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Abstract

In this paper, we provide a constructive proof of H! (R") factorization in terms of multilinear
Calderén—Zygmund operators in Morrey spaces. As a direct application, we obtain a char-
acterization of functions in BMO(R") via commutators of multilinear Calderén—Zygmund
operators. Furthermore, we prove a Morrey compactness characterization of [b, T];, the
commutator in the /-th entry.
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1 Introduction and main results

Our main purpose of this paper is to study the Hardy factorization in terms of commuta-
tors of multilinear Calder6n—Zygmund operators in Morrey spaces. The theory of Hardy
spaces has been studied and developed extensively in harmonic analysis. Particularly, the
real-variable Hardy space theory on n-dimensional Euclidean space R”, n > 1, plays an
important role in harmonic analysis and has been systematically developed in [6, 15]. A
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celebrated result of 1976, by Coifman—Rochberg—Weiss [6], is that, every f € H!(R") can
be written as

n
/= Z Z 8k, jRj(he,j) + hi ;R (gk. ;)

k=1 j=1
with
n
Z Z lgkill z2 |kill 2 < el flln
k=1 j=1
where R ; are the Riesz transforms, for j =1, ..., n.

As a consequence, a characterization of functions b in BMO(R™ can be obtained via
the boundedness of [b, R ;]. After that, the theory of H' (R") space has been developed by
many authors, see, e.g., [12, 20-22, 28, 30, 31] and the references therein. In [31], Uchiyama
extended the Hardy factorization to H” on the space of homogeneous type, for any p €
(ﬁ, 1), where y > 0 refers to the y-Hdolder smoothness of singular kernels. Moreover,
Komori and Mizuhara [20] obtained a factorization of functions in H! (R") in generalized
Morrey spaces. Recently, Tao et al. [28] obtained a result of H! (R™) factorization via [b, Cr]
in Morrey spaces, where Cr is the Cauchy integral (see [10, 11] for the Morrey boundedness
and compactness characterization of [b, T'] on spaces of homogeneous type). It is known
that the Morrey spaces L”*(R™) (see Definition 1.7) are generalizations of L? spaces, and
they have many important applications to the PDEs (see e.g. [4, 14, 18, 25, 27, 29]).

On the other hand, the multilinear Calderén—Zygmund theory was introduced and stud-
ied in the pioneering papers by Coifman and Meyer in [7-9]. The study of multilinear
singular integrals was motivated not only as generalizations of the theory of linear ones
but also its natural appearance in harmonic analysis. In recent years, this topic has received
increasing attentions and well development, such as the systemic treatment of multilinear
Calder6n—Zygmund operators by Grafakos and Torres in [16, 17], by Christ and Journé in
[5], and multilinear fractional integrals by Kenig and Stein in [19]. Weighted estimates and
commutators in this multilinear setting were then studied by the authors in [17, 23, 26].

Before we formulate our results, let us first recall the definition of a standard m-linear
Calder6n—Zygmund kernel, m > 1.

Definition 1.1 Let K (yo, y1,---,Ym), i € R*, i = 0,1,...,m, be a locally integrable
function, defined away from the diagonal {yp = y; = --- = Yy, }. Then, we say that K
is an m-linear Calderén—-Zygmund kernel if it satisfies the following size and smoothness
conditions:

Co
K (Y05 Y15 -+« s Ym)| < i
m
> v =il
k,1=0
for some constant Co > 0 and for all (yo, y1, ..., ym) € (R?)™+1 away from the diagonal;
and
, Colyj — y;I"
K50, 1,5 Yjsooos Ym) — Ko, y1, -5 Vo oo Y| < e
m
> v =yl
k=0

(1.1)
for some n > 0, whenever 0 < j <m, and |y; —y;| <1 max [y; — Y&l

2 0<k<m

@ Springer



Hardy Factorization in Terms of Multilinear CalderON-Zygmund... 43

Suppose T is an m-linear operator mapping from S(R") x S(R") x - - - x S(R") to S’ (R"),
where we denote by S(R") the spaces of all Schwartz functions on R” and by S’ (R") its
dual space. We further assume that T is associated with the m-linear Calder6n—Zygmund
kernel K, defined as above, i.e.,

T f®) = [ Koo [THOndndya, 02

j=1
whenever f1,..., fu € S(R") with compact support and x ¢ ﬂf;‘zlsupp( fi). We also
recall the j-th transpose TJTk of T, defined via
(TF(froeos f)s Y =T (fis ooy fimts by fiasoos ), £) (1.3)

forall fi,..., fm, h € S(R") (see [16, pp. 127-128]). It is easy to verify that the kernel
K 7 of T/?k is related to the kernel K of T via

KFQ Y1y Y15 Vs Vit ooy Vi) = K Vi V1o ooy Vi1 X, Yjits oo Ym) -+ (1.4)

Now, it suffices to define an m-linear operator of Calderén—Zygmund type.

Definition 1.2 Let T satisfy (1.2). If T : LP1(R") x --- x LPn(R") — LP(R") for some

1 1
l<ptyeeespm <00, and — = — + -+ —, (1.5)
p P1 Pm

then T is called an m-linear Calderén—-Zygmund operator.

According to [16, Theorem 3], T can be extended to a bounded operator from L?! (R") x
-+ x LPm(R™) to L? (R"). Moreover, we also have the following pointwise estimate for T
(seee.g. [2, 23]).

Lemma 1.3 Let p, p1, ..., pm > 1 satisfy (1.5). Suppose that T is an m-linear Calderén—
Zygmund operator. Then, for any 1 < g < p, there exists a constant C > 0 such that for
any vector function f = (fi, ..., fm), where each component is smooth and with compact
support, the following inequality holds true

ME (T(F)) @) = € [ My, (@), (1.6)
j=1

with q; = %, and where M? is denoted by the sharp maximal function.

A typical example of m-linear Calder6n—Zygmund operator is the m-linear i-th Riesz
transform, defined by

T CTE G TP B
Ri(f1s s f) (x) = p-v~/ Lz e [T A0 dyidym,
j=1

(Rn)m Pl
(Z?:l [x — )’j|2)

where (y;); denotes the i-th coordinate of y;.
Next, we denote 7 the corresponding maximal operator of 7', defined as

T(fla MR} fm)(x) = :ug|T(§(flv s fm)(x)| ’ (17)
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where Tj, the truncated operator of 7', is

Ta(f1a~-~afm)(x)=/ Koy [ £iGdyn - dyw. (18)

{Z’;;l ‘x_)’j|2>52] j=1

Similar to the linear setting, we also have Cotlar’s inequality (see [17, Theorem 2.1]). That
isforall r > 0,

T, f)@) S C M (T(f1s .oy f)) () + Hij(x) ; 1.9)
j=1

where y
M, (f)(x) = sup <|Q|—1/ |f|’dx>
x€Q 0

and the supremum is taken over all cube Q containing x. As a consequence, 7 maps
LPYR") x -« x LPm(R") — LP(R"), where py1, pa2, ..., pm satisfy (1.5).

In analogy with the linear case, we define the /-th partial multilinear commutators of the
m-linear Calderon—Zygmund operator T as follows.

Definition 1.4 Suppose T is an m-linear Calderén—Zygmund operator as defined above.
Forl=1,2,...,m, we set

. Thi(fro-oos fu) @) =T (f1 oo Bty fn) ) = BT (f1, - fi) ().

This is simply measuring the commutation properties in each linear coordinate sepa-
rately. Dual to the multilinear commutator, in both language and via a formal computation,
we define the multilinear “multiplication” operators I1;:

Definition 1.5 Let T be an m-linear Calderon—-Zygmund operator. For [ = 1,2,...,m,
associate with T the operator

(g hy, ooy h) (6):=h )Ty oo b1, 8 hugty <o h) () =g (DT (s - i) ().

Definition 1.6 We say that T is mn-homogeneous if T satisfies

IT(1p,,...,1p,)(x)| > YLk Vx € Bo(xo, r) (1.10)
for (m + 1) pairwise disjoint balls By = Bo(xo,r), ..., By = By (xy,r) satistying the
condition that |y — y;| =~ Mr for all ygo € By, andy; € B;,l =1,2,...,m, wherer > 0

and M > 100.

Recently, Li and Wick [21] obtained H!(R") factorization in terms of multilinear
Calder6n—Zygmund operators in Lebesgue spaces. As a direct application, they obtained a
characterization of BMO(RR") via commutators of the multilinear Riesz transforms.

Inspired by the above works, we want to provide the constructive proof of the weak fac-
torization H! (R") in terms of multilinear operators of Calderén—Zygmund type on Morrey
spaces.

For convenience, we recall its definition here.

Definition 1.7 Let« € [0,n), and 1 < p < oo. The Morrey space LP*(R") is defined by
LPU®R") = {f € L) .(R") : | fllre < o0},
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with

1/p
| fllLpe = sup (r_"/ If(y)l"dy> ,
B(x,r) B(x,r)

where the supremum is taken over all balls B(x, r) in R".
Then, our main results are as follows.

Theorem 1.8 Let 1| < < m, and let py, ..., pm, p > 1 satisfy (1.5). Suppose that T

is an m-linear Calderon—-Zygmund operator, satistying mn-homogeneous condition (1.10).

Then, for every function f € H!(R"), there exist sequences {)L’J‘-} € 1! and functions

g]f, hk
j

SRERERE h’;’m € L°(R") (the space of bounded functions with compact support), such
that ‘

oo o0
F=N b (g k) (L11)
k=1 j=1

in the sense of H' (R") (see the formula of I1;(- - -) in Definition 1.5). Moreover, we have
that

[o ol ¢]
~ k k k k
I g~ inf 3> > W5 18l I8 e 1B o ¢
k=1 j=1
with
o " o
O<aw,a1,...,04 <n, andf:Z—J, (1.12)
SPi

and where the infimum above is taken over all possible representations of f that satisfy
(1.11).

Our next result is a characterization of BMO(RR") in terms of the commutators with the
multilinear operators in Morrey spaces.

Theorem 1.9 Let 1 <[ < m. Suppose that T is an m-linear Calder6n—Zygmund operator.
If b € BMO(R™), then the commutator
[b, T] : LPP*I(R") X - -+ x LPm%m(R") — LP*(R")

for p1, ..., pm, p > 1 satisty (1.5), and for 0 < «, oy, ..., o, < n satisty (1.12). Moreover,
there holds true

D, Thill vt .. x Lomeom — ppw < Cl|bl|BMO -

Conversely, for b € L}OC(]R”), if T is mn-homogeneous, and [b, T]; maps LP1“1 (R") x
coo X LPmOm(R"Y — LP-%(R™), then b € BMO(R") and

bllBMo < CI[D, Tlill Lpv-et ...x Lomem — ppe

Finally, we prove a Morrey compactness characterization of [b, T']; in the following
theorem.

Theorem 1.10 Same hypotheses as in Theorem 1.9. Then, the commutator
[b, T] : LPP* (R x -+ x LPm%m(R") — LP*(R")
is compact if provided that b € CMO(R").
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46 N. Anh Dao, B. D. Wick

Conversely, forb € L 110 (R, if T is mn-homogeneous, and [b, T, is a compact operator
on LPL1(R") x -+ x LPm%m (R™), then b € CMO(R").

Our paper is organized as follows. In the next section, we give definition of some func-
tional spaces and preliminary results. Section 3 is devoted to the study of Hardy factorization

in terms of commutator [b, T]; on Morrey spaces. As a consequence, we obtain Theorem
1.9. In the last Section, we provide the proof of Theorem 1.10.

Notation Through this paper, we denote by C constant which can change from line to line.
Next, we denote A < B if there exists a constant ¢ > 0 such that A < ¢B. Moreover, we
denote A~ Bif A< Band B < A.

2 Functional Setting and Preliminary Results

2.1 Block Spaces

Following Blasco, Ruiz and Vega [1], we define the function called a block.

Definition 2.1 Leta € [0,n),1 < g < o0, and 1/q + 1/q’ = 1. A function b(x) is called
a (q, a)-block, if there exists a ball B(xo, r) such that

e

supp(b) C B(xo,r), |bllre <r <.
We further recall the definition of B4-%(R") via (¢, a)-blocks from [1].

Definition 2.2 Let g € (1, 00) and « € (0, n). The space B9-“(R") is defined by setting

o0 o0
BT (R") ={g € Lj,(R") : g=> mjbj, {bj};=1 are (q.a)-block, and Y |m | <00
j=1 j=1

Furthermore, for every g € B4*(R"), let

o0
lgllpre =inf > |m;| ¢ .
j=1

where the infimum is taken over all possible decompositions of g as above.

Remark 2.3 It was showed in [1] that B7-%(R") is a Banach space, and the dual space of
Bae(RM) is L9 (R").

Next, we denote 14, by the characteristic function of A. Then, we recall fundamental
results, repeatedly used in the following.

Lemma 2.4 Leto € [0,n),and 1 < p < oo. Then, for any ball B(x, r) in R", we have

n—a

s | ppe =r 7 .1)

and y
|18 | gre < Crpyr" 7 (2.2)
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Proof The proof of Eq. 2.1 (respectively (2.2)) is straightforward from the definition of
Morrey spaces (respectively B” %), so we leave it to the reader. O

The next result is a dual inequality between L?-*(R") and Br (R™).
Lemma 2.5 Letl < p <oo,anda € (0,n). If f € LP-*(R"),and g € B””"‘(R”), then

= fliereliglgp o -

’/ fx)g(x)dx

Proof Since g € BP%(R"), then we have
o0
gx) =Y mjb;(x),
j=1

where {b;};>1 are (p’, a)-blocks. We can assume that supp(b;) C B;. Then, applying
Holder’s inequality yields

o0 o0
‘/ fx)gx)dx| = / )Y mjbj(x)dx| = Zm,/ FOObj(x)dx
R" R" = = B;
o0
< Y Iml1FIzeplbille ),
j=1
o0 o0
= D Imil e PN leeas) rPIbi N gy < | D0 Imil [ 1 lLee.
j=1 j=1
Hence, the conclusion follows from the definition of B7"+¢ R™). (|

2.2 The Space Atomic H'(R")

Definition 2.6 We say that a real-valued function « is an atom (or 1-atom) if it is supported
in B(x,r) C R", and

/ a(x)dx =0, and |alf~ <r".
We now denote the Hardy space atomic H' (R") by

H' (R") = Zkkak :ay atoms , A € R, Z |Ak| < 00
k>1 k>1

And we define a norm on H! (R") by
1 g @y = inf § D 1l = f =)
k>1 k>1

Next, we recall the following result, obtained from the elementary properties of H' (R")
(see, e.g., [21, Lemma 2.1], [20, Lemma 4.3], [22] for proofs).
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48 N. Anh Dao, B. D. Wick

Lemma 2.7 Let xo, yo € R" be such that |xg — yo| = Mr, for some r > 0, and M > 100.
If [pu F(x)dx =0, and

|F(x)| < r" (lB(xo,r)(x) + lB(yo,r) (x)) , VxeR",
then there is a positive constant C = C(n), such that

I F Il mny < ClogM .
3 Weak Hardy Factorization in Terms of Commutator [b, T]; on Morrey
Spaces
This part is devoted to the proof of Theorems 1.8 and 1.9.
3.1 Proof of Theorem 1.8

If f € H'(R"), then we will utilize the H' (R") decomposition of f in order to construct an
approximation to f in terms of IT;(...).

Lemma 3.1 If f € H'(R") can be written as

f=Y hay

k>1
then, there exist {g"}i>1, {h\}ks1, ..., (h% k=1 € L(R") such that
log M
k pk k
T TCN N T] BT G.D)
and
D Ikl 188 g B Lo B oman < CM™ | £l , (32)
k>1
where M > 0 is sufficiently large. Furthermore, we have
1
k pk k
£= Yo nm (g5 bl )| = S (3.3)

k>1 H!

Proof of Lemma 3.1 Let a be an atom, supported in B(xg, r), for some xg € R", and for
r > 0, such that

lallp~ < r", and/ a(rydx = 0.

To apply the homogeneity of T', we recall a construction of (m + 1)-pairwise disjoint balls
B(xo,7), B(y1,7), ..., B(ym,r) as in [21] satisfying

lxo—yil=1lyj—wl=Mr, j=1,....m, j#l.
Now, let us set
g(x) =1p(y,,n (),
hj(x) =1py;nx), Jj#I,

_ a(x)
hi(X) = g s b o)

where T}* is the [-th transpose of T as defined in Eq. 1.3. It is obvious that these functions
are in L2°(R"). Moreover, we observe that, since T is mn-homogeneous, and so is Tl*, for
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the specific choice of the functions Ay, ..., hj—1, g, hi41, ..., hy as above, we have that
there exists a positive constant C such that

IT (hy, oo i1, 8 higts - B) (o) = CM ™™

From the definitions of the functions g and % ;, we obtain

a—n

n+=-
”g”Bp’,ot < Cr P,

n—ao;
J
illypje;j =r i [ forj=1,...,m, and j , .
hjllppjej ~r P, forj=1 dj#l (3.4)
llall .y —n, S
h o = L <CM™ ™"y 1
Masl e (17 (i1 g i el G0)| =

Therefore, we get by Lemma 2.4

a—n | -] n—am _
gl g Nt llzoren - | Lomam < CM™ "7 50 H 000 — oy (3.5)
Next, we claim that
log M
lla — (g, Aty oo h)llgp < C IR (3.6)

Indeed, we have

T (hyy oo hi—1, g5 higts - ooy b)) (x)
T (hy, oo b1, 8 higts - ooy ) (x0)
+g()T (hy, ..., hy)(x)

B T )(x)
= a(x) (1 — W) +g(x)T(h1, e ,hm)(x)

a(x) —T(g, hy, ..., hy)(x) = alx) —a(x)

=J+1),

where we denote 7;*(...) = T;*(hy, ..., hy—1, g, hiy1, . . ., hy) for short.
For J1, we use the smoothness of K in Eq. 1.1 in order to obtain

oy [0 = 7700

[Jil =
|T,*(- . -)(X0)|
< CM”‘”IIaIILoo/ |K (21, 210+ s 215 X05 2415 - -+ Zm)
I B(y;j.r)
—K (21,215 s 2U=1>%, Ut1s-- - Zm)| d21 .. .dzm
_ xo — x|"
< CM™r "/ | | e dzy...dzy
m '
M= BOsr) (Zlm:],i;az lzr — zil + lz1 — XU|>
P
<CM" "M ———— =CM "r "
- (Mr)mn+r7

With this inequality noted, and since a(x) is compactly supported in B(xg, r), then we
deduce

il < CM™"r " 1@xg.,r) - 3.7
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50 N. Anh Dao, B. D. Wick

Concerning J», since fR" a(x)dx = 0, and supp(a) C B(xo, r), then we observe that

[J21 = 1py.n / K,z .o zn) G hj(zj) dzr .. dzm
Rmn

a(zy)

- IB()’/ r) / K(x,z1,..., Zm) ¥ ( ——dz1...dzp

" w1 BOJIDXBG0.T) T (.. ) (x0)
13
= oD f (K1, X 2 =K1, %0, 2l az) dz -z
[T (.. ) (xo)l 7,y By rxB(xo,r)

|x — xol"

< Can13(,vl,r)_/ llall Lo sy 421 -+ dzm

M By B0 (T g — 251)
phNpmn
n,.—n —n .~
= Claon M G = Claon M7

Combining the last inequality and Eq. 3.7 yields
la(x) = T8, hi. ..., hy) (@) < CM7T"r ™" (1(xg.r) + 1B(y.r)) -

Now, applying Lemma 2.7 to the function F(x) = a(x) — II;(g, h1, ..., hy)(x), we
obtain

log M
la — (g, k1, ..., k)l < C A (3.8)
Therefore, we obtain (3.1).
Next, it follows from Eq. 3.5 that
I8 Nl gra lBN I pprer - RS | Lomam < CM™, fork > 1.

Thus,

k k k
D 1l g g BN Lovan . By oman < CM™ | £y -
k>1

Hence, we obtain (3.2).
It remains to prove (3.3). By applying (3.8) to @ = ax, k > 1, we obtain that there exist
(&5 k=1, {hlf}kzh ooy (K Jk=1 © L (R™), such that
log M
Mn

Jac =Tt k| < c

This implies that

F=omm (g mh )= D e e — (g k)|
k>1 H! k>1 H
log M
=C—n > Il
k>1
1

= S0l (3.9
provided that M is large enough. This ends the proof of Lemma 3.1. O

Now, suppose that f can be written as

f =Zkkak.

k>1
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Thanks to Lemma 3.1, there exist {g*}k>1, {h¥}i=1, ..., (A, k=1 C L (R") such that

k k k
D Dl 188 g RS I over . Ny | oman < CM™ || flg
k>1

eI AN STV ™

k>1 H!

Let us set

fi Zf—Zkknl (gk,h]f,...,hf;) .

k>1
Since f] € H!(R"), then we can decompose f] as follows:
fi=> Jkiar.

k>1

where {Ax 1}k>1 € ', and {ak,1}k>1 are atoms.
By applying Lemma 3.1 to fi, there exist {g¥}i>1, {h  Jez1, ..., {1} st € LR,
such that

1 1
fr= Y hwatl (b o ) | = S < 550 e
k>1 H!

1
k k
> il gk lgpallBY lzover - RS, lLomen <CM™ | fillgp < CM'""§||f||H| :
k>1

Similarly, we can repeat the above argument to

o= fi— Z)»k,ll'll (glfh]flhlfm>

k>1
= f- Zkknl (gk, hk, e /’l]:n) - Z)\k,lnl (glf, hlil, e, hlfm) .
k>1 k>1
In summary, we can construct a sequence {Xy ;} € ", {gj‘.}, {h’;vl},. . {hl;,m} C L ([R"),
such that
N
F=33 M (gf-,hlj-,], h’;m) e
j=0k>1
N N 1
k k k
D2 UG syl v o S omen < CM™ 31 f g
j=0k=>1 j=0
vl < 5w fllg s
(3.10)
where we adopt the notations Ak0 = Ak, k.0 = &k, hé,l =hk ..., hf)’m = h¥ . Thus, the

desired result follows as N — oo. This puts an end to the proof of Theorem 1.8.
3.2 Proof of Theorem1.9

To obtain the upper bound of [b, T];, we recall the following result (see e.g. [2, 23]).
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52 N. Anh Dao, B. D. Wick

Lemma 3.2 Let b € BMO(R"). Then, for any 1 < q < p there exists a positive constant
C such that

ME (16, TH()) @) = Clbliamo | [TMy, (/D@ +M, (TGH) @ | . G
j=1
with q; = %

Since [gllzre < IMF(g)llLras and [My(9)llre < llglire for g € LP(R") (see e.g.
[13]), then applying Holder’s inequality and Eq. 3.11 yields

Jo. 1P < M (1. 7). <blavio| 1M, (50 + M, (1)

LP

Jj=1 Lp

" -
< Wolewo [ | TTM, 0|+ My (TCD)] .

j=1 Lp-o
< Wblleo | [T 1Mo Doy + | TP

j=1
< Wblisvo [T 1147 oy - (3.12)

j=1

Hence, we get the desired result.

It remains to prove the lower bound of [b, T];. The proof can be obtained via the Hardy
decomposition in terms of the multilinear operators IT;, and the duality between BMO(R")
and H! (R").

Indeed, as a matter of fact, H! (R")NLE(R™) is dense in H!(R"). Next, for every L > 0,
let us put

br(x) = b(x)1p(x,1)(x) .

For every f € H! (R™) N L (R™), thanks to Theorem 1.8, there exist sequences {)\I;} ell
and functions glj‘-, e h’;’m € L2°(R™), such that

B
(o ol o]
_ k k 1k k
F=33 0k (gj,hjyl,...,hj’m) .
k=1 j=1
Furthermore, we have
(o o]
e =~ Y 518K g 1S v - IRE N om
k=1 j=1
Now, since by, — bin L] (R") as L — oo, and f € H!(R") N L (R"), then we have

{br, f) = (b, f).

lim
L—>oo
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Thus,

b, f)= 11m (br, f) = lim

L—oo

—

oo o0
b, > A Teh L )>

k=1 j=1

v
Mg

L k
A] hm <bL,H1 (gj’h, 1""’hjym>>

=~
Il

~
Il

v
Mg

A (o (gh b))

~
Il

-
<
Il

—_

Note that the last equality follows from the fact that IT; (glj‘ R hlj‘. 1

k
., hj,m) € L°(R") for
k, j > 1. Furthermore, we observe that

o0 o0
k k 1k k
YOS <b, m, (gj,hj’l,...,hj’m»

k=1 j=1

oo o0
_ ZZA’;/b(x) [Ty (B i g ) @)

k=1 j=1I

—g,(x)T( ot ) 0] dx

_ Zm/[bT hjl,...,h{;’m)(x)glj{-(x)dx.

k=1 j=1
Therefore, we get
Zxk/[b Ty (B, ... Jm)(x)gj(x)dx
k=1 j=1

Since [b, T]; maps LP1*1(R") x -+ - x LPm%m(R") — LP-*(R"), and by Lemma 2.5, then
we obtain

bf|<ZZ|}J‘|H[b Tl (hjl,... it ))

k=1 j=1

k
i

S B, Thillperen x...xLom: a»nﬁLpaZZ I)»kIHh, 1‘

k=1j=1

k k
Pl ‘)‘1 ”hj’m”meﬂ)" ”gj”BP/,a

S D, Tlillprrat xo.scLomom — o || f g -

With this inequality noted, it follows from the duality between BMO(R”) and H!(R") and
the density argument that

IblBMo S B, TNl Lrrer x.ox Lomam — Lo -

Hence, we complete the proof of Theorem 1.9.
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4 Compactness Characterization of Functions in Terms of Multilinear
Calderén-Zygmund Operators

Here we show how to extend the boundedness results to related compactness results.

Proof a) Necessity: Assume that b € CMO(RR"). Let E be a bounded set in LP1-*1 (R") x
oo x LPm%m (R™), It is enough to show that [b, T'];(E) is relatively compact in L?-%(R™).
Since b € CMO(R") then, for every & > 0 there exists a function b, € CZ°(R") such that

1o — bellBMO < €. 4.1

By the triangle inequality and Theorem 1.9, we have

Mo, Tl (f1s s Sl Lpe

N6 —be, TIi(f1s .-y fu)llppe + Wbe, TI(f1s .-y fu)llppe

6 — bellmoll fillLevet .|l fmllLomem + [be, T1i(f1, -5 fudlLpe

CS + ”[b(“v T]l(fl» ceey fm)”LPO‘ 5

for all (fy,..., fw) € E. With this inequality noted, it suffices to demonstrate that

[be, T (E) is relatively compact in LP*(R"). To obtain the desired result, we recall a
compactness criterion in Morrey space (see, e.g., [3]).

IA A IA

Lemma 4.1 Let0 < o < n,and 1 < p < 0o. Suppose the subset G in L?*(R") satisfies
the following conditions:

) sup [ fllLre < oo,
feG
(ii) Rlim ||f)(37e |Lp.« = 0, uniformly in f € G, with B, = R"\ Bg,
— 00
(iii) V}Iimo IfC+h) — fOllLre = 0, uniformly in f € G. Then G is a strongly pre-
—

compact set in LP"*(R™).

Since E is a bounded set in LP1-¥1(R") x ... x LPm:%m (R"), then [b, T];(E) satisfies
(i) by the upper bound of [b., T];(E), obtained in Eq. 3.12.

Next, we show that [b,, T'];(E) also satisfies (i7). Indeed, suppose that supp(b.) C Bg,,
for some R, > 1. Then, for any (fi,..., f,) € E, and for x € B, with R > 10R,, we
observe that

be. T (frr - s f) )]
= IT(fis s bfis s fu) ()]
)]
Collbe Il 2 / f =1 17503 i dyidy,
Bt J{|y|<Re) (Z;’Ll I — yj|>

m
)]
Collbell = 17505  dyidy;.
R Sl <Re) L (m=Dntor :
AR 1y (0 x = ;1)

IA

IA

Py

.....
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Since x| > R, and R > 10R, > 10, then for any |y;| < R, we have Z?’:l |x — yj| >
1+ |x—yxl,Vk=1,...,m, k # l. By combining the above inequalities and by the change
of variables, we obtain

|[b€v T]l(fl7 R fm)(x)|
Collbell L (/ Lym” dyz) l_[ / Lfj (yj)n|+ dy;
{ j=1j# R )

<
yil<Re) |x — y;| 70 (1 +Jx — vl (m=1)p;,
| fi(x = ) - |fix =yl
= CollbellLo (/ ——dy 1_[ ! n+" i dyj
{lx—yil<Re} |yl| Po j=1,j#l R" (1 + |y]|) ("l—l)[’(/)

N

1/pi
fix =l ﬁ fie =yl
{ R np| Vi Rn n+ n , yj .
[x—yi|<Re} lyy| 70 j=1,j# (1+|)’j|) (m—1)py

With this inequality noted, applying Ho6lder’s inequality yields

[be, T]l(fl xxxxx fm)lB‘k

LP(By)
=y lge )\ e Y\
< [(/ %d)» 1‘[ /%d” dx
-\ {lx—yil<Re} [yi] 70 j=1,j4 \'R" (]Hy/'\) (m=D)pgy
|fiGe= 30l Lgg () e Haitgm )" "
< (f / ’”7”,,,31*@,@9 I / f T gy x| @)
Br Hix—yil<Re} lyi| 70 =LA\ B B (1)
for any ball B, = B(xg, r) in R". Concerning the first term in Eq. 4.2, we have
_ pll l/pl
Lfitx — yp P 1ge (x)
B dydx
r J{Ix—yil<Re} [v1] 70
o _npp 1/1—71
< 7 fllmen (/ il 7 dyl)
{ly|=R—R;}
o n(L,L)
S o\ fllpeees (R — Re) vt Po 4.3)

For the second term, it follows from Minkowski’s inequality that

e -tk ) )"
i(x —yi)|lge (x
/ / / / BR:, dyj dx
R~ "+(m—1> /
" (1 +1y;1) 70
)

1/pj —n——n a4
< /R (f |fi(x_)’j)|p'/13%(x)dx> (I+1yil) "0 dy;Sreill fillprie - (4.4)
n Br

By a combination of Egs. 4.2, 4.3, and 4.4, we obtain

m
o 1 1
<rp(R—R "<p7‘%)|| TR
L)~ ( ) ”fj”Lpl J

[1Be. TUCAL - Sl

Jj=l1
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Thus,

m
(7= 70)
LS R=RY" T [T e -
j=1

[1be. TUCAL o fi 1

Lp:

This implies that H Lbe, TUCfis o Sl | — O.as R — 0.

Finally, we prove the equicontinuity of [b., T'];. To do that, we prove that for every § > 0,
if |z| is sufficiently small (merely depending on §) then, for every (f1, ..., fm) € E,

e, TN (f1s ooy f) (4 2) = [be, TU(f1s ooy f) Dl ppe < C87, (4.5)

where the constant C > 0 is independent of (f1, ..., fu), §, |z|. Indeed, for any x € R” we
express

[bé‘v T]l(f]v -vﬁn)(x+2) - [bx‘fs T]l(fl’ cer fm)(x)

= A‘w (be () = be(x + D)V K (x + 2, 31, ... ym) [ [ 1)) dy1 -+ - dym
j=1

—f (be (1) — be(x)) K(x, 1, -+« s Ym) ]_[ Fiyi)dyt---dym

Jj=1

_ / (be(x) = be(x +2) K@ y1. - ym) [ | £i (i) dyi -+~ dym
S ey 8 =1

+/ e () = be(x + ) [K(x + 2, Y1, -+ - Ym)
2o =y 1>87

m
Ky -y [ £ dyr - dym
j=1

+/ be(x) = b () K(x, Y15 --vy Ym) 1_[ fiGypdyr---dym
o be—yj1=87 el iy

+/ (be(y) —be(x+2) K(x+2,¥1, ..., Ym) 1_[ fi)dyr---dym
Yy e—yl<87 1]

Jj=1
=L+L+I+14.

We first consider I;.

Ll < 1be(x +2) — be(x)] / K(x,yl,---,ym)l_[fj(yj)dyl---dym
Z_’;’:] |x_yj|>8_l‘zl j=1

S MWVbelipeelzl T(fr s fu) (X).
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Therefore, we obtain
ITillre < VbellLoelzl 1T (fis oo Sl Lo (4.6)

for (f1,..., fm) € E.
Thanks to Cotlar’s inequaltiy in Eq. 1.9, the Holder inequality in Morrey spaces, and
Lemma 1.3, we obtain

T fdllre S IME (T Cfrsees ) llpna + | [ M
j=1

Lre

m
ST ) llpra + T T IS o

j=1

IMETCfrs o Sl e+ LT s

j=1

A

N

[IM, (0 + Tl e
j=1

Jj=1 Lp

m m m
[TIMG D iy + TS s S TT I yes - 4D
j=1 j=1

j=1

A

A combination of Eqgs. 4.6 and 4.7 implies that

m
I lizre S UVBelzolel TT 1 il e < 12l 48)
j=1

for (f1,..., fm) € E.

For I, thanks to the smoothness of the kernel K (see Eq. 1.1) and the change of variables,
we obtain

[T 1fi )]
Lo} S bl 2 [ j 1 dy
) Yy lx=yj1>87 ] (2?;1 lx — yj[ymn+n "
= bl | o 1 =0l oy
N ¢ m -
Y lyil>87 e (ZT:] ly;[mntn
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Applying Minkowski’s inequality and Holder’s inequality yields

1/p
(r_“/ |12|pdx>
B,

1/p
[T7=i 1/ =y g
< |z / / = ! mn_ir/ dyy---dyn | dx
B\ yisa 1 (2= 1D
m 1/p " —mn—n
<zl | [ Thna=sprax| (Swi]  danedw,
7:1 ij|>5"\z| B, j=1 j=1
—mn—n
) YRR s
< Il r P TTILes oyyrn | 22 1941 dyy - dyn
Xioi lyjl>87"z] izl =
m m —mn—n
< " T I | S| dviedu
j=1 Z’}l:l ‘}'j|>571 2] j=l1
_n m
I CaE) I B AT
j=1
This implies that
2l Lre S 87 4.9)

Next, we consider I3. Thanks to Holder’s inequality, we get

m
1 i)l

IS ||Vba||Loo/ oyl l= O

Y =yl <81zl Qi Ix = yjhmn

Jj=I J J

< [T7=i 1fi(x =y
~ m min—1 yl"'dym~
o ygl<st Q=1 1D
Arguing as in the proof of I, we also obtain
r= Pl s,
m e /. —mn+1
s | [ Tlisa=sprax]  [Swmi] vy
ZT:] I.)’j‘<57]|1‘ rj=1 j=1
—mn+1
m mn m
< 1= 2 T A2 gy, / ) il dy; -+~ dyn
j=1 ZJ‘:] ‘y‘/|<57 Iz] j=1
m
ST [Tl sy S 8712l
j=1
This implies that
Isllzre <87 2. (4.10)
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Similarly, we also obtain

[T 1fi )l
L1 S 19l [ x4z il 1 e edy
s <o i I x+ 2=y "
< [T 1 fie+z =yl
~ TS p—— Vi dym-
Yo lyjl<sTlzl+z] (Zj:] lyil)
Therefore,
r= P Lyl Lo s,)
1/p —mn+1

A

m
. /H|f,<x+z plrax (S| an--dy
Y lyil<s Nzl +1zI\/ B, S

—1
—mn+1

m m
<r 2j=1%/p; H I f ”L"J'(B(onrzfyj,r))/ " I Z [yl dyy---dym
j=1 Yliar yjl<s=lzl+ I\ 55
m
S G+ 1D [Tl S 87 el + 12l
j=1
Thus,
M4l re <87 Mzl + 2. @.11)

A combination of Eqgs. 4.8, 4.9, 4.10, and 4.11 provides us
be, TV(f1s -y fi)x +2) = [be, TI(f1 -y f) @l e S 87+ 87zl +202].

Therefore,

||[b87T]l(f15~"9fm)(-x+z) bev l(,f]v"'vfm)(x)“LPv“58]75

if provided that |z| < &2. This yields (4.5). Then, [b, T] is a compact operator on
LPUE(R™) x -+ - x LPm:%m (R™),

b) Sufficiency: Suppose that b € LllOC (R), and [b, T is a compact operator on LP1-%1(R™) x
- x LPm-%m (R"). By Theorem 1.9, we have that b € BMO(R"). We now show that b €
CMO(R").
To obtain the result, we need a characterization of a function in CMO(R") (see, e.g.,
[30D).

Lemma 4.2 A function b € CMOR") if and only if b satisfies the following three
conditions.

(i) lim sup |b(z) —bp,|dz =0
8=0p, r<s JB,

(i) lim sup JC |b(z) —bp,|dz =10

R—oop. r>R

(iii))  lim sup Ib(z) —bp,|dz=0
R—00 B, :B.NB(0,R)=0}

We also need the following result for technical reasons.
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Lemma 4.3 There exists a positive constant M > 100 such that for any ball By :=
B(xg,r) C R", there exist balls Bj := B(xj,r), j =1,...,m, such that

X0 —Xi| ~ Mr,
| jl

and for any x € By, T(1p,, ..., 1, )(x) does not change sign and
v ST, .. 15,)@)] . (4.12)

Proof For any x € By, by the smoothness of K, we have
|T(1p,,....15,)(x) = T(p,, ..., 15,)(x0)|

/ / K, y1, 005 Ym) — K(x0, y1, .., yn) | dy1 - - dyn
B By

lx — xol”
CO/ / dyi---dym
B m (ZZ}ZO I-xk _xl|)mn+77
C r d dy, < o < ! 4.13
0 Bl... mW Vi ym_an+n_2Mm71’ (4.13)

if provided that M large enough, and where C; merely depends on n. If T(1p,,...,
13, )(x0) > 0, then since T is mn-homogeneous then, it follows from the triangle inequality
and Eq. 4.13 that

IA

IA

IA

T(1p,,....1p,)(x) > T(p,, ..., 15,)(x0)—|T(Ap,, ..., 15,)(x)=T(p,, ..., 1p,)(x0)]|
1 1 1
> — = .
- an 2an 2an
Similarly, we also obtain the conclusion if T(1p,, ..., 1p,)(xo) < 0. Hence, we complete
the proof of Lemma 4.3. O

Now, we are ready to demonstrate that b € CMO(R"). Seeking a contradiction, we
assume that b ¢ CMO(R"). Therefore, b violates (i), (ii), and (iii) in Lemma 4.2. We con-
sider these cases in the order.

Case 1. If (i) does not hold true for b then, there exists a sequence of balls
{Br = B(xk, 6k)}x>1 such that §; — 0as k — oo, and

|b(x) —bp,|dx > cyp >0, forevery k> 1. 4.14)
By
Since 8y — 0, we can choose a subsequence of {x }x>1 (still denoted by {&}x>1) such that

1
) < —6&, Vk=>1,
kL = S0k >

for some C > 1. We emphasize that our approach is different to the one, by the authors
in [24, 28]. Here, we introduce m;(£2), the median value of function b on a bounded set
© C R” (possibly non-unique) such that

{ {x € Q:b(x) > mp(Q)}]| < §|sz|,

4.15
[ € @ b(x) < mp(@)] < 1[92 19

Next, for any k£ > 1, let y,l( € R" be such that |z — y,’(| = Mé;, M > 10, and put

Bl=B 80, Bl ={weBL:bo =myBD). BLo=|v e Bl bonzmshl:
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and
Bi =[x e Biibo zmpBD| . Bia={x € Beib) <my(BD;

also

o0 oo
1 1 [ [
Foi=8B,\ |J B, FRa=8B,\ |J B}
j=k+1 j=k+1

Note that Fy 1 N F; 1 = ¥ whenever j # k, and
o
Feal Z 1BL, I = D0 1BI 280 = S 8 2 (1- ) 8t ~ 1Bl (4.16)
j=k+1
By the same analogue above, we also obtain
|Fial ~ | Byl (4.17)
From the construction, we have

[b) = my(BD| < 1bG) = bGOI. YCr.y) € By x Bl j=1.2.  (@418)

Next, it follows from the triangle inequality and Eq. 4.14 that

IA

co |b(x) — bp, | dx

By

IA

21 |b(x) —mp(BL)|dx
By

2
| Bk |

( / |b(x) — mp(BY)| dx + / |b(x) —mh(Bi)wx) . (419)
Bk,] Bk.Z

With this inequality noted, we deduce that there exists a subsequence with respect to k such
that either

— | b)) —mp(BDldx = 2 (4.20)
Bkl /s, , 2
or
1
— | b)) = mp(BLydx = 2, 4.21)
Bl Jg, , 2

for any k > 1. Thus, one can assume without loss of generality that Eq. 4.20 holds.

For any k > 1, let us denote B,f = B(y,ﬁ, Sk), with |x; — y]i| =Mé, j=1,...,m.
Applying Lemma 4.3 to By = By, B; = F,1, and B; = Bl,j=1,...,m,j # I forany
k > 1 yields

M S ‘T(13,‘!,-~-,1Fk41""’13;<n)(X)

, VxeB.
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Furthermore, T lB]l, PR § A, 13]’(") (x) is a constant sign in By. Then, it follows
from Eqgs. 4.18 and 4.20 that
CioMfmn
2
M—mn
< / [b) — my(BY)| dx
|Br| Jg,,
1
S o [ o) —m@D| |7 (15 Ahs A ) @] dx
|Bk| By 1 k ' k
m
1 ) .
- / (b0 = mp(BO)) Koyt ooyl dy [ 1, d5] dx
| Bkl J By, |[JRmn j=lj# "
m
1 _
< / (b() = b Kyt yidli, dy [ 1, dv| dx
| Bkl J By |JRn j=lj# "
1
- ‘[b, T],(lBl,...,1ka1,...,1B;n)(x)’dx. (4.22)
| Bkl J By, .

Next, we put

&

@ =8" 1,@. j=l..m j#L

o—n

—n

¢ () =8" 15,@),
for k > 1. It is clear that
”qb,:‘ ~ 1, forevery k > 1. (4.23)
Thanks to the compactness of [b, T];, we have that there exists a subsequence of
{(bTL @ - .. ¢}, (still denoted as {[bT1i(¢y, - ... ¢}, ) such that

BT1(PL, ..., ¢") — W in LPR"), (4.24)

LPi%j

as k — oo. By Eq. 4.22, we obtain
IWLre ~ 1. (4.25)

On the other hand, for 1 < ¢ < p,lety = %, and g; = ypj. Since [b, T]; maps
LT (R") x --- x LI (R") — L9(R"), then we obtain

m
1 }
|6, Tuk 0|, S Iblmwo [T 1810
j=1

a—n m aj—n
Pl Pj
= |IbllBmo |8, 15, [T 5" 1,
Ll j=1,j+#l LY
& 4n(l-1)

S Iblsmo 8y 1 7

Thus, [b, T]l(qb,i, o) = 0in LY(R"), as k — oo. This contradicts Eq. 4.25. In other
words, b must satisfy (i). Similarly, we also obtain the desired result if Eq. 4.21 holds true.
In conclusion, b cannot violate (7).

Case 2. Assume that b violates (i7).
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The proof of this case is most like that of Case 1 by considering Ry in place of 8, with

Ry — oo. By repeating the above proof for Ry in place of §;, we also obtain (4.24) and
(4.25). Forany ¢ > -2 lety = %, and ¢; = yp;. Then, we get

n—o’

b, Tu@k 0], S ellaio [T 19715

L4
Jj=1
a—n m aj—n
P Pj
= |IbliBmo | R, 15, [T |&" 1,
LYl j=1,j#l L
&tn(r-1)
p q P
S IbliBmo R .

Note that % +n(5 — %) < 0. Thus, [b, T1i(¢}, ..., #") — 0in L9(R"), when k — oo.
As a result, we obtain ¥ = 0, which contradicts (4.25). In conclusion, b satisfies ii).

Case 3. The proof of this case is similar to the one of Case 2. Thus, we leave it to the reader.
From the above cases, we conclude that b» € CMO(R"). (|

References

oo

10.

11.

12.

. Blasco, O., Ruiz, A., Vega, L.: Non-interpolation in Morrey-Campanato and Block Spaces. Ann. Sc.

Norm. Super. Pisa Cl. Sci. (5) 28, 31-40 (1999)

. Bui, T.A., Duong, X.T.: Weighted norm inequalities for multilinear operators and applications to

multilinear Fourier multipliers. Bull. Sci. math. 137, 63-75 (2013)

. Chen, Y., Ding, Y., Wang, X.: Compactness of commutators for singular integrals on Morrey spaces.

Canad. J. Math. 64, 257-281 (2012)

. Chiarenza, F., Frasca, M., Longo, P.: w2.p -solvability of the Dirichlet problem for nondivergence elliptic

equations with VMO coefficients. Trans. A. M S. 336, 841-853 (1993)

. Christ, M., Journé, J.-L.: Polynomial growth estimates for multilinear singular integral operators. Acta

Math. 159, 51-80 (1987)

. Coifman, R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables. Ann.

Math. 103(3), 611-635 (1976)

. Coifman, R., Meyer, Y.: On commutators of singular integrals and bilinear singular integrals. Trans.

Amer. Math. Soc. 212, 315-331 (1975)

. Coifman, R., Meyer, Y.: Au-dela des opérateurs pseudo-différentiels. Asterisque, 57 (1978)
. Coifman, R., Meyer, Y.: Commutateurs d’intégrales singulieres et opérateurs multilinéaires. Ann. Inst.

Fourier (Grenoble) 28, 177-202 (1978)

Dao, N.A.: Morrey boundedness and compactness characterizations of integral commutators with
singular kernel on strictly pseudoconvex domains in C". J. Math. Anal. Appl. 492, 124483 (2020)

Dao, N.A., Duong, X.T., Ha, L.K.: Commutators of Cauchy-Fantappié type integrals on generalized
Morrey spaces on domains of complex ellipsoids, To appear in J. Geom. Anal.

Duong, X.T., Li, J., Wick, B.D., Yang, D.: Factorization for Hardy spaces and characterization for BMO
spaces via commutators in the Bessel setting. To appear in Indiana Math. J.

. Di Fazio, G., Ragusa, M.A.: Commutators and Morrey spaces. Boll. Unione Mat. Ital., A (7) 5(3), 323—

332 (1991)

. Di Fazio, G., Ragusa, M.A.: Interior estimates in Morrey spaces for strong solution to nondivergence

form equations with discontinuous coefficients. J. Funct. Anal. 112, 241-256 (1993)

. Fefferman, C., Stein, E.: H? spaces of several variables. Acta Math. 129, 137-193 (1972)
. Grafakos, L., Torres, R.H.: Multilinear calderon—-zygmund theory. Adv. Math. 165(1), 124-164 (2002)
. Grafakos, L., Torres, R.H.: Maximal operator and weighted norm inequalities for multilinear singular

integrals. Ind. Univ. Math. J. 51, 1261-1276 (2002)

. Kato, T.: Strong solutions of the Navier—Stokes equation in Morrey spaces. Bol. Soc. Brasil. Mat. 22,

127-155 (1992)

. Kenig, C., Stein, E.: Multilinear estimates and fractional integration. Math. Res. Lett. 6, 1-15 (1999)

@ Springer



64

N. Anh Dao, B. D. Wick

20.
21.
22.
23.
24.
25.
26.
217.
28.
29.

30.
. Uchiyama, A.: The factorization of 4” on the space of homogeneous type. Pacific J. Math. 92, 453-468

Komori, Y., Mizuhara, T.: Factorization of functions in &' (R") and generalized Morrey spaces. Math.
Nachr. 279(5-6), 619-624 (2006)

Ji, L.i., Wick, B.D.: Weak factorizations of the Hardy Space h'(R") in terms of multilinear Riesz
transforms. Canad. Math. Bull. 60, 571-585 (2017)

Li, J., Wick, B.D.: Characterizations of H, 1 (R") and BMO,, (R") via weak factorizations and
commutators. J. Funct. Anal. 272, 5384 5416 (2017)

Lerner, A.K., Ombrosi, S., Pérez, C., Torres, R.H., Trujillo-Gonzdlez, R.: New maximal functions and
multiple weights for the multilinear calderén-zygmund theory. Adv. Math. 220(4), 1222-1264 (2009)
Li, J., Nguyen, T.T., Ward, L.A., Wick, B.D.: The Cauchy integral, bounded and compact commutators.
Stud. Math. 250, 193-216 (2020)

Mazzucato, A.: Besov—morrey spaces: functions space theory and applicationsto non-linear PDE. Trans.
Amer. Math. Soc. 355, 1297-1364 (2003)

Pérez, C., Torres, R.: Sharp maximal function estimates for multilinear singular integrals. Contemp.
Math. 320, 323-331 (2003)

Ruiz, A., Vega, L.: Unique continuation for schrodinger operators with potential in Morrey spaces. Publ.
Mat. 35, 291-298 (1991)

Tao, J., Yang, D., Yang, D.: Boundedness and compactness characterizations of Cauchy integral
commutators on Morrey spaces. Math. Methods Appl. Sci. 42, 1631-1651 (2019)

Taylor, M.: Analysis on Morrey spaces and applications to Navier—Stokes and other evolution equations.
Commun. PDE. 17, 1407-1456 (1992)

Uchiyama, A.: On the compactness of operators of Hankel type. Tohoku. Math. J. 30, 163—171 (1978)

(1981)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer



	Hardy Factorization in Terms of Multilinear CalderÓN–Zygmund...
	Abstract
	Introduction and main results
	Notation

	Functional Setting and Preliminary Results
	Block Spaces
	The Space Atomic H1(Rn) 

	Weak Hardy Factorization in Terms of Commutator [b,T]l on Morrey Spaces
	Proof of Theorem 1.8
	Proof of Theorem1.9

	Compactness Characterization of Functions in Terms of Multilinear Calderón–Zygmund Operators
	b) Sufficiency:

	References




