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Abstract
In this paper, we provide a constructive proof ofH1(Rn) factorization in terms of multilinear
Calderón–Zygmund operators in Morrey spaces. As a direct application, we obtain a char-
acterization of functions in BMO(Rn) via commutators of multilinear Calderón–Zygmund
operators. Furthermore, we prove a Morrey compactness characterization of [b, T ]l , the
commutator in the l-th entry.
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1 Introduction andmain results

Our main purpose of this paper is to study the Hardy factorization in terms of commuta-
tors of multilinear Calderón–Zygmund operators in Morrey spaces. The theory of Hardy
spaces has been studied and developed extensively in harmonic analysis. Particularly, the
real-variable Hardy space theory on n-dimensional Euclidean space R

n, n ≥ 1, plays an
important role in harmonic analysis and has been systematically developed in [6, 15]. A
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celebrated result of 1976, by Coifman–Rochberg–Weiss [6], is that, every f ∈ H1(Rn) can
be written as

f =
k≥1

n

j=1

gk,jRj (hk,j ) + hk,jRj (gk,j )

with

k≥1

n

j=1

gk,j L2 hk,j L2 ≤ c f H1

whereRj are the Riesz transforms, for j = 1, . . . , n.
As a consequence, a characterization of functions b in BMO(Rn) can be obtained via

the boundedness of [b,Rj ]. After that, the theory of H1(Rn) space has been developed by
many authors, see, e.g., [12, 20–22, 28, 30, 31] and the references therein. In [31], Uchiyama
extended the Hardy factorization to Hp on the space of homogeneous type, for any p ∈
( 1
1+γ

, 1), where γ > 0 refers to the γ -Hölder smoothness of singular kernels. Moreover,

Komori and Mizuhara [20] obtained a factorization of functions in H1(Rn) in generalized
Morrey spaces. Recently, Tao et al. [28] obtained a result ofH1(Rn) factorization via [b, C ]
in Morrey spaces, whereC is the Cauchy integral (see [10, 11] for the Morrey boundedness
and compactness characterization of [b, T ] on spaces of homogeneous type). It is known
that the Morrey spaces Lp,α(Rn) (see Definition 1.7) are generalizations of Lp spaces, and
they have many important applications to the PDEs (see e.g. [4, 14, 18, 25, 27, 29]).

On the other hand, the multilinear Calderón–Zygmund theory was introduced and stud-
ied in the pioneering papers by Coifman and Meyer in [7–9]. The study of multilinear
singular integrals was motivated not only as generalizations of the theory of linear ones
but also its natural appearance in harmonic analysis. In recent years, this topic has received
increasing attentions and well development, such as the systemic treatment of multilinear
Calderón–Zygmund operators by Grafakos and Torres in [16, 17], by Christ and Journé in
[5], and multilinear fractional integrals by Kenig and Stein in [19]. Weighted estimates and
commutators in this multilinear setting were then studied by the authors in [17, 23, 26].

Before we formulate our results, let us first recall the definition of a standard m-linear
Calderón–Zygmund kernel, m ≥ 1.

Definition 1.1 Let K(y0, y1, . . . , ym), yi ∈ R
n, i = 0, 1, . . . , m, be a locally integrable

function, defined away from the diagonal {y0 = y1 = · · · = ym}. Then, we say that K

is an m-linear Calderón–Zygmund kernel if it satisfies the following size and smoothness
conditions:

|K(y0, y1, . . . , ym)| ≤ C0⎛

⎝
m

k,l=0

|yk − yl |
⎞

⎠
mn ,

for some constant C0 > 0 and for all (y0, y1, ..., ym) ∈ (Rn)m+1 away from the diagonal;
and

|K(y0, y1, . . . , yj , . . . , ym) − K(y0, y1, . . . , yj , . . . , ym)| ≤ C0|yj − yj |η⎛

⎝
m

k,l=0

|yk − yl |
⎞

⎠
mn+η

(1.1)
for some η > 0, whenever 0 ≤ j ≤ m, and |yj − yj | ≤ 1

2 max
0≤k≤m

|yj − yk|.
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Suppose T is anm-linear operator mapping from S(Rn)×S(Rn)×· · ·×S(Rn) toS (Rn),
where we denote by S(Rn) the spaces of all Schwartz functions on R

n and by S (Rn) its
dual space. We further assume that T is associated with the m-linear Calderón–Zygmund
kernel K , defined as above, i.e.,

T (f1, . . . , fm)(x) =
Rmn

K(x, y1, . . . , ym)

m

j=1

fj (yj ) dy1 · · · dym , (1.2)

whenever f1, . . . , fm ∈ S(Rn) with compact support and x /∈ ∩m
j=1supp(fj ). We also

recall the j -th transpose T ∗
j of T , defined via

T ∗
j (f1, . . . , fm), h T (f1, . . . , fj−1, h, fj+1, . . . , fm), fj (1.3)

for all f1, . . . , fm, h ∈ S(Rn) (see [16, pp. 127–128]). It is easy to verify that the kernel
K∗

j of T ∗
j is related to the kernel K of T via

K∗
j (x, y1, . . . , yj−1, yj , yj+1, . . . , ym) = K(yj , y1, . . . , yj−1, x, yj+1, . . . , ym) . (1.4)

Now, it suffices to define an m-linear operator of Calderón–Zygmund type.

Definition 1.2 Let T satisfy (1.2). If T : Lp1(Rn) × · · · × Lpm(Rn) → Lp(Rn) for some

1 < p1, . . . , pm < ∞, and
1

p
= 1

p1
+ · · · + 1

pm

, (1.5)

then T is called an m-linear Calderón–Zygmund operator.

According to [16, Theorem 3], T can be extended to a bounded operator from Lp1(Rn)×
· · · × Lpm(Rn) to Lp(Rn). Moreover, we also have the following pointwise estimate for T

(see e.g. [2, 23]).

Lemma 1.3 Let p, p1, . . . , pm > 1 satisfy (1.5). Suppose that T is an m-linear Calderón–
Zygmund operator. Then, for any 1 < q < p, there exists a constant C > 0 such that for
any vector function f = (f1, . . . , fm), where each component is smooth and with compact
support, the following inequality holds true

M T (f ) (x) ≤ C

m

j=1

Mqj
(fj )(x) , (1.6)

with qj = qpj

p
, and where M is denoted by the sharp maximal function.

A typical example of m-linear Calderón–Zygmund operator is the m-linear i-th Riesz
transform, defined by

Ri (f1, ..., fm)(x) = p.v.
(Rn)m

m
j=1(xi − (yj )i)

m
j=1 |x − yj |2

mn+1
2

m

j=1

fj (yj ) dy1 · · · dym ,

where (yj )i denotes the i-th coordinate of yj .
Next, we denote T the corresponding maximal operator of T , defined as

T (f1, . . . , fm)(x) = sup
δ>0

|Tδ(f1, . . . , fm)(x)| , (1.7)
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where Tδ , the truncated operator of T , is

Tδ(f1, . . . , fm)(x) =
{ m

j=1 |x−yj |2>δ2}
K(x, y1, . . . , ym)

m

j=1

fj (yj ) dy1 · · · dym . (1.8)

Similar to the linear setting, we also have Cotlar’s inequality (see [17, Theorem 2.1]). That
is for all r > 0,

T (f1, . . . , fm)(x) ≤ C

⎛

⎝Mr (T (f1, . . . , fm)) (x) +
m

j=1

Mfj (x)

⎞

⎠ , (1.9)

where

Mr (f )(x) = sup
x∈Q

|Q|−1

Q

|f |r dx

1/r

and the supremum is taken over all cube Q containing x. As a consequence, T maps
Lp1(Rn) × · · · × Lpm(Rn) → Lp(Rn), where p1, p2, . . . , pm satisfy (1.5).

In analogy with the linear case, we define the l-th partial multilinear commutators of the
m-linear Calderón–Zygmund operator T as follows.

Definition 1.4 Suppose T is an m-linear Calderón–Zygmund operator as defined above.
For l = 1, 2, . . . , m, we set

[b, T ]l (f1, . . . , fm)(x) := T (f1, . . . , bfl, . . . , fm)(x) − bT (f1, . . . , fm)(x) .

This is simply measuring the commutation properties in each linear coordinate sepa-
rately. Dual to the multilinear commutator, in both language and via a formal computation,
we define the multilinear “multiplication” operators l :

Definition 1.5 Let T be an m-linear Calderón–Zygmund operator. For l = 1, 2, . . . , m,
associate with T the operator

l (g, h1, . . . , hm)(x) :=hl(x)T ∗
l (h1, . . . , hl−1, g, hl+1, . . . , hm)(x)−g(x)T(h1, . . . , hm)(x).

Definition 1.6 We say that T is mn-homogeneous if T satisfies

|T (1B1 , . . . , 1Bm)(x)| ≥ 1

Mmn
, ∀x ∈ B0(x0, r) (1.10)

for (m + 1) pairwise disjoint balls B0 = B0(x0, r), . . . , Bm = Bm(xm, r) satisfying the
condition that |y0 − yl | ≈ Mr for all y0 ∈ B0, and yl ∈ Bl , l = 1, 2, . . . , m, where r > 0
and M > 100.

Recently, Li and Wick [21] obtained H1(Rn) factorization in terms of multilinear
Calderón–Zygmund operators in Lebesgue spaces. As a direct application, they obtained a
characterization of BMO(Rn) via commutators of the multilinear Riesz transforms.

Inspired by the above works, we want to provide the constructive proof of the weak fac-
torization H1(Rn) in terms of multilinear operators of Calderón–Zygmund type on Morrey
spaces.

For convenience, we recall its definition here.

Definition 1.7 Let α ∈ [0, n), and 1 < p < ∞. The Morrey space Lp,α(Rn) is defined by

Lp,α(Rn) = f ∈ L
p

loc(R
n) f Lp,α < ∞ ,

44



Hardy Factorization in Terms of Multilinear CalderO N–Zygmund...´

with

f Lp,α = sup
B(x,r)

r−α

B(x,r)

|f (y)|p dy

1/p

,

where the supremum is taken over all balls B(x, r) in R
n.

Then, our main results are as follows.

Theorem 1.8 Let 1 ≤ l ≤ m, and let p1, . . . , pm, p > 1 satisfy (1.5). Suppose that T

is an m-linear Calderón–Zygmund operator, satisfying mn-homogeneous condition (1.10).
Then, for every function f ∈ H1(Rn), there exist sequences {λk

j } ∈ l1 and functions

gk
j , h

k
j,1, . . . , h

k
j,m ∈ L∞

c (Rn) (the space of bounded functions with compact support), such
that

f =
∞

k=1

∞

j=1

λk
j l gk

j , h
k
j,1, . . . , h

k
j,m (1.11)

in the sense of H1(Rn) (see the formula of l (· · · ) in Definition 1.5). Moreover, we have
that

f H1 ≈ inf

⎧
⎨

⎩

∞

k=1

∞

j=1

|λk
j gk

j Bp ,α hk
j,1 Lp1,α1 ... hk

j,m Lpm,αm

⎫
⎬

⎭ ,

with

0 ≤ α, α1, . . . , αm < n, and
α

p
=

m

j=1

αj

pj

, (1.12)

and where the infimum above is taken over all possible representations of f that satisfy
(1.11).

Our next result is a characterization of BMO(Rn) in terms of the commutators with the
multilinear operators in Morrey spaces.

Theorem 1.9 Let 1 ≤ l ≤ m. Suppose that T is an m-linear Calderón–Zygmund operator.
If b ∈ BMO(Rn), then the commutator

[b, T ]l : Lp1,α1(Rn) × · · · × Lpm,αm(Rn) → Lp,α(Rn)

for p1, ..., pm, p > 1 satisfy (1.5), and for 0 ≤ α, α1, ..., αm < n satisfy (1.12). Moreover,
there holds true

[b, T ]l Lp1,α1×···×Lpm,αm→Lp,α ≤ C b BMO .

Conversely, for b ∈ L1
loc(R

n), if T is mn-homogeneous, and [b, T ]l maps Lp1,α1(Rn) ×
· · · × Lpm,αm(Rn) → Lp,α(Rn), then b ∈ BMO(Rn) and

b BMO ≤ C [b, T ]l Lp1,α1×···×Lpm,αm→Lp,α .

Finally, we prove a Morrey compactness characterization of [b, T ]l in the following
theorem.

Theorem 1.10 Same hypotheses as in Theorem 1.9. Then, the commutator

[b, T ]l : Lp1,α1(Rn) × · · · × Lpm,αm(Rn) → Lp,α(Rn)

is compact if provided that b ∈ CMO(Rn).
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Conversely, for b ∈ L1
loc(R

n), if T ismn-homogeneous, and [b, T ]l is a compact operator
on Lp1,α1(Rn) × · · · × Lpm,αm(Rn), then b ∈ CMO(Rn).

Our paper is organized as follows. In the next section, we give definition of some func-
tional spaces and preliminary results. Section 3 is devoted to the study of Hardy factorization
in terms of commutator [b, T ]l on Morrey spaces. As a consequence, we obtain Theorem
1.9. In the last Section, we provide the proof of Theorem 1.10.

Notation Through this paper, we denote by C constant which can change from line to line.
Next, we denote A B if there exists a constant c > 0 such that A ≤ cB. Moreover, we
denote A ≈ B if A B and B A.

2 Functional Setting and Preliminary Results

2.1 Block Spaces

Following Blasco, Ruiz and Vega [1], we define the function called a block.

Definition 2.1 Let α ∈ [0, n), 1 < q < ∞, and 1/q + 1/q = 1. A function b(x) is called
a (q, α)-block, if there exists a ball B(x0, r) such that

supp(b) ⊂ B(x0, r), b Lq ≤ r
− α

q .

We further recall the definition of Bq,α(Rn) via (q, α)-blocks from [1].

Definition 2.2 Let q ∈ (1, ∞) and α ∈ (0, n). The space Bq,α(Rn) is defined by setting

Bq,α(Rn)=
⎧
⎨

⎩g ∈ L1
loc(R

n) : g=
∞

j=1

mjbj , {bj }j≥1 are (q, α)-block, and
∞

j=1

|mj |<∞
⎫
⎬

⎭.

Furthermore, for every g ∈ Bq,α(Rn), let

g Bq,α = inf

⎧
⎨

⎩

∞

j=1

|mj |
⎫
⎬

⎭ ,

where the infimum is taken over all possible decompositions of g as above.

Remark 2.3 It was showed in [1] that Bq,α(Rn) is a Banach space, and the dual space of
Bq,α(Rn) is Lq ,α(Rn).

Next, we denote 1A, by the characteristic function of A. Then, we recall fundamental
results, repeatedly used in the following.

Lemma 2.4 Let α ∈ [0, n), and 1 < p < ∞. Then, for any ball B(x, r) in R
n, we have

1B(x,r) Lp,α ≈ r
n−α
p , (2.1)

and
1B(x,r) Bp ,α ≤ C(n, p) r

n+ α−n
p . (2.2)
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Proof The proof of Eq. 2.1 (respectively (2.2)) is straightforward from the definition of
Morrey spaces (respectively Bp ,α), so we leave it to the reader.

The next result is a dual inequality between Lp,α(Rn) and Bp ,α(Rn).

Lemma 2.5 Let 1 < p < ∞, and α ∈ (0, n). If f ∈ Lp,α(Rn), and g ∈ Bp ,α(Rn), then

f (x)g(x) dx f Lp,α g Bp ,α .

Proof Since g ∈ Bp ,α(Rn), then we have

g(x) =
∞

j=1

mjbj (x) ,

where {bj }j≥1 are (p , α)-blocks. We can assume that supp(bj ) ⊂ Bj . Then, applying
Hölder’s inequality yields

Rn

f (x)g(x) dx =
Rn

f (x)

∞

j=1

mjbj (x) dx =
∞

j=1

mj
Bj

f (x)bj (x) dx

≤
∞

j=1

|mj f Lp(Bj ) bj Lp (Bj )

=
∞

j=1

|mj | r−α/p f Lp(Bj ) rα/p bj Lp (Bj )
≤

⎛

⎝
∞

j=1

|mj |
⎞

⎠ f Lp,α .

Hence, the conclusion follows from the definition of Bp ,α(Rn).

2.2 The Space Atomic H1(Rn )

Definition 2.6 We say that a real-valued function a is an atom (or 1-atom) if it is supported
in B(x, r) ⊂ R

n, and

Rn

a(x) dx = 0, and a L∞ ≤ r−n .

We now denote the Hardy space atomic H1(Rn) by

H1(Rn) =
⎧
⎨

⎩
k≥1

λkak : ak atoms , λk ∈ R,

k≥1

|λk| < ∞
⎫
⎬

⎭ .

And we define a norm on H1(Rn) by

f H1(Rn) = inf

⎧
⎨

⎩
k≥1

|λk| : f =
k≥1

λkak

⎫
⎬

⎭ .

Next, we recall the following result, obtained from the elementary properties of H1(Rn)

(see, e.g., [21, Lemma 2.1], [20, Lemma 4.3], [22] for proofs).
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Lemma 2.7 Let x0, y0 ∈ R
n be such that |x0 − y0| = Mr , for some r > 0, and M > 100.

If
Rn F (x) dx = 0, and

|F(x)| ≤ r−n 1B(x0,r)(x) + 1B(y0,r)(x) , ∀x ∈ R
n ,

then there is a positive constant C = C(n), such that

F H1(Rn) ≤ C logM .

3 Weak Hardy Factorization in Terms of Commutator [b, T]l onMorrey
Spaces

This part is devoted to the proof of Theorems 1.8 and 1.9.

3.1 Proof of Theorem 1.8

If f ∈ H1(Rn), then we will utilize theH1(Rn) decomposition of f in order to construct an
approximation to f in terms of l (. . .).

Lemma 3.1 If f ∈ H1(Rn) can be written as

f =
k≥1

λkak

then, there exist {gk}k≥1, {hk
1}k≥1, . . . , {hk

m}k≥1 ⊂ L∞
c (Rn) such that

ak − l (g
k, hk

1, . . . , h
k
m)

H1
≤ C

logM

Mη
, (3.1)

and

k≥1

|λk gk
Bp ,α hk

1 Lp1,α1 . . . hk
m Lpm,αm ≤ CMmn f H1 , (3.2)

where M > 0 is sufficiently large. Furthermore, we have

f −
k≥1

λk l gk, hk
1, . . . , h

k
m

H1

≤ 1

2
f H1 . (3.3)

Proof of Lemma 3.1 Let a be an atom, supported in B(x0, r), for some x0 ∈ R
n, and for

r > 0, such that

a L∞ ≤ r−n, and
Rn

a(x) dx = 0 .

To apply the homogeneity of T , we recall a construction of (m + 1)-pairwise disjoint balls
B(x0, r), B(y1, r), . . . , B(ym, r) as in [21] satisfying

|x0 − yl | = |yj − yl | = Mr, j = 1, . . . , m, j = l .

Now, let us set ⎧
⎪⎨

⎪⎩

g(x) = 1B(yl ,r)(x) ,

hj (x) = 1B(yj ,r)(x) , j = l ,

hl(x) = a(x)
T ∗

l (h1,...,hl−1,g,hl+1,...,hm)(x0)
,

where T ∗
l is the l-th transpose of T as defined in Eq. 1.3. It is obvious that these functions

are in L∞
c (Rn). Moreover, we observe that, since T is mn-homogeneous, and so is T ∗

l , for
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the specific choice of the functions h1, . . . , hl−1, g, hl+1, . . . , hm as above, we have that
there exists a positive constant C such that

|T ∗
l (h1, . . . , hl−1, g, hl+1, . . . , hm)(x0)| ≥ CM−mn .

From the definitions of the functions g and hj , we obtain

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g Bp ,α ≤ Cr
n+ α−n

p ,

hj L
pj ,αj ≈ r

n−αj
pj , for j = 1, . . . , m, and j = l ,

hl Lpl ,αl = a Lpl ,α|T ∗
l (h1,...,hl−1,g,hl+1,...,hm)(x0)| ≤ CMmn r−nr

n−αl
pl .

(3.4)

Therefore, we get by Lemma 2.4

g Bp ,α h1 Lp1,α1 . . . hm Lpm,αm ≤ CMmnr
n+ α−n

p
+ n−α1

p1
+...+ n−αm

pm
−n = CMmn . (3.5)

Next, we claim that

a − l (g, h1, . . . , hm) H1 ≤ C
logM

Mη
. (3.6)

Indeed, we have

a(x) − l (g, h1, . . . , hm)(x) = a(x) − a(x)
T ∗

l (h1, . . . , hl−1, g, hl+1, . . . , hm)(x)

T ∗
l (h1, . . . , hl−1, g, hl+1, . . . , hm)(x0)

+g(x)T (h1, . . . , hm)(x)

= a(x) 1 − T ∗
l (. . .)(x)

T ∗
l (. . .)(x0)

+ g(x)T (h1, . . . , hm)(x)

:= J1 + J2 ,

where we denote T ∗
l (. . .) = T ∗

l (h1, . . . , hl−1, g, hl+1, . . . , hm) for short.
For J1, we use the smoothness of K in Eq. 1.1 in order to obtain

|J1| = |a(x)| T ∗
l (. . .)(x0) − T ∗

l (. . .)(x)

T ∗
l (. . .)(x0)

≤ CMmn a L∞
m
j=1B(yj ,r)

|K(zl, z1, . . . , zl−1, x0, zl+1, . . . , zm)

−K(zl, z1, . . . , zl−1, x, zl+1, . . . , zm)| dz1 . . . dzm

≤ CMmnr−n

m
j=1B(yj ,r)

|x0 − x|η
m
i=1,i=l |zl − zi | + |zl − x0|

mn+η
dz1 . . . dzm

≤ CMmnr−nrmn rη

(Mr)mn+η
= CM−ηr−n .

With this inequality noted, and since a(x) is compactly supported in B(x0, r), then we
deduce

|J1| ≤ CM−ηr−n 1B(x0,r) . (3.7)
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Concerning J2, since Rn a(x) dx = 0, and supp(a) ⊂ B(x0, r), then we observe that

|J2| = 1B(yl ,r)
Rmn

K(x, z1, . . . , zm
m
j=1hj (zj ) dz1 . . . dzm

= 1B(yl ,r)
m
j=1,j=l B(yj ,r)×B(x0,r)

K(x, z1, . . . , zm)
a(zl)

T ∗
l (. . .)(x0)

dz1 . . . dzm

= 1B(yl ,r)

|T ∗
l (. . .)(x0)| m

j=1,j=l B(yj ,r)×B(x0,r)

[K(z1, . . . , x, . . . , zm)−K(z1, . . . , x0, . . . , zm)] a(zl) dz1 . . . dzm

≤ CMmn1B(yl ,r)
m
j=1,j=l B(yj ,r)×B(x0,r)

a L∞
|x − x0|η

m
j=1 |x0 − zj |

mn+η
dz1 . . . dzm

≤ C1B(yl ,r)M
mnr−n rηrmn

(Mr)mn+η
= C1B(yl ,r)M

−ηr−n .

Combining the last inequality and Eq. 3.7 yields

|a(x) − l (g, h1, . . . , hm)(x)| ≤ CM−ηr−n 1B(x0,r) + 1B(yl ,r) .

Now, applying Lemma 2.7 to the function F(x) = a(x) − l (g, h1, . . . , hm)(x), we
obtain

a − l (g, h1, . . . , hm) H1 ≤ C
logM

Mη
. (3.8)

Therefore, we obtain (3.1).
Next, it follows from Eq. 3.5 that

gk
Bp ,α hk

1 Lp1,α1 . . . hk
m Lpm,αm ≤ CMmn, for k ≥ 1 .

Thus,

k≥1

|λk gk
Bp ,α hk

1 Lp1,α1 . . . hk
m Lpm,αm ≤ CMmn f H1 .

Hence, we obtain (3.2).
It remains to prove (3.3). By applying (3.8) to a = ak , k ≥ 1, we obtain that there exist

{gk}k≥1, {hk
1}k≥1, . . . , {hk

m}k≥1 ⊂ L∞
c (Rn), such that

ak − l (g
k, hk

1, . . . , h
k
m)

H1
≤ C

logM

Mη
.

This implies that

f −
k≥1

λk l gk, hk
1, . . . , h

k
m

H1

≤
k≥1

|λk| ak − l gk, hk
1, . . . , h

k
m H1

≤ C
logM

Mη
k≥1

|λk,1|

≤ 1

2
f H1 (3.9)

provided that M is large enough. This ends the proof of Lemma 3.1.

Now, suppose that f can be written as

f =
k≥1

λkak .
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Thanks to Lemma 3.1, there exist {gk}k≥1, {hk
1}k≥1, . . . , {hk

m}k≥1 ⊂ L∞
c (Rn) such that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

k≥1

|λk gk
Bp ,α hk

1 Lp1,α1 . . . hk
m Lpm,αm ≤ CMmn f H1 ,

f −
k≥1

λk l gk, hk
1, . . . , h

k
m

H1

≤ 1
2 f H1 .

Let us set

f1 = f −
k≥1

λk l gk, hk
1, . . . , h

k
m .

Since f1 ∈ H1(Rn), then we can decompose f1 as follows:

f1 =
k≥1

λk,1ak,1 ,

where {λk,1}k≥1 ∈ l1, and {ak,1}k≥1 are atoms.
By applying Lemma 3.1 to f1, there exist {gk

1}k≥1, {hk
1,1}k≥1, . . . , {hk

1,m}k≥1 ⊂ L∞
c (Rn),

such that
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1 −
k≥1

λk,1 l gk
1, h

k
1,1, . . . , h

k
1,m

H1

≤ 1

2
f1 H1 ≤ 1

22
f H1 ,

k≥1

|λk,1 gk,1 Bp ,α hk
1,1 Lp1,α1 . . . hk

1,m Lpm,αm ≤CMmn f1 H1 ≤ CMmn 1

2
f H1 .

Similarly, we can repeat the above argument to

f2 = f1 −
k≥1

λk,1 l gk
1, h

k
1,1, . . . , h

k
1,m

= f −
k≥1

λk l gk, hk
1, . . . , h

k
m −

k≥1

λk,1 l gk
1, h

k
1,1, . . . , h

k
1,m .

In summary, we can construct a sequence {λk,j } ∈ l1, {gk
j }, {hk

j,1},. . . , {hk
j,m} ⊂ L∞

c (Rn),
such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

f =
N

j=0 k≥1

λk,j l gk
j , h

k
j,1, . . . , h

k
j,m + fN ,

N

j=0 k≥1

|λk,j gk
j Bp ,α hk

j,1 Lp1,α1 . . . hk
j,m Lpm,αm ≤ CMmn

N

j=0

1

2j
f H1 ,

fN H1 ≤ 1
2N f H1 ,

(3.10)
where we adopt the notations λk,0 = λk , gk,0 = gk, h

k
0,1 = hk

1, . . . , h
k
0,m = hk

m. Thus, the
desired result follows as N → ∞. This puts an end to the proof of Theorem 1.8.

3.2 Proof of Theorem1.9

To obtain the upper bound of [b, T ]l , we recall the following result (see e.g. [2, 23]).
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Lemma 3.2 Let b ∈ BMO(Rn). Then, for any 1 < q < p there exists a positive constant
C such that

M [b, T ]l (f ) (x) ≤ C b BMO

⎛

⎝
m

j=1

Mqj
(fj )(x) + Mq T (f ) (x)

⎞

⎠ . (3.11)

with qj = qpj

p
.

Since g Lp,α M (g) Lp,α ; and Mq(g) Lp,α g Lp,α for g ∈ Lp,α(Rn) (see e.g.
[13]), then applying Hölder’s inequality and Eq. 3.11 yields

[b, T ]l (f )
Lp,α

M [b, T ]l (f )
Lp,α

b BMO

⎛

⎝
m

j=1

Mqj
(fj ) + Mq T (f )

⎞

⎠

Lp,α

b BMO

⎛

⎝
m

j=1

Mqj
(fj )

Lp,α

+ Mq T (f )
Lp,α

⎞

⎠

b BMO

⎛

⎝
m

j=1

Mqj
(fj ) L

pj ,αj + T (f )
Lp,α

⎞

⎠

b BMO

m

j=1

fj L
pj ,αj . (3.12)

Hence, we get the desired result.
It remains to prove the lower bound of [b, T ]l . The proof can be obtained via the Hardy

decomposition in terms of the multilinear operators l , and the duality between BMO(Rn)

and H1(Rn).
Indeed, as a matter of fact,H1(Rn)∩L∞

c (Rn) is dense inH1(Rn). Next, for every L > 0,
let us put

bL(x) = b(x)1B(x0,L)(x) .

For every f ∈ H1(Rn) ∩ L∞
c (Rn), thanks to Theorem 1.8, there exist sequences {λk

j } ∈ l1

and functions gk
j , h

k
j,1, . . . , h

k
j,m ∈ L∞

c (Rn), such that

f =
∞

k=1

∞

j=1

λk
j l gk

j , h
k
j,1, . . . , h

k
j,m .

Furthermore, we have

f H1 ≈
∞

k=1

∞

j=1

|λk
j gk

j Bp ,α hk
j,1 Lp1,α1 hk

j,m Lpm,αm .

Now, since bL → b in L1
loc(R

n) as L → ∞, and f ∈ H1(Rn) ∩ L∞
c (Rn), then we have

lim
L→∞ bL, f b, f .
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Thus,

b, f lim
L→∞ bL, f lim

L→∞ bL,

∞

k=1

∞

j=1

λk
j l(g

k
j , h

k
j,1, . . . , h

k
j,m)

=
∞

k=1

∞

j=1

λk
j lim

L→∞ bL l gk
j , h

k
j,1, . . . , h

k
j,m

=
∞

k=1

∞

j=1

λk
j l gk

j , h
k
j,1, . . . , h

k
j,m .

Note that the last equality follows from the fact that l gk
j , h

k
j,1, . . . , h

k
j,m ∈ L∞

c (Rn) for

k, j ≥ 1. Furthermore, we observe that

∞

k=1

∞

j=1

λk
j l gk

j , h
k
j,1, . . . , h

k
j,m

=
∞

k=1

∞

j=1

λk
j b(x) hk

j,l(x)T ∗
l hk

j,1, . . . , h
k
j,l−1, g

k
j , h

k
j,l+1, ...h

k
j,m (x)

−gk
j (x)T hk

j,1, . . . , h
k
j,m (x) dx

=
∞

k=1

∞

j=1

λk
j [b, T ]l hk

j,1, . . . , h
k
j,m (x) gk

j (x) dx .

Therefore, we get

b, f

∞

k=1

∞

j=1

λk
j [b, T ]l hk

j,1, . . . , h
k
j,m (x) gk

j (x) dx .

Since [b, T ]l maps Lp1,α1(Rn) × · · · × Lpm,αm(Rn) → Lp,α(Rn), and by Lemma 2.5, then
we obtain

| b, f | ≤
∞

k=1

∞

j=1

|λk
j | [b, T ]l hk

j,1, . . . , h
k
j,m

Lp,α
gk

j Bp ,α

b, T ]l Lp1,α1×···×Lpm,αm→Lp,α

∞

k=1

∞

j=1

|λk
j | hk

j,1
Lp1,α1

hk
j,m Lpm,αm gk

j Bp ,α

b, T ]l Lp1,α1×···×Lpm,αm→Lp,α f H1 .

With this inequality noted, it follows from the duality between BMO(Rn) and H1(Rn) and
the density argument that

b BMO b, T ]l Lp1,α1×···×Lpm,αm→Lp,α .

Hence, we complete the proof of Theorem 1.9.
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4 Compactness Characterization of Functions in Terms of Multilinear
Calderón–Zygmund Operators

Here we show how to extend the boundedness results to related compactness results.

Proof a) Necessity: Assume that b ∈ CMO(Rn). Let E be a bounded set in Lp1,α1(Rn) ×
· · · × Lpm,αm(Rn). It is enough to show that [b, T ]l (E) is relatively compact in Lp,α(Rn).

Since b ∈ CMO(Rn) then, for every ε > 0 there exists a function bε ∈ C∞
c (Rn) such that

b − bε BMO < ε . (4.1)

By the triangle inequality and Theorem 1.9, we have

[b, T ]l (f1, . . . , fm) Lp,α

≤ [b − bε, T ]l (f1, . . . , fm) Lp,α + [bε, T ]l (f1, . . . , fm) Lp,α

b − bε BMO f1 Lp1,α1 ... fm Lpm,αm + [bε, T ]l (f1, . . . , fm) Lp,α

≤ Cε + [bε, T ]l (f1, . . . , fm) Lp,α ,

for all (f1, . . . , fm) ∈ E. With this inequality noted, it suffices to demonstrate that
[bε, T ]l (E) is relatively compact in Lp,α(Rn). To obtain the desired result, we recall a
compactness criterion in Morrey space (see, e.g., [3]).

Lemma 4.1 Let 0 < α < n, and 1 ≤ p < ∞. Suppose the subset G in Lp,α(Rn) satisfies
the following conditions:

(i) sup
f ∈G

f Lp,α < ∞,

(ii) lim
R→∞ f χBc

R
Lp,α = 0, uniformly in f ∈ G, with Bc

R = R
n\BR ,

(iii) lim|h|→0
f (. + h) − f (.) Lp,α = 0, uniformly in f ∈ G. Then G is a strongly pre-

compact set in Lp,α(Rn).

Since E is a bounded set in Lp1,α1(Rn) × · · · × Lpm,αm(Rn), then [bε, T ]l (E) satisfies
(i) by the upper bound of [bε, T ]l (E), obtained in Eq. 3.12.

Next, we show that [bε, T ]l (E) also satisfies (ii). Indeed, suppose that supp(bε) ⊂ BRε ,
for some Rε > 1. Then, for any (f1, . . . , fm) ∈ E, and for x ∈ Bc

R , with R > 10Rε, we
observe that

|[bε, T ]l (f1, . . . , fm)(x)|
= |T (f1, . . . , bfl, . . . , fm)(x)|
≤ C0 bε L∞

Rmn−1 {|yl |<Rε}

m
j=1 |fj (yj )|

m
j=1 |x − yj |

mn dyldyl

≤ C0 bε L∞
Rmn−1 {|yl |<Rε}

m
j=1 |fj (yj )|

|x − yl |
n
p0 m

j=1 |x − yj |
(m−1)n+ n

p0

dyldyl ,

where dyl = m
j=1,j=l dyj and for some 1 < p0 < min

j=1,...,m
{pj }.
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Since |x| > R, and R > 10Rε > 10, then for any |yl | < Rε we have m
j=1 |x − yj | >

1+|x − yk|, ∀k = 1, . . . , m, k = l. By combining the above inequalities and by the change
of variables, we obtain

|[bε, T ]l (f1, . . . , fm)(x)|

≤ C0 bε L∞
{|yl |<Rε}

|fl(yl)|
|x − yl |

n
p0

dyl

m

j=1,j=l
Rn

|fj (yj )|
1 + |x − yj |

n+ n

(m−1)p0

dyj

= C0 bε L∞
{|x−yl |<Rε}

|fl(x − yl)|
|yl |

n
p0

dyl

m

j=1,j=l
Rn

|fj (x − yj )|
1 + |yj |

n+ n

(m−1)p0

dyj

{|x−yl |<Rε}
|fl(x − yl)|pl

|yl |
npl
p0

dyl

1/pl m

j=1,j=l
Rn

|fj (x − yj )|
1 + |yj |

n+ n

(m−1)p0

dyj .

With this inequality noted, applying Hölder’s inequality yields

[bε, T ]l (f1, . . . , fm)1Bc
R Lp(Br )

⎛

⎝
Br {|x−yl |<Rε }

|fl(x−yl)|pl 1Bc
R
(x)

|yl |
npl
p0

dyl

p/pl m

j=1,j=l

⎛

⎝
Rn

|fj (x−yj )|1Bc
R
(x)

1+|yj |
n+ n

(m−1)p0

dyj

⎞

⎠
p

dx

⎞

⎠
1/p

Br {|x−yl |<Rε }

|fl(x−yl)|pl 1Bc
R
(x)

|yl |
npl
p0

dyldx

1/pl m

j=1,j=l

⎛

⎝
Br

⎛

⎝
Rn

|fj (x−yj )|1Bc
R
(x)

1+|yj |
n+ n

(m−1)p0

dyj

⎞

⎠
pj

dx

⎞

⎠
1/pj

(4.2)

for any ball Br = B(x0, r) in R
n. Concerning the first term in Eq. 4.2, we have

Br {|x−yl |<Rε}

|fl(x − yl)|pl1Bc
R
(x)

|yl |
npl
p0

dyldx

1/pl

≤ r
αl
pl f Lpl ,αl

{|yl |≥R−Rε}
|yl |−

npl
p0 dyl

1/pl

r
αl
pl f Lpl ,αl (R − Rε)

n( 1
pl

− 1
p0

)
. (4.3)

For the second term, it follows from Minkowski’s inequality that

⎛

⎝
Br

⎛

⎝
Rn

|fj (x − yj )|1Bc
R
(x)

1 + |yj |
n+ n

(m−1)p0

dyj

⎞

⎠
pj

dx

⎞

⎠
1/pj

≤
Rn Br

|fj (x−yj )|pj 1Bc
R
(x) dx

1/pj

1+|yj |
−n− n

(m−1)p0 dyj r

αj
pj fj L

pj ,αj . (4.4)

By a combination of Eqs. 4.2, 4.3, and 4.4, we obtain

[bε, T ]l (f1, . . . , fm)1Bc
R Lp(Br )

r
α
p (R − Rε)

n( 1
pl

− 1
p0

)
m

j=1

fj L
pj ,αj .
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Thus,

[bε, T ]l (f1, . . . , fm)1Bc
R Lp,α

(R − Rε)
n( 1

pl
− 1

p0
)

m

j=1

fj L
pj ,αj .

This implies that [bε, T ]l (f1, . . . , fm)1Bc
R Lp,α

→ 0, as R → ∞.

Finally, we prove the equicontinuity of [bε, T ]l . To do that, we prove that for every δ > 0,
if |z| is sufficiently small (merely depending on δ) then, for every (f1, . . . , fm) ∈ E,

[bε, T ]l (f1, . . . , fm)(. + z) − [bε, T ]l (f1, . . . , fm)(.) Lp,α ≤ Cδη , (4.5)

where the constant C > 0 is independent of (f1, . . . , fm), δ, |z|. Indeed, for any x ∈ R
n we

express

[bε, T ]l (f1, . . . , fm)(x + z) − [bε, T ]l (f1, . . . , fm)(x)

=
Rmn

(bε(yl) − bε(x + z)) K(x + z, y1, . . . , ym)

m

j=1

fj (yj ) dy1 · · · dym

−
Rmn

(bε(yl) − bε(x)) K(x, y1, . . . , ym)

m

j=1

fj (yj ) dy1 · · · dym

=
m
j=1 |x−yj |>δ−1|z|

(bε(x) − bε(x + z))K(x, y1, . . . , ym)

m

j=1

fj (yj ) dy1 · · · dym

+
m
j=1 |x−yj |>δ−1|z|

(bε(yl) − bε(x + z)) [K(x + z, y1, . . . , ym)

−K(x, y1, . . . , ym)]
m

j=1

fj (yj ) dy1 · · · dym

+
m
j=1 |x−yj |≤δ−1|z|

(bε(x) − bε(yl))K(x, y1, . . . , ym)

m

j=1

fj (yj ) dy1 · · · dym

+
m
j=1 |x−yj |≤δ−1|z|

(bε(yl) − bε(x + z)) K(x + z, y1, . . . , ym)

m

j=1

fj (yj ) dy1 · · · dym

:= I1 + I2 + I3 + I4.

We first consider I1.

|I1| ≤ |bε(x + z) − bε(x)|
m
j=1 |x−yj |>δ−1|z|

K(x, y1, . . . , ym)

m

j=1

fj (yj ) dy1 · · · dym

bε L∞|z|T (f1, . . . , fm)(x) .
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Therefore, we obtain

I1 Lp,α bε L∞|z| T (f1, . . . , fm) Lp,α , (4.6)

for (f1, . . . , fm) ∈ E.
Thanks to Cotlar’s inequaltiy in Eq. 1.9, the Hölder inequality in Morrey spaces, and

Lemma 1.3, we obtain

T (f1, . . . , fm) Lp,α Mr (T (f1, . . . , fm)) Lp,α +
m

j=1

Mfj

Lp,α

T (f1, . . . , fm) Lp,α +
m

j=1

Mfj L
pj ,αj

M T (f1, . . . , fm)
Lp,α +

m

j=1

fj L
pj ,αj

m

j=1

Mqj
(fj )

Lp,α

+
m

j=1

fj L
pj ,αj

m

j=1

Mqj
(fj ) L

pj ,αj +
m

j=1

fj L
pj ,αj

m

j=1

fj L
pj ,αj . (4.7)

A combination of Eqs. 4.6 and 4.7 implies that

I1 Lp,α bε L∞|z|
m

j=1

fj L
pj ,αj |z| , (4.8)

for (f1, . . . , fm) ∈ E.

For I2, thanks to the smoothness of the kernelK (see Eq. 1.1) and the change of variables,
we obtain

|I2| bε L∞|z|η
m
j=1 |x−yj |>δ−1|z|

m
j=1 |fj (yj )|

(
m
j=1 |x − yj |)mn+η

dy1 · · · dym

bε L∞|z|η
m
j=1 |yj |>δ−1|z|

m
j=1 |fj (x − yj )|

(
m
j=1 |yj |)mn+η

dy1 · · · dym .
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Applying Minkowski’s inequality and Hölder’s inequality yields

r−α

Br

|I2|p dx

1/p

|z|ηr−α/p

Br
m
j=1 |yj |>δ−1|z|

m
j=1 |fj (x − yj )|

(
m
j=1 |yj |)mn+η

dy1 · · · dym

p

dx

1/p

≤ |z|ηr−α/p

m
j=1 |yj |>δ−1|z|

⎛

⎝
Br

m

j=1

|fj (x−yj )|p dx

⎞

⎠
1/p⎛

⎝
m

j=1

|yj |
⎞

⎠
−mn−η

dy1 · · · dym

≤ |z|η
m
j=1 |yj |>δ−1|z|

r
− m

j=1
αj
pj

m

j=1

fj L
pj ((B(x0−yj ,r))

⎛

⎝
m

j=1

|yj |
⎞

⎠
−mn−η

dy1 · · · dym

≤ |z|η
m

j=1

fj L
pj ,αj

m
j=1 |yj |>δ−1|z|

⎛

⎝
m

j=1

|yj |
⎞

⎠
−mn−η

dy1 · · · dym

|z|η δ−1|z| −η
m

j=1

fj L
pj ,αj δη .

This implies that

I2 Lp,α δη . (4.9)

Next, we consider I3. Thanks to Hölder’s inequality, we get

|I3| bε L∞
m
j=1 |x−yj |<δ−1|z|

|x − yl |
m
j=1 |fj (yj )|

(
m
j=1 |x − yj |)mn

dy1 · · · dym

m
j=1 |yj |<δ−1|z|

m
j=1 |fj (x − yj )|

(
m
j=1 |yj |)mn−1

dy1 · · · dym .

Arguing as in the proof of I2, we also obtain

r−α/p I3 Lp(Br )

r−α/p

m
j=1 |yj |<δ−1|z|

⎛

⎝
Br

m

j=1

|fj (x − yj )|p dx

⎞

⎠
1/p ⎛

⎝
m

j=1

|yj |
⎞

⎠
−mn+1

dy1 · · · dym

≤ r
− m

j=1 αj /pj

m

j=1

fj L
pj (B(x0−yj ,r)) m

j=1 |yj |<δ−1|z|

⎛

⎝
m

j=1

|yj |
⎞

⎠
−mn+1

dy1 · · · dym

δ−1|z|
m

j=1

fj L
pj ,αj δ−1|z| .

This implies that

I3 Lp,α δ−1|z| . (4.10)
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Similarly, we also obtain

|I4| bε L∞
m
j=1 |x−yj |<δ−1|z|

|x + z − yl |
m
j=1 |fj (yj )|

(
m
j=1 |x + z − yj |)mn

dy1 · · · dym

m
j=1 |yj |<δ−1|z|+|z|

m
j=1 |fj (x + z − yj )|
(

m
j=1 |yj |)mn−1

dy1 · · · dym .

Therefore,

r−α/p I4 Lp(Br )

r−α/p

m
j=1 |yj |<δ−1|z|+|z|

⎛

⎝
Br

m

j=1

|fj (x+z−yj )|p dx

⎞

⎠
1/p⎛

⎝
m

j=1

|yj |
⎞

⎠
−mn+1

dy1 · · · dym

≤ r
− m

j=1 αj /pj

m

j=1

fj L
pj (B(x0+z−yj ,r)) m

j=1 |yj |<δ−1|z|+|z|

⎛

⎝
m

j=1

|yj |
⎞

⎠
−mn+1

dy1 · · · dym

(δ−1|z| + |z|)
m

j=1

fj L
pj ,αj δ−1|z| + |z| .

Thus,

I4 Lp,α δ−1|z| + |z| . (4.11)

A combination of Eqs. 4.8, 4.9, 4.10, and 4.11 provides us

[bε, T ]l (f1, . . . , fm)(x + z) − [bε, T ]l (f1, . . . , fm)(x) Lp,α δη + δ−1|z| + 2|z| .
Therefore,

[bε, T ]l (f1, . . . , fm)(x + z) − [bε, T ]l (f1, . . . , fm)(x) Lp,α δη ,

if provided that |z| < δ2. This yields (4.5). Then, [b, T ] is a compact operator on
Lp1,α1(Rn) × · · · × Lpm,αm(Rn).

b) Sufficiency: Suppose that b ∈ L1
loc(R), and [b, T ] is a compact operator onLp1,α1(Rn)×

· · · × Lpm,αm(Rn). By Theorem 1.9, we have that b ∈ BMO(Rn). We now show that b ∈
CMO(Rn).

To obtain the result, we need a characterization of a function in CMO(Rn) (see, e.g.,
[30]).

Lemma 4.2 A function b ∈ CMO(Rn) if and only if b satisfies the following three
conditions.

(i) lim
δ→0

sup
Br ,r<δ Br

|b(z) − bBr | dz = 0 ,

(ii) lim
R→∞ sup

Br ,r>R Br

|b(z) − bBr | dz = 0 ,

(iii) lim
R→∞ sup

{Br :Br∩B(0,R)=∅} Br

|b(z) − bBr | dz = 0 .

We also need the following result for technical reasons.

59



N. Anh Dao, B. D. Wick

Lemma 4.3 There exists a positive constant M ≥ 100 such that for any ball B0 :=
B(x0, r) ⊂ R

n, there exist balls Bj := B(xj , r), j = 1, . . . , m, such that

|x0 − xj | ≈ Mr ,

and for any x ∈ B0, T (1B1 , . . . , 1Bm)(x) does not change sign and

1

Mmn
T (1B1 , . . . , 1Bm)(x) . (4.12)

Proof For any x ∈ B0, by the smoothness of K , we have

T (1B1 , . . . , 1Bm)(x) − T (1B1 , . . . , 1Bm)(x0)

≤
B1

. . .
Bm

|K(x, y1, . . . , ym) − K(x0, y1, . . . , ym)| dy1 · · · dym

≤ C0
B1

. . .
Bm

|x − x0|η
m
k,l=0 |xk − xl | mn+η

dy1 · · · dym

≤ C0
B1

. . .
Bm

rη

(Mr)mn+η
dy1 · · · dym ≤ C0

Mmn+η
≤ 1

2Mmn
, (4.13)

if provided that M large enough, and where C0 merely depends on n. If T (1B1 , . . . ,

1Bm)(x0) > 0, then since T is mn-homogeneous then, it follows from the triangle inequality
and Eq. 4.13 that

T (1B1 , . . . , 1Bm)(x) ≥ T (1B1 , . . . , 1Bm)(x0)− T (1B1 , . . . , 1Bm)(x)−T(1B1 , . . . , 1Bm)(x0)

≥ 1

Mmn
− 1

2Mmn
= 1

2Mmn
.

Similarly, we also obtain the conclusion if T (1B1 , . . . , 1Bm)(x0) < 0. Hence, we complete
the proof of Lemma 4.3.

Now, we are ready to demonstrate that b ∈ CMO(Rn). Seeking a contradiction, we
assume that b ∈ CMO(Rn). Therefore, b violates (i), (ii), and (iii) in Lemma 4.2. We con-
sider these cases in the order.
Case 1. If (i) does not hold true for b then, there exists a sequence of balls
{Bk = B(xk, δk)}k≥1 such that δk → 0 as k → ∞, and

Bk

|b(x) − bBk
| dx ≥ c0 > 0, for every k ≥ 1. (4.14)

Since δk → 0, we can choose a subsequence of {δk}k≥1 (still denoted by {δk}k≥1) such that

δk+1 ≤ 1

C
δk, ∀k ≥ 1,

for some C > 1. We emphasize that our approach is different to the one, by the authors
in [24, 28]. Here, we introduce mb , the median value of function b on a bounded set

⊂ R
n (possibly non-unique) such that

|{x ∈ : b(x) > mb }| ≤ 1
2 | | ,

|{x ∈ : b(x) < mb }| ≤ 1
2 | | . (4.15)

Next, for any k ≥ 1, let yl
k ∈ R

n be such that |zk − yl
k| = Mδk , M > 10, and put

Bl
k =B(yl

k, δk), Bl
k,1= yl ∈ Bl

k : b(yl) ≤ mb(B
l
k) , Bl

k,2= yl ∈ Bl
k : b(yl)≥mb(B

l
k) ;
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and

Bk,1 = x ∈ Bk : b(x) ≥ mb(B
l
k) , Bk,2 = x ∈ Bk : b(x) < mb(B

l
k) ;

also

Fk,1 = Bl
k,1 \

∞

j=k+1

Bl
j , Fk,2 = Bl

k,2 \
∞

j=k+1

Bl
j .

Note that Fk,1 ∩ Fj,1 = ∅ whenever j = k, and

|Fk,1| ≥ |Bl
k,1| −

∞

j=k+1

|Bl
j | δn

k − ∞
l=k+1 δn

l 1 − 1
C−1 δn

k ≈ |Bl
k| . (4.16)

By the same analogue above, we also obtain

|Fk,2| ≈ |Bl
k| . (4.17)

From the construction, we have

b(x) − mb(B
l
k) ≤ |b(x) − b(yl)|, ∀(x, yl) ∈ Bk,j × Bl

k,j , j = 1, 2 . (4.18)

Next, it follows from the triangle inequality and Eq. 4.14 that

c0 ≤
Bk

|b(x) − bBk
| dx

≤ 2
Bk

|b(x) − mb(B
l
k)| dx

= 2

|Bk| Bk,1

|b(x) − mb(B
l
k)| dx +

Bk,2

|b(x) − mb(B
l
k)| dx . (4.19)

With this inequality noted, we deduce that there exists a subsequence with respect to k such
that either

1

|Bk| Bk,1

|b(x) − mb(B
l
k)| dx ≥ c0

2
, (4.20)

or

1

|Bk| Bk,2

|b(x) − mb(B
l
k)| dx ≥ c0

2
, (4.21)

for any k ≥ 1. Thus, one can assume without loss of generality that Eq. 4.20 holds.
For any k ≥ 1, let us denote B

j
k = B(y

j
k , δk), with |xk − y

j
k | = Mδk , j = 1, . . . , m.

Applying Lemma 4.3 to B0 = Bk , Bl = Fk,1, and Bj = B
j
k , j = 1, . . . , m, j = l for any

k ≥ 1 yields

M−mn T 1B1
k
, . . . , 1Fk,1 , . . . , 1Bm

k
(x) , ∀x ∈ Bk .
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Furthermore, T 1B1
k
, . . . , 1Fk,1 , . . . , 1Bm

k
(x) is a constant sign in Bk . Then, it follows

from Eqs. 4.18 and 4.20 that
c0

2
M−mn

≤ M−mn

|Bk| Bk,1

b(x) − mb(B
l
k) dx

1

|Bk| Bk,1

b(x) − mb(B
l
k) T 1B1

k
, . . . , 1Fk,1 , . . . , 1Bm

k
(x) dx

= 1

|Bk| Bk,1 Rmn

b(x) − mb(B
l
k)) K(x, y1, . . . , ym)1Fk,1 dyl

m

j=1,j=l

1
B

j
k

dyl dx

≤ 1

|Bk| Bk,1 Rmn

(b(x) − b(yl)) K(x, y1, . . . , ym)1Fk,1 dyl

m

j=1,j=l

1
B

j
k

dyl dx

= 1

|Bk| Bk,1

[b, T ]l (1B1
k
, . . . , 1Fk,1 , . . . , 1Bm

k
)(x) dx . (4.22)

Next, we put
⎧
⎪⎨

⎪⎩
φ

j
k (z) = δ

αj −n

pj

k 1
B

j
k

(z) , j = 1, . . . , m, j = l,

φl
k(z) = δ

αl−n

pl

k 1Fk,1(z) ,

for k ≥ 1. It is clear that

φ
j
k

L
pj ,αj

≈ 1, for every k ≥ 1. (4.23)

Thanks to the compactness of [b, T ]l , we have that there exists a subsequence of
[bT ]l (φ1

k , . . . , φm
k )

k≥1 (still denoted as [bT ]l (φ1
k , . . . , φm

k )
k≥1) such that

[bT ]l (φ1
k , . . . , φm

k ) → in Lp,α(Rn) , (4.24)

as k → ∞. By Eq. 4.22, we obtain

Lp,α ≈ 1 . (4.25)

On the other hand, for 1 < q < p, let γ = q
p
, and qj = γpj . Since [b, T ]l maps

Lq1(Rn) × · · · × Lqm(Rn) → Lq(Rn), then we obtain

[b, T ]l (φ1
k , . . . , φm

k )
Lq

b BMO

m

j=1

φ
j
k L

qj

b BMO δ

αl−n

pl

k 1Fk,1

Lql

m

j=1,j=l

δ

αj −n

pj

k 1
B

j
k

L
qj

b BMO δ
α
p

+n( 1
q
− 1

p
)

k .

Thus, [b, T ]l (φ1
k , . . . , φm

k ) → 0 in Lq(Rn), as k → ∞. This contradicts Eq. 4.25. In other
words, b must satisfy (i). Similarly, we also obtain the desired result if Eq. 4.21 holds true.
In conclusion, b cannot violate (i).
Case 2. Assume that b violates (ii).
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The proof of this case is most like that of Case 1 by considering Rk in place of δk , with
Rk → ∞. By repeating the above proof for Rk in place of δk , we also obtain (4.24) and
(4.25). For any q >

np
n−α

, let γ = q
p
, and qj = γpj . Then, we get

[b, T ]l (φ1
k , . . . , φm

k )
Lq

b BMO

m

j=1

φ
j
k L

qj

b BMO R

αl−n

pl

k 1Fk,1

Lql

m

j=1,j=l

R

αj −n

pj

k 1
B

j
k

L
qj

b BMO R
α
p

+n( 1
q
− 1

p
)

k .

Note that α
p

+ n( 1
q

− 1
p
) < 0. Thus, [b, T ]l (φ1

k , . . . , φm
k ) → 0 in Lq(Rn), when k → ∞.

As a result, we obtain ≡ 0, which contradicts (4.25). In conclusion, b satisfies ii).

Case 3. The proof of this case is similar to the one of Case 2. Thus, we leave it to the reader.
From the above cases, we conclude that b ∈ CMO(Rn).
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Morrey spaces on domains of complex ellipsoids, To appear in J. Geom. Anal.
12. Duong, X.T., Li, J., Wick, B.D., Yang, D.: Factorization for Hardy spaces and characterization for BMO

spaces via commutators in the Bessel setting. To appear in Indiana Math. J.
13. Di Fazio, G., Ragusa, M.A.: Commutators and Morrey spaces. Boll. Unione Mat. Ital., A (7) 5(3), 323–

332 (1991)
14. Di Fazio, G., Ragusa, M.A.: Interior estimates in Morrey spaces for strong solution to nondivergence

form equations with discontinuous coefficients. J. Funct. Anal. 112, 241–256 (1993)
15. Fefferman, C., Stein, E.: Hp spaces of several variables. Acta Math. 129, 137–193 (1972)
16. Grafakos, L., Torres, R.H.: Multilinear calderón–zygmund theory. Adv. Math. 165(1), 124–164 (2002)
17. Grafakos, L., Torres, R.H.: Maximal operator and weighted norm inequalities for multilinear singular

integrals. Ind. Univ. Math. J. 51, 1261–1276 (2002)
18. Kato, T.: Strong solutions of the Navier–Stokes equation in Morrey spaces. Bol. Soc. Brasil. Mat. 22,

127–155 (1992)
19. Kenig, C., Stein, E.: Multilinear estimates and fractional integration. Math. Res. Lett. 6, 1–15 (1999)

63



N. Anh Dao, B. D. Wick

20. Komori, Y., Mizuhara, T.: Factorization of functions in h1(Rn) and generalized Morrey spaces. Math.
Nachr. 279(5-6), 619–624 (2006)

21. Ji, L.i., Wick, B.D.: Weak factorizations of the Hardy Space h1(Rn) in terms of multilinear Riesz
transforms. Canad. Math. Bull. 60, 571–585 (2017)

22. Li, J., Wick, B.D.: Characterizations of H 1
N
(Rn) and BMO

N
(Rn) via weak factorizations and

commutators. J. Funct. Anal. 272, 5384–5416 (2017)
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