Computational Methods and Function Theory (2023) 23:165-198 MFT
https://doi.org/10.1007/s40315-022-00448-2

®

Check for
updates

Random Interpolating Sequences in the Polydisc and the
Unit Ball

Alberto Dayan' - Brett D. Wick' - Shengkun Wu?

Received: 10 February 2021 / Revised: 10 July 2021 / Accepted: 10 December 2021 /
Published online: 16 March 2022
© The Author(s) 2022

Abstract

We study almost surely separating and interpolating properties of random sequences in
the polydisc and the unit ball. In the unit ball, we obtain the 0—1 Komolgorov law for a
sequence to be interpolating almost surely for all the Besov—Sobolev spaces B7 (By),
in the range 0 < o < 1/2. For those spaces, such interpolating sequences coincide
with interpolating sequences for their multiplier algebras, thanks to the Pick property.
This is not the case for the Hardy space H>(ID?) and its multiplier algebra H>® (D9):
in the polydisc, we obtain a sufficient and a necessary condition for a sequence to be
H* (D9)-interpolating almost surely. Those two conditions do not coincide, due to the
fact that the deterministic starting point is less descriptive of interpolating sequences
than its counterpart for the unit ball. On the other hand, we give the 0 — 1 law for
random interpolating sequences for H> (D).
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1 Introduction

A sequence Z = (z,)nen in the unit disc D is interpolating for H* if, given any
bounded sequence (w;,),en in C there exists a bounded analytic function f on D so
that f(z,) = wy, forany n in N. The celebrated work of Carleson, [9, 10], characterized
interpolating sequences in term of separation properties. To be precise, let

T—2Z

b (2) == , Z€D,

1 -7z
be the involutive Blaschke factor at t in D, and let, for any z and w in D,
p(z, w) := b (w)]
be the pseudo-hyperbolic distance in D. Z is

e weakly separated if

niI;él;P(zn, ) > 0;

e uniformly separated if
inf .
inf [T oG 20 >0
k#n

Carleson proved in [9] that Z is interpolating if and only if it is uniformly separated.
Later on, [10], he characterized uniform separation in terms of a measure theoretic
condition and weak separation:

Theorem 1.1 (Carleson) A sequence Z in D is uniformly separated if and only if it is
weakly separated and the measure

pz =y (I—lzPs,

neN

is a Carleson measure for H2(D).

Throughout this note, a measure 1 on a domain D will be a Carleson measure for
a reproducing kernel Hilbert space Hj of holomorphic functions on D if

12, = ClFll#,  f € He
for some C > 0. Later sections will take D = D9, the unit polydisc, or D = B9, the

unit ball, respectively: the kernels that we are going to choose for such domains are
the Szego kernel on the polydisc and the Besov—Sobolev kernels on the unit ball.
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Random Interpolating Sequences in the Polydisc... 167

In certain instances, the randomization of the conditions studied by Carleson
become more tractable and provide insight into the structure of interpolating
sequences. Cochran studied in [12] separation properties of random sequences. A
random sequence in the unit disc is defined as follows: let (6,),<N be a sequence of
independent random variables, all distributed uniformly in (0, 27) and defined on the
same probability space (€2, A, P). Then, for any choice of a deterministic sequence
of radii (r,),en approaching 1 define

In(@) = 1@ we Q.

Considering the random sequence A(w) = (A, (w))yeN, the 0-1 Kolmogorov law
yields that events such as

W = {A is weakly separated}
U = {A is uniformly separated}
C := {jup is a Carleson measure forH? (D)}

T := {A is an interpolating sequence}

have probability zero or one, thanks to the independence of the arguments of the points
in A. Let . .
[[i={zeD:1-277 <|z] <1-27UtD}  jeN, (1.1)

be the jth dyadic annulus of D, and let
Nj :=#AN1;. (1.2)

All the randomness of the sequence is on the arguments of the points in A, and
therefore (N;) jen is a deterministic sequence. Cochran proved in [12, Thm. 2] that
P(WV) = 1 provided that

Y N2 < oo, (1.3)
jeN
and that P()V) = 0 whenever the sum in (1.3) diverges. Later on, Rudowicz showed
in [16] that (1.3) is a sufficient condition for 14 to be a Carleson measure for H (D)
almost surely, and concluded, thanks to Theorem 1.1, that P(Z) = 1 if and only if
(1.3) holds. In particular, condition (1.3) encodes all those random sequences so that
W, U and 7 all have probability one.

The goal of this paper is to study random interpolating sequences on the polydisc
and the d dimensional unit ball. A sequence Z = (z,),eN in D is interpolating for
H>®(D9) if, given any bounded (w,),ey in C there exists a bounded holomorphic
function f on D so that f(z,) = w,, for all n. On the polydisc, the deterministic
starting point is the following (partial) analogue of the Carleson interpolation Theorem
for sequences in the polydisc [7]:

Theorem 1.2 (Berndtsson, Chang and Lin) Let Z = (z,)nen be a sequence in DA,
and let (a), (b) and (c) denote the following statements:
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168 A.Dayan et al.

(a)
igg ]_[ 06 (zn, 2k) > 0; (1.4)
k#n

(b) Z is interpolating for H*®(D?);
(¢c) The measure

d
nz=y_ (]‘[(1 - |z;|2>> 8z,

neN \i=l1
is a Carleson measure for H*(D¢) and

inf , 0. 1.5
;f;ékpG(Zn k) > (1.5)

Then (a) = (b) = (c), and none of the converse implications hold.

Conditions (1.4) and (1.5) are separation conditions, both stated in terms of the so
called Gleason distance on the polydisc:

oc(w, z) = ‘n}axd,o(z", w), z,we D4,
1=1,...

Throughout this note, (1.4) will refer to uniform separation on the polydisc, while
(1.5) defines a weakly separated sequence on the polydisc. Theorem 1.2 represents
one of the best known attempts to characterize H*(D?)-interpolating sequences on
the polydisc in terms of its hyperbolic geometry. One can find a characterization for
interpolating sequences for bounded analytic functions on the bi-disc in [1], stated in
terms of uniform separation conditions on an entire class of reproducing kernels on
D2. The motivation for the first part of this note is to find out whether condition (a),
and (c) of Theorem 1.2 are equivalent at least almost surely. A negative answer would
imply that Theorem 1.2 is far from being a characterization. A positive answer would
give the 0-1 Kolmogorov law for H*® (D9)-interpolating sequences in the polydisc
with random arguments. The construction of a random sequence A on the polydisc
follows the same outline as for the case of the unit disc. Let T be the d-dimensional
torus in C¢, and let (9,}, R Gg)neN be a sequence of independent and indentically
distributed random variables taking values on T¢, all distributed uniformly and defined
on the same probability space (€2, A, IP). Let (r,),en be a sequence in [0, D4, and
define a random sequence A = (A;)neN in D4 as

An(@) = (rr%e“g'l(w), e r,‘fe’en (w)) , weQ.
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The events of interest are going to be

Wm) = {A is weakly separated in]D)d}
u (]D)d) := {A is uniformly separated inID)d}
C(H2 (Dd)) := {4 is a Carleson measure for H? (]D)d)}
A (Dd) := {A is an interpolating sequence for H*® (]D)d)}.
Our first aim is to give necessary conditions and sufficient conditions for A to be
interpolating for H*®(D¢) almost surely. This will be achieved by studying separately
the probability of the events W(D?), U (D?) and C(H2(D?)), and by applying Theorem

1.2. Looking for separation conditions on (r,,),en that yield almost sure separation
properties for A, (1.1) and (1.2) are extended to the d dimensional case by considering

Lp={zeD!:1-27" < || <1—=2"Mm*D ;=1 . . aq) (1.6)
and
Ny = #A N 1,

for any multi-index m = (mq, ..., my) in N4, Throughout this note, |m| = m; +
-+« + mg will denote the length of m.

The first main result partially extends Cochran’s and Rudowicz’s works to the
polydisc:

Theorem 1.3 Let A be a random sequence in D?. Then

@ I1f
Z N227Iml < 0o (1.7)

meNd

then POV (DY) = 1. If the sum in (1.7) diverges, then POV (D)) = 0.

(i) If
> N < oo (1.8)

meNd

then PU(DY)) = 1.
(iii) If (1.7) holds, then P(C(H2(D%))) = 1.

Observe that the case d = 1 yields Rudowicz’s and Cochran’s characterization
of random interpolating sequences on the unit disc. In general, part (i) of the above
Theorem gives the 0-1 Komolgorov law for a sequence to be weakly separated. In part
(i1) and (iii), the result gives a sufficient condition for a sequence to be almost surely
uniformly separated and to generate a Carleson measure for the Hardy space in the
polydisc. In particular, thanks to Theorem 1.2, it is the case that the 0-1 Kolmogorov
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170 A.Dayan et al.

law for almost surely interpolating sequences for H*®(D?) lies somewhere in between
(1.8) and (1.7):

Corollary 1.4 Let A be a random sequence on D?. Then

() If (1.8) holds, then P(Z(D?)) = 1;
(i) If the sum in (1.7) diverges, then P(Z(D?)) = 0.

Proposition 3.3 will give an example of a class of random sequences for which the
0-1 Kolmogorov law for almost surely H* (D)-interpolating sequences coincides
with the sum in (1.7). Whether this is the case for a general choice of the radii (r;;),eN
remains, for us, open. Nevertheless, we will observe in Sect. 3.4 how (1.7) implies
that the Szegd Grammian for a random sequence in the polydisc differs from the
identity only by a Hilbert—Schmidt operator, a rather strong separation condition for
the random kernel functions in the Hardy space associated to A. In particular, this
will give the 0 — 1 law for a random sequence A to be interpolating for H>(D¢). In
the deterministic setting, a sequence (z,),eN On D4 is interpolating for H2 (DY) if the
map

d
f e DY) — (H - |z£,|2f<zn>) el?
neN

i=1

is surjective and bounded. This, in particular, is equivalent to asking that the Szego
Grammian associated to (z,),en be bounded above and below. Given a random
sequence A in D9, let

f(Dd) := {A is interpolating foer(]D)d)}.

Any H*®(D9)-interpolating sequence on D¢ is also H?(D¢)-interpolating, and the
converse does not hold, since H>(ID?) has not the Pick property (for an example of
a sequence which is H? (]DZ)-interpolating but not H*® (]D)z)-interpolating, see [4]).
Therefore, Z(D?) € Z(D9). We show that Z (D) has the same 0 — 1 law of W(D):

Theorem 1.5 Let A be a random sequence in D?. Then

Aty =0 I Tnene Np27 " =00
1 lf ZmeNd Nr%lzilml <0

Related questions about interpolation for function spaces on the unit ball in C¢ are
also considered. The authors in [11] studied the interpolating sequences in the Dirichlet
spaces over the unit disc and this serves as some of the motivation for the results in
the ball. Section 4, will generalize some theorems in [11] to the unit ball. Because the
generalization of the Dirichlet space is the Besov—Sobolev space, random interpolating
sequences in the Besov—Sobolev spaces Bf (By) are studied, where 0 < o < c0. In
[6], a characterization of interpolating sequences in the Besov—Sobolev spaces in the
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case of 0 < o < 1/2 was given. Because a characterization exists only in this range,
that is the case we will focus on in this paper.
Let By be the unit ball in C?. Let dz be Lebesgue measure on C? and let

dra(z) = (1 — |z|2)_d_1 dz

be the invariant measure on the ball. For an integer m > 0, and for 0 < o < oo,
l < p <o0,m+ o > d/p define the analytic Besov—Sobolev spaces B} (By) to
consist of those holomorphic functions f on the ball such that

m+o P e
(1—|z|2> £ (2) dkd(z)} < oo.

m—1 »
1/ s @) = :; 0 +de

Here f™ is the m'" order complex derivative of f. The spaces B} (By) are indepen-
dent of m and are Banach spaces. A Carleson measure for B)) (By) is a positive measure
defined on By such that the following Carleson embedding holds for f € By (By)

p P
~/IB(1 |f(Z)| dp < C’”L”f”B(p’(]Bd)'

Given o with 0 < o < 1/2 and a discrete set Z = {z;}{2, C By define the
associated measure

i(l—m)

Z is an interpolating sequence for B (B;) if the restriction map R defined by
Rf (zi) = f (z;) for z; € Z maps B (By) into and onto €2 (Z, j17).

Theorem 1.6 Given o with0 <o < 1/2 and

o]

uz=3 (1~ |Zj|2)20 Bz,

j=1

Then Z is an interpolating sequence for B (By) if and only if Z satisfies the weak
separation condition inf; +; (zi, z j) > 0and juz is a B By) Carleson measure.

Proof When0 < o < 1/2,this theorem is given by [6, Thm. 3]. Wheno = 1/2, since

1/ 2 (B4) has the complete Pick property, we obtain the theorem from [3, Thm. 1.1].
O

Namely, in contrast to the polydisc case, the deterministic setting for the interpolat-
ing sequences for the Besov—Sobolev space are well-understood and are characterized
by weak separation and a Carleson measure condition. Therefore, in order to find the
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0-1 Kolmogorov law for interpolating sequences for B, it suffices to find the cut-off
conditions on the detrministic radii for the associated sequence with randomly chosen
arguments to be weakly separated and to generate a Carleson measure almost surely.
This is the intent of the second part of our work. Random sequences in the unit ball
are constructed as follows. Let A(w) = {Aj} with A; = p;&;(w) where §; () is a
sequence of independent random variables, all uniformly distributed on the unit sphere
and p; € [0, 1) is a sequence of a priori fixed radii. There is an interesting thing about
the random interpolating sequences in the Besov—Sobolev spaces on the unit ball. As
we will see, for d > 2 a random sequence {},} is an interpolating sequence almost
surely if and only if ), (1 —|A,])8;, is a Carleson measure on BS (By) almost surely.
Moreover, the characterization for almost surely interpolating sequences is strictly
stronger that the characterization for almost surely weakly separated sequences.
For any m € N, let

In2 In2

where f is the Bergman metric on the unit ball B, in C¢. Let
Z(BS (By)) := {w : A(w) is an interpolating sequence forBy (By)}.

The following result is obtained regarding a 0-1 Komolgorov law for interpolating
sequences on the unit ball. We only work on the case of 0 < o0 < 1/2andd > 2. When

o = d/2, it is well-known that Bg/z (By) is the Hardy space. By [14, Thm. 3.3], we
know that

o0
P(Z(By"* (B))} = lifand only if Y 27"N2 < oo,
m=0
Whend =1and0 <o < 1/4,by (i) in [11, Thm. 1.5] we know that
o
P{Z(BY (D))} = 1 if and only if Z 27NN, < 00.
m=0
Whend =1and 1/4 <o < 1/2,by (ii) in [11, Thm. 1.5] we know that
o0
P{Z(BS (D))} = 1 if and only if Z 27"MN2 < 0.
m=0
In our case, we have the following:

Theorem 1.7 Let0 <o < 1/2andd > 2. Then
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W I

o0
Z 2720’)71Nm < 00,

m=0
then P{T(BS (By))} = 1;
(i) If
oo
Z 272(TmNm = 00,
m=0

then P{T(BS (B4))} = 0.

Section 2 will construct the necessary technical tools for the proof of our main
results. Section 3 provides the proof of Theorems 1.3 and 1.5, and characterizes random
interpolating sequences for H* (D9) for some specific choice of the radii in (7,),eN-
Finally, Sect. 4 proves Theorem 1.7 and studies uniform separation on the unit ball.

We would like to thank Nikolaos Chalmoukis for some useful comments that led
to the final version of Theorem 1.3. We would also like to thank the referees for their
valuable suggestions.

2 Preliminary Results
This section contains relatively general results that are going to be used throughout

the proof of Theorem 1.3. Deterministic and probabilistic tools will be separately
analyzed.

2.1 Deterministic Tools
Double sums are extensively used throughout this work. In particular the fact that, for
a certain class of double sums involving exponential decay, the terms of the sums on

their diagonals contain all the necessary information to bound the whole sums:

Lemma 2.1 Let s > 1, and let (Ap)menN and (Bi)ken be two sequences of positive
numbers. Then there exists some constant C = Cy > 0 such that

1/s
Am By 141/5n—m) 1+1/5—k/
Z (m + 2k)1/s =G (maX{ZAm 2 mS’ZBk 27

m,keN meN keN
+y° AmB,l/Sz—’"/S> .
meN
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174 A.Dayan et al.

Proof First observe that

Y Y
k\1/s ~ ky\1/
m,keN(2m+2) ’ @m+257
1/s
Am B 1/sn—m/s
+ Z Qm + 2k)l/s + Z AmBn "2 :
k<m meN
Let’s first estimate the sum for k > m:
1/s
Am B,
m/s l/Y —k/s
Z(2m+2k)1/v—CZA 2 ZB
m=1
=C, Zz—k/(s+1) Z Amz—m/(s+1)Bil/ikz—(m-s—k)/(s(s-ﬁ—l))
k=1 m=1

00 00 s/(s+1)
< CS szk/(_H»]) <Z Arln‘f‘l/szm/s)
k=1 m=1
00 1/(s+1)

m=1

1
< Cy max { Z AIH/A —m/s, Z B,:Jr‘ Z_k/s} ,

meN keN

thanks to Holder’s inequality with dual exponents 1 + 1/s and s 4+ 1. The sum for
m > k is estimated analogously. This concludes the proof. O

Our takeaway from Lemma 2.1 is the following
Corollary2.2 Lets > 1, d > 1 and (Ny,),,cne be a sequence of positive numbers so

that
> N2 < oo, 2.1)

meNd

Then

1/s
Yo N YN <]_[ ﬁ) < o0. 2.2)

meNd keNd
Proof The proof is by induction on d:

d =1 apply Lemma 2.1to A, = B, = Ny,;
d > 2 suppose that (2.2) is true for d — 1, and let (N,;;,),,cne be a sequence of positive
numbers. Then, by applying Lemma 2.1,

d ! 1/s
3o N YN (H m)

meNd keNd i=1
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1/s
< )1/5 N(m1 m)N(k k)

Z ll Z m k1)1
ki 4 i e (2m1 4 2kiyl/s

'kEN‘i 1i=1
> MGy
<
- ,keNd 1i=1 Zk +2m[

% max Z ]\,H-l/Y ml/s Z N1+1/V —my/s

(mlvm) (my,k)
mleN m1€N
1/s 1
. S p—mi/s
Ay l_[ (2m, + 2k ) 2 Non Ny, 1y
i keNd—1 i=1 mieN

= 2 H(zk +2m,> 2 Nomm2 ™"

i, keNd—1 i=1 m1eN
/s 1+1/
N ~s2_m1/s
iy H (2k +2m,) 2 (m1.k)
i, keNd—1 i=1 m1eN

1/s
+ Z l_[ (2’"1 +2k ) Z ]\i(m1 m)Nl/s . y-mi/s

i, keNd—1 i=1 m1eN

=hLh+h+1,

where the index m in N9 is written as (m1, /i), with m in N and /% in N9~ 1,
Observe that, thanks to (2.1), I1 and /> converge. As for I3, we can change the
order of summation and apply the case d — 1. Which yields

3w 2 ([Tt)

meNd keNd i=1

d—1 1/s
1
mi/s -
<22 > Nowaw (mlk)l_[<2rhi+212i>
m1eN i, keNd—1
mi/s 1+1/S —|ml|/s
<22 ) Nowm?
mieN meNd-1
= Z Ny Hsp=mlls < o0,
meNd

O
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2.2 Random Tools

Fairly elementary facts from probability theory are exploited in the proofs. All the
events and the random variables that are considered will be defined on the same
probability space (2, A, P). For a comprehensive treatment of the probabilistic results
used, see [8].

The first tool is the Borel-Cantelli Lemma. Recall that, given a sequence (A;),eN
of events in A, then

lirrrllg\lllp A, = ﬂ U A,

keNn>k

denotes the event made of those w in 2 that belong to infinitely many of the events in
(An)nen.

Theorem 2.3 (Borel-Cantelli Lemma) Let (A,),eN be a sequence of events in A.
Then

@) If Y, nP(An) < o0, then P (lim SUP,eN A,,) =0
(i) If Y ,enP(Ay) = oo and the events in (Ap)nen are independent, then
P (lim sup,, ey Ay) = 1.

Given a random variable X on €2, its mean value (or expectation) will be denoted
by

E(X) := / X dP.
Q

In particular, if E(X) < oo, then P{X = oo} = 0.
Another classic tool from probability that will be used is Jensen’s Inequality:

Theorem 2.4 (Jensen’s Inequality) Let X be a real-valued random variable on 2, and
let ¢ : R — R be a convex function. Then

E(¢ (X)) = ¢ (E(X)).
In particular, since
t € (0,00) >t/
is concave, for any s > 1, this gives
E (xl/‘*') <EX)', 2.3)
for any positive random variable X on €2, by applying Jensen’s inequality to ¢ (1) =

_41/s
/7.
We can now prove Lemma 2.5, a tool for the proofs of Theorem 1.3:
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Lemma 2.5 Let (X,i’j)n,jeN be a sequence of positive random variables, for any i =
1,...,d. Set

d

N . : i N i
mn, j) = min X, ;. p(n, j) = HX,
1=
Assume that
1/d

Z(ZE(p(k,j») < o0,
jeN \keN

Then

sup ) m(n, )

neN jn
is bounded almost surely.

Proof Since, for any n # j in N,

1/d
m@n, j) < pon. NV < | D ple )| .
k#j
we have
1/d
sup » m(n, j) < 3| D plk, )
nelN o jeN \k#j
Thus

1/d 1/d
Elsup) mn, j)| <> E (Zp(k,p) sZ(ZE(p(kJ))) :

neNj, jeN keN jeN \keN

3 Random Sequences in the Polydisc

This section is devoted to the proofs of Theorems 1.3 and 1.5. The events U (DY),
Wwm?), c(H*(D?)) and Z(D?) will be analyzed separately.
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178 A.Dayan et al.

3.1 Weak Separation

For weak separation in the polydisc, it turns out that Cochran’s argument in [12,
Thm. 2] extends to the higher dimensional case:

Proof of Theorem 1.3, (i) For the sake of readability, we will adapt Cochran’s proof
only to the case d = 2: the proof will lift appropriately to any d > 1. Assume first
that }°,,cpe N227™! = 00 and let / be in N. Define

A= Jlo O, dn) <5-27)
r#n

as the set of those w in 2 such that there exists a pair of distinct indices n and r so that
the Gleason distance between A, (w) and A, (w) is controlled by, roughly, 2!, Since
W) (ien Aus it suffices to show that P(A;) = 1 for any / in N.

For any m in N2, partition ,, into 2%/ “rectangles” of the form

1 ri ; 1 T
2 2 ! ! _ 1
{(z,z)eD |2mi1+2m,-+151_|zl|<2m,~1+2mf+z}’ ri=1,...,2

and observe that at least one of these rectangles, say R,,, must contain at least M,,, :=
Ny /2% points of A. Let

Bn:=J {,\, € R hn € Ry, 16} — 01| <727 m+D 192 _ 92 < 7 -2*('"2“)}.
r#n

Since

lim sup B;, € A
m

and the events B, are independent, by the Borel-Cantelli Lemma, Theorem 2.3, it
suffices to show that )~ 2 P(B,) = oo.

In order to estimate the probability of each B,, from below, we give an upper bound
for P(By,). If T is in T2, let S,,(t) be a“rectangle”in T2 centered at T with basis
2=(mi+D and height 2=+ If 7, = (% , ¢! ), then thanks to the independence of
(T)neN We have

My —1
P(B,) <P | {1 € T2 € TP\ Su(ti). ... ti, € S\ | Su(x))
j=1
- (1 N 2—(|m\+zz>) L= 3 ommn) (M semiran
- 2 2
MIVI
_ (1 _j .27(|m\+2l+1)) .
j=2
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If lim inf,,, P(B;;,) < 1, then P(B,,) is uniformly bounded away from O infinitely
many times, and ), 2 P(B,,) = oo trivially.
On the other hand, if lim;,|— o P(Bf,) = 1, then

My,

P(Bn) = 1-]] (1 iy .2—(|m|+21+1)>
j=2

~ —log 1_[ (1 —j- 2—(|m|+21+1))

j=2

I
|
=)
[0S}
—
|
.
N
3
+
N
*
N

> ¥ j .o ml+21+D)

2—|m 29—|m
N M?22 |m] N22 [m|

which is the general term of a divergent series.

To conclude the proof of Theorem 1.3, part (i), it suffices to show that a random
sequence A in D? is almost surely weakly separated whenever (1.7) holds. To do so,
let

Q= {,\, € Iy dn € I, 16) — 01| <7 -27™ |62 — 02| < 71-2_”’2}.
r#n

Then
P(Q) < <Nz”’>2"” < %N,%,T""',

and the Borel-Cantelli Lemma provides that, almost surely, any pair (A,, A,) in all
but finitely many“‘rectangles”/,, satisfies

0} — 60! > 727" or |02 — 0% > w272, (3.1)
The same argument applies for the right-shifted“rectangles”/;, of the form

3.2-m 3.~ (m+1)

|- < |-
<lzl < )

=27 < gl < 11— 2—<m2+“}
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and the up-shifted*“rectangles” I, of the form

3.Q—m 3. p—(ma+1)

1—27" <z < 1—270m+D 1 — Slol<1-—

This ensures that all but finitely many pairs (1,, A,-) in A so that both
Ay — Ayl =27
and
oy — A = 27"

have property (3.1). Therefore, see [12, Claim, p. 741] A is almost surely weakly
separated. O

3.2 Uniform Separation

While weak separation behaves essentially in the same way as the dimension d grows,
the sufficient condition in (1.8) for almost sure uniform separation picks up a depen-
dence on d. As will be shown, this is due to some estimates on the expected value of
quantities related to the (random) Gleason distances between the points in A.

It will also be explained how (1.8) can be improved for some choices of (7,),eN-
As a corollary, a cutoff condition for A to be almost surely H> (D9)-interpolating for
some types of random sequences in the polydisc will be given.

Let s4 be the Szego kernel on D?. Then the Hardy space H?(D?) is the reproducing
kernel Hilbert space H;,. Denote the normalized Szegd kernel by

‘ —1Z ) — |wi|?
Sa(z, w) ;zl—[\/(l Ilz | )(1_ [wi| )’
i=1

— Ziwi
and observe that, for any z and w in D9,

po(zw)? =1— min |8, whI. (3.2)

Given a random sequence A in D9 denote, for the sake of readability,
S'(n, j) = S1(hy,, A5)
and
Sa(n, j) = Sa(An, Xj).
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Thanks to (3.2), uniform separation can be achieved from weak separation and a
uniform bound on sums depending on the random sequences (S’ (12, j))n, jeN:

UumH =wmd)n supZ min |Sl(n NP <oot. (3.3)

neN I#” """"
Observe that each (S (n, J)n, jeN is a sequence of random variables on € which is
determined, together with A, by (7,),en. It is not surprlsmg then that the expectation

of |S%(n, j)|> depends, for any i, n and j, only on r;, and r

Lemma 3.1 Let A be a random sequence in D?. Then, for any n # j in N and for any

i=1,...,d,
(1 — (r;',)2> (1 - (r;)z)
. .
1= (rirf)

E(IS" (n, HIP) =
Proof Observe that!
|Si(n, ])|2 — (l _ (r;l)z) <l _ (r;)2> Z(r 1]((0’ 0}')
i i L i_pi
<1 o (rrll)2> <1 _ (V;)2> Z(rrz,r})k Z el(ZI—k)(Gn—Gj).
k=0

=0

2

Therefore, by making use of the independence of 6/ and 0;,
o
E(S' (n, HIP) = (1 - (r,;>2) (1 - (r})z) Yot
k=0
k . .
% Z E (ei<217k)9,;) E (ei(kuI)(-)é)
=0

= (1 — (r,g)Z) (1 — (r;‘.)z) >
k=0
(1 — (r,i)z) (1 — (r.;'.)z)

1= (rirt)?

! The reader should not confuse the index i = 0, . . ., dandi = +/—1!
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Remark 3.2 Let m and k be two multi-indices in N, and suppose that A,, and A j belong
to I,,, and I, respectively. Then, thanks to Lemma 3.1 and (1.6),

; 2 2 —(mi+ki) 1 1
E(S" (n, HI7) ~

2—mi 4 D—ki _ p—(mi+ki) = ok +2mi — ] = 2ki 4 pm;”
In particular, since St (n, j) and S"(n, j) are independent for any i # r, we have

d

E(ISa(n, NIH ~ [ ]

i=1

2ki 4 Qmi

Part (ii) of Theorem 1.3 can now be proved:

Proof of Theorem 1.3, (ii) Observe that

Z Nr’2127\m| < Z Nr}1+1/d27\m|/d,

meNd meNd

whenever N, < 21ml “and so under our assumption A is weakly separated, thanks to
Theorem 1.3, part (i). Therefore, thanks to (3.3), it suffices to show that the random
sequence (S;),eN given by

Sy = Z min 18" (n, j)I?
J#n

is bounded almost surely. Thanks to Lemma 2.5, it is enough to show that

1/d
3 (ZE (18400, j)|2)> < c0. (3.4)

jeN \neN

By regrouping the terms of the double sum in (3.4) with respect to the partition
(L) ena of D? and thanks to Remark 3.2 and (2.3) we get

> (ZE(|Sd<n,j>|2)>l/d

jeN \neN
1/d

S5 YRGS )

meNd A€l \keNd Ajel;

d | 1/d
meNd keNd  i=1

a1 \"
meNd keNd i=1
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Corollary 2.2, d = s, concludes the proof. O

Condition (1.8) is not sharp. Indeed, for some choices of (r;,), <N, we can show that
the 0 — 1 Kolmogorov law for H>® (D9)-interpolating sequences coincide with the one
for weak separation:

Proposition 3.3 Let d = 2 and (t,)nen be a sequence in (0, 1), and consider its
Cartesian product with itself

2
I'n ‘= (ti‘llv tnz)s n = (ng,ny) € N°.

Then the random sequence A associated with (rp),cn2 Is interpolating for H*® (ID)d)
almost surely if an only if (1.7) holds.

Proof If ), 2 N,%,Z"’"| = 00, then A is not weakly separated almost surely, and
in particular it is almost surely not interpolating. Thus it suffices to show that A is
H* (D¢)-interpolating provided that D men? N227Im < oo, which, by construction
of (ry),ene, it is equivalent to

Z Tn22_” < 00,

neN

where T, .= #{l e N | 1—-2"" < < 1 —2-(nthy, By Rudowicz’s Theorem,
[16], the random sequence T on ID given by

7, =1, neN,
is almost surely interpolating in D, where (6,),en is a sequence of i.i.d. random
variables defined on a probability space (€2, A, P) and distributed uniformly on the
unit circle. In particular, 7 has almost surely a sequence of so called P. Beurling
functions, that is, there exists an event Q2 so that P(Q’) = 1 and, for any w in &', there
exists a sequence of H* (D) functions (Fy, ,)nen such that

Fw,n(fj(a))) = Sn,j
SUPzep ZneN |Fwn (2)] < oo.

_ Let us consider now the product probability space (Q, A, P), where Q := Q x Q,
A is the product o-algebra of A with itself, and

P(A x B) =P(A)P(B), A,Bc A.
Then the random variables
Onyny Q— T?
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given by
Onyny (@1, @2) 1= (O, (@1), Opy (@2))

are uniformly distributed in T2 and independent. Thus we can think of the random
sequence A as

A’Vl],nz(wla W) = (rnleiGnl(wD’ rnzei0n2(w2))» (w1, w2) € Q
Let Q7 := Q' x Q' and define, for any n = (n1, n2) in N? and & = (w1, ») in Q"
the H*®(D?) function

Gon(z1,22) = Fuyny (21) Fanony(z2), (21, 22) € D%

Then (G4 ,),en2 s a set of Beurling functions for A(w), and in particular A(®) is
H (D)-interpolating for any @& in Q. Since P(Q”) = P(Q')? = 1, A is interpolating
for H® (D) almost surely. O

The argument in Proposition 3.3 can be easily extended to any d > 1 to show that,
whenever the sequence of radii (r,),en is the Cartesian product of d sequences in
[0, 1), then (1.7) encodes all random sequences that are almost surely interpolating
for H*® (]D)d). For a general choice of (r,,),en the following question remains open:

Question 1 q:wiIs any random sequence A in D¢ satisfying (1.7) uniformly separated?
Or else, does there exist a choice of (r,,),en so that the random sequence A obtained
is almost surely weakly separated but not uniformly separated?

3.3 Carleson Measures

The same idea that was used for random uniform separation works for the proof of
Theorem 1.3, part (iii), modulo some adaptations. Let Z = (z,),eN be a sequence in
D and consider the Szego Grammian

G := (Sa(zn, 2j))n, jeN

associated with the sequence Z. Therefore,
Theorem 3.4 The following are equivalent:

() wz is a Carleson measure for H>(D4);
(i) G:1? — 1% is bounded.

A proof of Theorem 3.4 can be found in [2, Thm. 9.5]. Moreover, a standard
operator theory argument gives that any sufficiently strong decay of the coefficients
of G outside its diagonal implies that G is bounded (above and below):
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Lemma3.5 Let A = (an,j)n,jeN: 12 — 12 be invertible and self adjoint. Suppose that
a;; = 1 foranyiinN, and that

ZZ lay ;1> = M? < 0. (3.5)

JENRn#j
Then A is bounded above and below.

Proof Such an A can be written as A = Id + H, where H is a Hilbert—Schmidt
operator. Let (y,),en be the sequence of eigenvalues of A, and let (x,),en be the
eigenvalues of H. Since H is a Hilbert—Schmidt operator, then

2
> lxal? < oo,

neN

and since A = Id + H we have that y, = 1 4 x,, for any n. Since A is invertible,
none of the y, are null. Moreover, being a self-adjoint infinite matrix, A is bounded
by sup,cn |y»| and bounded below by inf,cn |y,|. Since x, converges to 0, the two
quantities are bounded above and below, hence the result. O

Remark 3.6 In the above proof one uses only the fact that x, goes to 0, as n — oo.
Therefore the same conclusion holds if we assume H to be compact.

Let A be a random sequence in D9, Thanks to Lemma 3.5, to show that
P(C(H? (]D)d ))) = 1 it is enough to show that the random Grammian associated to

A has a strong decay outside its diagonal almost surely:

Proof of Theorem 1.3, (iii) It suffices to show that

Y E(Sa(n, HI) < oo. (3.6)

jeNn#j

Indeed, if (3.6) holds, then

D 1Satn, HIF < o0

jeNn#j

almost surely, and Lemma 3.5 would conclude the proof. By Remark 3.2 and by
regrouping the sum in (3.6) with respect to the partition (1,,),,cne of D9, one obtains

d
DY E(San, DY SC Y Nali (1_[ 2mi izk") '

JjeNn#j m,keNd i=1

Corollary 2.2, s = 1, concludes the proof. O
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3.4 Almost Orthogonal Random Grammians

Equation (3.5) is a rather strong condition for an infinite matrix A. Indeed, in addition
to implying that A is bounded, it says that A — Id is a Hilbert—Schmidt operator on
12, i.e., that for any choice of an orthonormal basis (e,),ey of 12

DA~ Idye|? < 0.

neN

If A = G is a Szeg6 Grammian associated to a sequence Z = (z,)neN in the
polydisc, it is natural to ask whether such an almost orthogonality condition on the
kernels at the points of Z translates to interpolation properties on the points of the
sequences:

Question 2 q:hs Letd > 2.1s a sequence Z in D? interpolating for H*® (D), provided
that its Szegd Grammian can be written as G = Id + H, where H is a Hilbert—Schmidt
operator on [2?

The case d = 1 of Question 2 has a positive answer. For any sequence Z in the unit
disc, let

Oy = 1_[ 0 (zn, Zj)
Jj#n

be the hyperbolic distance from z,, to the rest of the sequence. By the Carleson inter-
polation Theorem, Z is interpolating if and only if inf,cn 8, > 0. On the other hand,
[13], G — Id is a Hilbert—Schmidt operator if and only if

21—8n<oo,

neN

giving that Z is interpolating rather comfortably.

Another motivation for answering Question 2 comes from random interpolating
sequences for H®(ID?). We proved in Sect. 3.3 that the random Grammian associated
to arandom sequence A in the polydisc differs from the identity by a Hilbert—Schmidt
operator, provided that the sum in (1.7) converges. Conversely, if Z is not weakly
separated, then infinitely many entries outside the diagonal of its Szeg6 Grammian are
arbitrarily close to 1 in absolute value, hence G — Id is not Hilbert—Schmidt. Namely,

if ZmeNd Nr%lz_lml <0

P(G — Id is Hilbert-Schmidt) =
( "= o it > mend N227IM = oo,

(3.7)

In particular, a positive answer to Question 2 would imply that the event Z (DY)
follows the same 0— 1 law of (3.7), giving a 0— 1 law for random H* (D9)-interpolating
sequences.

Moreover, (3.7) helps in understanding interpolating sequences for H>(ID%), and it
implies Theorem 1.5. Indeed, any invertible Szegé Grammian (S4(zy, 2j))n, jen that

@ Springer



Random Interpolating Sequences in the Polydisc... 187

can be written as G = Id + H, where H is Hilbert—Schmidt, is bounded above and
below, thanks to Lemma 3.5, which in turn is equivalent to (z,, ), en being interpolating
for H>(D?). On the other hand, as pointed out above, if Z is not weakly separated then
infinitely many pairs of normalized Szego kernels at the points of Z are at an angle
arbitrarily close to 0, and hence G is not bounded below. Thus

. 2A—
pA@y =} 1 T M2 <00
0 if Y ,ene N327M =00

4 Random Separation in the Unit Ball

This section is devoted to the proof of Theorem 1.7. In addition, we will study uniform
separation on the unit ball. Compared with the polydisc, we use the spherical geometry
of the unit ball more heavily rather than the Euclidean geometry of the Hardy spaces
involved. So, the techniques used in this section are different from the ones used in
the previous sections.

Recall that A(w) = {A;} with 1; = p;&;(w) where &; () is a sequence of inde-
pendent random variables, all uniformly distributed on the unit sphere and p; € [0, 1)
is a sequence of a priori fixed radii. Depending on the distribution conditions on {p;} as
will be discussed below, the probability that A () is interpolating for Besov—Sobolev
spaces Bg (B4), where 0 < o < 1/2 is studied.

The Bergman tree 7, associated to the ball B; with the structure constants 1 and
In(2)/2 is needed in the analysis, so we present here some details. More information
can be found in [5, p. 17]. Let p be the pseudo-hyperbolic distance on the unit ball,
thus p(z, w) = |¢;(w)| where ¢, (w) is the Mobius transform. The Bergman metric
on the unit ball B, in C? is given by

14+ p(z, w)

1
Pl w) =3 log "=

Further, for any r > 0, we define
U =03Bp(0,r) ={ze€By:(0,2) =r}.

For any N € N, according to [5, Lem. 2.6] and the fact that U/ is a compact set,

there is a positive integer J, a set of points {zﬁy}jj.:1 and a set of subsets {Q?’ =1 of

Uy In(2)/2 such that

J
N
Uvne2 =] 0F.
j=1
QlNﬁQi-VzQJ when i # j,
UNm@e)2 N Bg (Zj»v, 1) C ij C Unmey2 N Bg (ij, 2) .
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Let

NlIn2 N+1)In2
<B0,g < WEDIN2 e Qﬁ.’},

J

KN:{ZEIB”: >

where Py z denotes the radial projection of z onto the sphere Uy 1n(2)/2. Define a tree
structure on the collection of sets

7‘=[KN]
d 7 IN>0,j>1

by declaring that KiN +1is a child of K ;V , written KI.N sk jN , if the projection

Py (zN+l) of zV*! onto the sphere U 1n(2),2 lies in Q;V. For any K]N € 14, we

i i

define d(K]N) by
d(KY)=N.
Given a non-negative function z on N, we say % is summable if

2:MN)<+mu

NeN

For 0 > 0, a measure pu satisfies the strengthened simple condition if there is a
summable function % (-) such that

220 % (@) < Ch(d (@), « €T,

where

Pue@= Y p@).

a'>a,a' €Ty
The following lemma follows from [6, Lem. 32 and Thm. 23].

Lemma4.1 Let o > 0. If u satisfies the strengthened simple condition, then | is a
BS (By)-Carleson measure on By.

The following Lemma can be found in [8].

Lemma 4.2 If X is a binomial random variable with parameter p, N, then for every
s=0,1,2,..,

P(X =y) . P(X =) 1
m — = 11m — = —
N (PN) Nooe (PN st

pN -0 pN -0
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Define
C(B3 (Bg)) := {w : uy is a Carleson measure forBy (By)}.

Theorem 4.3 Let % >0 >0andd > 2. Then
ON/i

e¢]

Z 2720MNL < 00,

m=0

then P{C(BS (By))} = 1.
(i) If

00
Z 2—2crmNm = oo,

m=0
then P{C(Bg Bg)} =0.
Proof First, it will be shown that if
o0
Z 2—20mNm < o0,
m=0

then
i 2 20
HA(w) = Z (1 - ”\j| ) 82,
j=1

is a Carleson measure almost surely.
Since d/2 > o > 0, there is a constant € such that d > 20 + €. Next, it will be
shown that

Sup 2(6+20’)d(0{) Z (1 _ |)\«j|2)20

aely rjEB>a
is bounded almost surely, that is to say

220‘(1(05)1*“((1) — 220‘(1(0{) Z (1 _ |)\']|2)20' 5 2—6d(0{)’
Ajeﬁza

which implies 114 () is a Carleson measure almost surely by Lemma 4.1. For any «,
let

Xmo=#Aj e M) :1j € B>a,d(B) =m].
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By [5, Lem. 2.8], we have

U B8] =cna2 @ (z,m0 < B0, 2) < (m+ DO},
B=a.d(B)=m

thus X,, o follows the binomial distribution B(cm,O,Z_d(“)d,

¢ < 00. Then

Np) and sup,, , Cm.a =

(o)
2(€+20’)d((¥) Z (1 _ |)"j|2)20 — 2(€+20’)d(0() Z Z (1 _ |)"j|2)20

rjEB>a m=d(a) Ajef>a,d(B)=m

o0
52(e+20)d(a) Z 2_20mxm,a A Soz‘
m=d ()

Choose y € N such that —20y 4+ 20 4+ 2¢ < —d. Let

d(e)(1+y)—1 00
Y, = 2(€+20)d(a) Z 2720me’a and R, = 2(€+20)d(a) Z 272amxm’a.
m=d(«) m=d(x)(1+y)

For any constant A, observe that

IP’({w:SazA})gP({w:Yaz%})—HP’({w:Raz%}).

For any m and «, there is an open set S, o such that

U B CSmaClzomb < B0.2) < (m+1)6)
B=a,d(B)=m

and
1Sm.al = c279@4 (2 mo < B(0, 2) < (m + 1)6}].
Let
Xmo =#Aj 12 € A®) N Sl
then )N(m,a follows the binomial distribution B(c2’d(°‘)d, Np)and X, o < )N(m,a. Let
d@)(1+y)-1
Voo = 7(e+20)d(@) Z 2—20m)'2m’0“

m=d ()
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then f’m,a follows the binomial distribution

d(@)(1+y)—1
B CZ_d(a)d, 2(6+20)d(a) Z 2—20m N,
m=d ()

Then, by Lemma 4.2, it follows that
_ d@)(14y)=1 A_ A/2
o [02 d(@d(e+20)d(@) Zm(gl((;)ry) 2—20m Nm]
Plo:¥u> )5
(A/2)!

[czfd(a)d2(6+2a)d(a)i|A/2

A

(A/2)!

Since € 4+ 20 — d < 0, choose A big enough such that (A/2)(e + 20 —d) < —2d.

Thus
]P’({a) 1Yy > g}) < P({w Yy > %}) < 7—2d(@)d

On the other hand,

o
E(Ra) — 2(6+20’)d(a’) Z 2—20’mE(mea)
m=d(c)(1+y)
o

— 2(e+20)d(oz) Z 2—20mcm’a2—d(a)de
m=d(a)(1+y)
00

< o (e+20—d)d(a) Z 2720mNm <C,
m=d(a)(1+y)

for some constant C. Without loss of generality, suppose A/4 > C. Then

P({w Ry > %}) =IP’<{a) Ry — E(Ry) > g —E(Ra)}>
< P({w Ry — E(Ry)| = %})

o
< Var(Ry) < 72(e+20)d () Z 274am27d(a)de

m=d(a)(1+y)
00

5 22(6+20)d(o¢)2—d(a)d Z 2—20m
m=d(a)(1+y)

@ Springer



192 A.Dayan et al.

5 22(e+2<7)d(oz)zfd(ot)d272ad(a)(1+y)

5 Z—d(a)dzd(a)(—20y+20+26) S 2—d(a)2d.

Thus,
o0
Y Pw:Saz=AD=)Y Y  P{w:S., > A}
aeTy k=0 aeTy,d(a)=k
o o0
5 Z Z 2—d(oz)2d SJ Zz—kd < o0,
k=0 aeTy.d(o)=k k=0

which means that S, is bounded almost surely. Thus f1A () is a Carleson measure

almost surely.
On the other hand, if

00
Z 2—20mNm = 00
m=0

then

o]

o0
/ dun =32 (1- |M\2)20 2D 27" N =
By m=0

j=1
Thus,
P{C(B] (B4))} = 0.

O
For a sequence {z;}, if inf;+; B (z,-, zj) > 0, call {z;} weakly separated. On the
unit ball, denote

W(By) = {w: A(w) is weakly separated in B;}.

We need to point out that the weak separation with respect to the Bergman metric is
equivalent to the weak separation with respect to the pseudo-hyperbolic metric. Thus,
we have the following lemma.

Lemma4.4 ([14, Lem. 3.5]) Let A(w) = {kj} be a random sequence. Then the
following statements hold.

@ If
Z 2—a’m N2
then PPW(By)} = 1.
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@) If
> 27ImNY = o0,
m

then PPWV(B,)} = 0.

By Theorem 1.6, a sequence is an interpolating sequence if and only if it is weakly
separated and the corresponding measure is a Carleson measure. The proof of Theorem
1.7 is now given.

Proof of Theorem 1.7 Since 1/2 > o > 0and d > 2, then —d + 40 < 0. If

o0
Z 272MNL < 00,

m=0
then
00
I 242 < oo,
m=0
which implies
00 00 00
Z z—dmNr%l _ Z 2(_d+40)m2_40le421 < Z 2—4amNr%l < oo.
m=0 m=0 m=0

By Theorem 1.6 and Lemma 4.4, the conclusion follows.
On the other hand, if Y 0°_,272°"N,, = oo, then

P{C(B7 Ba))} = 0.
By Theorem 1.6 again, it follows that
P{Z(B7 Ba))} = 0.

O

Finally, the uniformly separated sequences on the unit ball when d > 2 are studied.
It is well known that

(1= ) (1 = )

11— (w, 2)|?

1— g (w)|* =

A sequence {z;} is uniformly separated if infy ]_[j#k p(zj,zk) > 0, where p is the
pseudo-hyperbolic distance on the unit ball. Let

UMBy) = {w : A(w) is uniformly separated inB,}.
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An important lemma in analysis, see [15, Prop. 1.4.10], is needed.

Lemma4.5 Forz € By and c € R, let
1= | L o)
(z) = ————do (?).
‘ omy 11— (2, 0)|4F¢
When ¢ < 0, then I; is bounded in B;. When ¢ > 0, then

LG) ~ (1 - |z|2)7°‘.

Finally,

Ip(z) = 1o .
0() g1_|Z|2

Proposition 4.6 Let A(w) = {Aj} be a random sequence. Then the following state-

ments hold.

(1) Ifd =2 and

o0
D Nw2m+ 1) < o0,

m=0

then P{UB,)) = 1.
(i) Ifd > 3 and

o0
Z Ny2™" < o0,
m=0

then PUMB,)} = 1.
(iii) Ifd > 3 and

o0
Z N2™™" = oo,
m=0

then P{U(By)} = 0.
Proof First, infy [] itk p(Aj, )% > 0 almost surely if and only if

supZ—logp(Aj, Ak)z < Q.
Kk

Since —logx > 1 — x when 1 > x > 0, it follows that

—logp(Aj, M) =1 — p(hj, he)?.
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Thus infy ]_[j#k p(Aj, )% > 0 almost surely implies
sup ) 1 — p(kj, a)*] < 00
J#k

almost surely.
On the other hand, if inf;Lj 2 P(Aj, Ar) > 0, then

—log p(hj, A)? S 1—p(hj, a)?

Thus, in this case,

sup Y [1— p(hj, k)] < o0
ko j#k

almost surely implies

inf A h)r >0
in [Tet. 207 >

Jj#k
almost surely.
For any constant ¢, consider
o 1 oo
Z]P w:Z[l—p(Aj,)\k)z]>c S—Z
k=1 Jj#k Ck:l
1 o0
= - Y Y B[l - 0 2]
€ =1 2k
1S (1—12;1%) (1 = [2xl?)
- ZZE[ 2 ]
c,{_1 : 1= Gt 27)]
J#k
(=121 (1= wl?
Y| / : (A_ 8 4 6o 60
k 1 j#k By J OBy | - ]>|
1
< ;ZZ(I—MJF) (1= 1)
k=1 j#k

1
do(E))do (&),
X/md /md T (s Tl g2 a0 E14o 60

Next, consider two cases.
If d = 2, then by Lemma 4.5 we have

1
do (&) < log
/f;le 1T — (|2 | Ak |k, &) |d+2—d j 1

E[Z[l = 00y 1]
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Substituting this estimate into the one above yields that

ZIP’ w: Z[l —p(j, ) > ¢

k=1 j#k

1 o0 o 1
<=3 1—,\~2)(1—x2)1 .
~ . ' ( | j| [Ak] Og1_|)\j|2|)‘-k|2

o0 o0
1
Jy B
S0 Y NiNw2 2 log () + 1]
=0 m=0

1
—lA— —lh—m
<2 NiN;,,27°2 m[log (w) + 1] 5 E NN 27 27"+ 1)

I>m I=m

x-
I
—

<
I
N

o0 o0 oo 2
=Y Nu2"Y N2+ < (Z N27ha+ 1)) .
m=0

I=m =0

Thus

o0
ZN;TZ(H- 1) < 00

m=0

implies that

sup Y [1— p(hj, k)] < o0
ko j#k

almost surely. Lemma 4.4 also yields that
o
dON2TU+1) <00
m=0
implies that A (w) is weakly separated almost surely, thus
o
dON2T I+ 1) <00
m=0

implies that A (w) is uniformly separated almost surely.
If d > 3, by Lemma 4.5, then

1
do(&;) < Cy < o0.
/amad 11— (|2l Ak l&g, &)1dT2—d ">/
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Then

D= p(j k)l > ¢
J#k

9]

i (1) (1= )

=1 /:1

>~

2

o0
D N2

j=1

By a similar argument for the case d = 2,

o0
Z N2~ ™
j=1

implies that A (w) is separated almost surely. Conversely, if

00
Z Nu2™" =00
j=1

then
oo
> (1 - |)~j|2) =00
j=1

Thus, for any zx, we have

(1= DA =13
—logp(hjs A2 = Y 1= p(hj, )2 = :
Z 0g p(Aj, Ax) —Z Py he) Z 11— (&, Ai)l?
Jj#k itk I

Ik %)

giving the conclusion that

P{UB,)} = 0.
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