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Abstract— In proposed path-aware designs for the Internet,
end hosts can select which path their packets use. What
criteria should the end hosts use to select paths? Recent work
has proposed path-aware access control frameworks in which
routing nodes publicly report their knowledge of the security
postures of other nodes; end hosts can then base their routing
choices on these reports. However, nothing is known regarding
the nodes’ incentives to report their knowledge truthfully. In
this paper, we consider the case in which each network node
is strategic, and seeks to craft its public reports to manipulate
traffic patterns in its own favor. In the context of a simple
selfish routing problem with two strategic nodes, we show
that for a wide swath of the parameter space, each node has
a dominant reporting strategy, meaning that its individually
optimal strategy does not depend on the strategy of the other
node. These dominant strategies are generally not truthful. At
the resulting dominant-strategy Nash equilibrium, we show that
the expected social cost is (often considerably) higher than that
achieved when both nodes are completely truthful. Nonetheless,
we prove that these equilibrium reporting strategies are never
perverse, meaning that their resulting social cost is never worse
than if traffic were uninformed as to network state.

I. INTRODUCTION

In today’s Internet, end users have essentially no control
over the paths used by their data; packet routing is gov-
erned almost entirely by protocols executed locally at each
node [1]. This lack of end host routing control can negatively
impact the overall efficiency of the Internet along a variety
of dimensions; for instance, leading to conflicts between
latency and bandwidth. In addition, it has security and
privacy implications; for example, end users cannot certify
that their data has been in trusted hands or in permitted
jurisdictions all along its route. To address these and other
shortfalls, much recent work has proposed new path-aware
Internet architectures which enable path selection and path
authentication by end hosts [2]–[5].

However, in a future path-aware Internet it remains an
open question as to precisely how end hosts should obtain
information about which paths satisfy their security and
quality-of-service requirements, and how they should select
paths accordingly. As an initial step to answer this question,
in [6] we propose a framework which allows routing nodes
to provide reports on the security postures or trustworthiness
of other nodes, and allows end hosts to condition access to
data resources on the basis of these aggregated reports.
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In the real world, complex economic relationships exist
between routing nodes, so that the individual objectives of
each node may not be aligned with that of the system planner.
Thus, if our framework were to be implemented, it would be
desirable to ensure that nodes are properly incentivized to
report their full knowledge truthfully. Simultaneously, each
node would need to solve an information design problem [7]
in order to determine what information to report or withhold
to optimize its own objectives.

In the present paper, we initiate a study on the above
information design problem by posing a simplified model
and determining how each node should report on others in
order to obtain a competitive advantage. To do this, we apply
analysis techniques from game theory in the context of a
selfish routing model with competitive Bayesian persuasion.
To situate our paper in the broader research context, we
briefly introduce each of these concepts before summarizing
our contributions.

Selfish routing models how network traffic might be ex-
pected to select routes in the absence of centralized coor-
dination [8]. Traditionally, the main application for selfish
routing models has been transportation networks [9]–[13].
However, a path-aware Internet would explicitly allow end
hosts to select routes, which would immediately make the
Internet a selfish routing problem. Some recent work has
begun to consider the implications of this [14]–[16], showing
that it has nontrivial consequences which likely require novel
incentive mechanisms.

Bayesian persuasion describes a scenario in which one
agent is informed about some state of the world, and strate-
gically reveals (or does not reveal) information to a second
agent in order to influence its behavior [17], [18]. One of
the main conclusions of the Bayesian persuasion literature
is that the informed agent can often gain an advantage
by employing an optimal revelation policy, and this policy
is often nontrivial. Among many other applications, this
concept has been used to study the problem of influencing
driver behavior in transportation networks by coupling it with
selfish routing models [19]–[22].

In the present paper, we pose a simple selfish routing
model with competitive Bayesian persuasion. In our model,
traffic must select between two routes on the basis of
latency and the perceived security of each route. Each of
the two routes is associated with a strategic agent we call
a signaler; each signaler desires to maximize the expected
traffic choosing its route. Each day, a security incident may
independently afflict one or both routes rendering the route
either secure or insecure; any traffic using an insecure route
experiences this insecurity as an additional cost. The traffic



knows only the probability of a security incident on each
path. Both signalers are fully informed as to the realized
security state, and each signaler gives a public report about
its competitor’s security state.

This setup gives rise to a hierarchical game: the signalers
competitively design their reporting policies to maximize
their expected share of the traffic; given the signalers’
policies, the traffic plays a nonatomic Bayesian game to
determine the allocation of traffic to the two routes. While
competitive Bayesian persuasion is not new, to the best of
our knowledge, this is the first work in which the competitive
signalers are associated with network links; that is, the
signalers have conflicting goals as to the network flows
themselves rather than to subscriber counts [23].

Our analysis presents several results regarding both the
equilibrium behavior of the signalers and traffic as well as
the quality of the resulting equilibria. First, we show that
when the a priori expected cost of a security incident is
comparable with the network’s worst-case latency costs, the
game played between the signalers is trivial: both signalers
have a dominant-strategy revelation policy. That is, each sig-
naler can compute its individually-optimal strategy without
knowing the strategy of the other signaler.

Second, we show that the expected social cost (i.e., the
sum of latency and security costs experienced by traffic)
improves with the truthfulness of the signalers’ policies; this
is in contrast to other related work in which more information
can actually harm traffic [22]. Thus, the social cost at the
dominant-strategy signalling equilibrium is no worse than
the uninformed social cost, meaning that the perversity index
of competitive signaling is unity [24]. However, we show
numerically that the equilibrium social cost can be substan-
tially worse than the optimal (i.e., fully-informed) social cost.
Thus, the price of anarchy of competitive signalling may be
large [25].

Finally, we present the results of some numerical experi-
ments which demonstrate our results and we include a link
to Python code for these experiments.

II. MODEL AND METRICS

The network model studied in this paper is depicted in
Figure 1. The model consists of four nodes: two nodes
represent the source and the target of a non-atomic unit
of traffic, and the remaining two nodes represent possibly
insecure nodes through which network traffic is routed.
The path (s, 0, t) will be referred to as path 0 or node 0,
dependent upon the context. Path (s, 1, t) will likewise be
referred to as node 1 or path 1. Each of the these two
nodes may be in one of two security states from state space
Θ = {S, I}. Path i is in the secure state S with probability
qi and is otherwise in the insecure state I.

For each of the two nodes i ∈ {0, 1}, there is a strategic
agent—which we call the signaler—that knows the security
state θj , i ̸= j of the opposing signaler’s node, and they seek
to maximize the flow xi of path i. A report from signaler i
about the security state of path j is rj ∈ {S, I}. A report r is
an ordered pair (r0, r1) such that r ∈ R = {SS, SI, IS, II}.
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Fig. 1: Diagram of the network studied in this paper. A single unit
of (non-atomic) selfish traffic routes from node s to node t, selecting
its route based on the latency on each road (modeled by xi) and the
reports given by nodes 0 and 1. Note that Node 0 delivers a report
on its competitor 1, and node 1 delivers a report on its competitor
0.

Each signaler i chooses a reporting policy that seeks to
maximize traffic on path i. These reports are issued pursuant
to the signaler’s policy such that:

rj =

{
S w.p. pj if θj = S

I w.p. 1− pj if θj = I and w.p. 1 if θj = I.
(1)

We assume that signaler i always reports truthfully when the
security state θj is I in order to simplify the network model.

A. Routing Game

We model traffic as a continuum of infinitely many in-
finitesimally small packets. These packets know the proba-
bility qi with which a node i will be insecure. They also
know the security cost ci. Thus, the unconditioned cost of
path i is

Ji(xi) =

{
xi w.p. qi
xi + ci w.p. 1− qi.

(2)

However, the report acts to augment the packets’ information
about the state of the nodes. Since they know both q, the
probabilities that the nodes are insecure, and p, the reporting
frequencies of the signalers, packets seek to optimize cost
by choosing the path that minimizes the cost function:

Jr
i (xi) = xi + ci Pr [θi = I|r] . (3)

We call an interim traffic state xr(p) an interim Wardrop
equilibrium for joint report r if it satisfies:

xr
i > 0 =⇒ Jr

i (xi) ≤ Jr
j (xj), i ̸= j. (4)

The expected flow across the set of all reports is:

xi(p) =
∑
r∈R

Pr[r]xr
i (p) (5)

B. Game Between the Signalers

Signaler i seeks to select its reporting frequency pj to
solve the optimization problem:

max
pj∈[0,1]

xi(p). (6)



A pair of reporting frequencies (p∗0, p
∗
1) is a Nash Equilib-

rium (NE) when:

x0(p
∗
0, p

∗
1) ≥ x0(p

∗
0, p1) (7)

and
x0(p

∗
0, p

∗
1) ≥ x0(p

∗
0, p1) (8)

for all p0 and p1.
We wish to clarify that each signaler i emits a report

rj , i ̸= j, but they do not directly select which report to
emit. The report from signaler i is based upon the probability
pj , j ̸= i, the policy chosen by signaler i. Therefore, traffic
must make an inference about the security state on path j.
Therefore, each signaler i ∈ {0, 1} desires to set a policy
which maximizes the flow of traffic across path i. Thus,
signaler i selects a pj given an opposing policy pi.

C. System-Level Cost Metrics

The system-level costs of the systems are measured in a
variety of ways. These costs are measured both for a given
report as well as an expected value across the set of reports.

For a given report, the flow of traffic will induce an interim
Wardrop equilibrium. The interim total latency of the system
for a given report r is:

L(xr) =
∑

i∈{0,1}

(xr
i )

2 (9)

The expected total latency of the network is:

L(p) =
∑
r∈R

L (xr(p))P [r] (10)

For a given report r the interim total security cost for the
system is:

S(xr) =
∑

i∈{0,1}

xr
i ci Pr [θi = I|r] (11)

The expected total security costs of a game is:

S(p) =
∑
r∈R

S (xr(p))P [θi = I|r] (12)

The social cost for a given report r is:

C(xr) = L(xr) + S(xr) (13)

The expected social cost is:

C(p) = L(p) + S(p) (14)

III. ANALYTICAL CONTRIBUTIONS

This paper’s analytical results focus mainly on the case in
which ci(1 − qi) ≤ 1 for both links i ∈ {0, 1}. That is, the
a priori expected cost of a security incident on a network
link is no greater than the largest latency possible on the
network. In other words, this case models a scenario with
security incidents which are either not too frequent or not
too costly. The high-security-cost parameter regime does not
generally admit pure Nash equilibria between the signalers,
and we postpone its study for future work.

A. The Dominant-Strategy Equilibrium

To concisely express these results, we frequently write
ei := ci(1 − qi) to denote the a priori expected security
cost of edge i. When ci(1 − qi) ≤ 1 for both i ∈ {0, 1},
a dominant-strategy Nash equilibrium emerges between the
signalers, as we show in Theorem 3.1. For many parameter
values, this equilibrium fixes the interim expected security
cost ci Pr [θi = I | ri = I] at exactly 1 for each link.

Theorem 3.1: Let ci(1 − qi) ≤ 1 for both i, j ∈ {0, 1}.
Then agent i has a dominant strategy to select

p∗j =


1 if cj < 1,
1−cj(1−qj)

qj
if cj ∈

[
1,

1−qj/2
1−qj

]
,

0.5 otherwise,
(15)

where j ̸= i. At this equilibrium, it holds that the conditional
(interim) expected security cost of link i ∈ {0, 1} is given
by

ci Pr [θi = I | ri = I] =


ci if p∗i = 1,

1 if p∗i = 1−ci(1−qi)
qi

,

ci(1− qi) if p∗i = 0.5.
(16)

Before presenting the proof, we note that this result ex-
hibits several interesting features. First, (15) indicates that the
dominant strategy of each agent depends only on parameters
associated with its opponent’s link, and that each agent’s
truthfulness is nondecreasing in its opponent’s link cost ci.
Intuitively, it is easier to lie about very risky links than about
very safe links.

Second, (16) shows that strategic signaling can severely
curtail the quality of information that reaches traffic. Specif-
ically, each signaler attempts to signal in such a way as to fix
the interim expected security cost (conditioned on a signal
of “insecure”) of the opponent’s link at exactly 1.

The proof proceeds in the following steps:

1) In Lemma 3.2, we characterize the interim Wardrop
equilibria.

2) In Lemma 3.3, we show that when ei ≤ 1 for i ∈
{0, 1}, both signalers have a dominant strategy.

3) Finally, we combine Lemmas 3.2 and 3.3 to complete
the proof of Theorem 3.1.

Throughout the proof, we perform all analysis from the
perspective of link 0, whose objective is to select p1 to
maximize x0(p0, p1). For notational convenience, we write
xr to mean x(p; r), the interim equilibrium flow given reports
r; note that the dependence on p is always implied but often
suppressed for brevity. For example, xSS means x(p; SS). In
addition, we write cri := ci Pr(θi = I | r) to denote these
interim expected costs.

Lemma 3.2 begins with a description of the interim
equilibrium network flows.

Lemma 3.2: For any set of parameters, the interim equi-



librium flows on link 0 satisfy the following:

xSS
0 = 1/2. (17)

xSI
0 =

{
1 if cSI1 ≥ 1
1
2

(
1 + cSI1

)
otherwise.

(18)

xIS
0 =

{
0 if cIS0 ≥ 1
1
2

(
1− cIS0

)
otherwise.

(19)

xII
0 =


0 if cII0 − cII1 ≥ 1

1 if cII1 − cII0 ≥ 1
1
2

(
1 + cII1 − cII0

)
otherwise.

(20)

To aid exposition, Figure 2 depicts the inequalities on cri
found in (18)-(20), and illustrates the general form of the
interim equilibrium in all cases.

Proof: First, consider the case that the joint report is
r = SS. Due to the signaling structure, the traffic knows with
certainty that both links have θi = S, so cSSi = 0. Hence, in
this case the interim equilibrium is simply equal to (17) to
satisfy (4).

Next, if the joint report is r = SI, link 0 is known to be
secure, but the interim expected cost of link 1 is nonzero:
cSI1 = c1(1 − q1)/(1 − q1p1). Hence, the r = SI interim
equilibrium satisfying (4) is equal to (18).

Similarly, if the joint report is r = IS, link 1 is known to
be secure, but the interim expected cost of link 0 is nonzero:
cIS0 = c0(1 − q0)/(1 − q0p0). Hence, the r = IS interim
equilibrium satisfying (4) is equal to (19).

Finally, if the joint report is r = II, both links have a
nonzero interim expected security cost. Hence, the r = II
interim equilibrium satisfying (4) now has the 3 cases given
in (20).

Our next lemma shows that the strategic problem faced
by the signalers is very simple and is driven entirely by the
inequalities in (18) and (19).

Lemma 3.3: Let ci(1− qi) ≤ 1 for both i ∈ {0, 1}. Then
x0(p) is nonincreasing in p1 if cSI1 ≥ 1 and nondecreasing
in p1 if cSI1 < 1. Similarly, x1(p) is nonincreasing in p0 if
cIS0 ≥ 1 and nondecreasing in p0 if cIS0 < 1.

To simplify the proof of Lemma 3.3, we introduce the
following claim, whose tedious proof is summarized in the
appendix:

Claim 3.4: The following are true whenever the corre-
sponding flow xr satisfies J0(x

r
0) = J1(x

r
1):

xSS
0 Pr[r = SS] =

1

2
Pr[r0 = S]Pr[r1 = S] (21)

xSI
0 Pr[r = SI] =

1

2
Pr[r0 = S] (Pr[r1 = I] + e1) (22)

xIS
0 Pr[r = IS] =

1

2
Pr[r1 = S] (Pr[r0 = I]− e0) (23)

xII
0 Pr[r = II] =

1

2
(Pr[r0 = I] Pr[r1 = I]

−e0 Pr[r1 = I] + e1 Pr[r0 = I]) (24)
The proof of Claim 3.4 follows in a straightforward manner
from the definitions of the considered quantities and is
omitted for reasons of space.
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Fig. 2: Depiction of the constraints on ci Pr [θi = I | r] which lead to
various types of interim equilibria.

Proof of Lemma 3.3: First, consider region A from Fig-
ure 2. By Lemma 3.2, in this region all four joint reports yield
indifferent interim flows, meaning that the overall expected
flow x0(p) is simply given by the sum of (21)-(24), which
can be written

x0(p0, p1) =
1

2

[
q0p0q1p1

+ q0p0(1− q1p1 + e1) + q1p1(1− q0p0 − e0)

+ (1− q1p1)(1− q0p0)

+ (1− q0p0)e1 − (1− q1p1)e0

]
. (25)

By combining terms, it can easily be shown that (25) is
constant in p1, proving Lemma 3.3 for region A.

Now, consider region B in Figure 2. Here, all flows are
indifferent except for xSI; in that case, Lemma 3.2 gives that
xSI
0 = 1, so that

xSI
0 Pr[r = SI] = Pr[r = SI]

= (1− q1p1)q0p0. (26)

Accordingly, substituting derived expressions from (21),
from (23), and (24), we have in region B that

x0(p0, p1) =
1

2
q0p0q1p1

+ q0p0(1− q1p1) +
1

2

[
q1p1(1− q0p0 − e0)

+ (1− q1p1)(1− q0p0)

+ (1− q0p0)e1 − (1− q1p1)e0

]
, (27)

which can easily be shown to be nonincreasing in p1, and
strictly decreasing in p1 whenever q0p0 > 0.

Now, consider region C in Figure 2. Here, all flows
are indifferent except for xIS; in that case, Lemma 3.2
gives that xSI

0 = 0. Thus, substituting derived expressions



from (21), (22), and (24), we have in region C that

x0(p0, p1) =
1

2
[q0p0q1p1 + q0p0(1− q1p1 + e1)

+ (1− q1p1)(1− q0p0) + (1− q0p0)e1 − (1− q1p1)e0].
(28)

It can be verified that (28) is nondecreasing in p1 whenever

e0/(1− q0p0) ≥ 1. (29)

Here, (29) is equivalent to writing cSI1 ≥ 1, which is
always satisfied by definition in the C region. Hence, (28) is
nondecreasing in p1 in the C region.

Regions D through G proceed in a similar manner;
x0(p0, p1) is nonincreasing in p1 in D and F, and nonde-
creasing in p1 in E and G. We omit the detailed derivation
for reasons of space.

Finally, consider region H in Figure 2. Here, Lemma 3.2
gives that flows xSS and xII are indifferent, but xSI

0 = 1 and
xIS
0 = 0. Thus, substituting derived expressions from (21)

and (24), we have in region H that

x0(p0, p1) =
1

2
q0p0q1p1

+ q0p0(1− q1p1) +
1

2

[
(1− q1p1)(1− q0p0)

+ (1− q0p0)e1 − (1− q1p1)e0

]
. (30)

It can be shown that (30) is nonincreasing in p1 if and only
if c0(1− q0) ≤ 1.

Taking the above all together, we have shown that when-
ever c0(1 − q0) ≤ 1, x0(p) is nonincreasing in p1 if
cSI1 ≥ 1 (i.e., in regions B, D, F, G, and H), and x0(p)
is nondecreasing in p1 if cSI1 < 1 (i.e., in regions A, C, and
E). Due to the symmetry of the problem, a complementary
statement holds for x1(p) with respect to p0, completing the
proof of Lemma 3.3.

Proof of Theorem 3.1: Consider that by Bayes’ rule,

c1 Pr[θ1 = I | SI] = c1(1− q1)

1− q1p1
. (31)

It follows from the above that

c1 Pr[θ1 = I | SI] ≥ 1 ⇐⇒ p1 ≥ 1− c1(1− q1)

q1
. (32)

Let p∗1 = (1 − c1(1 − q1))/q1. In light of Lemma 3.3, this
means that link 0 always maximizes x0(p0, p1) by selecting
p1 in the direction of p∗1, yielding (15) for the case of p1;
the case of p0 is given by the symmetry of the problem.

Finally, the first case of (16) holds since if pi = 1, the
security state of link i is always known with certainty. The
middle case of (16) holds due to (32), and the third case
of (16) holds because if pi = 0.5, no additional information
is revealed at interim so Pr [θi = I | ri = I] = Pr [θi = I].

Next, we examine the equilibrium which emerges when
both signalers employ their dominant strategies.

Proposition 3.5: When p∗i = 1−ci(1−qi)
qi

for both i ∈
{0, 1}, the dominant-strategy equilibrium satisfies

xSS(p∗) = (1/2, 1/2) (33)

xSI(p∗) = (1, 0) (34)

xIS(p∗) = (0, 1) (35)

xII(p∗) = (1/2, 1/2). (36)

Here, (33)-(36) show that in the case when both signalers
can “control the message,” the equilibrium reduces to a very
simple form.

Proof: The proof is immediate from Lemma 3.2
and (16) in Theorem 3.1.

B. Characterizing Social Cost
Unlike some similar models of information provision

in selfish routing (such as [13], [22]) our model predicts
that more information always benefits the traffic from the
standpoint of social cost.

Theorem 3.6: For all possible parameter values for c and
q, the expected social cost C(p) is nonincreasing in both p0
and p1. Thus, it holds that strategic behavior by the signalers
does not harm social cost relative to the uninformed case:

C(p∗) ≤ C((1/2, 1/2)). (37)

Theorem 3.6 shows at least that truthfulness is well-
aligned with social cost; thus, future work can focus on
shaping the equilibrium strategies among the nodes to in-
centivize truthfulness. However, as can be observed from
the expressions for C(p) given in the proof of Theorem 3.6
and in the figures presented in Section IV, it is frequently
true that (37) holds with equality, meaning that despite the
lack of perversity, the traffic experiences very little benefit
at equilibrium relative to being uninformed.

The proof of this theorem proceeds in a straightforward
manner by examining the social cost in each of the regions
depicted in Figure 2. For the sake of brevity, however, the
proof will be omitted from this manuscript.

IV. NUMERICAL EXPERIMENTS

In this section, we illustrate our results for total latency
and numerically using our Python code.1 Figure 3a depicts
the equilibrium total latency as a function of p0 and p1 for
the given parameters. Note that the total latency is lower in
the uninformed state than in the equilibrium state (marked
with a large +). Furthermore, for these parameters, the fully-
informed total latency is also lower than at equilibrium.

Similarly, Figure 3b depicts the equilibrium social cost
as a function of p0 and p1, illustrating that the informed
social cost is minimal, and the uninformed is maximal as
in Theorem 3.6. However, it is also clear from the figure
that the equilibrium social cost is no better than that of the
uninformed case.

1Our Python code is available at
https://github.com/descon-uccs/strategic-nodes



(a) Expected total latency with respect to p0 and p1 for given parameter
values. The Nash equilibrium p∗ is marked with a large black + symbol.
Note that the Nash equilibrium total latency is considerably higher than both
the uninformed (lower-left) and fully-informed (upper-right) total latency.

(b) Expected social cost with respect to p0 and p1 for given parameter values.
The Nash Equilibrium p∗ is marked with a large black + symbol. Note that
the Nash equilibrium social cost is considerably higher than the fully-informed
(upper-right) social cost, but no worse than the uninformed (lower-left) social
cost.

Fig. 3: Cost metrics with respect to p0 and p1 for given parameter
values.
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