators. For ¢ € 2, we consider the integral operator

Sef(2) = (w)e " p(z — w)dA(w),
C’!L
for any f € F%™. In [11], Zhu used the Bargmann transform to transfer
some singular integral operators to S, and proposed an open question about
the boundedness of S,. In [3], the authors gave a necessary and sufficient
condition for S, to be bounded on F 2. In this paper, we consider the same
problem in Fock—Sobolev spaces.

In Sect. 3, we will study multipliers on Gauss—Sobolev spaces. Then, in
Sect. 4, we will obtain an isomorphism between multipliers on the Gauss—
Sobolev space W™ (v) and the set of bounded S,, on F%™. Then we use the
conclusion on the Gauss—Sobolev space to characterize the boundedness of
the integral operator on the Fock—Sobolev space and study other properties.

Multipliers on Sobolev spaces has been studied in [6]. In [4], the au-
thors studied the Gaussian Capacity theory in the Gauss-Sobolev space with
order 1. In this paper, we will use the idea in [6] and some operators in
Gaussian Harmonic analysis to obtain the boundedness of multiplication op-
erators between two Gauss—Sobolev spaces. Then we can apply conclusions
in Gauss—Sobolev spaces to Fock—Sobolev spaces.

2. Gauss—Sobolev Spaces

In this section, we introduce the Gauss—Bargmann transform and show that
the Gauss—Bargmann transform is an isometry that maps the Gauss—Sobolev
space to the Fock—Sobolev space. On the other hand, we show that the
Bargmann transform is not an isomorphism between the Fock—Sobolev space
and the Sobolev space.

For any multi-index 5 = (01,...,0,), the Hermite function is defined
to be

Hs(z) = ﬁ(—l)ﬁie”? o (e_”“'?) .

Bi
i=1 dz;
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Then the normalized Hermite function with respect to the Gaussian measure
is given by

1 T
1) = st ()
That is to say
N hg(x)ha(z)dy(x) = bap,
where dog =1 if @ = and dop = 0 if a # (.
For any multi-index «, one easily computes that

1/2
0°hs(z) = (jl:ll Bi(Bi—1)... (B —a; + 1)) ho—a(@), if a; < B,
0, otherwise.

By [1, Proposition 1.5.4], we know that the linear space generated by Hermite

polynomials is dense in W?2™(y).
For z € C, let eg(z) = \j—% be the basis of the Fock space, we know that

1/2
Baeg(z) = (jl:ll Bj (6] - 1) s (6] —a; + 1)) 6ﬁ—a(2)a if aj < 6j7
0, otherwise.

From these two observations, we know that

legllzam = [hpllwma), (2.1)

for any 8. We define the Gauss—Bargmann transform G mapping the linear
span of {hg} to F2™ such that

th = €3.

Theorem 2.1. Let m be a non-negative integer. The Gauss—Bargmann trans-
form G is an isometry from the Gauss—Sobolev space W>™(v) to the Fock—
Sobolev space F2™.

Proof. We know that {es} and {hg} are complete orthogonal sets in F>™
and W?2™(v) respectively. The statement then follows from (2.1). O

We want to contrast this new transform with the more well-known
Bargmann transform. Recall that the Bargmann transform is an isometry
from L?(R™,dz) to F? such that

2\ % 22
Bf(2) = () F)e T
™ Rn
where 22 = 22 + 22+ + 22, 22 =22+ 2+ -+ 22 and v - 2 = 121 +
Tozg + -+ + Tpzn. Let

P (2)F L e
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we know that Bﬁg = eg, see [10, Theorem 6.8]. That is to say
¢p = Bhg(2)

= (2> ’ / ! e_‘ff‘z Hg (.’1?) eaﬁz—%_éidx
7T rn /283! V2 on

By the argument above, we know that for any f € W2™(v), we have

GIG) = [ f@)em % dy(a).

Rn
Similarly, for any g € F2™, we have

G*mwzfﬂwﬁ%?ww.

Next, we will discuss the relationship between the Gauss—Bargmann trans-
form and the Bargmann transform. The key point will be that the order of
smoothness matters for these operators.

Let C1 be the composition operator from L?(R",dx) to L?(R",dx)

such that Cy f(x) = f(3), for any f € L*(R", dz). Let M(i)% p(mz) be
2 eXp\ 2
the multiplication operator from L?(R"™,dx) to L?(R"™,dy) such that

Mgyt ooty = (5) o0 (1) 10

For simplicity of notation, we denote M (%)% exp ( o2 ) with M.

Proposition 2.2. The relationship between the Bargmann transform B and
the Gauss—Bargmann transform G is given by

B = GMC%.

Proof. This is simply a computation from the definitions of the operators
involved. For any f € L*(R",dx), we have

creysr = [ (3) oo (M) 1 (5) e Farte)

_ ™ || T\ g,z 1 _la?
N / (5) b (4) / (5) c ’ (2m) % e dr
= Bf(z)

to complete the proof. O

N

w3
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To discuss the relationship between Sobolev spaces, Gauss—Sobolev spaces
and Fock—Sobolev
spaces, we need some basic facts about Fock—Sobolev spaces. The following
theorem is a special case of [2, Theorem 11].

Theorem 2.3. Suppose m is a non-negative integer, and f is an entire func-
tion on C™ . Then f € F>™ if and only if every function 2 f(z) is in F?,
where |a| =m . Moreover, there is a positive constant ¢ such that
-1
1™ fll e < N le2im < e[l F|] o
for all f € F2™.,

Let A; and A7 be two unbounded operators on F? such that 4;f(z) =
0, f(z) and A3 f(z) = 2 f(2). By [10, Lemma 6.13], we have
- . - 1 *
BO,,B~" = A; — A} and BM, B~' = §(Aj + A3). (2.2)
For any f € F?™, by Theorem 2.3, we have
145 flzm—1 = [l2j fllp2m—s S Mel™ 25 fllp2 S N fllp2m.

We obtain that A} is bounded from F2m to F2™m=1 That Aj is bounded
from F2™ to F2™~1 follows from the definition of Fock-Sobolev spaces.

We also need a theorem about Sobolev spaces. We define the (p,m)-
capacity of a compact set K C R™ by

Com(K) = 10t {2 oy £ € F(RY), 20, Buf = Lon K},
where B, is the Bessel potential of order m. By [6, p. 16], we have
Cpm(K) ~ inf{||u||§v,,,m(dm) L ue CX([RY), u>1on K} (2.3)

Recall that C§°(R™) is the set of smooth functions on R™ with compact
support.

Theorem 2.4. ([6, Theorem 1.2.2]) Let p € (1,00),m € N and let u be a
measure in R™. Then the best constant C' in

[ )P duta) < Clllys oy we R

is equivalent to

p(K)
SUP &K

where K is an arbitrary compact set in R™.

The following proposition tells us the property of the Bargmann trans-
form on Sobolev spaces.

Proposition 2.5. The inverse of the Bargmann transform is bounded from the
Fock-Sobolev space F2™ to the Sobolev space W™ (dx). However, if m > 1,
the image of the Bargmann transform B on W2™(dx) is not contained in
FZm,
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Proof. Suppose f € F?™, we have B~'f = C7'M~'G~'f. We only need to
2

prove that M~1G~1f € W2™(dx). For any a = (ay, ..., qa,) with || < m,
there is a set of constants {cs : 3 = (01, B2,...,0n)} such that

HaaMilGil-fHLZ(]R",dx) =2 s M0 A (G )

B<a

L2(R™,dx)
< Z HxﬁM_laa_ﬁ(G_lf)HL%Rn,dx)
BLla
N Z Hlﬂaa_ﬁ(G_lf)||L2(R",d'y)
BLla
< Z |G=PG1Go (G )] s -
BLla

By direct computation, we know that

1

Mys = 2°MC: M,sC7 M and 99 F = —
2 3 20—8

MCy 9 PO M.
2
Then
[0°M G fll2@nae) S Y B2 B~ BO* B! f| po.
BLa

By (2.2), we have [[0*M G~ f||L2(&n dz) S || f]| p2.1a1, Which means that
IB7 Fllwzom (azy S |Ifl| 2o

Next, we prove the second part of this theorem by contradiction. Suppose
Bg € F>™ for any g € W2™(dx), that is to say GMCyg € F2™(v). Then,
for any g € W?™(dx), we have Mg € W%™(y). Since m > 1, we have
102, Mgl 2mn av) < 00. Since

1
||6:C1Mg||L2(R",d'y) = ||M8xlg + ?Mg”LQ(R",d'\/)

and ||M8xlg||Lz(Rn,dW) = ||5‘mlg||Lz(Rn,d$) < ||g||W2,m(dx), we have
Iz19l| L2 (Rn dz) = l21 Mgl L2 (R7,d7) < 0O

We have proved that M,, g € L*(R",dz) for any g € W2™(v). Since M,, is
a closed operator, we know that M,, is a bounded operator from W?2™ (dz)
to L*(R", dx).

Let du = |z1)|?dz. For any positive N, let Ky = B(0,N), there is a
uy € C(R™) with uy =1 on K and uy =0 on B°(0, N + 1) such that

sup sup |0%un ()| < ¢ < oo,
jaj<m @

where c is independent of N. Thus we have
lun [y2.m(aay < 1BO, N +1)| = (N +1)".
By (2.3), we have
Com(Kn) S (N+1)"
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Then

sup p(K) > nwEN) Jin |21]?d
K Com(K) = Com(Kn) ™~ (N+1)"
N

Since [— T \lﬁ] C Ky, we have

/ |21 |?dx > / |z1|?dx > N™T2,
Kn - %]

§z

That is to say supg CLI?K) = o0, which is a contradiction by
p,m
Theorem 2.4. O

3. Multipliers on Gauss—Sobolev Spaces

In this section, we study multipliers on Gauss—Sobolev spaces. First, we re-
call the definition of Gauss—Bessel potentials. Some similar conclusions about
the multipliers for classical Sobolev spaces have been proved in [6]. How-
ever, in the Gauss—Sobolev spaces, we need some properties of the Ornstein—
Uhlenbeck differential operator.

The Ornstein—Uhlenbeck differential operator is defined as

L= i8§7 - il‘jamj.
j=1 j=1

Let C,, be the closed subspace of L? () generated by the linear combinations
of {hs :|B] =n}. For any s > 0, we consider the Gaussian-Bessel potentials
defined by

(I—=L)=*Pf=> (1+n)2Jf, for feL*(), (3.1)

n=0

where J, is the orthogonal projection from L?(v) to C,,. The Gauss—Bessel
potential space with order s is

L**(y) ={f € L*(y): f = (I — L) 2u for some u € L?(v)}.
The norm is defined as
1Fllz2e ) = lullzz s i f= (I = L) 2u
Theorem 3.1. ([5]) If s is a non-negative integer, then
W23(y) = L**(7).
We also need a theorem of interpolation for Gauss—Sobolev spaces. Let
S={weC:0<Re(w) <1}.

Given a compatible pair of Bagach spaces X and X1, let F (Xo, X1) be the
space of all functions F' from S into Xg + X3 with the following properties:

1. F is bounded and continuous on S and analytic in S;
2. y — F(k +iy) with £ = 0,1 are continuous from the real line into Xj.
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F (Xo,X1) is clearly a vector space. We provide F = F (Xo, X;) with the
norm

nﬂu:mw{wMme%@mfu+wnm}
y€eR yeR

Given 0 < 0 < 1, let Xy be the space of vectors v in Xy + X7 such that
v = f(#) for some f in F(Xo,X1). We norm Xy with |jv|[p = inf
{IfllF:v=f()}-

Theorem 3.2. Let 0 < 6 < 1 and mg < myg < my be three non-negative
constants with

mg = mo(1 — 0) + m0,
then
(L3 (), L3 ()], = 27 ),

where [L*™o (’y),LQ’ml('y)]a is the interpolation space between L?™°(v) and
L2 (y).

Proof. Since L?™ C L?™° we know that L?™ + L[2™0 = [2™0 If ¢ €
L?™e (), then there is f € L?(7y) such that

w=(I—L)y""/?f.
For any z € {w: 0 < Re(w) < 1}, we define

oo 1 mo(l—z)+miz
F(z)=>" (m> Jnf.

n=0

It is easy to check that F(z) is a vector-valued function from {w : 0 <
Re(w) < 1} to L*™o(v) which is continuous on {w : 0 < Re(w) < 1} and
analytic on {w : 0 < Re(w) < 1}. We know that

F(0) = u,
Then we have
lullo < I1Fll7 < 1 fllz2gy) = llullL2mo ()
Conversely, if u € [L*™(v), L*™ ()], then for any € > 0, there is a
Fe € F(L>™(y), L™ (7).

with F¢(60) = u such that

[Fellz < lullo + €
For any g € L?(),l € Nand z € S, we define

l

H(Z) _ Z(\/m)mo(lfz)erl%Fe(z)’ Jng>L2('y)'

n=0
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It is easy to show that H(z) is bounded and continuous on S and analytic in
S. We consider

l
[H ()| = <ZW1 +n>m°<1if>+m1”JnFe<iw>7g> |
n=0 12(y)

Since F,(iz) € L>™0(y) for any x € R, we know that there is f, € L?(7y)
such that

F(iz) = (I- L)% f, = i <\/11+7n)m0 ot

n=0
Then, we have
l

sup Z(m)m(l(l*”)*mlmjnm(iz)
zeR || L2()
1
=sup|| Y (VI+n) omotming g,
zER n—0 L2(%)

< sup [ follL2(y) = sup [|Fe(ix)|lw2.mo ()
z€R z€R
< 1Fell#
Then sup,cp |H(iz)| < ||Fel|#llg||L2. Similarly, we can obtain

SIé%IH(l +iz)| < |Fell#llgll L2()-

By the Three Lines Lemma, see [9, p. 28], we have |H(0)| < ||Fc|||lgllz2(+)-
That is to say

l
<Z(\/1Tn)munu,9> < I Fellzllgll 2y
L2(7)

n=0

for any [ € N and g € L*(y). We obtain Y~ (v/1+n)™ J,u € L*(y) and

S WITn)m Ll < |Fr
n=0 L2(5)
Since u = (I — L)~ [220° (v/T+ n)™ J,u], we have
o
lull p2me < || D (VIH+ )™ Jnu < [lullo +€
n=0 12(7)
to complete the proof. O

Before proving the next lemma, we need some additional notations. For
two multi-indexes o = («ay,...,a,) and 8 = (51,...,0,), if for all k =
1,...,n we have ay < (i, then we write

a < pB.
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For any u € L}, ., let M, denote the multiplication operator on W?2™(~).

Then u is called a multiplier on W2™ () if M, is bounded on W2™(y). Let
M (Wva(*y) — W2m (7)) denote the set of bounded multiplication opera-

tors from W2 () to W2™ (y). If m = m/, we write M (W™ (y) — W2™(5))
as MW?2™ (). We have following simple lemma.

Lemma 3.3. For any u € C°(R"), we have
[l srwzmy S D sup |0%u(z)).
la]<m

Proof. The proof is obvious as it follows from the definition of the norm of
W?2m(v), the product rule for differentiation and immediate estimates. [

Lemma 3.4. Suppose that
u € MW™(y) N ML*(v).

Then, for any multi-index « of order |a| < m, we have
o*ue M (W2 (7) - wam=lol(q)).
Furthermore, for any e, there is a constant c(€) such that

10%ull ar(wem (yysw2m—1ai(y)) < Ellullarrzcy) + c(E)||ullprwzm ().

Proof. If a = 0, the conclusion is obvious. We suppose that o # 0. By [6,
p. 39], for any g € W2™(«), just using the product rule applied to ug and
rearranging, we have

a! _
g%u= > maﬁ(u(fa)a Bg).

{B:a>p>0} '
Then
l90%ullyzm—raiy S D u0* P gllwzm-iaitioiy)

{B:a>520}

< Z [ ull prwzom—1ar+181 () 107 P gllywrzim—1al+181 ()
{B:a>/20}

< Y ullstwamorarsisi o lgllwany:
{B:a>p>0}

Thus, by Theorems 3.2 and 3.1, we have

||8°‘u||M(Wz,m (W)*)Wz,mf\a\ (7))

< Y ullywemeierisig)
{B:a>B>0}
m—|al+|B] o] =181

< D lulwwEae el
{B:02p20}

m—|a|+]B] la|—18]

< Z HUHMWZL,m(W)||u||M£n2(y) + ||u||MW2*’"(’Y)'
{B:a>p>0}
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For any € > 0, by Young’s inequality, we have

m—|al+]6] | 8]
> lellywBony lllar s
{B:a>p>0}
18l—lal \ | —lo|+]8] |l =18]
= Z € ||UHMW2m(»Y)( ||UH)ML2(,Y)
{B:a>p>0}
m+ |B| —|a] _lel=lsl laf — |3
< —  em—IalFIA] m L E—
S 2 { e el nwwz.m ) + = EHUHMLQ(w)}
{B:a>p>0}
to complete the proof. O

Lemma 3.5. For any non-negative integer m and g € L?(7y), there is a set of
functions {gq : |a| < m} such that

g= Y 0%9a and |gallw2my S llgllzee)-

la|<m

Proof. If m = 0, then the conclusion is true. Suppose that the conclusion is
true for m = k, we will prove that the conclusion is true for m = k + 1. For
any g € L?(v), we know that

g=>Y_ 9%,
|BI<k

where g € W2k (v) and ||gsllwar(y) S ll9llr2(y)- Then gz = (I — L)(I —
L)~'gg. Since

I-L= ZagCJ oy = Op,) — (n— 1)1,
we have
gﬁ_zan T; T )(I L) gﬁ_(n_l)(I_L)_lgﬁ

By Theorem 3.1, we know that (I — L)™' is bounded from Wzk('y) to
W2FF2(y), then (I-L)"'gs € W*F2(y). By (2.2), we know that (M, —0,,)
is bounded from W2*+2(5) to W2k+1(y). We then obtain

g=> 0 Zawg vy =00 ) I —L) g5 — (n—1)(I— L) g5/ ,

[BI<k j=1
where
(M, — 82,)(I = L) gpllwzrsry) S lgsllwariy S llgllzzcq
and
10 = (I = L) ggllwane iy S 10T = L) gsllwarraiy S gl
We have completed the proof. O



IEOT Integral Operators on Fock—Sobolev Spaces Page 13 of 24 22

For any b € R™, let W}, be an operator on F? such that
2
Wyh(z) = h(z — b)e*t~ 7,
for any h € F2. This operator is the analogue of translation in the Fock space
setting.

Lemma 3.6. For any b € R", W, is a bounded operator on F>™ and

m
Wyl 2 < mm | D 1017 ],
j=0

where ¢y, n, 15 a constant that depends only on m and n.

Proof. For any h € F>™, we have
[Wehl[p2m S |l|2[™Wohl| g

, 1/2
= | [ min - P ane)

_ / 2 + b2m|h(z)|2dx(z)} v

1/2
/ 2™(|2* + |b2)m|h(2)|2d/\(2)}
(Cn

<
m
< 27 k
S D010 | max {1121 hllr2}
7=0
m
S DS P IRl g2,
j=0
where the last inequality is due to Theorem 2.3. 0

Lemma 3.7. Suppose that u € MW?2™(v) for some m > 0, let

up(x) = / P K (r Wu(x — t)dt,
where K € C°(B"), K >0 and 0 <r < 1. Then we have

sup ||u7’||MW2vm('y) < Cm,nHu”]\/IW?vm('y)
0<r<1

and

sup [[0%urllarwm()—12(2)) < EnallOwllnrwzm )20

0<r<1

/
m,n

for any a with |a] < m, where ¢, and c
onm and n.

are constants that depend only

Proof. For any g € W2™(v), by Minkowski’s inequality, we have

largllwzmiy = D 10 (wrg) 2y

lo]<m
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-z |1

la|<m

Z/ rRET) [/ |aa(“($_t)9($))|2dv(x)rdt.

la|<m

2 2

dv(w)]

/n rK ()0 (u(z — t)g(x))dt

Let 7 be the translation operator such that mzu(z) = u(x — t) and M,,, be
the multiplication operator, then

I / K () | Mgl o
o] <m "
S Cm||g||W2,m(,y)/| TinK(’rilt)||M7—tuHMW2,m(,Y)dt-
t|I<r

We claim that M.,, = G_1W£ GMUG_lwiG then
[ Mrpullpw2m gy S AWellpzom [l arwzom () [IW =t |2,
By Lemma 3.6, we have

sup HUTHMW?”"(W)
0<r<1

< sup Cm/ r_nK(T_lt)HW%||F2,m||W—Tt||F2,1ndt||u||MW2,'m(.y)
t|<r

0<r<1

for some constant Cm,n-
Next, we prove the claim M., = G_lVVt GM, G_1W—2t G. First, we

show that G~ 1WtG M

expla§— 12

Lt o (a—t)— <z—5>2 1 =
(W.Gg)(z) =e*27 % | g(x)e e 2 dy

7;. For any g € W2™(y), we have
]

(2m)>
=42 z—t
= ez'%f% / g(l' — t)e(w*t)'('z*%)*( 22) 1 = 67‘ 2 12 dx
n (Qﬂ-) 2
t2 2
=e T gz —t)e"2e"* " 2 dy
RTL

Thus, we have
—1 _ r 2
(GT W:eGg)(x) =e"> " Tg(x —1).
Direct computation shows that
M, = G_lwéGMuG_lw_TtG,

which completes the proof of the claim.
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Similarly, for any a with |a| < m and g € L?(v), we have
1(0%ur)gl L2 (+)

< / P () [ Mo ugl 12y

< - MK (r )| M, 9a t.
< cullglbwercy [ 1 KO0l ()

By the argument above, for any o with |a| < m, we have

”M‘I’ta"‘uHM(WQ,m(V)*)[p(,\/))

— -1 + a -1 —t
= IGTW GMoea G Wt Glly (i 12()

M(L2(v)—L(y

< ||G_1W%G|| ( )”Mao‘u” (WQ,m,(,Y)_)LQ(,Y))

—1
x |G W—TtGHM(Wz,m(W)_,an(w))

/ le%
< Cm,n”a u||M(W2vm('y)~>L2(’y))

for some constant ¢/ which completes the proof. 0

m,n’

Proposition 3.8. If u € MW?™(y)(u € ML?*(y) and |a| = m then 0%u €
M(W2’|a‘(’y) — L*(7)). Moreover, we have

Z 10%ul| w2t ()= £2(4)) + wllazzz )y S lullarwzom -

lee|=

Proof. First, we suppose that u € M L?(«). For any g € W2™(y) and multi-
index o with || = m, we have

10%u)gll L2 ()

= [|0% (ug) Z 0 uo*~ 9||L2(w)
B:0<B<a

<luglweziaiy + 1D 0%ud*Pygllracy)
B:0<B<x

< ullprwzital () 19llwztal ) + Z ||8'Buaa_ﬂg|‘L2(«,)
B:0<B<a

IN

lull w2 o I(—Y)HQHW2 lal () T Z ”8 UHM(W2 181 (y)— L2 (v ||a QHW?,IﬁI(—y)
B:0<B<a

IN

||u||MW27\€¥|(7) + Z ||8ﬁU||M(W2,\ﬁ\(W)HL2(7)) ||9HW2»7"(7)‘
B:0<8<x
By Lemma 3.4, for any € > 0 there is a constant ¢(e) such that

107l nr (w2151 () 12 ()) < ellullarzacay + e(@)llullarwzis1 ).

Further, by Theorem 3.2, we have

lullprwziaiyy S lwllarrzy) + llullarwzmq).-
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Thus, we obtain
Z 10%ul|pw2m (y)—r2(v)) S ullarrzcy) + llullpewzm ).
lee|=m

Next, we will prove that [|ul[arz2(y) S [|wl[arw2m(y), which implies the con-
clusion.

For any g € L?(7), we have the decomposition g = Z‘a|<m 0%, in
Lemma 3.5. Then -

lugllzey < D I[ud®gall 2y

la|<m

- | ¥ i)

la|<m  {B:a>B>0}

S>> 196a=0"" ) s,

la|<m {B:a=B>0}

S Z Z H g@(_a)aiﬁuHW?)m—\amﬁl(7)

la|<m {B:a=B>0}

SIS }’aa_BUHM(W2»m(y)—>w2amf\a\+|a|(7))H90¢||W2”””'(7)
la|<m {B:a>B>0}

SIS Haa_ﬁuHM(W%m(w)—»vv%mf\awm(7))HgHLz(v)-
la|<m {B:a>B2>0}

L2 (%)

By Lemma 3.4 and the inequality above, for any 0 < € < 1, there is a constant
c(€) such that

lullarzz vy S €llwllarzzyy + cle)llull prwzm (-

Then, we have [[ul[arz2(y) S [Jullprwzm ).

Next, we remove the hypothesis. For any r > 0, let u,. be the function in
Lemma 3.7. Thus u, is in C*°(R™). We can choose a set of smooth function
¢, such that ¢,(z) =1 when |z| < 1, ¢,(x) =0 when |z| > 1 + 1 and

S sup |09, (2)] < c.

laj<m

where ¢ is independent with . We know that ¢,u, is bounded, thus ¢,u, €
M L?(%). By the conclusion above we know that

|prtir|lrr2(y) < € lldrur || prwzm sy,

where ¢’ is an absolute constant. Since lim,_.q ¢,u, = u almost everywhere.
Thus for any g € L?(7y), we have

lugllz2(y) < lim inf lprurgllL2(qy-
Then by Lemmas 3.7 and 3.3, we have
[ullz2 () < lminf {|¢rur(| 22 () S Hminf {|¢rur ([ arwzom )
< liminf {|gr[|arwzom () lur | wzm () < emnellullarwzom )

to complete the proof of the claim. O



IEOT Integral Operators on Fock—Sobolev Spaces Page 17 of 24 22

To prove our main theorem in the next section, we need the following
theorem about multipliers on the Gauss—Sobolev space W2™(y).

Theorem 3.9. If |o| = m and u € ML?(y), then w € MW?™(v) if and only
if 9%u € M(W2lel(y) — L2(y)) . In this case, we have

1wl arwzm () = Z ”aau”M(WQv\ﬂl('y)—>L2('y)) + [lullarre -

la|=m

Proof. If 9%u € M (W?2!2l(y) — L?(y)) for any |a| = m and u € ML*(y).
Let u, be the function corresponding to w as in Lemma 3.7. Since u €
M L?(v), we know that u is bounded. It is easy to prove that

Z sup\a ur(z)| < 00
la|]<m
for any r > 0, thus [|u,||prw2.m(4) < co. Then for any g € W™ (), we have

”u?“gHWva('y)

= > 10°(urg)lec

la|<m

< YD 07w FygllLagy

o] <m 0<B<a

Z Z ||8BUT|| W2alﬂl(fy)_,L2(,y)) ||8a_ﬂg||W2=W\('y)

la|<m 0<B<a

S llgllwz.m ) Z ”aﬁ“THM(wzml(w)—»L%v))
0<|B|<m

3
+ ”g”W2 m( mz ”a UTH W2 181( *)LQ(,Y))'
By Lemma 3.4 and Theorem 3.2, for any € > 0, there is a ¢(e) such that
Yo 10Pullywrsiy—rron S D, lurllaweiss)
0<|Bl<m {8:0<18]<m}
N 6||ur||MW21m('y) + C(G)H“THMLQ('W
Then we obtain
||u7‘||MW2’7n(’y)
S ellurllarwzm () + c(€)lurllmrrz iy + WZ Haﬁur”M(W?,m\(v)—w?(v)).
Let € be small enough, then we get

[ur ([ w2 y) S llurllarze ) + Z |I3ﬁurll ar (w1615

—> 2 :
e L (’Y))
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By Lemma 3.7, we have

||'LLHMW2,'NL(,Y) < llgrl_}(r)lf HUTHMW2'7"' ()

< i .. 8
Nhgn_}(r)lfHuTHML%’Y)+h£n_}61f Z ”a UTHM(W2>V3‘('y)~>L2(7))

|Bl=m
Sllullazze + Y ”aBuHM(WZIBl(“/)HL?(V)).
|Bl=m
The converse is due to Proposition 3.8. O

4. Applications to Certain Operators on the Fock—Sobolev
Space

In this section, we study the boundedness of S,. We need several lemmas.
Let C; and C_; be composition operators on F? such that for any f € 2

Cif(z) = fliz) and C_;f(z) = f(—iz).

It is easy to show that C; and C_; are isometries on F>™ for any m € N.

Lemma 4.1. For any a € R", let M ,—ia.= be the multiplication operator on
W2m(~y). If S, is bounded on F*™, then G=1C_;S,CiG commutes with
M, -iax.

Proof. By [3, Lemma 3.3], we know that S, commutes with W, on F?2. Since
W, is bounded on F%™, we know that S, commutes with W, on F?™_ Then
G~'C_;5,C;G commutes with G='C_;W,C;G. We only need to show that

GO WG = M.
For any f € F?™ and z € C", we have
C_W,Cif(z) = f(z— ia)e_iz'a_§.
On the other hand
Memion G (@) = e [ (2 FdA)

) g2
= ¥ f(z)e’”'z_771_"6_|Z|2dv(z)
C’IL

T —ia)?
— e—imz f(Z _ ia)em'(z—ia)—%
C’IL

W_"e_‘z_mFdU(Z)

= flz— ia)e_iz'“_§em'g_%d)\(z)
C’IL
=G f(z— ia)e_iz'“_%](x).
Then
GM,—iaa G f(2) = g(z — ia)e_iz'“_é =C_;W.Cif(2),

which completes the proof. O
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Let C2°(R™) denote the set of smooth function f such that there is a
positive number N = Ny, such that

f(z+2Ny) = f(z)
for any « € [-N, N]" and y € Z", moreover, f(z) =0 when z € [-N, N|™ \
n

[—%, %} . We call N the period of f.

Lemma 4.2. For any f € C3°(R™), there is a sequence f, € span{e'®” : a €
R™} such that

nlgrolo ||an — Mf”MWva(’y) = 0
Proof. By [7, Theorem 2.11 and Corollary 1.9, Chapter 7], there is a sequence
of functions {f,} C span{e’®® : a € R"} such that

lim sup|90“f(z) — 0% fn(x)] =0,

n—oo xT
for any o € R™ with |a| < m. By Lemma 3.3, we obtain the conclusion. [

Lemma 4.3. C;°(R") is a dense subset of W™ (y).

Proof. First, we show that Cp°(R") is contained in W2m(y). For any f €
C?(R™) and any o € N”, let N = Ny be the period of f, we have

/ 107 (2) 2 ()
.

_ 8a 2d
> /meW f(@)Pdr(x)

yeZ‘n
1 _ lz+2Ny|?

> 07 f (@) aEe @

yezn J[-N.N] 2m) 2

o 1 _lz+2Ny|? o
> [P e e [ e @Paw
[-N,N]» (2m)2 [—N,N"

yeZr\{0}

. o 2 1 _\z+221vm2
= Z /[NN |0% f(z)| (27r)%e dx

)

2y/n’ 2y/n

Then

s42Nyl2 212 Nl 2
,IL+2 yl < e,ILQI +aON ‘2“|y\72N2\y\2 < 67|12‘ 7N2|y|2'
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That is to say

1 |z+2Ny|?
> / ()2 —e da
N N ( 7-‘—)2
yeZ™\{0} 2v/n’ f
< —N2|y\2 9> 2d
< e N GRS
y€Z™\{0} [‘wﬁ’zﬁ]
Since
n
_N20,12 20,2
E e NI < § § e~ Nyl
yeZ™\{0} J=0yezZm y; #0
oo oo oo
20,2
:nE E...EBNIyI
91*192*0 Yn=0
o0 oo
E e~ N?lu1l? E :e’N ly2? § :Q*N lyn|?
y1=1 y2=0 Yn=0
2
ne~ NV

<
= (1—e N
which implies that

2 ne= N 2
/Rn |0% f(z)["dy(z) < <(1—6_N2)" + 1) /[N L]" 0% f(x)|7dvy(z) < .

2/m 2y/n

On the other hand, since C§°(R™) is dense in W2 ™ (v), we only need to
approximate any g € C§°(R™). For any € > 0, there is an positive integer N
such that

N N "
= h R\ |-
g(x) =0, when z € \[ 2\/5,2\/5}
and
nN2),2 -
> eV [ oty <
yez\{0} :
for any o € N with || < m. Let
flx)=> gz +2Ny).
yezL™
Then, we know that f € C;°(R") and

f(z) = g(z), when z € {— r
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Then
1/2
lo= flwamiy = 3 | [ 1079(0) - 0% )Pt o)

laf<m

1/2
= > f(x)Pdy(z .
P> [ Lo 0P )]

o] <m

By the argument above, we know that

/ 0° (@) P (z)
"\[-N,N]"
< e Nlul? / L 10° () 2 (=)

yEZ"\{O} 7 7
= e[ ol
yezn\ {0} avmaval”
< ¥ [ ot <
yez\{0} ©
Then, we have
”g - fHWZ”"'(“/) < Cméy
where ¢, = card{«a : || < m}. We have completed the proof. O

We can now give a characterization of the boundedness of S, on F*™.
This is the analogue of the result in [3] obtained for the Fock space F?2.

Theorem 4.4. Let m be a positive integer, then S, is bounded on F2™ if and
only if
Sy = C;GM,G™'C_;,

where u is a multiplier on W™ (v). In this case, we have
o(z) = / u(2x)e_2($_%z)'(x_%z)da:.

Proof. Recall that G and C; are isometries. If S, = C;GM,G~1C_;, where
u is a multiplier, then S, is bounded.

On the other hand, suppose that S, is bounded. By Lemmas 4.1 and
4.2, we know that for any h € C;°(R"), G~'C_;S,C;G commutes with Mj.
Let

u = GilcfiSWCiG]..
Then
G_lc_ng,CiGh = G_lc_iSWCiGMhl = Mhu == Muh
Since Cp°(R™) is a dense subset of W™ (), by Lemma 4.3, we know that
G'C_;8,C;G = M,.
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That is to say S, = C;GM,G~'C_;, where u is a multiplier on W™ ().

Next, we prove the second part. By Theorem 3.9, we know that u is in
ML?*(y) = L*®. Thus S, = C;GM,G~*C_; is bounded on F2. Then, by [3,
Proposition 3.6 and Theorem 1.1}, we have

Sy = BF'M,FB™" and ¢(z) = / U(x)e_Q(r_%z)'(x_%z)dx,

where F is the Fourier transform and M, is a multiplication operator with
v € L*(R™). On the Fock space, by [3, Lemma 2.3], we have C; = BF 1B~1.
By Proposition 2.2, we have
S, =C,GM,G'C_;
=BF 'B7'GM,G'BFB!
=BF 0, MTIGTIGM,GT I GMCL FBT
2
=BF 'C,'M,C FB™!
2
=BF 'My-1,FB™".
%
By the argument above we obtain v(z) = C7'u = u(2z). O
2

4.1. Other Operator Theoretic Properties

According to the theorems above, we can obtain some properties of S, on
Fock—Sobolev spaces.

Corollary 4.5. For any m > 0, if S, is bounded on F*™, we have following
conclusions.
1. The set of operators {S, : S, is bounded} is a commutative algebra.
2. S, is compact on F%™ if and only if S, = 0.
3. S, is invertible on F2™ if and only if% is essentially bounded, where
w is the multiplier on W2™(v)corresponding to S, in Theorem 4.4.

Proof. (1) follows from Theorem 4.4 and the fact that the set of multiplication
operators is a commutative algebra.

To prove (2), we need a fact. For any smooth function 7 with compact
support, there is a sequence of functions f, such that

fn — 0 weakly and anHWz.m(A/) = ||77||L2('y) + O(’I’L_l).
Moreover, if u € MW?2™ (), then we have
[wfallwm iy = llunllzzp) +O@m™).

For the construction see [6, p. 270]. Although the construction is made for
the Sobolev space, the proof is also valid for the Gauss—Sobolev space. If
u € MW?2™(v) is compact, then

nlLII()lo HuanWz,m(,y) =0.

That is to say |lun||z2(4) = 0 for any n, which implies that u = 0. By Theo-
rem 4.4, we get the conclusion.



IEOT Integral Operators on Fock—Sobolev Spaces Page 23 of 24 22

Next we prove (3). If < is essentially bounded, we claim that X is also
a multiplier on W2™(v). For any a with |a| = m, we have

m

1 ... .0y
(63 _
0% = > N s p
Bl M <a

where {cg1, gm o} are some constants. By Lemma 3.4, we have 0 u...9%"u
is a multiplier from W?2™(v) to L?(y) for any 3!,...,3™ with g + .- +
p™ < a , which implies that 9% is a multiplier from W™ () to L*(v). By
Theorem 3.9, we obtain that < is a multiplier on W*™(v). Then M. is the
inverse operator of M, which implies that S, is invertible.

On the other hand, if S, is invertible on F2™ then M, is invertible on
W2m(y). For any g € W2™(y), there is a f € W?™(y) such that g = uf.
Then %g = f € W2™(y). Since M1 is a closed operator, we have M1 is
bounded on W?2™(y). By Theorem 3. 9, we know that M1 is bounded on

L?(). That is to say 1 is essentially bounded. O
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