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Abstract. Recent research in the social sciences has identified situa-
tions in which small changes in the way that information is provided
to consumers can have large aggregate effects on behavior. This has
been promoted in popular media in areas of public health and wellness,
but its application to other areas has not been broadly studied. This
paper presents a simple model which expresses the effect of providing
commuters with carefully-curated information regarding aggregate traf-
fic “slowdowns” on the various roads in a transportation network. Much
of the work on providing information to commuters focuses specifically on
travel-time information. However, the model in the present paper allows
a system planner to provide slowdown information as well; that is, com-
muters are additionally told how much slower each route is as compared
to its uncongested state. We show that providing this additional infor-
mation can improve equilibrium routing efficiency when compared to the
case when commuters are only given information about travel time, but
that these improvements in congestion are not universal. That is, trans-
portation networks exist on which any provision of slowdown information
can harm equilibrium congestion. In addition, this paper illuminates a
deep connection between the effects of commuter slowdown-sensitivity
and the study of marginal-cost pricing and altruism in congestion games.

Keywords: Congestion Game · Traffic Information System · Trans-
portation Networks.

1 Introduction

Today, in the age of the internet of things, big data, and pervasive computing,
engineered systems are becoming increasingly interconnected with the human
populations that they serve. System-level performance is directly affected by
the choices of human users, customers, and adversaries, and it has long been
recognized that self-interested behavior by users may lead to gross system inef-
ficiencies [21, 22]. Thus, both the importance and the feasibility of influencing
human behavior in intelligent ways are increasing simultaneously.

A popular modeling framework to study methods of influencing selfish be-
havior in engineered systems is the nonatomic congestion game, which is often
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used to model urban transportation networks [2]. This model was one of the
first to admit straightforward characterizations of the price of anarchy, a popu-
lar measure of the social cost of selfish behavior [22]. It is also a natural setting
to study various modified models of human decision-making; examples include
altruism [10], pessimism [19], risk-aversion [17], and various generalizations [15].
More relevant to this paper, it has proved fertile ground for the study of vari-
ous methods of influencing user behavior: taxation [4, 7, 12, 13], autonomously-
controlled traffic [3, 16], and traffic information systems [1, 11, 18] have all been
investigated in this context. The majority of this literature depends on the usual
game-theoretic assumption that users are expected utility maximizers.

In parallel, an increasingly popular conceptual framework for studying the
practice of influencing human behavior is that of behavioral economics. This
framework grew out of empirical studies which showed that humans tend to de-
viate from the behaviors prescribed by expected utility maximization, and that
these deviations manifest themselves in predictable ways [25]. If humans are pre-
dictably irrational, it seems reasonable that engineers might attempt to exploit
this predictability to influence behavior. This idea has led to the concept of the
“nudge” — the popular name given to the idea that making slight modifications
to a person’s environment can have a profound effect on their behavior [24].

This paper draws inspiration from the concept of the nudge, and asks if
drivers in transportation networks could perhaps be influenced by providing
simple pieces of information that are carefully designed to exploit behavioral bi-
ases in their decision-making process. As a simple preliminary model for studying
such questions, this paper begins with the typical assumption that drivers pre-
fer low travel times over high travel times. Some drivers, however, additionally
dislike the idea of choosing a route that exhibits higher travel time than its
uncongested free-flow travel time. That is, some drivers are slowdown-averse. A
system planner, knowing about the existence (but perhaps not the magnitude) of
this slowdown-aversion, may wish to exploit it to improve aggregate congestion,
and provides a signal informing drivers of the presence and magnitude of slow-
downs on various routes. Note that unlike much other work on traffic information
systems, we do not require ordinary drivers to perform any type of Bayesian in-
ference; rather, our model captures a phenomenon in which each driver acts in
response to her “gut feel” about how much she dislikes traffic slowdowns.

The main question of this paper is this: when can a planner be certain that
providing slowdown information to drivers will improve congestion? In Theo-
rem 1, we show that networks exist for which any slowdown information pro-
vided to drivers increases equilibrium delays, and thus on these networks, the
planner’s only reasonable course of action is to prove no slowdown signal at all.
Nonetheless, Theorem 1 also shows that on parallel networks, slowdown informa-
tion can always reduce equilibrium delays. Perhaps unintuitively, these results
are tightly connected with the literature on marginal-cost pricing and altruistic
behavior in transportation networks [5,10]. Indeed, this condition can be stated
as a sufficient condition for improvements due to slowdown signaling: If altru-
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ism increases equilibrium delays on some network, then slowdown signaling also
increases equilibrium delays on that network.

Following this, Theorem 2 essentially asks the question “is it optimal for plan-
ners to provide accurate slowdown information to drivers?” Alternatively, what
is the optimal slowdown signal with respect to minimizing equilibrium conges-
tion? Here, we consider an example setting in which the planner has significant
levels of information about the population’s slowdown preferences, as well as
some minimal information about aggregate demand. In this setting, Theorem 2
shows that planners with access to this additional information optimally over-
state the severity of network slowdowns. That is, a planner’s optimal course of
action may well be to deliberately provide misleading information to drivers.

Lastly, the paper closes with a note on the implications that this work has
for the broader study of heterogeneous nonatomic congestion games. Here, it is
shown that many of the well-studied forms of heterogeneous congestion games
appearing in the literature belong to a particularly well-behaved class of games
known as weighted potential games. That is, the Nash equilbria of these games
can be characterized as the maximizers of a single global convex potential func-
tion. From an analytical point of view, the ramifications of this are broad: the
existing work on these types of games depends on ad hoc characterizations of
equilibrium behavior, and the existence of a potential function may unify these
approaches.

2 Model and Performance Metrics

2.1 Routing Game

Consider a network routing problem for a network (V,E) comprised of vertex
set V and edge set E. We call a source/destination vertex pair (σc, tc) ∈ (V ×V )
a commodity, and the set of all such commodities C. For each commodity c ∈ C,
there is a mass of traffic rc > 0 that needs to be routed from σc to tc. We write
Pc ⊂ 2E to denote the set of paths available to traffic in commodity c, where
each path p ∈ Pc consists of a set of edges connecting σc to tc. Let P = ∪{Pc}.
A network is called symmetric if there is exactly one commodity: C = {c}, i.e.,
all traffic routes from a common source σ to a common destination t using a
common path set P. A network is called a parallel network if all commodities
share a single source-destination pair and all paths are disjoint; i.e., for all paths
p, p′ ∈ P , p ∩ p′ = ∅. Note that a parallel network need not be symmetric;
although all traffic must share a common source and destination, the path sets
Pc available to traffic from different commodities may differ.

We write f cp ≥ 0 to denote the mass of traffic from commodity c using path

p, and fp :=
∑
c∈C f

c
p . A feasible flow f ∈ R|P| is an assignment of traffic to

various paths such that for each c,
∑
p∈Pc f cp = rc and

∑
c∈C r

c = r.
Given a flow f , the flow on edge e is given by fe =

∑
p:e∈p fp. To charac-

terize transit delay as a function of traffic flow, each edge e ∈ E is associated
with a specific latency function `e : [0, r] → [0,∞); `e(fe) denotes the delay
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experienced by users of edge e when the edge flow is fe. We adopt the standard
assumptions that each latency function is nondecreasing, convex, and continu-
ously differentiable. We measure the cost of a flow f by the total latency, given
by

L(f) =
∑
e∈E

fe · `e(fe) =
∑
p∈P

fp · `p(f), (1)

where `p(f) =
∑
e∈p `e(fe) denotes the latency on path p. We denote the flow

that minimizes the total latency by

f∗ ∈ argmin
f is feasible

L(f). (2)

A routing problem is given by G = (V,E, C, {`e}). Classes of routing problems
are denoted by G. For d ≥ 1, we write Gd to denote the class of all routing
problems with latency functions of the form `e(fe) = ae(fe)

d+be, where ae, be ≥
0 are edge-specific constants.

To study the effect of slowdown information on self-interested behavior, this
paper models the above routing problem as a heterogeneous non-atomic conges-
tion game. The slowdown-sensitivities of the users in commodity c are modeled
by a monotone, nondecreasing function βc : [0, rc] → [0, 1], where each user
x ∈ [0, rc] has a slowdown sensitivity βc,x ∈ [0, 1]. Here, if user x has βc,x = 0,
this indicates that the user is purely delay-averse and is unresponsive to slow-
downs. On the other hand, if user x has βc,x = 1, this indicates that the user
cares nothing for actual delay, and selects routes solely on the basis of how over-
congested the route is compared to nominal. The analysis in this paper assumes
that each sensitivity distribution function βc is unknown to the system operator,
and we write B to denote the set of all feasible sensitivity distribution functions

The system operator provides all users with information regarding the slow-
down experienced on the various paths; this is modeled by a number γ ∈ [0, 1].
When γ = 1, users are provided complete and true information regarding each
road’s slowdown; when γ = 0, users are provided no information regarding slow-
downs. Altogether, given a flow f , the subjective cost that user x ∈ [0, rc] expe-
riences for using path p ∈ Pc is of the form

Jc,x(p; f) =
∑
e∈p

[(1− γβc,x) `e(fe) + γβc,x (`e(fe)− `e(0))]

=
∑
e∈p

[`e(fe)− γβc,x`e(0)] . (3)

Thus, each user x ∈ [0, rc] can be viewed as interpreting the cost of a road as the
difference between its latency and a moderately-scaled version of its free-flow
delay. We assume that each user selects the lowest-cost path from the available
source-destination paths. We call a flow f a Nash flow if all users are individu-
ally using minimum-cost paths given the choices of other users. That is, for all
commodities c ∈ C, every user x ∈ [0, rc] using path p in f experiences a cost
satisfying

Jc,x(p; f) = min
p̃∈Pc

Jc,x (p̃; f) . (4)
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The above game is an exact potential game with a convex potential function (see
Lemma 2), which implies that its set of Nash flows is nonempty and convex.

.

2.2 Avoiding perverse signaling

As an initial step towards characterizing a system operator’s optimal signaling
policy, this paper compares the equilibrium total latency resulting from slow-
down signaling with the un-influenced equilibrium total latency. One simple
measure which captures the possible harm of slowdown signaling is the perver-
sity index as introduced in [9]:

PI (G, γ) := sup
G∈G

sup
β∈B

Lnf(G, β, γ)

Lnf(G, β, 0)
. (5)

Here, if a class of routing problems G and signal parameter γ have a large
perversity index, this indicates that there exist routing problems in G for which it
would be better for the system planner to avoid signaling altogether. If PI(G, γ) >
1 for some γ, we say that γ is a perverse signaling policy. If PI(G, γ) = 1, we say
that γ is non-perverse.

3 Related Work

Since the seminal work on price of anarchy for nonatomic routing games [22],
these games have provided fertile ground to investigate a wide range of questions.
A common theme in these involves augmenting users’ costs in some way to
investigate the effect of some external influence or internal bias. For example, the
altruism models of [5, 10] assume that each member x ∈ [0, 1] of the population
has an “altruism” parameter αx ∈ [0, 1] which enters their edge cost function in
the following way:

Jxe (fe) = `e(fe) + αxfe`
′
e(fe). (6)

Here, αx = 1 represents a fully altruistic user whose singular goal is to reduce
aggregate congestion, and αx = 0 represents a fully selfish user whose singular
goal is to minimize personal travel time. This model of altruism has been studied
extensively, and much is known about the effects of this type of altruistic bias
— notably, in many situations, increased levels of altruism lead to reductions in
equilibrium delays. Many other similar cost function biases have been studied
which take a similar form of `e(fe) + be(fe) for some specified be(fe), including
pessimism [19], risk-aversion [17], and various generalizations [15,20].

The above work is concerned with characterizing the effect of user prefer-
ences on equilibrium behavior. In parallel, many researchers have investigated
methods of influencing user preferences to improve equilibrium behavior. These
works on influence often involve similar modifications of user costs. For exam-
ple, pricing [14] is a common means of influencing user choices, and a popular
pricing model allows the system planner to assign pricing functions to each edge
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of τe(fe), and assumes (similar to the altruism model above) that users have
heterogeneous price-sensitivities sx:

Jxe (fe) = `e(fe) + sxτe(fe). (7)

This is clearly tightly connected with the altruism model, particularly if the
{τe} are chosen to be marginal-cost prices of the form τmc

e (fe) = fe`
′
e(fe). This

has led to various synergies between the study of altruism and marginal-cost
pricing [5], as results in one area neatly imply conclusions in the other.

4 Our Contributions on Slowdown Signaling

4.1 Providing slowdown information can harm congestion on some
networks

Our first result shows that no universal signaling policy exists: networks exist
for which all nonzero slowdown signals can increase aggregate congestion costs.
However, some classes of networks are immune to these pathologies; in particular,
slowdown signaling has the potential to improve congestion on all parallel net-
works. In the following, for simplicity of exposition, each edge’s latency function
is assumed to be a polynomial of the form `e(fe) = ae(fe)

d+be, for edge-specific
nonnegative coefficients ae and be.

Theorem 1. Let G be the class of all routing problems. For all γ ∈ (0, 1], routing
problems exist for which γ is a perverse signal:

PI (G, γ) > 1. (8)

However, let Gdp be the class of all parallel routing problems with latency functions

of the form `e(fe) = ae(fe)
d + be. Then non-perverse signaling is possible. In

particular,

γ ∈ [0, d/(d+ 1)] if and only if PI
(
Gdp , γ

)
= 1. (9)

Note that since Gdp ⊂ G, the results in (8) and (9) indicate that there exist
networks for which all signaling policies are perverse, but that these pathological
networks are never parallel networks. Thus, a system planner who knows they
are working with parallel networks can safely employ any signal satisfying γ ∈
[0, d/(d+1)] without fear of causing harm relative to the uninfluenced equilibria.

The proof of this theorem relies on Lemma 1, which explicitly relates the
equilibrium flows under slowdown signaling to a similar formulation which is
reminiscent of user costs experienced under marginal-cost tolls. This allows us
to leverage existing results on marginal-cost tolls to obtain the proof of the
theorem.
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Lemma 1. Let β ∈ B, G ∈ Gd, γ ∈ [0, 1). For each x ∈ [0, 1], let

αx :=
γβx

d(1− γβx)
. (10)

Then the set of Nash flows associated with the game (G, β, γ) is equal to the set
of Nash flows for a game with the same network and a user-specific edge cost
function of

Jxe (fe) = (1 + dαx)ae(fe)
d + be. (11)

The proof of Lemma 1 is provided in the Appendix. The cost functions (11) in
Lemma 1 are well-studied in the literature on heterogeneous nonatomic routing
games. These cost functions are identical to those induced by marginal-cost tolls
when users are heterogeneous in price sensitivity; they also appear in the α-
altruism model of [5, 10]. Thus, results from those two streams of work may be
leveraged to draw conclusions about the effects of slowdown signaling.

Proof of Theorem 1 Due to Lemma 1, the proof of Theorem 1 follows in a
straightforward manner from Theorem (2) of [9] and Theorem 7.1 of [10]. ut

4.2 Optimal signaling need not be truthful

Our next result considers the goal of computing the optimal signaling policy
which minimizes worst-case equilibrium traffic congestion. Here, we consider a
situation in which the planner possesses additional information and in which
case aggressive signaling mechanisms may be warranted. One example of this
is reminiscent of the setting studied in [8]: the planner knows a priori that the
traffic rate on the network is high enough that all edges would be used in an
un-influenced Nash flow. Here, suppose that the planner knows that for every
user x ∈ [0, 1], the slowdown-sensitivity satisfies βx ∈ [βL, βU], where βL > 0
and βU < 1. In this setting, for linear-affine-cost parallel networks, the planner’s
optimal signal may actually over-state the network’s true slowdowns:

Theorem 2. Let Ḡ1
p denote the class of linear-latency parallel networks in which

every edge has positive traffic in an un-influenced Nash flow. For every G ∈ Ḡ1
p ,

it holds that

γ∗ :=
1

βL + βU
= arg min

γ≥0
max
β
Lnf (G, β, γ) . (12)

Under the influence of this signal, the worst-case equilibrium total latency satis-
fies

max
G∈Ḡ1

p

max
β

Lnf (G, β, γ∗)

L∗(G)
=

4

3

(
1− βL/βU

(1 + βL/βU)
2

)
. (13)

The proof of Theorem 2 is provided in the Appendix.



8 P. Brown

4.3 Broader Implications for Heterogeneous Congestion Games

An interesting byproduct of the analysis required for this work is that we have
discovered a weighted potential game formulation which applies to a large class
of heterogeneous nonatomic congestion games; to the best of our knowledge,
this formulation is novel. This formulation opens the door to computing Nash
flows efficiently for a large class of games by performing gradient descent on
the potential function of an associated exact potential game. To understand the
new formulation, first consider the following lemma which demonstrates that the
slowdown-sensitivity games in this paper are exact potential games:

Lemma 2. For any β ∈ B, G ∈ G, and γ ≥ 0, the game (G, β, γ) specified by
cost functions (3) is an exact potential game with a convex potential function.
Thus:

1. (G, β, γ) has at least one Nash flow,
2. the set of Nash flows is convex, and
3. for each user x ∈ [0, 1], given two Nash flows f and f ′ (in which user x

chooses paths p and p′, respectively), it holds that Jx(p; f) = Jx(p′; f ′).

The proof of Lemma 2 is provided in the Appendix. We can now state the main
result, that many heterogeneous nonatomic congestion games with a particular
form of polynomial cost function are weighted potential games and that their
Nash flows exactly coincide with those of our slowdown-sensitivity games.

Theorem 3. In some routing problem G ∈ Gd, let every user x ∈ [0, 1] have
altruism parameter αx ∈ [0, 1] and experience a cost on edge e of Jxe (f) =
(1 + dαx)ae(fe)

d + be. Then routing problem G coupled with the user population
described by αx is a weighted potential game whose set of Nash flows is equal
to that of slowdown-sensitivity game (G, β, 1), where for each x ∈ [0, 1] it holds
that

βx =
αxd

αxd+ 1
. (14)

The proof of Theorem 3 is provided in the Appendix.

5 Conclusion

This paper explores the connections between a new class of slowdown-sensitive
congestion games and established results for heterogeneous nonatomic routing
games under the influence of altruism and marginal-cost pricing. In particular, we
demonstrate a tight connection between the two, and illustrate how to connect
results from one to the other. Finally, we exploit this connection to demonstrate a
novel result for certain heterogeneous nonatomic congestion games, namely that
they are weighted potential games and thus their equilibria may be computed
efficiently.
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15. Kleer, P., Schäfer, G.: Path deviations outperform approximate stability in het-
erogeneous congestion games. In: International Symposium on Algorithmic Game
Theory. pp. 212–224 (2017), http://arxiv.org/abs/1707.01278

16. Li, R., Brown, P.N., Horowitz, R.: Employing Altruistic Ve-
hicles at On-ramps to Improve the Social Traffic Conditions.
In: 2021 American Control Conference (ACC). pp. 4547–4552.
IEEE (may 2021). https://doi.org/10.23919/ACC50511.2021.9482993,
https://ieeexplore.ieee.org/document/9482993/



10 P. Brown

17. Lianeas, T., Nikolova, E., Stier-Moses, N.E.: Asymptotically tight bounds for inef-
ficiency in risk-averse selfish routing. In: IJCAI International Joint Conference on
Artificial Intelligence. vol. 2016-Janua, pp. 338–344 (2016)

18. Massicot, O., Langbort, C.: Public Signals and Persuasion for Road
Network Congestion Games under Vagaries. IFAC-PapersOnLine
51(34), 124–130 (2019). https://doi.org/10.1016/j.ifacol.2019.01.054,
https://doi.org/10.1016/j.ifacol.2019.01.054

19. Meir, R., Parkes, D.C.: Playing the Wrong Game: Smoothness Bounds for Conges-
tion Games with Behavioral Biases. Performance Evaluation Review 43(3), 67–70
(2015). https://doi.org/10.1145/2847220.2847242, http://arxiv.org/abs/1411.1751

20. Meir, R., Parkes, D.C.: Playing the Wrong Game: Bounding Negative Ex-
ternalities in Diverse Populations of Agents. In: 17th International Confer-
ence on Autonomous Agents and MultiAgent Systems. pp. 86–94 (2018),
https://arxiv.org/pdf/1411.1751.pdf

21. Pigou, A.C.: The Economics of Welfare. Macmillan, New York (1920)
22. Roughgarden, T.: Selfish Routing and the Price of Anarchy. MIT Press (2005)
23. Sandholm, W.H.: Population Games and Evolutionary Dynamics. MIT Press

(2009)
24. Thaler, R.H., Sunstein, C.R.: Nudge (2008)
25. Tversky, A., Khaneman, D.: Judgment under Uncertainty: Heuristics and Biases.

Science (1974)

Appendix: Proofs

Proof of Lemma 1. By (10), emulated cost functions (11) can be written

Jxe (fe) =
ae(fe)

d

1− γβx
+ be. (15)

Since users’ ordinal preferences (and thus Nash flows) are invariant to multi-
plication by user-specific constants, the cost functions in (15) are equivalent to
ones given by

J̃xe (fe) = ae(fe)
d + (1− γβx)be. (16)

Evidently, the cost functions (16) are equal to those of the nominal game (G, β, γ)
(see (3)). Since, for each user x, these cost functions encode the same ordinal
preferences as those given by (11), the two sets of cost functions induce identical
sets of Nash flows. ut

Proof of Theorem 2. The optimal signal factor (12) can be deduced from
the results in [8, Theorem 1] regarding the optimal marginal-cost-toll scale
factor in an identical setting. Our Lemma 1 provides that once a value of γ
is fixed, each slowdown-sensitivity βx distribution can be used to compute a
taxation-sensitivity αx distribution which induces an identical set of Nash flows.
In [8, Theorem 1], it is shown that worst-case congestion is minimized for scaled
marginal-cost taxes when the taxation-sensitivity distribution satisfies

max
x

αx =
1

minx αx
. (17)
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Thus, due to the equivalence between slowdown-sensitivity and taxation sensi-
tivity and applying the transformation (10) from Lemma 1, the optimal signal
factor γ∗ satisfies

γ∗βL

1− γ∗βL
=

γ∗βU

1− γ∗βU
, (18)

which implies (12). The upper bound (13) follows immediately from [6, Lemma
3.1]. ut

Proof of Lemma 2.

Note that the individual slowdown sensitive cost function (3) is a sum of two
terms: `e(fe) and γβx`e(0). A game with costs defined by only the first term
is simply a homogeneous nonatomic routing game, which is well-known to be
an exact potential game with a convex potential function [22, 23]. A game with
costs defined by only the second term is a trivial game in which each user’s cost
function depends only on her own action; any such game is also known to be
an exact potential game with a linear potential function [23]. In [23] it is shown
that a game whose cost functions are the sum of exact potential games’ cost
functions is itself an exact potential game whose potential function is the sum of
the potential functions of its component games. Therefore, (G, β, γ) is an exact
potential game with a convex potential function — and this convexity implies
points (1), (2), and (3). ut

Proof of Theorem 3.

The proof relies on a serial application of Lemmas 1 and 2. In particular,
Lemma 1 provides a bijection between the heterogeneous altruistic congestion
games assumed by Theorem 3 and the slowdown-sensitivity games considered
in this paper. Equation (14) is simply the inverse mapping of (10); thus, the
cost functions of the two games express identical ordinal preferences and are re-
lated by a set of user-specific constant multipliers. Thus, the games are (for the
purposes of equilibrium computation) equivalent: equilibria computed for one
are automatically equilibria for the other. Accordingly, in light of Lemma 2, one
may use potential game equilibrium-finding techniques (e.g., gradient descent)
to compute the equilibria of the slowdown-sensitivity game and thereby find the
equilibria of the altruistic congestion game. ut


