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Abstract
We study almost surely separating and interpolating properties of random sequences in
the polydisc and the unit ball. In the unit ball, we obtain the 0–1 Komolgorov law for a
sequence to be interpolating almost surely for all the Besov–Sobolev spaces Bσ

2 (Bd),
in the range 0 < σ ≤ 1/2. For those spaces, such interpolating sequences coincide
with interpolating sequences for their multiplier algebras, thanks to the Pick property.
This is not the case for the Hardy space H2(Dd) and its multiplier algebra H∞(Dd):
in the polydisc, we obtain a sufficient and a necessary condition for a sequence to be
H∞(Dd)-interpolating almost surely. Those two conditions do not coincide, due to the
fact that the deterministic starting point is less descriptive of interpolating sequences
than its counterpart for the unit ball. On the other hand, we give the 0 − 1 law for
random interpolating sequences for H2(Dd).
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1 Introduction

A sequence Z = (zn)n∈N in the unit disc D is interpolating for H∞ if, given any
bounded sequence (wn)n∈N in C there exists a bounded analytic function f on D so
that f (zn) = wn , for anyn inN. The celebratedworkofCarleson, [9, 10], characterized
interpolating sequences in term of separation properties. To be precise, let

bτ (z) := τ − z

1 − τ z
, z ∈ D,

be the involutive Blaschke factor at τ in D, and let, for any z and w in D,

ρ(z, w) := |bz(w)|

be the pseudo-hyperbolic distance in D. Z is

• weakly separated if

inf
n �=k

ρ(zn, zk) > 0;

• uniformly separated if

inf
n∈N

∏

k �=n

ρ(zn, zk) > 0.

Carleson proved in [9] that Z is interpolating if and only if it is uniformly separated.
Later on, [10], he characterized uniform separation in terms of a measure theoretic
condition and weak separation:

Theorem 1.1 (Carleson) A sequence Z in D is uniformly separated if and only if it is
weakly separated and the measure

μZ :=
∑

n∈N
(1 − |zn|2)δzn

is a Carleson measure for H2(D).

Throughout this note, a measure μ on a domain D will be a Carleson measure for
a reproducing kernel Hilbert space Hk of holomorphic functions on D if

‖ f ‖L2(D,μ) ≤ C‖ f ‖Hk , f ∈ Hk,

for some C > 0. Later sections will take D = D
d , the unit polydisc, or D = B

d , the
unit ball, respectively: the kernels that we are going to choose for such domains are
the Szegö kernel on the polydisc and the Besov–Sobolev kernels on the unit ball.
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Random Interpolating Sequences in the Polydisc... 167

In certain instances, the randomization of the conditions studied by Carleson
become more tractable and provide insight into the structure of interpolating
sequences. Cochran studied in [12] separation properties of random sequences. A
random sequence in the unit disc is defined as follows: let (θn)n∈N be a sequence of
independent random variables, all distributed uniformly in (0, 2π) and defined on the
same probability space (�,A,P). Then, for any choice of a deterministic sequence
of radii (rn)n∈N approaching 1 define

λn(ω) := rne
iθn(ω), ω ∈ �.

Considering the random sequence �(ω) = (λn(ω))n∈N, the 0-1 Kolmogorov law
yields that events such as

W := {� is weakly separated}
U := {� is uniformly separated}
C := {μ� is a Carleson measure forH2(D)}
I := {� is an interpolating sequence}

have probability zero or one, thanks to the independence of the arguments of the points
in �. Let

I j := {z ∈ D : 1 − 2− j ≤ |z| < 1 − 2−( j+1)}, j ∈ N, (1.1)

be the j th dyadic annulus of D, and let

N j := #� ∩ I j . (1.2)

All the randomness of the sequence is on the arguments of the points in �, and
therefore (N j ) j∈N is a deterministic sequence. Cochran proved in [12, Thm. 2] that
P(W) = 1 provided that ∑

j∈N
N 2

j 2
− j < ∞, (1.3)

and that P(W) = 0 whenever the sum in (1.3) diverges. Later on, Rudowicz showed
in [16] that (1.3) is a sufficient condition for μ� to be a Carleson measure for H2(D)

almost surely, and concluded, thanks to Theorem 1.1, that P(I) = 1 if and only if
(1.3) holds. In particular, condition (1.3) encodes all those random sequences so that
W , U and I all have probability one.

The goal of this paper is to study random interpolating sequences on the polydisc
and the d dimensional unit ball. A sequence Z = (zn)n∈N in D

d is interpolating for
H∞(Dd) if, given any bounded (wn)n∈N in C there exists a bounded holomorphic
function f on D

d so that f (zn) = wn , for all n. On the polydisc, the deterministic
starting point is the following (partial) analogue of the Carleson interpolation Theorem
for sequences in the polydisc [7]:

Theorem 1.2 (Berndtsson, Chang and Lin) Let Z = (zn)n∈N be a sequence in D
d ,

and let (a), (b) and (c) denote the following statements:
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(a)
inf
n∈N

∏

k �=n

ρG(zn, zk) > 0; (1.4)

(b) Z is interpolating for H∞(Dd);
(c) The measure

μZ :=
∑

n∈N

(
d∏

i=1

(1 − |zin|2)
)

δzn

is a Carleson measure for H2(Dd) and

inf
n �=k

ρG(zn, zk) > 0. (1.5)

Then (a) �⇒ (b) �⇒ (c), and none of the converse implications hold.

Conditions (1.4) and (1.5) are separation conditions, both stated in terms of the so
called Gleason distance on the polydisc:

ρG(w, z) := max
i=1,...d

ρ(zi , wi ), z, w ∈ D
d .

Throughout this note, (1.4) will refer to uniform separation on the polydisc, while
(1.5) defines a weakly separated sequence on the polydisc. Theorem 1.2 represents
one of the best known attempts to characterize H∞(Dd)-interpolating sequences on
the polydisc in terms of its hyperbolic geometry. One can find a characterization for
interpolating sequences for bounded analytic functions on the bi-disc in [1], stated in
terms of uniform separation conditions on an entire class of reproducing kernels on
D
2. The motivation for the first part of this note is to find out whether condition (a),

and (c) of Theorem 1.2 are equivalent at least almost surely. A negative answer would
imply that Theorem 1.2 is far from being a characterization. A positive answer would
give the 0-1 Kolmogorov law for H∞(Dd)-interpolating sequences in the polydisc
with random arguments. The construction of a random sequence � on the polydisc
follows the same outline as for the case of the unit disc. Let Td be the d-dimensional
torus in C

d , and let (θ1n , . . . , θdn )n∈N be a sequence of independent and indentically
distributed random variables taking values onTd , all distributed uniformly and defined
on the same probability space (�,A,P). Let (rn)n∈N be a sequence in [0, 1)d , and
define a random sequence � = (λn)n∈N in Dd as

λn(ω) =
(
r1n e

iθ1n (ω), . . . , rdn e
iθdn (ω)

)
, ω ∈ �.
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The events of interest are going to be

W(Dd) := {� is weakly separated inDd}
U(Dd) := {� is uniformly separated inDd}

C(H2(Dd)) := {μ� is a Carleson measure for H2(Dd)}
I(Dd) := {� is an interpolating sequence for H∞(Dd)}.

Our first aim is to give necessary conditions and sufficient conditions for � to be
interpolating for H∞(Dd) almost surely. This will be achieved by studying separately
the probability of the eventsW(Dd),U(Dd) and C(H2(Dd)), and by applying Theorem
1.2. Looking for separation conditions on (rn)n∈N that yield almost sure separation
properties for�, (1.1) and (1.2) are extended to the d dimensional case by considering

Im := {z ∈ D
d : 1 − 2−mi ≤ |zi | < 1 − 2−(mi+1), i = 1, . . . d} (1.6)

and

Nm = #� ∩ Im,

for any multi-index m = (m1, . . . ,md) in N
d . Throughout this note, |m| = m1 +

· · · + md will denote the length of m.
The first main result partially extends Cochran’s and Rudowicz’s works to the

polydisc:

Theorem 1.3 Let � be a random sequence in Dd . Then

(i) If ∑

m∈Nd

N 2
m2

−|m| < ∞ (1.7)

then P(W(Dd)) = 1. If the sum in (1.7) diverges, then P(W(Dd)) = 0.

(ii) If ∑

m∈Nd

N 1+1/d
m 2−|m|/d < ∞ (1.8)

then P(U(Dd)) = 1.

(iii) If (1.7) holds, then P(C(H2(Dd))) = 1.

Observe that the case d = 1 yields Rudowicz’s and Cochran’s characterization
of random interpolating sequences on the unit disc. In general, part (i) of the above
Theorem gives the 0-1 Komolgorov law for a sequence to be weakly separated. In part
(ii) and (iii), the result gives a sufficient condition for a sequence to be almost surely
uniformly separated and to generate a Carleson measure for the Hardy space in the
polydisc. In particular, thanks to Theorem 1.2, it is the case that the 0-1 Kolmogorov
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law for almost surely interpolating sequences for H∞(Dd) lies somewhere in between
(1.8) and (1.7):

Corollary 1.4 Let � be a random sequence on D
d . Then

(i) If (1.8) holds, then P(I(Dd)) = 1;
(ii) If the sum in (1.7) diverges, then P(I(Dd)) = 0.

Proposition 3.3 will give an example of a class of random sequences for which the
0-1 Kolmogorov law for almost surely H∞(Dd)-interpolating sequences coincides
with the sum in (1.7). Whether this is the case for a general choice of the radii (rn)n∈N
remains, for us, open. Nevertheless, we will observe in Sect. 3.4 how (1.7) implies
that the Szegö Grammian for a random sequence in the polydisc differs from the
identity only by a Hilbert–Schmidt operator, a rather strong separation condition for
the random kernel functions in the Hardy space associated to �. In particular, this
will give the 0 − 1 law for a random sequence � to be interpolating for H2(Dd). In
the deterministic setting, a sequence (zn)n∈N on Dd is interpolating for H2(Dd) if the
map

f ∈ H2(Dd) 
→
(

d∏

i=1

√
1 − |zin|2 f (zn)

)

n∈N
∈ l2

is surjective and bounded. This, in particular, is equivalent to asking that the Szegö
Grammian associated to (zn)n∈N be bounded above and below. Given a random
sequence � in Dd , let

Ĩ(Dd) := {� is interpolating forH2(Dd)}.

Any H∞(Dd)-interpolating sequence on D
d is also H2(Dd)-interpolating, and the

converse does not hold, since H2(Dd) has not the Pick property (for an example of
a sequence which is H2(D2)-interpolating but not H∞(D2)-interpolating, see [4]).
Therefore, I(Dd) ⊆ Ĩ(Dd). We show that Ĩ(Dd) has the same 0 − 1 law of W(Dd):

Theorem 1.5 Let � be a random sequence in Dd . Then

P(Ĩ(Dd)) =
{
0 if

∑
m∈Nd N 2

m2
−|m| = ∞

1 if
∑

m∈Nd N 2
m2

−|m| < ∞ .

Related questions about interpolation for function spaces on the unit ball in Cd are
also considered. The authors in [11] studied the interpolating sequences in theDirichlet
spaces over the unit disc and this serves as some of the motivation for the results in
the ball. Section 4, will generalize some theorems in [11] to the unit ball. Because the
generalization of theDirichlet space is theBesov–Sobolev space, random interpolating
sequences in the Besov–Sobolev spaces Bσ

2 (Bd) are studied, where 0 < σ < ∞. In
[6], a characterization of interpolating sequences in the Besov–Sobolev spaces in the
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case of 0 < σ ≤ 1/2 was given. Because a characterization exists only in this range,
that is the case we will focus on in this paper.

Let Bd be the unit ball in Cd . Let dz be Lebesgue measure on C
d and let

dλd(z) =
(
1 − |z|2

)−d−1
dz

be the invariant measure on the ball. For an integer m ≥ 0, and for 0 < σ < ∞,
1 < p < ∞, m + σ > d/p define the analytic Besov–Sobolev spaces Bσ

p (Bd) to
consist of those holomorphic functions f on the ball such that

‖ f ‖p
Bσ
p (Bd )

=
{
m−1∑

k=0

∣∣∣ f (k)(0)
∣∣∣
p +

∫

Bd

∣∣∣∣
(
1 − |z|2

)m+σ

f (m)(z)

∣∣∣∣
p

dλd(z)

}1/p

< ∞.

Here f (m) is the mth order complex derivative of f . The spaces Bσ
p (Bd) are indepen-

dent ofm and areBanach spaces.ACarlesonmeasure for Bσ
p (Bd) is a positivemeasure

defined on Bd such that the following Carleson embedding holds for f ∈ Bσ
p (Bd)

∫

Bd

| f (z)|pdμ ≤ Cμ‖ f ‖p
Bσ
p (Bd )

.

Given σ with 0 < σ ≤ 1/2 and a discrete set Z = {zi }∞i=1 ⊂ Bd define the
associated measure

μZ =
∞∑

j=1

(
1 − ∣∣z j

∣∣2
)2σ

δz j .

Z is an interpolating sequence for Bσ
2 (Bd) if the restriction map R defined by

R f (zi ) = f (zi ) for zi ∈ Z maps Bσ
2 (Bd) into and onto �2 (Z , μZ ).

Theorem 1.6 Given σ with 0 < σ ≤ 1/2 and

μZ =
∞∑

j=1

(
1 − ∣∣z j

∣∣2
)2σ

δz j .

Then Z is an interpolating sequence for Bσ
2 (Bd) if and only if Z satisfies the weak

separation condition inf i �= j β
(
zi , z j

)
> 0 and μZ is a Bσ

2 (Bd) Carleson measure.

Proof When 0 < σ < 1/2, this theorem is given by [6, Thm. 3].When σ = 1/2, since
B1/2
2 (Bd) has the complete Pick property, we obtain the theorem from [3, Thm. 1.1].

��
Namely, in contrast to the polydisc case, the deterministic setting for the interpolat-

ing sequences for the Besov–Sobolev space are well-understood and are characterized
by weak separation and a Carleson measure condition. Therefore, in order to find the
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0-1 Kolmogorov law for interpolating sequences for Bσ
2 , it suffices to find the cut-off

conditions on the detrministic radii for the associated sequence with randomly chosen
arguments to be weakly separated and to generate a Carleson measure almost surely.
This is the intent of the second part of our work. Random sequences in the unit ball
are constructed as follows. Let �(ω) = {

λ j
}
with λ j = ρ jξ j (ω) where ξ j (ω) is a

sequence of independent random variables, all uniformly distributed on the unit sphere
and ρ j ∈ [0, 1) is a sequence of a priori fixed radii. There is an interesting thing about
the random interpolating sequences in the Besov–Sobolev spaces on the unit ball. As
we will see, for d ≥ 2 a random sequence {λn} is an interpolating sequence almost
surely if and only if

∑
n(1−|λn|)δλn is a Carleson measure on Bσ

2 (Bd) almost surely.
Moreover, the characterization for almost surely interpolating sequences is strictly
stronger that the characterization for almost surely weakly separated sequences.

For any m ∈ N, let

Nm = #

{
λ j ∈ �(ω) : m ln 2

2
≤ β(0, λ j ) < (m + 1)

ln 2

2

}
,

where β is the Bergman metric on the unit ball Bd in Cd . Let

I(Bσ
2 (Bd)) := {ω : �(ω) is an interpolating sequence forBσ

2 (Bd)}.

The following result is obtained regarding a 0-1 Komolgorov law for interpolating
sequences on the unit ball.We onlywork on the case of 0 < σ ≤ 1/2 and d ≥ 2.When
σ = d/2, it is well-known that Bd/2

2 (Bd) is the Hardy space. By [14, Thm. 3.3], we
know that

P{I(Bd/2
2 (Bd))} = 1 if and only if

∞∑

m=0

2−mN 2
m < ∞.

When d = 1 and 0 < σ ≤ 1/4, by (i) in [11, Thm. 1.5] we know that

P{I(Bσ
2 (D))} = 1 if and only if

∞∑

m=0

2−2σmNm < ∞.

When d = 1 and 1/4 < σ < 1/2, by (ii) in [11, Thm. 1.5] we know that

P{I(Bσ
2 (D))} = 1 if and only if

∞∑

m=0

2−mN 2
m < ∞.

In our case, we have the following:

Theorem 1.7 Let 0 < σ ≤ 1/2 and d ≥ 2. Then
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(i) If

∞∑

m=0

2−2σmNm < ∞,

then P{I(Bσ
2 (Bd))} = 1;

(ii) If

∞∑

m=0

2−2σmNm = ∞,

then P{I(Bσ
2 (Bd))} = 0.

Section 2 will construct the necessary technical tools for the proof of our main
results. Section 3 provides the proof ofTheorems1.3 and 1.5, and characterizes random
interpolating sequences for H∞(Dd) for some specific choice of the radii in (rn)n∈N.
Finally, Sect. 4 proves Theorem 1.7 and studies uniform separation on the unit ball.

We would like to thank Nikolaos Chalmoukis for some useful comments that led
to the final version of Theorem 1.3. We would also like to thank the referees for their
valuable suggestions.

2 Preliminary Results

This section contains relatively general results that are going to be used throughout
the proof of Theorem 1.3. Deterministic and probabilistic tools will be separately
analyzed.

2.1 Deterministic Tools

Double sums are extensively used throughout this work. In particular the fact that, for
a certain class of double sums involving exponential decay, the terms of the sums on
their diagonals contain all the necessary information to bound the whole sums:

Lemma 2.1 Let s ≥ 1, and let (Am)m∈N and (Bk)k∈N be two sequences of positive
numbers. Then there exists some constant C = Cs > 0 such that

∑

m,k∈N

AmB
1/s
k

(2m + 2k)1/s
≤ Cs

(
max

{
∑

m∈N
A1+1/s
m 2−m/s,

∑

k∈N
B1+1/s
k 2−k/s

}

+
∑

m∈N
AmB

1/s
m 2−m/s

)
.
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Proof First observe that

∑

m,k∈N

AmB
1/s
k

(2m + 2k)1/s
�
∑

k>m

AmB
1/s
k

(2m + 2k)1/s

+
∑

k<m

AmB
1/s
k

(2m + 2k)1/s
+
∑

m∈N
AmB

1/s
m 2−m/s .

Let’s first estimate the sum for k > m:

∑

k>m

AmB
1/s
k

(2m + 2k)1/s
≤ Cs

∞∑

m=1

Am2
−m/s

∞∑

k=1

B1/s
m+k2

−k/s

= Cs

∞∑

k=1

2−k/(s+1)
∞∑

m=1

Am2
−m/(s+1)B1/s

m+k2
−(m+k)/(s(s+1))

≤ Cs

∞∑

k=1

2−k/(s+1)

( ∞∑

m=1

A1+1/s
m 2−m/s

)s/(s+1)

×
( ∞∑

m=1

B1+1/s
m+k 2−(m+k)/s

)1/(s+1)

≤ Cs max

{
∑

m∈N
A1+1/s
m 2−m/s,

∑

k∈N
B
1+ 1

s
k 2−k/s

}
,

thanks to Holder’s inequality with dual exponents 1 + 1/s and s + 1. The sum for
m > k is estimated analogously. This concludes the proof. ��
Our takeaway from Lemma 2.1 is the following

Corollary 2.2 Let s ≥ 1, d ≥ 1 and (Nm)m∈Nd be a sequence of positive numbers so
that ∑

m∈Nd

N 1+1/s
m 2−|m|/s < ∞. (2.1)

Then
∑

m∈Nd

Nm

∑

k∈Nd

N 1/s
k

(
d∏

i=1

1

2mi + 2ki

)1/s

< ∞. (2.2)

Proof The proof is by induction on d:

d = 1 apply Lemma 2.1 to Am = Bm = Nm ;
d ≥ 2 suppose that (2.2) is true for d −1, and let (Nm)n∈Nd be a sequence of positive

numbers. Then, by applying Lemma 2.1,

∑

m∈Nd

Nm

∑

k∈Nd

N 1/s
k

(
d∏

i=1

1

2mi + 2ki

)1/s
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=
∑

m̃,k̃∈Nd−1

d−1∏

i=1

(
1

2k̃i + 2m̃i

)1/s ∑

m1,k1∈N

N(m1,m̃)N
1/s
(k1,k̃)

(2m1 + 2k1)1/s

<∼
∑

m̃,k̃∈Nd−1

d−1∏

i=1

(
1

2k̃i + 2m̃i

)1/s

× max

⎧
⎨

⎩
∑

m1∈N
N 1+1/s

(m1,m̃)
2−m1/s ,

∑

m1∈N
N 1+1/s

(m1,k̃)
2−m1/s

⎫
⎬

⎭

+
∑

m̃,k̃∈Nd−1

d−1∏

i=1

(
1

2m̃i + 2k̃i

)1/s ∑

m1∈N
N(m1,m̃)N

1/s
(m1,k̃)

2−m1/s

≤
∑

m̃,k̃∈Nd−1

d−1∏

i=1

(
1

2k̃i + 2m̃i

)1/s ∑

m1∈N
N 1+1/s

(m1,m̃)
2−m1/s

+
∑

m̃,k̃∈Nd−1

d−1∏

i=1

(
1

2k̃i + 2m̃i

)1/s ∑

m1∈N
N 1+1/s

(m1,k̃)
2−m1/s

+
∑

m̃,k̃∈Nd−1

d−1∏

i=1

(
1

2m̃i + 2k̃i

)1/s ∑

m1∈N
N(m1,m̃)N

1/s
(m1,k̃)

2−m1/s

=: I1 + I2 + I3,

where the index m in N
d is written as (m1, m̃), with m1 in N and m̃ in N

d−1.
Observe that, thanks to (2.1), I1 and I2 converge. As for I3, we can change the
order of summation and apply the case d − 1. Which yields

∑

m∈Nd

Nm

∑

k∈Nd

N 1/s
k

(
d∏

i=1

1

2mi + 2ki

)1/s

<∼
∑

m1∈N
2−m1/s

∑

m̃,k̃∈Nd−1

N(m1,m̃)N
1/s
(m1,k̃)

d−1∏

i=1

(
1

2m̃i + 2k̃i

)1/s

<∼
∑

m1∈N
2−m1/s

∑

m̃∈Nd−1

N 1+1/s
(m1,m̃)

2−|m̃|/s

=
∑

m∈Nd

N 1+1/s
m 2−|m|/s < ∞.

��
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2.2 RandomTools

Fairly elementary facts from probability theory are exploited in the proofs. All the
events and the random variables that are considered will be defined on the same
probability space (�,A,P). For a comprehensive treatment of the probabilistic results
used, see [8].

The first tool is the Borel–Cantelli Lemma. Recall that, given a sequence (An)n∈N
of events in A, then

lim sup
n∈N

An :=
⋂

k∈N

⋃

n≥k

An

denotes the event made of those ω in � that belong to infinitely many of the events in
(An)n∈N.

Theorem 2.3 (Borel–Cantelli Lemma) Let (An)n∈N be a sequence of events in A.
Then

(i) If
∑

n∈NP(An) < ∞, then P
(
lim supn∈N An

) = 0;
(ii) If

∑
n∈NP(An) = ∞ and the events in (An)n∈N are independent, then

P
(
lim supn∈N An

) = 1.

Given a random variable X on �, its mean value (or expectation) will be denoted
by

E(X) :=
∫

�

X dP.

In particular, if E(X) < ∞, then P{X = ∞} = 0.
Another classic tool from probability that will be used is Jensen’s Inequality:

Theorem 2.4 (Jensen’s Inequality) Let X be a real-valued random variable on�, and
let φ : R → R be a convex function. Then

E(φ(X)) ≥ φ(E(X)).

In particular, since

t ∈ (0,∞) 
→ t1/s

is concave, for any s ≥ 1, this gives

E

(
X1/s

)
≤ E(X)1/s, (2.3)

for any positive random variable X on �, by applying Jensen’s inequality to φ(t) =
−t1/s .

We can now prove Lemma 2.5, a tool for the proofs of Theorem 1.3:

123



Random Interpolating Sequences in the Polydisc... 177

Lemma 2.5 Let (Xi
n, j )n, j∈N be a sequence of positive random variables, for any i =

1, . . . , d. Set

m(n, j) := min
i=1,...,d

Xi
n, j , p(n, j) =

d∏

i=1

Xi
n, j .

Assume that

∑

j∈N

(
∑

k∈N
E(p(k, j))

)1/d

< ∞.

Then

sup
n∈N

∑

j �=n

m(n, j)

is bounded almost surely.

Proof Since, for any n �= j in N,

m(n, j) ≤ p(n, j)1/d ≤
⎛

⎝
∑

k �= j

p(k, j)

⎞

⎠
1/d

,

we have

sup
n∈N

∑

j �=n

m(n, j) ≤
∑

j∈N

⎛

⎝
∑

k �= j

p(k, j)

⎞

⎠
1/d

.

Thus

E

⎛

⎝sup
n∈N

∑

j �=n

m(n, j)

⎞

⎠ ≤
∑

j∈N
E

⎛

⎝
(
∑

k∈N
p(k, j)

)1/d
⎞

⎠ ≤
∑

j∈N

(
∑

k∈N
E(p(k, j))

)1/d

.

��

3 Random Sequences in the Polydisc

This section is devoted to the proofs of Theorems 1.3 and 1.5. The events U(Dd),
W(Dd), C(H2(Dd)) and Ĩ(Dd) will be analyzed separately.
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3.1 Weak Separation

For weak separation in the polydisc, it turns out that Cochran’s argument in [12,
Thm. 2] extends to the higher dimensional case:

Proof of Theorem 1.3, (i) For the sake of readability, we will adapt Cochran’s proof
only to the case d = 2: the proof will lift appropriately to any d > 1. Assume first
that

∑
m∈N2 N 2

m2
−|m| = ∞ and let l be in N. Define

Al :=
⋃

r �=n

{ρG(λr , λn) ≤ 5 · 2−l}

as the set of those ω in � such that there exists a pair of distinct indices n and r so that
the Gleason distance between λn(ω) and λr (ω) is controlled by, roughly, 2−l . Since
W(Dd)c ⊆⋂l∈N Al , it suffices to show that P(Al) = 1 for any l in N.

For any m in N2, partition Im into 22l“rectangles” of the form

{
(z1, z2) ∈ D

2 | 1

2mi−1 + ri
2mi+l

≤ 1 − |zi | <
1

2mi−1 + ri
2mi+l

}
, ri = 1, . . . , 2l

and observe that at least one of these rectangles, say Rm , must contain at least Mm :=
Nm/22l points of �. Let

Bm :=
⋃

r �=n

{
λr ∈ Rm, λn ∈ Rm, |θ1r − θ1n | ≤ π · 2−(m1+l), |θ2n − θ2r | ≤ π · 2−(m2+l)

}
.

Since

lim sup
m

Bm ⊆ Al

and the events Bm are independent, by the Borel–Cantelli Lemma, Theorem 2.3, it
suffices to show that

∑
m∈N2 P(Bm) = ∞.

In order to estimate the probability of each Bm from below, we give an upper bound
for P(Bc

m). If τ is in T
2, let Sm(τ ) be a“rectangle”in T

2 centered at τ with basis

2−(m1+l) and height 2−(m2+l). If τn = (eiθ
1
n , eiθ

2
n ), then thanks to the independence of

(τn)n∈N we have

P(Bc
m) ≤ P

⎛

⎝

⎧
⎨

⎩τ1 ∈ T
2, τ2 ∈ T

2 \ Sm(τ1), . . . , τMm ∈ S \
Mm−1⋃

j=1

Sm(τ j )

⎫
⎬

⎭

⎞

⎠

≤
(
1 − 2−(|m|+2l)

)(
1 − 3

2
· 2−(|m|+2l)

)
· · ·
(
1 − Mm

2
· 2−(|m|+2l)

)

=
Mm∏

j=2

(
1 − j · 2−(|m|+2l+1)

)
.
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If lim infm P(Bc
m) < 1, then P(Bm) is uniformly bounded away from 0 infinitely

many times, and
∑

m∈N2 P(Bm) = ∞ trivially.
On the other hand, if lim|m|→∞ P(Bc

m) = 1, then

P(Bm) ≥ 1 −
Mm∏

j=2

(
1 − j · 2−(|m|+2l+1)

)

∼|m|→∞ − log
Mm∏

j=2

(
1 − j · 2−(|m|+2l+1)

)

= −
Mm∑

j=2

log
(
1 − j · 2−(|m|+2l+1)

)

≥
Mm∑

j=2

j · 2−(|m|+2l+1)

∼|m|→∞
M2

m2
−|m|

22l+2 ≥ N 2
m2

−|m|

26l+2 ,

which is the general term of a divergent series.
To conclude the proof of Theorem 1.3, part (i), it suffices to show that a random

sequence � in D
d is almost surely weakly separated whenever (1.7) holds. To do so,

let

�m :=
⋃

r �=n

{
λr ∈ Im, λn ∈ Im, |θ1r − θ1n | ≤ π · 2−m1 , |θ2n − θ2r | ≤ π · 2−m2

}
.

Then

P(�m) ≤
(
Nm

2

)
2−|m| ≤ 1

2
N 2
m2

−|m|,

and the Borel–Cantelli Lemma provides that, almost surely, any pair (λn, λr ) in all
but finitely many“rectangles”Im satisfies

|θ1n − θ1r | > π2−m1 or |θ2n − θ2r | > π2−m2 . (3.1)

The same argument applies for the right-shifted“rectangles”I ′
m of the form

{
1 − 3 · 2−m1

4
≤ |z1| < 1 − 3 · 2−(m1+1)

4
, 1 − 2−m2 ≤ |z2| < 1 − 2−(m2+1)

}
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and the up-shifted“rectangles” I ′′
m of the form

{
1 − 2−m1 ≤ |z1| < 1 − 2−(m1+1), 1 − 3 · 2−m2

4
≤ |z2| < 1 − 3 · 2−(m2+1)

4

}
.

This ensures that all but finitely many pairs (λn, λr ) in � so that both

|λ1n − λ1r | � 2−m1

and

|λ2n − λ2r | � 2−m2

have property (3.1). Therefore, see [12, Claim, p. 741] � is almost surely weakly
separated. ��

3.2 Uniform Separation

While weak separation behaves essentially in the same way as the dimension d grows,
the sufficient condition in (1.8) for almost sure uniform separation picks up a depen-
dence on d. As will be shown, this is due to some estimates on the expected value of
quantities related to the (random) Gleason distances between the points in �.

It will also be explained how (1.8) can be improved for some choices of (rn)n∈N.
As a corollary, a cutoff condition for � to be almost surely H∞(Dd)-interpolating for
some types of random sequences in the polydisc will be given.

Let sd be the Szegö kernel onDd . Then the Hardy space H2(Dd) is the reproducing
kernel Hilbert space Hsd . Denote the normalized Szegö kernel by

Sd(z, w) :=
d∏

i=1

√
(1 − |zi |2)(1 − |wi |2)

1 − ziwi
,

and observe that, for any z and w in Dd ,

ρG(z, w)2 = 1 − min
i=1,...,d

|S1(zi , wi )|2. (3.2)

Given a random sequence � in Dd denote, for the sake of readability,

Si (n, j) := S1(λ
i
n, λ

i
j )

and

Sd(n, j) := Sd(λn, λ j ).
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Thanks to (3.2), uniform separation can be achieved from weak separation and a
uniform bound on sums depending on the random sequences (Si (n, j))n, j∈N:

U(Dd) = W(Dd) ∩
⎧
⎨

⎩supn∈N

∑

j �=n

min
i=1,...,d

|Si (n, j)|2 < ∞
⎫
⎬

⎭ . (3.3)

Observe that each (Si (n, j))n, j∈N is a sequence of random variables on � which is
determined, together with �, by (rn)n∈N. It is not surprising then that the expectation
of |Si (n, j)|2 depends, for any i , n and j , only on r in and r

i
j :

Lemma 3.1 Let � be a random sequence in Dd . Then, for any n �= j in N and for any
i = 1, . . . , d,

E(|Si (n, j)|2) =

(
1 − (r in)

2
)(

1 − (r ij )
2
)

1 −
(
r inr

i
j

)2 .

Proof Observe that1

|Si (n, j)|2 =
(
1 − (r in)

2
)(

1 − (r ij )
2
) ∣∣∣∣∣

∞∑

k=0

(r inr
i
j )
ke−ik(θ in−θ ij )

∣∣∣∣∣

2

=
(
1 − (r in)

2
)(

1 − (r ij )
2
) ∞∑

k=0

(r inr
i
j )
k

k∑

l=0

ei(2l−k)(θ in−θ ij ).

Therefore, by making use of the independence of θ in and θ ij ,

E(|Si (n, j)|2) =
(
1 − (r in)

2
)(

1 − (r ij )
2
) ∞∑

k=0

(r inr
i
j )
k

×
k∑

l=0

E

(
ei(2l−k)θ in

)
E

(
ei(k−2l)θ i2

)

=
(
1 − (r in)

2
)(

1 − (r ij )
2
) ∞∑

k=0

(r inr
i
j )
2k

=

(
1 − (r in)

2
)(

1 − (r ij )
2
)

1 − (r inr
i
j )
2

.

��
1 The reader should not confuse the index i = 0, . . . , d and i = √−1!
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Remark 3.2 Letm and k be twomulti-indices inNd , and suppose that λn and λ j belong
to Im and Ik , respectively. Then, thanks to Lemma 3.1 and (1.6),

E(|Si (n, j)|2) � 2−(mi+ki )

2−mi + 2−ki − 2−(mi+ki )
= 1

2ki + 2mi − 1
� 1

2ki + 2mi
.

In particular, since Si (n, j) and Sr (n, j) are independent for any i �= r , we have

E(|Sd(n, j)|2) �
d∏

i=1

1

2ki + 2mi
.

Part (ii) of Theorem 1.3 can now be proved:

Proof of Theorem 1.3, (ii) Observe that
∑

m∈Nd

N 2
m2

−|m| ≤
∑

m∈Nd

N 1+1/d
m 2−|m|/d ,

whenever Nm ≤ 2|m|, and so under our assumption � is weakly separated, thanks to
Theorem 1.3, part (i). Therefore, thanks to (3.3), it suffices to show that the random
sequence (Sn)n∈N given by

Sn :=
∑

j �=n

min
i=1,...,d

|Si (n, j)|2

is bounded almost surely. Thanks to Lemma 2.5, it is enough to show that

∑

j∈N

(
∑

n∈N
E

(
|Sd(n, j)|2

))1/d

< ∞. (3.4)

By regrouping the terms of the double sum in (3.4) with respect to the partition
(Im)m∈Nd of Dd and thanks to Remark 3.2 and (2.3) we get

∑

j∈N

(
∑

n∈N
E

(
|Sd(n, j)|2

))1/d

=
∑

m∈Nd

∑

λn∈Im

⎛

⎝
∑

k∈Nd

∑

λ j∈Ik
E(|Sd(n, j)|2)

⎞

⎠
1/d

�
∑

m∈Nd

Nm

⎛

⎝
∑

k∈Nd

Nk

d∏

i=1

1

2mi + 2ki

⎞

⎠
1/d

≤
∑

m∈Nd

Nm

∑

k∈Nd

N 1/d
k

d∏

i=1

(
1

2mi + 2ki

)1/d

.
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Corollary 2.2, d = s, concludes the proof. ��
Condition (1.8) is not sharp. Indeed, for some choices of (rn)n∈N, we can show that

the 0−1 Kolmogorov law for H∞(Dd)-interpolating sequences coincide with the one
for weak separation:

Proposition 3.3 Let d = 2 and (tn)n∈N be a sequence in (0, 1), and consider its
Cartesian product with itself

rn := (tn1, tn2), n = (n1, n2) ∈ N
2.

Then the random sequence � associated with (rn)n∈N2 is interpolating for H∞(Dd)

almost surely if an only if (1.7) holds.

Proof If
∑

m∈N2 N 2
m2

−|m| = ∞, then � is not weakly separated almost surely, and
in particular it is almost surely not interpolating. Thus it suffices to show that � is
H∞(Dd)-interpolating provided that

∑
m∈N2 N 2

m2
−|m| < ∞, which, by construction

of (rn)n∈N2 , it is equivalent to

∑

n∈N
T 2
n 2

−n < ∞,

where Tn := #{l ∈ N | 1 − 2−n ≤ tl < 1 − 2−(n+1)}. By Rudowicz’s Theorem,
[16], the random sequence T on D given by

τn := tne
iθn , n ∈ N,

is almost surely interpolating in D, where (θn)n∈N is a sequence of i.i.d. random
variables defined on a probability space (�,A,P) and distributed uniformly on the
unit circle. In particular, T has almost surely a sequence of so called P. Beurling
functions, that is, there exists an event �′ so that P(�′) = 1 and, for any ω in�′, there
exists a sequence of H∞(D) functions (Fω,n)n∈N such that

{
Fω,n(τ j (ω)) = δn, j

supz∈D
∑

n∈N |Fω,n(z)| < ∞.

Let us consider now the product probability space (�̃, Ã, P̃), where �̃ := � × �,
Ã is the product σ -algebra of A with itself, and

P̃(A × B) = P(A)P(B), A, B ∈ A.

Then the random variables

θn1,n2 : �̃ → T
2
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given by

θn1,n2(ω1, ω2) := (θn1(ω1), θn2(ω2))

are uniformly distributed in T
2 and independent. Thus we can think of the random

sequence � as

λn1,n2(ω1, ω2) := (rn1e
iθn1 (ω1), rn2e

iθn2 (ω2)), (ω1, ω2) ∈ �̃.

Let �′′ := �′ × �′ and define, for any n = (n1, n2) in N
2 and ω̃ = (ω1, ω2) in �′′

the H∞(D2) function

Gω̃,n(z1, z2) = Fω1,n1(z1) Fω2,n2(z2), (z1, z2) ∈ D
2.

Then (Gω̃,n)n∈N2 is a set of Beurling functions for �(ω̃), and in particular �(ω̃) is
H∞(Dd)-interpolating for any ω̃ in�′′. Since P̃(�′′) = P(�′)2 = 1,� is interpolating
for H∞(Dd) almost surely. ��

The argument in Proposition 3.3 can be easily extended to any d > 1 to show that,
whenever the sequence of radii (rn)n∈N is the Cartesian product of d sequences in
[0, 1), then (1.7) encodes all random sequences that are almost surely interpolating
for H∞(Dd). For a general choice of (rn)n∈N the following question remains open:

Question 1 q:wi Is any random sequence� inDd satisfying (1.7) uniformly separated?
Or else, does there exist a choice of (rn)n∈N so that the random sequence � obtained
is almost surely weakly separated but not uniformly separated?

3.3 CarlesonMeasures

The same idea that was used for random uniform separation works for the proof of
Theorem 1.3, part (iii), modulo some adaptations. Let Z = (zn)n∈N be a sequence in
D
d and consider the Szegö Grammian

G := (Sd(zn, z j ))n, j∈N

associated with the sequence Z . Therefore,

Theorem 3.4 The following are equivalent:

(i) μZ is a Carleson measure for H2(Dd);
(ii) G : l2 → l2 is bounded.

A proof of Theorem 3.4 can be found in [2, Thm. 9.5]. Moreover, a standard
operator theory argument gives that any sufficiently strong decay of the coefficients
of G outside its diagonal implies that G is bounded (above and below):
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Lemma 3.5 Let A = (an, j )n, j∈N : l2 → l2 be invertible and self adjoint. Suppose that
ai,i = 1 for any i in N, and that

∑

j∈N

∑

n �= j

|an, j |2 = M2 < ∞. (3.5)

Then A is bounded above and below.

Proof Such an A can be written as A = I d + H , where H is a Hilbert–Schmidt
operator. Let (yn)n∈N be the sequence of eigenvalues of A, and let (xn)n∈N be the
eigenvalues of H . Since H is a Hilbert–Schmidt operator, then

∑

n∈N
|xn|2 < ∞,

and since A = I d + H we have that yn = 1 + xn for any n. Since A is invertible,
none of the yn are null. Moreover, being a self-adjoint infinite matrix, A is bounded
by supn∈N |yn| and bounded below by infn∈N |yn|. Since xn converges to 0, the two
quantities are bounded above and below, hence the result. ��
Remark 3.6 In the above proof one uses only the fact that xn goes to 0, as n → ∞.
Therefore the same conclusion holds if we assume H to be compact.

Let � be a random sequence in D
d . Thanks to Lemma 3.5, to show that

P(C(H2(Dd))) = 1 it is enough to show that the random Grammian associated to
� has a strong decay outside its diagonal almost surely:

Proof of Theorem 1.3,(iii) It suffices to show that

∑

j∈N

∑

n �= j

E(|Sd(n, j)|2) < ∞. (3.6)

Indeed, if (3.6) holds, then

∑

j∈N

∑

n �= j

|Sd(n, j)|2 < ∞

almost surely, and Lemma 3.5 would conclude the proof. By Remark 3.2 and by
regrouping the sum in (3.6) with respect to the partition (Im)m∈Nd of Dd , one obtains

∑

j∈N

∑

n �= j

E(|Sd(n, j)|2) ≤ C
∑

m,k∈Nd

NmNk

(
d∏

i=1

1

2mi + 2ki

)
.

Corollary 2.2, s = 1, concludes the proof. ��
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3.4 Almost Orthogonal RandomGrammians

Equation (3.5) is a rather strong condition for an infinite matrix A. Indeed, in addition
to implying that A is bounded, it says that A − I d is a Hilbert–Schmidt operator on
l2, i.e., that for any choice of an orthonormal basis (en)n∈N of l2

∑

n∈N
‖(A − I d)en‖2 < ∞.

If A = G is a Szegö Grammian associated to a sequence Z = (zn)n∈N in the
polydisc, it is natural to ask whether such an almost orthogonality condition on the
kernels at the points of Z translates to interpolation properties on the points of the
sequences:

Question 2 q:hs Let d ≥ 2. Is a sequence Z inDd interpolating for H∞(Dd), provided
that its SzegöGrammian can bewritten asG = I d+H , where H is a Hilbert–Schmidt
operator on l2?

The case d = 1 of Question 2 has a positive answer. For any sequence Z in the unit
disc, let

δn :=
∏

j �=n

ρ(zn, z j )

be the hyperbolic distance from zn to the rest of the sequence. By the Carleson inter-
polation Theorem, Z is interpolating if and only if infn∈N δn > 0. On the other hand,
[13], G − I d is a Hilbert–Schmidt operator if and only if

∑

n∈N
1 − δn < ∞,

giving that Z is interpolating rather comfortably.
Another motivation for answering Question 2 comes from random interpolating

sequences for H∞(Dd). We proved in Sect. 3.3 that the random Grammian associated
to a random sequence� in the polydisc differs from the identity by a Hilbert–Schmidt
operator, provided that the sum in (1.7) converges. Conversely, if Z is not weakly
separated, then infinitely many entries outside the diagonal of its Szegö Grammian are
arbitrarily close to 1 in absolute value, hence G− I d is not Hilbert–Schmidt. Namely,

P(G − I d is Hilbert-Schmidt) =
{
1 if

∑
m∈Nd N 2

m2
−|m| < ∞

0 if
∑

m∈Nd N 2
m2

−|m| = ∞.
(3.7)

In particular, a positive answer to Question 2 would imply that the event I(Dd)

follows the same0−1 lawof (3.7), giving a 0−1 law for randomH∞(Dd)-interpolating
sequences.

Moreover, (3.7) helps in understanding interpolating sequences for H2(Dd), and it
implies Theorem 1.5. Indeed, any invertible Szegö Grammian (Sd(zn, z j ))n, j∈N that
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can be written as G = I d + H , where H is Hilbert–Schmidt, is bounded above and
below, thanks to Lemma 3.5, which in turn is equivalent to (zn)n∈N being interpolating
for H2(Dd). On the other hand, as pointed out above, if Z is not weakly separated then
infinitely many pairs of normalized Szegö kernels at the points of Z are at an angle
arbitrarily close to 0, and hence G is not bounded below. Thus

P(Ĩ(Dd)) =
{
1 if

∑
m∈Nd N 2

m2
−|m| < ∞

0 if
∑

m∈Nd N 2
m2

−|m| = ∞ .

4 Random Separation in the Unit Ball

This section is devoted to the proof of Theorem 1.7. In addition, we will study uniform
separation on the unit ball. Compared with the polydisc, we use the spherical geometry
of the unit ball more heavily rather than the Euclidean geometry of the Hardy spaces
involved. So, the techniques used in this section are different from the ones used in
the previous sections.

Recall that �(ω) = {
λ j
}
with λ j = ρ jξ j (ω) where ξ j (ω) is a sequence of inde-

pendent random variables, all uniformly distributed on the unit sphere and ρ j ∈ [0, 1)
is a sequence of a priori fixed radii. Depending on the distribution conditions on {ρ j } as
will be discussed below, the probability that �(ω) is interpolating for Besov–Sobolev
spaces Bσ

p (Bd), where 0 < σ ≤ 1/2 is studied.
The Bergman tree Td associated to the ball Bd with the structure constants 1 and

ln(2)/2 is needed in the analysis, so we present here some details. More information
can be found in [5, p. 17]. Let ρ be the pseudo-hyperbolic distance on the unit ball,
thus ρ(z, w) = |ϕz(w)| where ϕz(w) is the Möbius transform. The Bergman metric
on the unit ball Bd in Cd is given by

β(z, w) = 1

2
log

1 + ρ(z, w)

1 − ρ(z, w)
.

Further, for any r > 0, we define

Ur = ∂Bβ(0, r) = {z ∈ Bd : β(0, z) = r} .

For any N ∈ N, according to [5, Lem. 2.6] and the fact that Ur is a compact set,
there is a positive integer J , a set of points {zNj }Jj=1 and a set of subsets {QN

j }Nj=1 of
UN ln(2)/2 such that

UN ln(2)/2 =
J⋃

j=1

QN
j ,

QN
i ∩ QN

j = ∅ when i �= j,

UN ln(2)/2 ∩ Bβ

(
zNj , 1

)
⊂ QN

j ⊂ UN ln(2)/2 ∩ Bβ

(
zNj , 2

)
.
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Let

K N
j =

{
z ∈ Bn : N ln 2

2
≤ β(0, z) <

(N + 1) ln 2

2
, PN z ∈ QN

j

}
,

where PN z denotes the radial projection of z onto the sphere UN ln(2)/2. Define a tree
structure on the collection of sets

Td =
{
K N

j

}

N≥0, j≥1

by declaring that K N+1
i is a child of K N

j , written K N+1
i ≥ K N

j , if the projection

PN
(
zN+1
i

)
of zN+1

i onto the sphere UN ln(2)/2 lies in QN
j . For any K N

j ∈ Td , we
define d(K N

j ) by

d(K N
j ) = N .

Given a non-negative function h on N, we say h is summable if

∑

N∈N
h(N ) < +∞.

For σ > 0, a measure μ satisfies the strengthened simple condition if there is a
summable function h(·) such that

22σd(α) I ∗μ(α) ≤ Ch(d(α)), α ∈ Td ,

where

I ∗μ(α) =
∑

α′≥α,α′∈Td
μ(α′).

The following lemma follows from [6, Lem. 32 and Thm. 23].

Lemma 4.1 Let σ > 0. If μ satisfies the strengthened simple condition, then μ is a
Bσ
2 (Bd)-Carleson measure on Bd .

The following Lemma can be found in [8].

Lemma 4.2 If X is a binomial random variable with parameter p, N, then for every
s = 0, 1, 2, . . .,

lim
N → ∞
pN → 0

P(X = s)

(pN )s
= lim

N → ∞
pN → 0

P(X ≥ s)

(pN )s
= 1

s!
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Define

C(Bσ
2 (Bd)) := {ω : μ� is a Carleson measure forBσ

2 (Bd)}.

Theorem 4.3 Let d
2 > σ > 0 and d ≥ 2. Then

(i) If

∞∑

m=0

2−2σmNm < ∞,

then P{C(Bσ
2 (Bd))} = 1.

(ii) If

∞∑

m=0

2−2σmNm = ∞,

then P{C(Bσ
2 (Bd))} = 0.

Proof First, it will be shown that if

∞∑

m=0

2−2σmNm < ∞,

then

μ�(ω) =
∞∑

j=1

(
1 − ∣∣λ j

∣∣2
)2σ

δλ j

is a Carleson measure almost surely.
Since d/2 > σ > 0, there is a constant ε such that d > 2σ + ε. Next, it will be

shown that

sup
α∈Td

2(ε+2σ)d(α)
∑

λ j∈β≥α

(1 − |λ j |2)2σ

is bounded almost surely, that is to say

22σd(α) I ∗μ(α) = 22σd(α)
∑

λ j∈β≥α

(1 − |λ j |2)2σ � 2−εd(α),

which implies μ�(ω) is a Carleson measure almost surely by Lemma 4.1. For any α,
let

Xm,α = #{λ j ∈ �(ω) : λ j ∈ β ≥ α, d(β) = m}.
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By [5, Lem. 2.8], we have

∣∣∣∣∣∣

⋃

β≥α,d(β)=m

β

∣∣∣∣∣∣
= cm,α2

−d(α)d |{z,mθ ≤ β(0, z) < (m + 1)θ}| ,

thus Xm,α follows the binomial distribution B(cm,α2−d(α)d , Nm) and supm,α cm,α =
c < ∞. Then

2(ε+2σ)d(α)
∑

λ j∈β≥α

(1 − |λ j |2)2σ = 2(ε+2σ)d(α)
∞∑

m=d(α)

∑

λ j∈β≥α,d(β)=m

(1 − |λ j |2)2σ

� 2(ε+2σ)d(α)
∞∑

m=d(α)

2−2σmXm,α � Sα.

Choose γ ∈ N such that −2σγ + 2σ + 2ε < −d. Let

Yα = 2(ε+2σ)d(α)

d(α)(1+γ )−1∑

m=d(α)

2−2σm Xm,α and Rα = 2(ε+2σ)d(α)

∞∑

m=d(α)(1+γ )

2−2σm Xm,α.

For any constant A, observe that

P ({ω : Sα ≥ A}) ≤ P

({
ω : Yα ≥ A

2

})
+ P

({
ω : Rα ≥ A

2

})
.

For any m and α, there is an open set Sm,α such that

⋃

β≥α,d(β)=m

β ⊂ Sm,α ⊂ {z,mθ ≤ β(0, z) < (m + 1)θ}

and

|Sm,α| = c2−d(α)d |{z,mθ ≤ β(0, z) < (m + 1)θ}|.

Let

X̃m,α = #{λ j : λ j ∈ �(ω) ∩ Sm,α},

then X̃m,α follows the binomial distribution B(c2−d(α)d , Nm) and Xm,α ≤ X̃m,α . Let

Ỹm,α = 2(ε+2σ)d(α)

d(α)(1+γ )−1∑

m=d(α)

2−2σm X̃m,α,
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then Ỹm,α follows the binomial distribution

B

⎛

⎝c2−d(α)d , 2(ε+2σ)d(α)

d(α)(1+γ )−1∑

m=d(α)

2−2σmNm

⎞

⎠ .

Then, by Lemma 4.2, it follows that

P{ω : Ỹα ≥ A

2
} �

[
c2−d(α)d2(ε+2σ)d(α)

∑d(α)(1+γ )−1
m=d(α) 2−2σmNm

]A/2

(A/2)!

�

[
c2−d(α)d2(ε+2σ)d(α)

]A/2

(A/2)! .

Since ε + 2σ − d < 0, choose A big enough such that (A/2)(ε + 2σ − d) ≤ −2d.
Thus

P

({
ω : Yα ≥ A

2

})
� P

({
ω : Ỹα ≥ A

2

})
� 2−2d(α)d .

On the other hand,

E(Rα) = 2(ε+2σ)d(α)
∞∑

m=d(α)(1+γ )

2−2σm
E(Xm,α)

= 2(ε+2σ)d(α)
∞∑

m=d(α)(1+γ )

2−2σmcm,α2
−d(α)d Nm

≤ 2(ε+2σ−d)d(α)
∞∑

m=d(α)(1+γ )

2−2σmNm ≤ C,

for some constant C . Without loss of generality, suppose A/4 ≥ C . Then

P

({
ω : Rα ≥ A

2

})
= P

({
ω : Rα − E(Rα) ≥ A

2
− E(Rα)

})

≤ P

({
ω : |Rα − E(Rα)| ≥ A

4

})

� Var(Rα) � 22(ε+2σ)d(α)
∞∑

m=d(α)(1+γ )

2−4σm2−d(α)d Nm

� 22(ε+2σ)d(α)2−d(α)d
∞∑

m=d(α)(1+γ )

2−2σm
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� 22(ε+2σ)d(α)2−d(α)d2−2σd(α)(1+γ )

� 2−d(α)d2d(α)(−2σγ+2σ+2ε) � 2−d(α)2d .

Thus,

∑

α∈Td
P ({ω : Sα ≥ A}) =

∞∑

k=0

∑

α∈Td ,d(α)=k

P ({ω : Sα ≥ A})

�
∞∑

k=0

∑

α∈Td ,d(α)=k

2−d(α)2d �
∞∑

k=0

2−kd < ∞,

which means that Sα is bounded almost surely. Thus μ�(ω) is a Carleson measure
almost surely.

On the other hand, if

∞∑

m=0

2−2σmNm = ∞,

then

∫

Bd

dμ� =
∞∑

j=1

(
1 − ∣∣λ j

∣∣2
)2σ

�
∞∑

m=0

2−2σmNm = ∞.

Thus,

P{C(Bσ
2 (Bd))} = 0.

��
For a sequence {z j }, if inf i �= j β

(
zi , z j

)
> 0, call {z j } weakly separated. On the

unit ball, denote

W(Bd) := {ω : �(ω) is weakly separated in Bd}.

We need to point out that the weak separation with respect to the Bergman metric is
equivalent to the weak separation with respect to the pseudo-hyperbolic metric. Thus,
we have the following lemma.

Lemma 4.4 ([14, Lem. 3.5]) Let �(ω) = {
λ j
}
be a random sequence. Then the

following statements hold.

(i) If

∑

m

2−dmN 2
m < ∞,

then P{W(Bd)} = 1.
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(ii) If

∑

m

2−dmN 2
m = ∞,

then P{W(Bd)} = 0.

By Theorem 1.6, a sequence is an interpolating sequence if and only if it is weakly
separated and the correspondingmeasure is a Carlesonmeasure. The proof of Theorem
1.7 is now given.

Proof of Theorem 1.7 Since 1/2 ≥ σ > 0 and d ≥ 2, then −d + 4σ ≤ 0. If

∞∑

m=0

2−2σmNm < ∞,

then

∞∑

m=0

2−4σmN 2
m < ∞,

which implies

∞∑

m=0

2−dmN 2
m =

∞∑

m=0

2(−d+4σ)m2−4σmN 2
m ≤

∞∑

m=0

2−4σmN 2
m < ∞.

By Theorem 1.6 and Lemma 4.4, the conclusion follows.
On the other hand, if

∑∞
m=0 2

−2σmNm = ∞, then

P{C(Bσ
2 (Bd))} = 0.

By Theorem 1.6 again, it follows that

P{I(Bσ
2 (Bd))} = 0.

��
Finally, the uniformly separated sequences on the unit ball when d ≥ 2 are studied.

It is well known that

1 − |ϕz(w)|2 =
(
1 − |z|2) (1 − |w|2)

|1 − 〈w, z〉|2 .

A sequence {z j } is uniformly separated if infk
∏

j �=k ρ(z j , zk) > 0, where ρ is the
pseudo-hyperbolic distance on the unit ball. Let

U(Bd) := {ω : �(ω) is uniformly separated inBd}.
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An important lemma in analysis, see [15, Prop. 1.4.10], is needed.

Lemma 4.5 For z ∈ Bd and c ∈ R, let

Ic(z) =
∫

∂Bd

1

|1 − 〈z, ζ 〉|d+c
dσ(ζ ).

When c < 0, then Ic is bounded in Bd . When c > 0, then

Ic(z) ≈
(
1 − |z|2

)−c
.

Finally,

I0(z) ≈ log
1

1 − |z|2 .

Proposition 4.6 Let �(ω) = {
λ j
}
be a random sequence. Then the following state-

ments hold.

(i) If d = 2 and

∞∑

m=0

Nm2
−m(m + 1) < ∞,

then P{U(Bd)} = 1.
(ii) If d ≥ 3 and

∞∑

m=0

Nm2
−m < ∞,

then P{U(Bd)} = 1.
(iii) If d ≥ 3 and

∞∑

m=0

Nm2
−m = ∞,

then P{U(Bd)} = 0.

Proof First, infk
∏

j �=k ρ(λ j , λk)
2 > 0 almost surely if and only if

sup
k

∑

j �=k

− log ρ(λ j , λk)
2 < ∞.

Since − log x ≥ 1 − x when 1 ≥ x > 0, it follows that

− log ρ(λ j , λk)
2 ≥ 1 − ρ(λ j , λk)

2.
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Thus infk
∏

j �=k ρ(λ j , λk)
2 > 0 almost surely implies

sup
k

∑

j �=k

[1 − ρ(λ j , λk)
2] < ∞

almost surely.
On the other hand, if infλ j �=λk ρ(λ j , λk) > 0, then

− log ρ(λ j , λk)
2 � 1 − ρ(λ j , λk)

2.

Thus, in this case,

sup
k

∑

j �=k

[1 − ρ(λ j , λk)
2] < ∞

almost surely implies

inf
k

∏

j �=k

ρ(λ j , λk)
2 > 0

almost surely.
For any constant c, consider

∞∑

k=1

P

⎛

⎝

⎧
⎨

⎩ω :
∑

j �=k

[1 − ρ(λ j , λk)
2] > c

⎫
⎬

⎭

⎞

⎠ ≤ 1

c

∞∑

k=1

E

[∑

j �=k

[1 − ρ(λ j , λk)
2]
]

= 1

c

∞∑

k=1

∑

j �=k

E

[
[1 − ρ(λ j , λk)

2]
]

= 1

c

∞∑

k=1

∑

j �=k

E

[(1 − |λ j |2
) (
1 − |λk |2

)

|1 − 〈λk, λ j 〉|2
]

= 1

c

∞∑

k=1

∑

j �=k

∫

∂Bd

∫

∂Bd

(
1 − |λ j |2

) (
1 − |λk |2

)

|1 − 〈λk, λ j 〉|2 dσ(ξ j )dσ(ξk)

≤ 1

c

∞∑

k=1

∑

j �=k

(
1 − |λ j |2

) (
1 − |λk |2

)

×
∫

∂Bd

∫

∂Bd

1

|1 − 〈|λ j‖λk |ξk, ξ j 〉|d+2−d
dσ(ξ j )dσ(ξk).

Next, consider two cases.
If d = 2, then by Lemma 4.5 we have

∫

∂Bd

1

|1 − 〈|λ j‖λk |ξk, ξ j 〉|d+2−d
dσ(ξ j ) � log

1

1 − |λ j |2|λk |2 .
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Substituting this estimate into the one above yields that

∞∑

k=1

P

⎛

⎝

⎧
⎨

⎩ω :
∑

j �=k

[1 − ρ(λ j , λk)
2] > c

⎫
⎬

⎭

⎞

⎠

� 1

c

∞∑

k=1

∞∑

j=1

(
1 − |λ j |2

) (
1 − |λk |2

)
log

1

1 − |λ j |2|λk |2

�
∞∑

l=0

∞∑

m=0

Nl Nm2
−l2−m

[
log (

1

2−l−1 + 2−m−1 ) + 1
]

≤ 2
∑

l≥m

Nl Nm2
−l2−m

[
log (

1

2−l−1 + 2−m−1 ) + 1
]

�
∑

l≥m

Nl Nm2
−l2−m(l + 1)

=
∞∑

m=0

Nm2
−m

∞∑

l=m

Nl2
−l(l + 1) ≤

( ∞∑

l=0

Nl2
−l(l + 1)

)2

.

Thus

∞∑

m=0

Nl2
−l(l + 1) < ∞

implies that

sup
k

∑

j �=k

[1 − ρ(λ j , λk)
2] < ∞

almost surely. Lemma 4.4 also yields that

∞∑

m=0

Nl2
−l(l + 1) < ∞

implies that �(ω) is weakly separated almost surely, thus

∞∑

m=0

Nl2
−l(l + 1) < ∞

implies that �(ω) is uniformly separated almost surely.
If d ≥ 3, by Lemma 4.5, then

∫

∂Bd

1

|1 − 〈|λ j‖λk |ξk, ξ j 〉|d+2−d
dσ(ξ j ) ≤ Cd < ∞.
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Then

∞∑

k=1

P

⎛

⎝

⎧
⎨

⎩ω :
∑

j �=k

[1 − ρ(λ j , λk)
2] > c

⎫
⎬

⎭

⎞

⎠

�
∞∑

k=1

∞∑

j=1

(
1 − |λ j |2

) (
1 − |λk |2

)

�

⎛

⎝
∞∑

j=1

Nm2
−m

⎞

⎠
2

.

By a similar argument for the case d = 2,

∞∑

j=1

Nm2
−m < ∞

implies that �(ω) is separated almost surely. Conversely, if

∞∑

j=1

Nm2
−m = ∞,

then

∞∑

j=1

(
1 − |λ j |2

)
= ∞.

Thus, for any zk , we have

∑

j �=k

− log ρ(λ j , λk)
2 ≥

∑

j �=k

1 − ρ(λ j , λk)
2 =

∑

j �=k

(1 − |λk |2)(1 − |λ j |2)
|1 − 〈λ j , λk〉|2

≥ (1 − |λk |2)
(1 + |λk |)2

∑

j �=k

(1 − |λ j |2) = ∞,

giving the conclusion that

P{U(Bd)} = 0.

��
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