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Abstract— A key challenge in responding to public health
crises such as COVID-19 is the difficulty of predicting the
results of feedback interconnections between the disease and
society. As a step towards understanding these interconnections,
we pose a simple game-theoretic model of a global pandemic in
which individuals can choose where to live, and we investigate
the global behavior that may emerge as a result of individuals
reacting locally to the competing costs of isolation and infection.
We study the game-theoretic equilibria that emerge from this
setup when the population is composed of either selfish or
altruistic individuals. First, we demonstrate that as is typical
in these types of games, selfish equilibria are in general not
optimal, but that all stable selfish equilibria are within a
constant factor of optimal. Second, there exist infinitely-many
stable altruistic equilibria; all but finitely-many of these are
worse than the worst selfish equilibrium, and the social cost
of altruistic equilibria is unbounded. Our work is in sharp
contrast to recent work in network congestion games in which
all altruistic equilibria are socially optimal. This suggests that
a population without central coordination may react very
poorly to a pandemic, and that individual altruism could even
exacerbate the problem.

I. INTRODUCTION

One of the chief challenges inherent in predicting the
spread of an infectious disease such as COVID-19 is the
difficulty in predicting the effects of endogenous societal
responses to the outbreak [1]. As an infectious disease
spreads in society, the members of society may be expected
to react to the disease in ways which mitigate its spread [2].
Simultaneously, if members of society practice effective
social distancing, mask-wearing, and other mitigation tech-
niques, these actions affect the rate at which the disease
spreads. In effect, both processes (the spread of the disease
and the spread of social behavior) can be viewed as negative
feedbacks on each other, and can lead to highly complex
dynamics which can be difficult to model, and perhaps even
more difficult to control and influence.

To focus on one particular aspect of the disease/society
feedback interaction, this paper poses a simple game-
theoretic model of a pandemic to study the interacting
effects of individually-directed isolation and the propagation
of infectious disease. Our paper adopts a nonatomic game
formulation, which models a large population of individuals
as a continuum of agents, with each of the infinitely-many
individuals having an infinitesimal effect on those around
her. We allow each individual to choose to live at one of a
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large set of locations; for simplicity we consider the case that
each individual selects a location and remains there for the
duration of the pandemic.1 The competing effects of disease
risk and personal isolation influence individual decisions:

1) Selecting a densely-inhabited location confers a high
risk of contracting the infectious disease but a low cost
of isolation;

2) Selecting a sparsely-inhabited location confers a low
risk of contracting the disease, but a high personal cost
of isolation.

We view this model as a testbed for the notion that in a
pandemic, it is not good to have either too little isolation
(potentially leading to rapid disease spread) or too much
isolation (leading to economic ruin, psychological problems,
etc. [3]–[5]). Note that our setting contains many synergies
with population game models [6] and other game-theoretic
and networked approaches in epidemiology [7]–[12].

In this paper, we initiate a study on the aggregate effects
of uncoordinated individual choice in such a setting, con-
sidering in particular the evolutionarily stable states (ESS)
associated with a game-theoretic formulation of the above
concepts. Our core initial finding is that if all individuals are
self-interested, then every equilibrium has only a (relatively)
small number of inhabited locations, and that in general the
quality of equilibria can vary considerably even within a
single instance of the game. In particular, in every instance
of the problem (even those with a highly-virulent disease),
it is an equilibrium for self-interested individuals to have
a single inhabited location which contains all individuals.
Indeed, selfish equilibria reliably never err too far on the side
of isolation; in essence, a society comprised of only selfish
individuals acts as though it prefers sickness over loneliness.
Furthermore, we show that the worst-case selfish equilibria
can never be more than a constant factor worse than the
optimal social allocation — that is, the price of anarchy is
bounded [13].

Following our initial study on selfish behavior, we inves-
tigate the effects of altruistic behavior; in this context, we
adopt the view of [14] that an altruistic individual attempts
to minimize her total social cost; that is, her own individual
cost plus the external cost which she imposes on those around
her. Intuitively, an altruistic individual is reluctant to live at a
densely-populated location because she recognizes that doing
so puts her at risk for being a vector of the disease. First,

1 Note that this formulation invites a dynamic variation in which agents
can move around as the pandemic progresses as a function of the prevalence
of the disease; we leave this important extension to future work.



we show that when all individuals are altruistic, it is never
an equilibrium for the entire population to inhabit a single
location, provided that the cost of isolation is not too high;
that is, altruists successfully avoid density. However, we
then demonstrate a counterintuitive result which shows that
altruists may err quite aggressively on the side of isolation,
even when they are correctly calculating and responding to
the true marginal costs of their actions. In fact, every instance
of this problem (even if there is no disease) has infinitely-
many altruistic ESS, and all but finitely-many of these are
worse than the worst selfish ESS.

The paper’s key message is that in this setting, individual
myopic altruism (even when uniform throughout society and
computed correctly) may not be a reliable tool to guide a
society’s behavior. Note that this in sharp contrast to altruism
results for a similar nonatomic model of transportation
networks, where it is known that uniform altruism ensures
that all equilibria are socially-optimal [14]. Accordingly,
this study on uncoordinated altruism may serve to comple-
ment current work in socially-networked autonomy, where a
simple and popular approach to societal optimization is to
embed autonomous altruists in societal systems [15]–[17].
To our knowledge, this paper demonstrates the first-known
application for which the price of anarchy of altruism is
unbounded — that is, it represents a cautionary tale about the
potential significant negative effects of partial altruism. More
generally, these results illustrate the fact that local alignment
of incentive is not sufficient to ensure the presence of high-
quality equilibria, even in nonatomic game settings.

II. MODEL

To study the effects of uncoordinated social responses to
a pandemic, our model couples a standard density-based
SIR dynamical epidemiological model with a nonatomic
congestion game.

A. Location-Based Epidemic Model

We consider a simple extension of standard SIR epi-
demiological models which allows individuals to select their
location from a set of countably-many locations, which
for convenience we simply represent as the set of natural
numbers N. For location i ∈ N, we write xi ≥ 0 to denote
the fraction of the total user population that is situated at
location i. Without loss of generality, we index the locations
such that xi ≤ xi+1 for all i ∈ N. In our model, we assume
that each location represents a fixed physical area and that
all locations are the same size; thus, xi represents both the
number of individuals at that location and the density of
the population at location i. We write a social allocation as
x := (xi)i∈N.

In using xi to represent a density, we adopt the
density-based compartmental epidemiological model of [18].
Coarsely speaking, this model assumes that the population
at a location is uniformly distributed across the area; thus,
contact rates scale linearly with density. At location i, Si(t),
Ii(t), and Ri(t) denote the number of susceptible, infected,
and recovered individuals as a function of time, which are

defined as solutions to the following nonlinear ordinary
differential equations:

Ṡi(t) = −βIi(t)Si(t) (1)

İi(t) = βIi(t)Si(t)− γIi(t) (2)

Ṙi(t) = γIi(t). (3)

In keeping with standard epidemiological notation, we write
R0 := β/γ to denote the basic reproduction number.

For each location i, we assume that a fraction η ∈ (0, 1)
of the population is initially infected and that the remainder
of the population is initially susceptible. That is, we assume
initial conditions of

Si(0) = (1− η)xi (4)
Ii(0) = ηxi (5)
Ri(0) = 0. (6)

It is well-known that the solution to the initial value
problem defined by (1)-(6) is unique for any η, and that
for any initial conditions, the infection eventually dies out:
limt→∞ Ii(t) = 0. We write R∞i (xi) := limt→∞Ri(t) to
represent the number of individuals at location i who even-
tually contract the virus at some point during the epidemic.2

It can be shown by standard techniques [19] that for
problem (1)-(6), R∞i (xi) satisfies the equation

R∞i (xi) = xi − (1− η)xi exp(−R0R
∞
i (xi)). (7)

Our chief interest is to derive the probability with which
an individual at location i will contract the virus at some
point throughout the epidemic, which we denote by

p(xi) :=
R∞i (xi)

xi
. (8)

B. Nonatomic Game

To study the emergent behavior resulting from uncoor-
dinated social responses to a global pandemic, we define
a nonatomic game in which each individual in the overall
population can select which location they wish to inhabit. In
our formulation, the individuals inhabit their selected loca-
tions for the duration of the pandemic; this approach allows
us to illuminate some of the key strategic concerns while
maintaining enough simplicity to provide provable results. In
this context, we model the large population as a continuum
of infinitely-many infinitesimally-small individuals.

Each individual wishes to avoid becoming infected by the
virus, and thus for location i with density xi, an individual
views the probability of becoming eventually sickened p(xi)
as a cost. However, to model the cost of isolation, we assume
that it is independently desirable to be located at a populous
location, so each individual experiences an additional isola-
tion cost

f(xi) := Cx−1i (9)

for some constant C > 0.

2Note that our model assumes perfect mixing among the individuals at
each location.



As we depict in Figure 1, we model the cost experienced
by a selfish individual at location i as

J s
i (xi) = f(xi) + p(xi). (10)

We model an allocation (i.e., an assignment of individuals
to locations) with a Lebesgue-measurable function X :
[0, 1] → N which maps the set of individuals (the unit
interval) to the set of locations (N). Given an allocation
X , the population density at location i is given by the
measure of individuals selecting i. Formally, the density at
i is xi := µ(X−1(i)), where µ is the Lebesgue measure.
We denote the set of used locations by N(x) := {i ∈
N | X(a) = i, a ∈ [0, 1]}; note that by this definition a
location i ∈ N(x) need not have xi > 0 since it may be used
by a measure-0 set of individuals. We often write x (a tuple
of densities) to denote an allocation; it is to be understood
that these densities are consistent with a measurable function
X as described above. The overall social cost J(x) of a
particular allocation x is given by the population-weighted
sum of all location costs:

J(x) :=
∑

i∈N(x)

xiJ
s
i (xi)

= C|N(x)|+
∑

i∈N(x)

R∞i (xi). (11)

From this we may derive the subjective cost experienced
by an altruistic individual. Chen and Kempe’s work on al-
truism [14] models an altruistic individual as experiencing a
personal cost that is equal to the gradient of the social cost so
that an altruistic individual’s profitable deviation to another
strategy can only occur if this deviation reduces the social
cost. However, J(x) is discontinuous and thus the altruism
model requires a suitable modification. Our modification is
generalizable to other discontinuous functions as well; note
that our key modification is that if an individual’s deviation
changes the social cost, then that change is included in the
individual’s cost function. In essence, this hybridizes the
atomic and nonatomic altruism models of [14].

In detail, for allocation x, we call location i empty if i /∈
N(x); that is, ∀a ∈ [0, 1], X(a) 6= i. The discontinuities in
J(x) occur when the first nonatomic agent deviates from a
used location to an empty location (alternatively, when an
agent deviates from a location and it becomes empty).

Accordingly, we represent the altruistic cost of an empty
location as C+∂R∞(0)/∂xi. That is, the first individual who
deviates to an empty location experiences a switching cost
of C; this models the fact that the set N(x) has increased in
size. In essence, the deviating individual is “charged” for the
increase in social cost due to the expansion of N(x). Thus,
the subjective cost experienced by an altruistic individual is

Ja
i (xi) =

{
C +

∂R∞
i (0)
∂xi

if i /∈ N(x),
∂R∞

i (xi)
∂xi

if i ∈ N(x).
(12)

To begin to understand the limitations of uncoordi-
nated social responses to a pandemic, we investigate the
evolutionarily-stable states associated with the above game in

which individuals are either all selfish (10) or altruistic (12).
We say that xess is an evolutionarily-stable state (ESS) if no
individual can profitably decrease her cost by changing her
location and if the gradient of every inhabited location is
negative. This second condition is a notion of stability, as it
guarantees that at an ESS, defections by a sufficiently small
group of individuals are self-defeating.

Definition 1: An allocation xess is an ESS for individual
type z ∈ {a, s} if and only if it satisfies both of the following
conditions:

1) If xessi > 0, xessj > 0, and k /∈ N(xess) for i, j, k ∈ N,
then the costs of locations i and j are equal and no
greater than that of location k:

Jz
i (xessi ) = Jz

i

(
xessj

)
≤ Jz

k (0) . (13)

2) If xessi > 0 and |N(x)| > 1, then

∂Jz
i (xessi )

∂xi
> 0. (14)

Condition (1) above is simply a definition of a Nash equi-
librium; however, our model admits many Nash equilibria
which fail condition (2) which we do not regard as reasonable
since they are unstable under a wide range of population
dynamics. For instance, when there is no disease (i.e., η = 0),
for any C it is a selfish Nash equilibrium to have xi = 0.1
for i ∈ {1, 2, . . . , 10}. At such an equilibrium any increase
in the population at any location reduces the cost of that
location, making this a self-propagating deviation. While our
model considers only static equilibria, we wish to ensure that
if coupled with suitable population dynamics, our model’s
equilibria would at least be locally stable. Figure 1 illustrates
the behavior of ESS for several parameter values for our
model.

With all of the above, we specify an instance of a
pandemic location game by G = (R0, η, C) for basic repro-
duction number R0 > 0, initial infected fraction η ∈ (0, 1],
and isolation cost C > 0; given this game instance, we write
its altruistic version as Ga. We write the set of ESS for
game G as ESS(G); we denote the optimal social cost by
J∗(G) := infx J(x).

To characterize the relative quality of worst-case ESS, we
employ the well-studied price of anarchy [13]:

PoA(G) := sup
x∈ESS(G)

J(x)

J∗(G)
(15)

III. OUR CONTRIBUTIONS

In this paper, we compare the effects of uniform selfish-
ness and uniform altruism in the context of a simple model
of a global pandemic. Conceptually, this may give insight
into the extent to which a society may be expected to react
to a pandemic in the absence of centralized coordination.
In summary, the key results are that the worst-case cost of
all-selfish equilibria is bounded with respect to optimal, but
there is no upper bound on the cost of altruistic equilibria.
Concisely, for any pandemic location game G = (R0, η, C),



Fig. 1. Plot demonstrating the cost Js
i (xi) of a location with respect

to population density xi for various parameter values. Markers indicate
altruistic (F) and selfish (•) equilibrium densities. Note that when initial
infected fraction η is relatively high (dashed lines), even the best altruistic
equilibrium densities can have considerably higher cost than the best selfish
equilibrium densities. Source code to generate figure is available at https:
//github.com/descon-uccs/altruism-pandemic-2022

Theorem 3.6 regarding selfish populations states that

PoA(G) ≤ 3

C
+R0,

but Theorem 3.7 regarding altruistic populations states that

PoA(Ga) =∞.

We present the full results in a tutorial style; beginning with
a useful lemma.

A. A Foundational Lemma

First we present Lemma 3.1 which establishes some prop-
erties of R∞i (xi) which satisfies (7).

Lemma 3.1: The following are true regarding the partial
derivatives of R∞i (xi) at xi = 0 for any problem instance:

∂R∞i (0)

∂xi
= η, (16)

and
∂2R∞i (0)

∂x2i
= 2R0η(1− η). (17)

Furthermore, ∂2R∞
i (xi)

∂x2
i

> 0 on interval (0, a) with a > 0.

Finally, if xi > 1/R0, then ∂R∞
i (xi)
∂xi

> 1 and if xi ≤ 1/R0,
then ∂R∞

i (xi)
∂xi

≤ 1.

Proof: Consider (7):

R∞i (x) = x− (1− η)x exp(−R0R
∞
i (x)).

For compactness, we write R, R′, and R′′ to denote R∞i and
its first and second partial derivatives with respect to x. By
implicit differentiation, we obtain that

R′ = 1− (1− η) exp(−R0R) [1− xR0R
′] . (18)

Note that it must be true that limx→0R
∞
i (x) = 0, since by

definition R(x) ∈ [0, x] for all x; thus, R is right-continuous
at 0 and we may write R(0) = 0. It then follows from (18)
that R′(0) = η. Furthermore, note that the above can be
rearranged to obtain

R′(1−xR0(1−η) exp(−R0R)) = 1− (1−η) exp(−R0R),
(19)

which illustrates that if x = 1/R0, then R′(x) = 1, if x >
1/R0 then R′(x) > 1, and if x < 1/R0, then R′(x) < 1.

Differentiating (18) with respect to xi once again, we
obtain that

R′′=−(1−η) exp(−R0R)
[
−2R0R

′−x
[
R0R

′′−(R0R
′)2
]]
.

(20)
Once again we may let R(0) = 0 and R′(0) = η to compute
that R′′(0) = 2R0η(1− η) > 0. Since all derivatives of the
above are continuous, it must hold that R′′(x) is positive on
an interval (0, a) for which a > 0.

B. Characterizing Equilibria

To begin, Propositions 3.2 and 3.3 provide an analytical
characterization of the ESS associated with each type of
agent.

Proposition 3.2: Let G be a pandemic location game. At
any ESS xess of G, it holds that

xessi = xessj for all i, j ∈ N(xess). (21)

Furthermore,
1) There is a finite number MG such that if xess is a

selfish ESS, |N(xess)| ≤MG.
2) The maximal-density state x1 = 1 is a selfish ESS.

For intuition, point 1 above says that selfish individuals never
err too far on the side of isolation; point 2 says that in fact a
selfish population may err aggressively on the side of density
(and thus sickness).

Proof: Equation (21) holds due to (13) and because
all cost functions are identical. To prove item 1 note that
∂J s

i (xi)/∂xi < 0 on an interval (0, x̄) for some x̄ > 0. Thus,
as a consequence of (14) and (21), no selfish ESS can have
xessi < x̄ for any i ∈ N(xess). Equivalently, |N(xess)| <
1/x̄. To prove item 2, note that due to the form of f(x), the
only possible deviation from the maximal-density state is a
deviation to an uninhabited location with an infinite cost.

Next, we provide an analytical characterization of the
altruistic ESS.

Proposition 3.3: Let G be a pandemic location game. The
following are true regarding the altruistic ESS of Ga:

1) At any altruistic ESS xess, if i ∈ N(xess), then
Ja
i (xessi ) ≤ C + η.

2) There is no upper bound on the number of locations
used in an altruistic ESS.

3) If C + η ≤ 1, then the maximal-density allocation
x1 = 1 is never an altruistic ESS.

Before presenting the proof, we wish to discuss the
ramifications of these points. Point 2 means that altruistic
individuals are in some sense “content” with high degrees

https://github.com/descon-uccs/altruism-pandemic-2022
https://github.com/descon-uccs/altruism-pandemic-2022


of isolation, even if the isolation is far more aggressive than
is required to combat the pandemic. Point 3 shows that in
general, altruistic individuals are highly averse to density.
Together, these points imply that altruistic individuals never
err too far on the side of density, and that they may in fact
err aggressively on the side of isolation.

Proof: Let xess be an altruistic ESS. Due to (12), no
individual can profitably deviate to an un-used location; that
is, for every location i ∈ N(xess), it must be true that

Ja
i (xessi ) ≤ C +

∂R∞i (0)

∂xi
.

Lemma 3.1 provides that ∂R∞i (0)/∂xi = η; thus, if i ∈
N(xess), then the fundamental incentive constraint for an
altruistic popluation is

Ja
i (xessi ) ≤ C + η, (22)

since that is the altruistic cost for an individual to deviate to
an empty location. Thus the proof of Point 1 is obtained.

To see Point 2, note that Lemma 3.1 provides that
∂Ja(x)/∂x > 0 on some interval (0, a) with a > 0. Thus, if
x is such that xi = xj for all i, j ∈ N(x) and 1/|N(x)| < a,
then x is an altruistic ESS. Note that x may be such that
|N(x)| is arbitrarily large and still satisfy this sufficient
condition.

Point 3 is proved by another application of Lemma 3.1.
This time we appeal to the fact that if xi > 1/R0, then we
have Ja

i (xi) > 1; in particular we have that Ja
i (1) > 1. If

C + η ≤ 1, then (22) ensures that x1 = 1 cannot be an ESS
for an altruistic population.

To derive the price anarchy for selfish populations, we
prove a pair of lemmas which ultimately provide an upper
bound on the cost of any selfish ESS. First, Lemma 3.4 shows
that for low population densities, the probability of becoming
sickened cannot grow too fast as a function of density.

Lemma 3.4: For every pandemic location game G =
{R0, η, C}, it holds for all xi ≤ 1/R0 that

∂

∂xi
pi(xi) ≤ R0. (23)

Proof: Throughout this proof, we omit location index
subscripts, writing e.g. p(x) to denote pi(xi), and we write
R(x) to denote R∞i (xi). We write p′(x) and R′(x) to denote
the first partial derivatives of p and R with respect to x. First,
p(x) is given by

p(x) = 1− (1− η) exp(−R0R(x)). (24)

Performing implicit differentiation, we have

p′(x) = (1− η)R0R
′(x) exp(−R0R(x)). (25)

Note that (24) implies that 1 − p(x) = (1 −
η) exp(−R0R(x)), so (25) can be rewritten as

p′(x) = (1− p(x))R0R
′(x).

≤ R0, (26)

which holds for all x ≤ 1/R0, as provided by Lemma 3.1.

Next, Lemma 3.5 derives an upper bound on the cost of a
selfish ESS that is independent of the initial infected fraction
η.

Lemma 3.5: For every pandemic location game G =
{R0, η, C}, if xess is an evolutionarily-stable state for a
selfish population, then

J(xess) ≤ max{2, CR0 + 1}. (27)

Proof: Let G = {R0, η, C} be a pandemic location
game and let xess be an evolutionarily-stable state for a self-
ish population in G; we will write n := |N(xess)| to denote
the number of inhabited locations in xess. Proposition 3.2
gives that xessi = xessj = 1/n; applying (11), we have for
any i ∈ {1, . . . , n} that

J(x) = Cn+ nR∞i (xi)

=
C

xessi

+
R∞i (xessi )

xessi

= J s
i (xessi ). (28)

Thus, for simplicity, for the remainder of the proof we will
omit i subscripts from functions and write e.g. J s(·) :=
J s
i (·).
First, consider the case that xessi ≥ 1/R0. Then

J s(xessi ) =
C

xessi

+ p(xessi )

≤ C

xessi

+ 1

≤ CR0 + 1. (29)

Next, consider the case that xessi < 1/R0. Because xess is
an ESS, (14) gives that the derivative of J s at xessi must be
positive, or

0 <
∂

∂xessi

J s(xessi )

= − C

(xessi )2
+

∂

∂xessi

p(xessi )

≤ − C

(xessi )2
+R0, (30)

Where the last inequality is due to Lemma 3.4. Note that (30)
and preceding can be used to deduce the following lower
bound on xessi :

xessi >

√
C

R0
. (31)

Finally, this may be used to upper-bound J(xess):

J s(xessi ) < C

√
R0

C
+ p(xessi )

≤
√
CR0 + 1

≤ max{2, CR0 + 1}, (32)

completing the proof.



C. The Worst-Case Cost of Equilibria

Finally, we are prepared to state our main theorems,
showing that selfish populations have a bounded price of
anarchy but that altruistic populations do not.

Theorem 3.6: For every game pandemic location game
G = (R0, η, C), the social cost of the worst selfish ESS
is bounded above by a constant factor of optimal:

PoA(G) ≤ 3

C
+R0. (33)

Proof: Let x∗ denote a global minimizer of J(x),
with an associated number of used locations N∗. Note that
regardless of the structure of x∗, due to (11) it satisfies

J(x∗) ≥ C. (34)

Applying Lemma 3.5 yields that

PoA(G) ≤ max{2, 1 + CR0}
C

≤ 3

C
+R0 (35)

as desired, completing the proof.
Theorem 3.7: For every pandemic location game G, the

social cost of the worst altruistic ESS is unbounded:

PoA(Ga) =∞. (36)

Proof: Let Ga be an altruistic game. Note that the
optimal allocation for G

J∗(G) ≤ J((x1 = 1)) (37)
≤ C + 1, (38)

since by definition it holds that R∞i (1) ≤ 1. Now, let
Ja(K) denote the social cost of an altruistic ESS xess with
|N(xess)| = K. It must be the case that

Ja(K) ≥ KC. (39)

Thus,

PoA(Ga) ≥ KC

C + 1
. (40)

Due to Proposition 3.3 (Item 2), K can be selected as large
as desired, completing the proof.

IV. CONCLUSION

In the context of a simple game-theoretic model of a
pandemic, this paper illustrates that uncoordinated altruism
may be as bad as (and possibly considerably worse than)
uncoordinated selfishness. These results hint at a core policy
challenge in pandemic management: even individuals who
wish to assess their own impact on others and are cognitively
capable of doing so (i.e., altruists in our model) may make
choices which ultimately lead to inefficiencies, once the
choices of others are taken into account. That is, centralized
coordination may be a key requirement of effective pandemic
management.
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