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BILINEAR WAVELET REPRESENTATION OF CALDERON-ZYGMUND FORMS

FRANCESCO D1 PLINIO, WALTON GREEN AND BRETT D. WICK

We represent a bilinear Calderén—Zygmund operator at a given smoothness level as a finite sum of
cancellative, complexity-zero operators, involving smooth wavelet forms, and continuous paraproduct
forms. This representation results in a sparse 7 (1)-type bound, which in turn yields directly new sharp
weighted bilinear estimates on Lebesgue and Sobolev spaces. Moreover, we apply the representation
theorem to study fractional differentiation of bilinear operators, establishing Leibniz-type rules in weighted
Sobolev spaces which are new even in the simplest case of the pointwise product.

1. Introduction

Wavelet decompositions play a central role in the study of singular operators on real variable function
spaces. Haar wavelet techniques finding their roots in the works of Figiel [1990], Nazarov, Treil and
Volberg [Nazarov et al. 2003], Petermichl [2007] among others, have led to a powerful and comprehensive
theory of singular integrals on Lebesgue spaces, most prominently for Calder6n—Zygmund operators
(CZOs). Smooth wavelets, sometimes called smooth atoms or molecules, have similarly powered the
study of mapping properties of linear and multilinear singular operators on smoothness scales such as the
Sobolev, Besov and Triebel-Lizorkin scales; see, e.g., [Frazier et al. 1988] and the more recent [Hart and
Oliveira 2017]. Our approach herein seeks to unify these two perspectives.

The driving result of this article, continuing the theme from [Di Plinio et al. 2022], is a representation of
bilinear Calder6n—Zygmund operators in terms of model operators which reflects the eventual additional
smoothness of their off-diagonal kernel. This representation is realized as a sum of continuous paraproduct
forms and finitely many cancellative forms, which are themselves smooth bilinear Calder6n—Zygmund
operators. To wit, the cancellative components of our decomposition, which we term wavelet forms, are
completely diagonalized forms with respect to a suitable wavelet-type basis. Furthermore, each wavelet
form should be viewed as a certain approximate projection in the frequency domain. Our prototypical one is

dw dr
-

Ut g. ) =/0 /Rd<f®g, ) (s bt} (1-1)

In this formula, ¢y, ; =t ~¢¢((- —w)/t) for a smooth wavelet ¢, while v,, ; behaves like the tensor product
of two smooth wavelets translated by w and dilated by ¢. We say that v, ; belongs to the wavelet class

\I/,If;fsf 10 defined below: the cancellation structure of this class reflects the “low-high-high” component
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of the resolution of the pointwise product. The diagonal nature of the representation of bilinear CZOs is
obtained at the expense of converting the compactly supported wavelets occurring in the resolution of the
bilinear identity into noncompactly supported wavelets v,, ; via the wavelet averaging lemma, Lemma 2.4
below. Next, we explain the advantages of our representation. The wavelet and paraproduct model
operators are dominated by intrinsic localized forms, which in turn satisfy a sharp form of sparse bounds.
Sparse domination, a technique originating from the early work of Lerner [2013] and then developed
by several authors within and beyond Calderén—Zygmund theory, see, e.g., [Beltran and Cladek 2020;
Culiuc et al. 2018; Lacey 2017; Lerner 2016], subsumes the full range, and the sharp quantification of
the weighted norm inequalities for the operator under sparse control. Thus, in combination with sparse
bounds, our representation theorem yields a variety of novel bilinear, weighted and sharply quantified
T (1)-theorems on smoothness spaces. We exemplify this paradigm by the loosely described weighted
Sobolev theorem that follows, summarizing the results of Section 4. Let us informally introduce a few
definitions.

A bilinear operator T is a (0, 0, §) CZO if its off-diagonal kernel satisfies standard bilinear §-kernel
estimates, while T satisfies both the bilinear weak boundedness property and bilinear 7'(1) testing
conditions. These are standard conditions under which the Lebesgue space mapping properties of 7" are
now well understood. We generalize to (ky, kp, ) CZOs whose kernels are k| + k, times differentiable,
with appropriate decay estimates and in addition to the weak boundedness testing condition, satisfy an
iterative testing condition on monomials x¥, producing elements b;', €BMOfori=0,1,2and y = (y1, y2)
with |y;| < k;. Sections 3A and 3B contain the precise definitions.

Theorem. Let ki, ky €N, § >0, 0 <o <min{ky, kp}, 1 < p1, p2 < 00, % < p:=p1p2/(p1+ p2) < oo.
Let T be a (ki, ky, 8) CZO on R? such that D° 1169 € BMO for all |y| < o. Suppose that the weight
vector U = (v1, v, v3) satisfies, with p = (p1, p2, p/(p — 1)),

o€{0,1,...,d—1}U[d,00), VE€EAj,

or
o€ (i—d,d>, veApr, l<r<pi, i=12, 14l <m’ r3= 1.
p rn rn d
Then there exists C > 0 such that
D°T(f1, f)
H—ff < Cll fillweriwpy | f2llwop2 ()« (1-2)
U3 LP(Rd)

The constant C depends on the parameters above, the operator T, and the appropriate weight characteristic
of the weight vector v.

The bilinear Muckenhoupt weight vectors, that is, the classes A3, Aj; 7 appearing in the statement, are
explicitly defined in Section 4A. They were first introduced in [Lerner et al. 2009], and later appeared in
[Chaffee et al. 2017; Culiuc et al. 2017; 2018], as the natural multilinear substitute for the role of the
classical A, in linear Calderon—Zygmund theory. In the subsequent articles [Nieraeth 2019; Li et al. 2020;
2021], a complete and useful extrapolation theory for these classes was developed. These references also
contain details on the relation between Aj ; and the linear classes A,. The inhomogeneous weighted
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Sobolev spaces W9 (v) are defined by the norm

Lo}

1 woay = 1D F10ll oy + Y ILDX F10l ooy

k=0
where D? is the fractional derivative defined by the Fourier multiplier m(£) = |£|°. The statement above
shows how our representation theorem unifies the treatment of smooth CZOs with fractional differentiation.
To see this, note that taking 7' to be the pointwise product operator returns a form of the Coifman—Meyer—
Kenig—Stein—Grafakos—Torres fractional Leibniz rule; see the excellent survey [Grafakos 2017].

Bilinear representations of dyadic-probabilistic type, originating from Hytonen’s theorem [2012],
have been developed more recently [Li et al. 2019] to obtain results of this type in the case o = 0: see
also the recent works [Di Plinio et al. 2020a; 2020b] for multilinear representations in UMD spaces
and previous works [Li et al. 2014; Lerner and Nazarov 2019] on sharp weighted norm inequalities for
multilinear operators not reliant on representation formulas. When o is a positive integer, boundedness
on Sobolev, Besov and Triebel-Lizorkin spaces is known for certain cancellative CZOs in the Banach
range [Bényi 2003; Maldonado and Naibo 2009]. A complete multilinear, sharp weighted theory on
fractional smoothness spaces, and with full treatment of the paraproducts was unknown prior to this work.
In the previously given example, the dependence of C in (1-2) upon the characteristic of the weight v is
sharply quantified [Li et al. 2014; 2020; Nieraeth 2019; Lerner and Nazarov 2019]. See the statement of
Theorem B below for the explicit form.

On the other hand, the fractional derivative D applied to T (f1, f») has received renewed interest
since its initial study by Kato and Ponce [1988] and Kenig, Ponce and Vega [Kenig et al. 1993] when
Grafakos and Oh [2014] and Muscalu and Schlag [2013] independently extended the L?' x LP? — LP
results to the sharp bilinear range, taking p < 1.

Since then, Leibniz rules for Fourier multiplier operators and certain pseudodifferential operators have
also been obtained. Prior weighted estimates require the memberships v; € A, for each single weight
[Muscalu and Schlag 2013; Cruz-Uribe and Naibo 2016; Hart et al. 2018; Brummer and Naibo 2018;
2019; Naibo and Thomson 2019]. This condition is strictly more restrictive than membership of the
weight vector ¥ to the multilinear weighted classes A ; required in our theorem, so that strictly speaking
(1-2) is new even when T is the identity. Furthermore, the class of smooth CZOs which we consider
includes both smooth Fourier multipliers and certain classes of pseudodifferential operators.

Organization. The paper is almost entirely self-contained. We only use the well-known principle that
sparse domination implies sharp weighted Lebesgue space bounds as a black box. One can consult [Li
et al. 2020; Nieraeth 2019] for a precise statement, but we also refer to some of the pioneering works
[Lerner 2013; Li et al. 2014; Lerner and Nazarov 2019; Conde-Alonso and Rey 2016] concerning this
principle. Otherwise, we do not appeal to dyadic or linear representation or 7 (1) theorems, abstract
sparse domination results, or the Coifman—Meyer multiplier theorem. We will need two technical lemmas
from the study of the linear wavelet representation theory in [Di Plinio et al. 2022] on the boundedness of
the intrinsic square function and the almost-orthogonality of the wavelet classes.

We begin by recalling the Calderén reproducing formula and extending it to a certain multilinear
setting, using high-low cancellation. In the same section, we introduce the linear and multilinear
wavelet classes, W,, and prove the key wavelet averaging Lemma 2.4. This lemma allows us to avoid
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wavelet operators with complexity, in the language of [Hytonen 2012], completely diagonalizing the
CZO. In Section 3, we state the technical definitions of CZOs and higher-order paraproducts, which are
smooth testing conditions of 7'(1)-type. After this, we prove the off-diagonal estimates and deduce the
representation theorem. Section 4 is devoted to applications of the representation theorem, specifically
to obtain the weighted Sobolev and fractional Sobolev space bounds as a consequence of the sparse
domination of the intrinsic forms the latter being proved in Section 5. Section 6 contains an asymmetric
formulation of the results and the extension from bilinear to m-linear operators. We conclude with some
remarks and further questions in Section 7.

2. Wavelets

To facilitate the description of our wavelet system a few pieces of notation need to be introduced. We
work with a fixed dimension d > 1; thus the space of Schwartz functions S(R?) is simply denoted by S
when no confusion arises. The Fourier transform F : S — S is normalized as

F) &) = (&) = / (e dx.

(2 )d/z
With the above normalization, }'¢3 = ¢(— - ). The affine group Z4:=R4 x (0, 00) acts on ¢ € Lloc(Rd )
unitarily by
1 s —Ww d
Syz¢():¢2():t_d¢ T s Z:(w’t)ez'
A function ¢ € S is admissible if
dg _
| beor 1)
0 £
for all p € S4~1. If ¢ is admissible, the Calderdn formula
7= (F620.au) forait g e )
z

holds; see, e.g., [Frazier et al. 1991]. Here and in what follows, 1 is the invariant measure on Z¢ given by

dw dt d
/f(z)du(z)=/ Fay Y peeyzy.
zd R4 x (0,00) !

The admissibility condition (2-1) implies that ¢ has mean zero. In general, our wavelets are required to
have more cancellation. Define

Sj:{qSES:/x“qﬁ(x)dx:O for 0§|a|§j}.

For functions ¢ € S;, and y € N9, 0 < |y| < j, define the antiderivative of order y to be the Fourier
multiplier

8V¢(x)=/ |;|2ly|¢(s) e de, xeR



BILINEAR WAVELET REPRESENTATION OF CALDERON-ZYGMUND FORMS 51

If  €S;, then |&]7/ dA)(S ) is bounded for all & (specifically close to zero) so the integral defining 77 ¢
converges absolutely. Denote by 9% the usual partial differentiation operator. This can also be written, for
fes,

o fe0= [ Efedtd vert
Rd
By Plancherel’s theorem, for f € S and ¢ € S;, the integration-by-parts formula

(fr¢)=D (07,077 ¢)
lyl=j
holds. The symbol D? stands for the fractional differentiation operator, namely the Fourier multiplier
m(§) = |&|° for any o real. We will also utilize the Japanese bracket (x) = 1 4 |x| and the fact that it is
equivalent to max{1, |x|} and for x = (x1, ..., x,) € (RY)™ we have (x) ~ max{1, |xi], ..., [Xnl}.

Definition 2.1. Let D be a nonnegative integer. We say ¢ € Syp is a mother wavelet if ¢ is supported in
B(O, %), admissible, and for all 0 < || < D

9% € Sp.

If a function is radial, Schwartz, and mean-zero, then it only needs to be normalized so that (2-1) holds.
So the admissibility condition can more or less be dropped from the definition. Such wavelets can be
constructed as A*P @, where ® € C°(B(0, 1)).

Crucial to our program are the functions which behave like wavelets in their scale and decay, similar to
the so-called molecules of Frazier, Jawerth, and Weiss [Frazier et al. 1988; 1991]. Accordingly, introduce
the norm

10llems = sup (1) o)+ sup (e LA Tl

(2-3)
)
xeRd xeRd,0<|h|<1 |h|

Definition 2.2. The wavelet class \I—';"‘S;1 is defined by
lp e C*®D :17I(Sy) ™10 @llujys < 1for 0 < |y| <k}

and its cancellative subclass is given by
Pk — {(p e phkat, /x“gb(x) =0 for 0<|a| < k}.

Notice that ¢, € llffl;], Y, € \Ilf’l?o whenever ¢ € S, Y € S are suitably normalized.

The study of bilinear operators requires a suitable tensor-type class \I’é"‘m’l. First, for functions in
Llloc([Rid x RY), write Sy/ for the action of z € Z¢ on the j-th copy of R, j =1, 2. Then, \Ilé"‘m’l is the
collection of all ¢ € C*(R??) which satisfy the estimates

Sy, Sy T Pllas < 1
for all y € N?4, 0 < |y| < k. The norm is defined by (2-3) but replacing R¢ with R?“,

This norm is larger than purely tensoring the norm || - ||, , s Which, in fact, is not enough for the
L? boundedness of our intrinsic form in the full multilinear range of exponents (see Section 5). To
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demonstrate the usefulness of this class, we introduce the cancellative intrinsic forms which will be used
in our representation. For v, € \IJ?"S;M and ¢ € C;°(B(0, 1)), define

Ut = [ (f @ v)th 6 du)

The form U can be written as U (f, g, h) = (K, f ® g ® h) with kernel

K(Xo,x1,x2)=/

e (x1, X2)¢- (x0) dpa(2).

For the size estimate on K fix xg, x1, xp and divide the integration in ¢ into the two regions L =
{2t < max; |x; —xol} and L = (0, o0)\ L. Using the fact that

1 1
124 max{1, |x; —wl|/t, |x2 —w|/1}2?+5  max;zoft, |x; — wl}

and that ¢ is supported in B(0, 1),

|K ( )|</ / / 8 —d (xo—w)dwdt
X05 X1, X2 +
reL reLe JweB(xo,r) MaXjxo{t, [x; — w|}2d+3 ¢ ! "

< (max |x; — xo]) .
J

A similar Holder estimate can also be proved. More precisely, to use terminology of Section 3A below,
U is a (0, §) singular integral (SI) form. If v, € \IJfJ”S;l’l then U is a (k, §) SI form.

While admissible wavelets themselves satisfy the remarkable orthogonality properties which yield
the Calderén reproducing formula (2-2), the elements of the wavelet class satisfy the following almost
orthogonality estimate.

Lemma 2.3 [Di Plinio et al. 2022, Lemma 2.3]. LetO<n<8<1,0<k <D, ands >t. Set z = (w, t)

and ¢ = (v, s). Then
tk+n

sup  sup (v, 0p)| S

k

b ewkd:0 916\1‘"8:1 max{s, [v — w|}d—’_k+]7
&%z 14

and, for a mother wavelet ¢,
tk+8

max({s, v — w|}d+ktd’

sup  [{@z, 0¢)| S

k,8;1
Q;E\pg

In the sequel, we will often denote elements of \Df*‘s?" or \Ilf Sk by v, or 6,. This means only that the
function v, is associated to a point z € Z%, not that v, is given by the group action Sy, v for some function v.
Whether the subscript denotes group action or not will be clear from the context; e.g., if ¢ is first introduced
and then ¢, of course ¢, is the group action. If v, is introduced as an element of \Pé"‘m then it is a
function associated to z. There is even less ambiguity since ¢, is of course a function associated to z.

2A. Averaging of wavelets. We will use the following wavelet averaging lemma to diagonalize the
wavelet shifts (the continuous analogue of the Haar shifts).
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Lemma 2.4. Let 0 < n < 8 and H : R¥ x (0, 00)> — C be such that

)
t
|Hu, v, w,s, 1) S

max{s, |u —w|, [v— w|}24+"
If i, ¢ € S then
du dvds

Uw,t(x’y)z/ / Hu, v, w,s, )Yy (X)Pys(y)

satisfies
1(SyzSy2) ™ vzl S 1.
Proof. Let us fix w,t and simply write v for v, ;. Make the changes of variable @ = (u — w)/1t,
= (v—w)/t and B = s/t. In this way,

do da’ dB

ﬁ )
where V' = Sya,ﬂSylzlst/fu,s, ¢ = Sya,’ﬁSy;smys and H' < max{B, |a|, |a'[}~?4+9. We have suppressed
the dependence of ¥ and ¢’ on «, &', B.

We first get the size estimate on v. Since ¢’ and ¥’ are not assumed to have compact support, we
decompose into annuli and divide the scale parameter 8 accordingly:

@L%LYWL”=//‘HwaﬁWQW@) (2-4)

Lii={B>1:B<max{27U*P|x|, 27D |y[}} and LS, = (1, 00)\Lj,.

Then, for each B > 1, define the annuli A (x, ) = B(x, 2/ 1)\ B(x, 2/ ) for j > 1 and A¢(x, B) =
B(x,2B). Leta € Aj(x, B) and o’ € A;(y, B). Then

{%max{IXI, lyl} ifpelLj;,
if B e LS.

We obtain, for j > 1, thatif « € A;(x, B), B € L;; then for any r > 0

max{p, |el, |o|} =

—d—r
|X;a|) S,B_d(l'i_zj)_d_r 52—]1‘(1321)—6[

and similarly for ¢’ and for &’ € A;(y, B). The estimate also holds when i or j is O simply because ¢
and i are bounded. Thus, for each j,i > 0,

/ / 1Y/ ()¢’ (y)| de’ dar < 01U+ {maX{IXI Iy}~ BelLj;,
Aix,B) JA;

IW@NSﬁ”O+

(v.p) Max{p, |al, |o'[}2d+3 ™~ p—(2d+5) g e L‘,
Therefore,
dp _ dp
|(SYw zsyw t) V(X WIS < Z 2 r(j+t)|:/ max{|x/|, |y}~ (2d+8) IB + C B (2d+8) F
i,j=0 Lj,i

< Z 2_r(jJri)[logmax{2—1|x|,2_’|y|} +max{2—j|x|’2—i|y|}—(2d+8):|

2d+$
o max{|xl, [y[}

o
Smaxﬂxl, |y|}—(2d+7}) + Z 2—r(j+i)2max(j,i)(2d+8) maX{|X|, |y|}—(2d+5).
i,j=0
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Picking r > 2d + & guarantees convergence of the sum and concludes the proof of the size estimate. For
the Holder estimate, let 1 = (h1, hy) € R? x R By (2-4) above,

Sy, /Sy )~ v(x, ¥) — Sy, Sy, )~ v(x +hi, y + o)l

o 1
< / /R i Tl (# O O—d @) Y ()l 19/(0) = ()

do do’ dB
5

We will only handle the second term as the first is similar. First, assuming that |i], |h2| < 1, we obtain
an estimate analogous to that above: if o« € A;(x, B) and &’ € A;(y, B), then, for any r > 0,

(i |h2|
"+ R () — @' (v +ho)| S2770F) ————
W/ (R’ (3) — ¢/ (3 + h)| S TR
Following the remaining steps as above proves the result. If |h{| or |hy| are larger than 1, the Holder
estimate follows from the size estimate. O

An immediate corollary follows.

Proposition 2.5. LetkeN, 0 <n <8 <1, and H : R3* x (0, 00)> — C be such that
k+8
t

Hu,v,w,s, t)| < .
| ’ ’ |NmaX{S, lu —wl, |v—w|}2d+k+d

Let ¥, ¢ € S and define
du dv ds

Vw t(x y)—/ / H(u,v,w,s, DYy s(x)Py s (y) (2-5)

knll knlO

Then, there exists C > 0 such that v, ; € CW,, and

19 % vy, € W for k| < k.

. If moreover ¢ € S, then v, € CV¥,,

Proof. Applying ¢'7137 to the formula (2-5) for |y | < k, one can see that the symbol

¢ Iyl
Hu,v,w,s, t)(—)
s

satisfies the condition of Lemma 2.4 with § replaced by k + §, which proves the first statement. Similarly,
if ¢ € S, then 3“¢ € S for || < k and the symbol obtained by applying ¢ ~I3=* to (2-5) satisfies

| th—lk|+8 /8
Hu,v,w,s, )| - < < . O
t max{s, |[u — w|, |lv — w|}24tk=lkI+8 ~ max{s, |u — w|, |v — w|}2d+3
The next lemma is similar, and will be used to convert a portion of the paraproduct into a wavelet form.

Lemma2.6. LetkeN, O<n<d§d<1l,and G : R3 x (0, 00)2 — C satisfy
k436

<
|G(u7 U, w7 S, t)l ~ [2d+k+8 °

Then, for || ¥ |l«.d+s.5> |@ll«.d+s.6 < 1, there exists C > 0 such that

3t du dvds k,8:1, 1
Ow,r(x,y) 1= Gu, v, w, s, )Yy s (X)py s () SO
lu—w),|lv—w| <9t
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Moreover, if Y (or ¢) has vanishing moments up to k, then

Owr € CYL O or CULYYY  and 1718740, € CWRSO (or 9,50y, € CUYTY)

w,t w,t
for every k| <k.

Proof. To check the size estimate of 8 = 6,, ;, perform the change of variable as in the previous lemma.
Assume |x| > |y| and |x| > 18. In this case,

1
Ix —a| =[x — o] = [x[ =9 = 5|x|

so that

—2d—3
[ (x)| < ﬁ_d<l + X ;a|> < BT3B + [x])~ 4D,
Thus,

ﬂk:F|K|+28 do do’ dﬁ
)2d+8 ,3

1(SyL ,Sy2, )5 x, y)] < 17 /
Wt «€B(0,9), a’€B(0,9), 0<p<3 (B + |x|

<
~ tﬂ:l/(||x|2d+8

Symmetry yields the case when |y| > |x|. When both |x| and |y| are smaller than 18, we can check the
original formula to see

3t dS
0(x,y) < / skl = (k) A A SrFkL
0

The same method yields the Holder estimate. U

2B. High-low cancellation of wavelets. We return to the Calderén formula (2-2) from the Introduction.
In general, it is difficult to analyze operators acting on many different scales at once. It will be helpful
in the future to place two functions on the same scale and vary the third. To do so, we use the fact that
in the superposition of many wavelets, the smallest scale (highest frequency) dominates. We state this
precisely in the following lemma.

Lemma 2.7. Let ¢ be a radial mother wavelet and m > 0. There exist functions W, j=1,2,3,4,
satisfying:
(i) suppy/ C B(0, 1).
(i) v,y ecCm
(i) ¥2, ¥* € Sp.
(iv) Forany s > 0 and f € L>*(R%),
du dr | ) 3 4
<f’ ¢M,r>¢u,r - = <f’ wu,_y).lp‘u,s + (f’ wu,s>wl,¢,s dl/l.
r>s JueRd r

Rd

o w) dr

Proof. Define
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® retains the vanishing moments properties of ¢. Since ¢ is radial, so is ¢ * ¢ and thus ®. Changing the
variables and denoting by p the radial function p(|x|) = ¢ * ¢ (x) (supported in [0, 1)), we can rewrite

|w]
CD(w):le_d/ p(v)tétdr.
0
Thus, if w > 1,
1
<I><w>=|w|—"/ p(r)rd—ldr=|w|—d/ ¢xp=0.
0 R4

In particular, ® is supported in B(0, 1). Next, a few changes of variables yield

o0 dud
| 8000 = (.0,

r

for any f € L2(R%) and x € R?. We will be done if we can decompose ® as ® = ! x % + 3 x %, In
that case, changing the variables again,

(f, @) = /R Y Wi (O + W )W () du,

Decomposing @ is difficult if we want the functions to remain Schwartz and compactly supported
[Yulmukhametov 1999]. Obviously ® = §y * ®. We decompose the delta distribution as follows. Set

1 m+1_m+1 +1
H<x>={mxl 2 =0
0 else.

Setting D = (3/9x1)(3/9x2) - - - (3/dx4), integrating by parts yields H «+ D"*?>® = &. Now H € C" but
is not compactly supported. This can be fixed by taking g € C* such that g = H for |x| > % Then,
G := D""?g € C{°(B(0, 1)). Distributionally, § = D" ™*(H — g) + G := D™ *?F + G. Therefore,

O=F«D"?Od+GCGxd=v xy?+y3xy* O
This allows us to obtain the single-scale variant of the bilinear Calderén formula.

Lemma 2.8.

feg= /0 /R AL V(8 BV ® B+ (VR NG bu) Vs @ s
dudvd
B8 UL ) bus @V, + (f b8 U2, ) bus @ UL, — S” .

Proof. Use the Calderén formula (2-2) on f and g to obtain

dudrdvd
f®g:/zd/zd<f7 Dur)(8&s Po.s)Pur ®¢U’Sw'

Split the integral into » > s and s > r. On the first one, apply Lemma 2.7 with f and on the second, apply
itto g. [l
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3. Representation formula

3A. Singular integrals. Let 1, = (1,...,1) € R%. Given k € N, a function K € L!_(R3\ Rls,) is a

loc

(Z , 8) SI (singular integral) kernel if there exist C, § > 0 such that, for all 0 < |x| <k,
C

2d ’
(Zj;éi x; — X |) +«|
Clh|°

2d+|k[+3
(Zj;éi |xi —le) ‘

AZ denotes the difference operator in the i-th position. We say A is a (k, §) trilinear SI form if

|0y, K (x0, x1, x2)| <

|9 ALK (x0, X1, x2)| <

/ K (xo, 51, x2) £ (x1)g (k) (xo) dx = A (S, g, h)

for all f, g, h € S with supp f Nsupp g Nsupph = & and for a (k, §) SI kernel K. Notice that a (k, §) SI
form is a (k’, §’) form for any k' < k and §' <$.

3B. Calderon-Zygmund forms. Our representation formula will be built using the following intrinsic
singular integral forms.

3B1. Wavelet forms.

Definition 3.1. A trilinear form U is called a (k, §)-smooth wavelet form if for each z € Z¢ there exists
v, € llfé"‘s‘l’o such that

U(n(f,g,h»:/zd(f@g,vz><h,¢z>du(z)

for some permutation 77 € §3 and a mother wavelet ¢.

3B2. Paraproducts. Let {6) \DZD 311 74 be a y-family, which means
/xﬂeg(x)dx =1Plsg

for each |8| < |y| < D. These can be constructed by taking a single function ¥, smooth and compactly
supported such that

and then acting on 97 with the affine group Z¢, yielding 9. Such functions 97 do indeed exist; see
[Alpert 1993; Rahm et al. 2021].
Given a function » € BMO and multi-index y € N??, define the y-order paraproduct form

My, (f 8. 1) = /Zd(b, (07"7729))(f, 07 ) (g, O1*) (h, ¢2) du(2), (3-1)

where ¢ is a mother wavelet and )" are compactly supported y, families. Iy, is a (M, §) SI form for
any M > 0 up to the smoothness of #¥ and ¢ and any O < § < 1. This can be verified using the same
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reasoning as in the discussion after Definition 2.2 of the wavelet classes, only it is simpler since the
wavelets are compactly supported.

We will use the partial ordering on multi-indices ] k e N™: f: 1y Jor oo vs Jm) < k= ki, ko, ooy k)
if j, <k, and f <kif ] <k but ] #= k. In this way, for all k <y and ¢ with vanishing moments up to |y|,

My, (X1, ¥2, @) =8¢,y (b, 077 7729),

I, (X, y*2, ¢) =0,
where Hzl(f, g, h)=Tly(h, g, f) and sz(f, g, h) =I1,(f, h, g). In general, this is difficult to compute
for k > y (see Section 7 below). Now for y € N*? we will iteratively define the y-th order paraproducts
of a form A.

Recall S; = {1/f eS: fxyw(x)dx =0for |y| < j}. When y =0, we say a (0, §) SI form A has 0-th
order paraproducts if there exist BMO functions bf), i =0, 1, 2, such that, for all ¥ € Sp,

AL LYY =g, ¥), AW, 1L, D=k, ¥), A, ¥, 1) = (b5, ¥).

This is the standard bilinear 7 (1, 1) condition [Christ and Journé 1987; Li et al. 2019]. Now, for
(k1, k) > 0, we define the (k1, k»)-th order paraproducts inductively. Suppose A has paraproducts b;
for all (|y1], [y21) < (ki1, kz). Then, we say A has (ki, k2)-th order paraproducts if for each |y;| = ki,
|y2| = ky there exist b}, € BMO such that, for all { € S, 14,

2
Ma=ASY Y m
i=0 ([c1],|x2]) < (k1,k2)

satisfies
Mgyt (57, Y72, 9) = (B), 977772 y),

Akl,kz(llf’ yyz, xyl) = (b}l/’ a_yl_}/zw)’
Ay X7, y72) = (b}z/’ 9N ).

Under this definition, one can verify by induction that Ag, x, has vanishing paraproducts of all
orders < (k1, k»). The action of (k, §) SI forms on polynomials of degree (ki, kp) with k| +ky <k can
be defined as elements of the dual space of S, 4«,, see [Frazier et al. 1988; Bényi 2003].

Definition 3.2. Let k; +k, <k. A (k, §) SI form A is called a (ky, ky, ) Calder6n—Zygmund (CZ) form if
it has paraproducts up to order (ki, k») and satisfies the weak boundedness property (WBP), which means
Az, Y 9)| < C (3-2)

for all ¢,, ¥,, ¥, € \Il?"m’l supported in B(w, t) and (w,t) =z € Z We also say T is a (ki, k2, §)
Calder6n—Zygmund operator (CZO) if A(f, g, h) = (T (f, g), h) is a (ky, k2, §) CZ form.
3C. Smooth representation theorem.

Theorem A. Let A be a (ky, ko, §) CZ form and n < 5. There exists (j, n)-smooth wavelet forms UJ’: for
j=min{k|, kp}, ..., ki +ky, i =1, ..., 6, and paraproduct forms HZ’}‘ o i =0,1,2, such that
L

ki+ko

6 2
Afg=3 >, Ultfgm+) > T (fig.h.

i=1 j=min{k;,kp} i=0 |ye|<lkel
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The region of interest Z(w, t) := R x (¢, 00) will be partitioned into the following regions (far, near,
high-low):
F(U), t) = {max{lu - U)|, |U - w|} = 3Sa s = t}v

S(w, t) := {max{|u — w|, |[v —w|} < 3s, s <3t}, (3-3)
A(w, t) := {max{|lu — w|, |[v —w|} < 3s, s > 3¢}.

We will also use the region I (w, t) := {max{|u — w/|, |v — w|} < 3max{s, t}, s < 3t}.

3C1. Kernel estimates.

Lemma 3.3. Let A be a (ki, k2, §) CZ form, ¢ be a mother wavelet, and v € C3°(B(0, 1)). For each
0 < |y| <maxiky, ko), let ), , be a y-family. Define

_ y
P =3 (s, %,»(’C tw)

0=<|yl=k

and i’}, replacing W, s with ¢, 5. For s > t, define
Y (u,v,w,s,t)
= AWus: Bo.s- Pw0)— L. (0, 1. A (Pry. Py, o)

+A(Phy—1, Po.s— Piys buo.t) = A (Ws— Prys Pry—1, pu)]. (3-4)

Then, for any n <,
tkitka+n

Y(u,v,w,s,t)| < .
| s Uy X INT] maX{S, |I/l _ wl’ |v _w|}2d+k1+k2+ﬂ

Proof. Region 1: When (u, v, s) € F(w, t), max{|v—w]|, [u —w|} > 3s. Integrating by parts k; 4+ k, times,
rewrite A (Y, ¢, @) = Z|y|=k1+k2 (8;’0K, Y P IV(¢)). Use the Holder estimate of the kernel and the
fact that 377 (¢y,.1) = t1(377 @)y, to get

/ / s (@)gos () dxrday | htetd
x1€B(u,s) Jxp

eB(v.s) (1X1 — w[ =+ [v — w])2 Tkt | = max{|u — w], [v — w[}2+hitho

l‘k1+k2

It is also important here that 077 ¢ is still mean zero.
Region 2: In the region S(w, 1), appealing to the WBP gives the estimate of =2,

Region 3: In the final region, A(w, t), |u — w|, [v — w| < 3s and s > 3¢. Here we rewrite

AW ss buss du.t) = APays Py, )
= A(Wu,s - Pk] ) ¢v,s - sza ¢w,t) + A(Pkla ¢U,S - Pk27 ¢w,t) + A(wu,s - Pkl ) sz’ ¢w,t)- (3_5)

P and P satisfy the estimate

k
Wie.s () = Pe)], hw.s (x) — Pr(x)] < Sid<|x ; w|> min{l, w}

N

See [Di Plinio et al. 2022, Lemma 3.1], where this is derived using Taylor polynomials in conjunction
with Lemma 2.3.
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Let o be a cutoff function around B(w, t) and set 8, =y, s — P and E, = ¢y 5 — P. We decompose
the first term in (3-5), A(E,, Ey, Pw.r), as

T(Eua Ev) = T(OlEu» aEv) + T(OlEu, (1 _a)Ev) + T(l _05) Eua Ev)-

On the first term, use WBP around (w, t) to get

Jod - thkitko+2 thki+ka+6
Y = Plliee@wanld = Plleeswn ~ rmmmmms = g

for any § < 2. For the third (and second) terms, use the Holder kernel estimate as above after integrating
by parts k| + ko times to get

g, ) By )| T | (o) dxy
x.eB(ﬁgt)“ (11 — w] + |y — w)2d ks 12 . w|dtkitha+s’
X2€

(3-6)
LeB(w, )¢ 1X1 —

where we have used

|Ey(x2)] At [ 2d 4k +ha+8) _d+kr—1
dx, <s 97" (t—{—lxl—wl)_( Fhithotd) pdtko—1 g7
/[R" (Ix1 — w| + |xp — w|)2d+ki+ha+s 0

< S_d_kzcd|x1 _ w|—(d+k1+8).

Break up the remaining integral in (3-6) into ¢ < |x; — w| < s and s < |x; — w|. In the first case, we have
the estimate |E, (x;)| < 1'7%|x; — w1 t8g—d— 1= Thys,

|84 (x1) | dxy < 1 S‘L’_ld‘l,’< 1 Io i
t<|x1—w|<s |x1 _w|d+kl+5 = gdthits t T gk £ t)

On the other hand,

oo
/ Eu(-xl)|xl _ wl—(d+k1+5) dx1 < S—d—kl / T—(l+5) dr < S—(d-i—kl-‘r(?).
s<|x;—w]| s

The remaining terms in (3-5) are A(Yy,,s — Pk, . 13;{2, @) and A(Pr,, Py.s — 13;{2, ¢). Comparing (3-5)
with (3-4), we see that we only need to estimate two terms of the form

AE. P du)= D (s ) )AE, Pl dus), 3-7)
ly |=k2

where pz;,,(x) = ((x —w)/1)Y. We will need estimates for each summand in the future for all y, so we
will estimate the general form A(E, p”, ¢). As before, we take the decomposition

A(E, p, duws) = A B, ap, du) + A&, (1 —a)p, du) + A1 —)E, p, Pu1),

where « is a smooth cutoff around B(w, t).
For the first term, use WBP to get
i+l
Pl s 1V = Plli=sw.n S
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For the second term, follow the outline above, integrating by parts k; + |y | times and applying the Holder
kernel estimate to get

|E(x1) pY (x2)]

ki+ly | +1
A, p.$)] S / dx dx,
x1€B(w,t) J xp€B(w, )¢ (|X1 - w| + |x2 - w|)2d+k1+|y\+8
tk1+|y\+k1+l+6 |py (X2)| dx2 tk1+|)/|+k1+25 1 tkl-i-l
- < = .
[ /xzeB(w,t)C oy — w] ATk = T gdki+s ke | gdthi+]

For the second inequality, we used the estimate |E(y)| < thitl jgd+ki when |y — w| < t. The third term
in the decomposition is similar, but more closely follows the line of proof used on A(E, E, ¢) above.
Thus, the summands in (3-7) have the estimates

y y v +ki4n
K Wu,ss O ) A(Puwts Pos — Prys Pw, )| = P ETE (3-8)
since the coefficients satisfy (Y s, 9 )| < t71/59H1] (see Lemma 2.3 using the fact that 9}, , has
vanishing moments up to |y| and Holder exponent § = 1). Taking the case |y| = k», we see that the
remaining terms in Y, (3-7), satisfy the estimates claimed in the lemma. O

In the proof of the representation theorem, we will still have to deal with the error terms subtracted off
of T in the region A(w, t). A(P, P, ¢) is controlled by the paraproducts assumption, but the so-called
half-paraproducts A(Px,—1, ¢ — P, ¢), satisfy the worse estimates (3-8) with |y| <ky — 1.

3C2. Proof of Theorem A. First, we represent A at the (ky, kp)-th level under the assumption it has
vanishing paraproducts of all orders less than (k{, k2). We decompose A(f, g, h) by applying the results
of Section 2B to f, g, and /. By Calderén’s formula, we obtain

A(f, g, h) = in g (f, Gu,r) (g, ¢vs )(h, ¢w t)A(¢u s ¢vw¢w A dp(w, 1) du(v, s) du(u, r)

/uv v,w ([S>t>0 [r>r>0 /r>s>0>

Split the first integral as | pogsy T f ] and use Lemma 2.7 above to get

zr=t

Awmw=ﬁmﬂu(/Wu¢mmAMum%b%)@mnmmwwmnwmn

r,s>t>0 s>t>0
+/ ZdA(Qbu,r»/ d<ga¢U,s>¢v,de(U,S)»¢w,t><f,¢u,r><h,¢w,t)du(u’r)d'u(w’t)
(u,w)eR veR
r=t s>r
dsdrdudvdw
- [u v,w)eR¥ (S w"l‘> (8. Pv.s){h, ¢w’1>A(w5,sv Gv,5, Pw,r) T
’s,zt>0
3 4 dsdrdudvdw
+ . w)eR3d(f, Vi )8 Pus) (P ) A o Do, D) —
,s’zt>0
1 2 drdtdudvdw
+ (u v w)eRSd(f’ ¢u,r><g» l/fy,r><ha ¢w,t>A(¢u’r, l//v’r, ¢w,t) T
’r,zt>0
3 4 drdtdudvdw
+ (”,U,w)GRM <f’ ¢u,r><g, 1'//v,r><h’ ¢w,t>A(¢u,rv wv,rv ¢w,t) T -

r>t>0
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Recall that only ¥!' and 3 are noncancellative. Split each of the three terms in the same way, obtaining
a decomposition A(f, g, h) =1+ Il + 111, where [ is given above, while /I and /1] are defined by

1= B (80 Y0, G VA B, 02, ) LS I0 A
(u,v,w)e[R{M ? ’ RN ’ s 0 Vo, Pu,r ir
t>r>0
3y Al 4 dr dr du dv dw
+ (u,v,w)e[R3d (fv ¢u,}’><g7 ‘/ﬂ;,;)( ’ ¢w,t> (d’w,t» wv,t’ ¢u,r) T
t>r>0
[ ) dr ds du dvdw
+ o w)€R3d<f’ ¢u,t><g» ¢v,s>( 5 ww,t>A (lﬁw’t, ¢U,S7 ¢Ll,l) T
’t’Zs>O
dr ds du dv dw
+ /u v w)eRM(f’ d’u,t)(ga ¢v,s>(h, K[/S)y»Al*(Wi,p ¢U,Sa d)u,t) T,
’tés>0
ds dr du dv dw
= %u v w)eR3d<f’ wlir) (8, dv.s)(h, (bw,s)Az*(WZ),s’ bu.ss Pu.r) s
’s’zr>0
ds dr du dv dw
+ /u v w)eR3d(f’ w'iV)(g’ Guv.s)(h, ¢w,s>A2*(‘//3),s: Dv.ss Gu,r) s—r
’sér>0
+ o bur) (8 o) (b U YA (B 02, ) LSS Qe AV AW
(u,v,w)eR3‘1 ’ N k) N ) w,r w,r» w.rs v, s p
r>s>0

dr ds du dvdw

rs

+ [u ; w)ERM(f’ ¢u,r><ga ¢U,S><h, wis”)Az*((pu,r, w;t)’r’ ¢v,s)

r>s>0

Due to the apparent symmetry, it is enough to handle only the first summand in 7; let us call it 0. The
remaining 11 terms are handled almost exactly the same. Recalling YT from (3-4) and the different regions
of Z% from (3-3), we can write

ds du dv df dw

st

o1 = / / Y, vaw, 5. U YL ) (82 Bos) e )
(w,t)eZ" (u,v,8)eZ(w,t)

+</ / _/ / )A(Pknpkz’d)w,t)
zZd J (u,v,s)eZ(w,t) Z4 J (u,v,s)eZ(w,)\A(w,t)

| ds du dv dt dw
X (f’ lﬁu,s)(g, ¢v,s>(h, ¢w,t>T
+/ / [A(Pkl—lv‘ﬁv,s_ﬁk27¢w,t)+A(1//l_Pkl—laﬁky‘pw,t)]
Z4 J (u,v,s)eA(w,t)
| ds du dv dr dw
S (f’ Wu,s)(& ¢v,s>(h7 ¢w,t>T
=o01,0+01,1+0o12+013+014. (3-9)

Therefore, using Proposition 2.5 and the kernel estimates on Y (Lemma 3.3), we obtain v, € \Ilé“*kz"s‘l’o

such that
010 = /Zd<f ® g, v2) (. 6:) A () = U} (f. g, 1),
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Recalling the estimate (3-8), and again applying Proposition 2.5, we obtain vzj eC \Ifzj 910 guch that

ki+ky—1
olztola= Y / (f ®g,v{)(h, ¢} du(2).
j=mintki ko) 7 2
In this way we have constructed the remaining wavelet forms U jl for j = min{ky, kp}, ..., ki +ky — 1.

The vanishing paraproducts assumption allows us to compute

AP P ur)= Y (Y 08 Hus: 000 (B). (07 2 )).
lyil=ki
By considering the supports of ¢, ¥, and 97,

G(ua U’ wa S, t) = <¢U,S7 ﬁ%{[)(“/’u,sv ﬁ%%t)

vanishes whenever |u — w| > 3 max{s, t} or [v — w| > 3max{s, t}. Moreover, |G| < sM 2+ M for
any M up to which ¥ and ¢ have vanishing moments and remain smooth (see Lemma 2.3). Therefore,
for o7, the integration region Z(w, )\ A(w, t) can be replaced by /(w, ¢t) and by Lemma 2.6, there
exists 0, € WM-91.0 guch that

ola= Y / (S ® .00, )by, (07 ):) dpu2).
yel=ke * ©
Furthermore, since bg € BMO and 97"'7"2¢ has mean zero, each summand in o> is a wavelet form
with the wavelet

V; = (by, @7"72¢).)0..

We break up each o; as 0; =0, 0+0;1+0i2+0i3+014, i =1,2,...,12. Each 0,0, 0,2, 0,3, and 0, 4
is handled similarly, giving the wavelet forms U J‘ .

We now deal with the remaining terms, o; ;. We reassemble 0; 1 +04+1,1+0i42,1+0i43,1 fori =1,5,9
and use Lemma 2.8 (the expanded tensor Calderén reproducing formula) to obtain

4
Y o= ) /Zd<by,<8‘”‘”¢)z><f, 978, 0P (h, @) du) =2 Y Ty, (f. 8. h).

=1 lvil=ki |vel=ke

Doing so similarly for Z?:s 0¢,1 and 2219 0¢.1 and using the vanishing paraproducts assumption on A'*
and A% yields

6 ki+ko 2
Afgy=) > Ultfe+ Y Y T (fig.h. (3-10)
i=1 j=min{ky,k>} lvel=ke i=0

To remove the vanishing paraproducts assumption, we first recall the definition of (k;, k») paraproducts.

This means that
2
— j
MwmA-Y X omg
i=0 (|y1l,lv2]) <(k1,k2)

is a (ky, ka, 6) CZ form and has vanishing paraproducts of orders < (k1, k»). Thus the theorem is proved
by applying (3-10) to Ag, -
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4. Sobolev space bounds

The cancellation structure of the forms U and IT is important for the results below. To reflect this, we
introduce the intrinsic subtrilinear form

(g = [ W00, ) WS dua), @)
z
where \Iff ° f and lIl§ i (f, g) are the intrinsic wavelet coefficients defined by
VIR (fg) = sup [(f@g vl W)= sup {6
v, e 0,ew40,

ISy="0: 14 2d+1,8<1
It is important to distinguish among the three arguments, since the first one is noncancellative, the first two
have limited decay, and the third has rapid decay. In this first application, Section 4B, the collection of
wavelets used in W0 will actually be compactly supported, but we will need to consider rapidly decaying
ones in Section 4C.
For the paraproducts, we define the intrinsic paraproduct form for b € BMO

7y (f, g h) = /d WS B)ywHL(f, @)W (h) du (). (4-2)
z
Estimates for A are achieved using the representation theorem and then by appealing to estimates for IT

and mp. In particular, these forms have sparse (1, 1, 1) bounds, which we will now define.

Definition 4.1. A collection Q of cubes Q C R? is sparse if there is a disjoint collection of sets { E 0:0e€Q}
such that
EgCQ and |Eg|> 3|0l

Above, | -| is the Lebesgue measure. A subtrilinear form S has sparse (p1, p2, p3) bounds if for each
triple f; € LOO([Rd ) with compact support, j =1, 2, 3, there is a sparse collection Q = Q(f1, f2, f3) such
that

S(f,8:m) <C Y 10K pr ol p ol psos (Flpo =101 f1oll,. (4-3)
0eQ

The fact that m;, and IT have sparse bounds can be achieved through standard approaches; see for
example [Conde-Alonso et al. 2017; Lacey 2017; Lerner 2013; Barron 2017], since they are more or less
Calder6n—Zygmund forms. However, in Section 5, Proposition 5.1 below, a direct proof is given. Such
proof also applies to more general forms which do not necessarily satisfy kernel estimates.

4A. Weight classes. Sparse bounds are naturally related to weighted norm inequalities. Accordingly, the
definition of the multilinear Muckenhoupt A » weights, first appearing in [Lerner et al. 2009], is recalled
below. We choose to employ the normalization of [Li et al. 2020, pp. 101-102] and stick to trilinear
weight vectors, but the extension to higher linearities is a mere matter of changing the notation.

Throughout this discussion, unless otherwise specified, a weight vector v = (v, v2, v3) refers to a
triple of positive measurable functions on R* such that

3
lznvj(x), xeR?, (4-4)
j=1
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For € = (¢1, &2, €3) € (0, 00]?, and a weight vector v, define the characteristic

41
[U]z = sup 1'[<—> ,
€j,0

vj

where Q is allowed to vary among all cubes in R¢. Notice that if & j = 00, the corresponding local norm
simply indicates the essential supremum on Q. We work with the extended simplex S and with the set of
generalized Holder tuples P

3
. : . 11 1
s={ae[-117: a:l}, P:: — (p1. pa. e—oo,oo3:(—,—,—)es}.
{ [—3.1] jgl j p=(p1, P2, p3) €( ] o P2 Pl

Say that the tuple 7 = (r1, 2, r3) € [1, 00)? satisfies 7 < p for p € P if

oy
8jZ=L>0, j=1,2,3.

pj—Tj
Above, we mean that ¢; = r; if p; = 00, in natural agreement with taking limits in the definitions. If
F < p, writing £(p, 7) for & defined above, the weight vector ¥ belongs to the class Aj 7 if [V]4;; ==
[5]5([;,;) < oo. This definition, unlike that of [Li et al. 2020], is completely symmetric with respect to
matching permutations of v, p, 7. However, for our purpose of studying bilinear operators acting on
Lebesgue and Sobolev spaces whose integrability exponents p;, p, are > 1, it is convenient to break the
symmetry and work in the corresponding portion of P. To wit, define

p3 _ pip2
p3—1 pi+p

P.,={peP:1<min{p, pr} <oo}, p(p):=

Notice that % < p(p) < oo is automatic from the definition of P,. On the other hand, also observe that
(at most) one of py, p, may be = oo when p € P,. For comparison with [Li et al. 2020, pp. 101-102],
when ¥ € Aj 7, one may single out the dual weight

2
- 1
w:w(v):l |vj=—
=1 v3

corresponding to the weight w associated to the pair (vy, vp) therein. We will not make use of the
notation w(v) in our statements to minimize redundancy. The most important classes for the study of
bilinear Calderén—Zygmund operators correspond to the choice r| = rp = r3 = 1. In that case, we simply
write [5]A,; in place of [v]4;;.

A consequence of the sparse bounds of Proposition 5.1 below for 7, and IT is the following weighted
Lebesgue space result.

Proposition 4.2. Let p € P,, v € Aj, p= p(p), b € BMO. Then, denoting by T the bilinear operator
defined by either (T (f1, f2), h) = mp(f1, f2, h) or T1(f1, f2, h), there holds

H T(f1, f»)

2
~.max{p},p5,p}
” SEL T vl e g

j=1

LP(R9)
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Proof. Let ¢ = (3, 3, 3). Fix fi, f» and h. Proposition 5.1 yields the existence of a sparse collection Q
such that

(T i fos s IS D 1QH 00 thvy o S BT I fivalls | fovalls Al
0eQ

The sharp A; weighted norm inequality for the sparse forms, see [Culiuc et al. 2018, Lemma 6.1], has
been used for the last bound. The a priori estimate we obtained is in particular the case p = (3, 3, 3) of
the proposition. The general case is now obtained by invoking the extrapolation result [Li et al. 2020,
Theorem 2.1]. O

4B. Classical weighted Sobolev spaces. Recall that the weighted Sobolev norm W*?(v), for k € N,
0 < p < o0, and a weight v, is given by

k
L Wiy = D 0% Follzomay: I lwery = D 1 f Ihirincw)-

lee| =k j=0
Theorem B. Let kg, k1, ko € N with kg < min{ky, k;} and § > 0. Let A be a (ky, kz, 8) CZ form such that

D"~ b e BMO,  |y| < ko. (4-5)
Then,
A S Y T 07 g, h) +T1(g, 7 f, )

lic|=ko v |=ko

+ 2 > Yo s (3% f.0%g. h)

[vel<ke |Bl=max{0,ko—[y [} la|=ko—|B|

+ 2 > Y mang (@ f.8%g, h)

lvel<ke |Bl=max{0,ko—|y [} la|=ko—I|B|

+ Y Y (g, 3% )+ (fh 0%). (4-6)

[vel<ke |o]=ko

Proposition 4.2 then leads to the following bounds. For p € P,, v € Az, p = p(p),

= max{p}.py. p}
IT(f g)l|W"0"’(1/v3) S [v]Aﬁ v Z IS i (v1) “g”Wﬁpz(Uz)» (4-7)
0<i+j<ko
> max{p}.p. p}
1T Cfs @) lwhor(1/0;) S [U]Aﬁ PR S ko wn 18l wko-r2 () - (4-8)

If T has vanishing paraproducts, i.e., bg =0 for (|y1l, |y21) < (k1, k), then the corresponding terms
vanish from (4-6) so that (4-7) becomes

—.max{p},p5,p}
1T CF. @) Mitorctpon S B1ae P U F sy 1802l ety 101 Lo ey 12 yitrs -

Theorem B is sharp in a couple of ways, but the precise sense must be explained. First, the appearance
of the many norms on the right-hand side is necessary when considering the entire class of (ky, kp, 8)
CZO0s. In other words, for each pair (7, j) with 0 <i 4 j < ko, we can exhibit a (k, kp, ) CZO which
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only maps WP x W/ P2 into W07, In fact, such an operator is

(T(f, ), k) =T, (f, g, 1), |nil=i, Iyl =j, D*"ph e BMO.

Taken in a similar sense, both the exponent of the weight characteristic and the condition Dko_“"b?, € BMO
are sharp. Concerning the exponent, the following sharpness result holds.

Proposition 4.3. Fix p € P,, ko, k1, ko € N, with ko < min{ky, k»}. For any weight vector v, define

1T (S, @) yirkor (1 /0s)
”f”vi/f,m(vl) ||g||Wj,p2(U2) .

1T ko, 5,5 := sup
f.g Z
0<i+j<ko

Then, for each M, § > 0 and ¢ satisfying ¢ (t) = o(t™*P1-P2-P}) g5 t — o0,

T > -
Sup””_.ﬂ = >
v, T @([U]Aﬁ)

where the supremum is taken over all v € Apand all T which are (ky, ka2, 8) CZOs satisfying | T || 5 ko, < M,
with 17) = (le, le, le).

The analogous statement switching the input spaces also holds. When ko = 0, this result is contained
in [Li et al. 2014, pp. 763-764]. Below, in Section 4B2, we will give a slight modification of their proof,
adapted to our smooth operators.

As regards the paraproduct assumptions (4-5), notice that we are imposing additional requirements
on the derivatives of bg, but not b}, and b)z,. One may compare to the linear case, where one can
obtain T : W5? — WX if and only if b vanishes for |y| < ko. This phenomenon persists in the
multilinear setting in the following sense.

Proposition 4.4. Let T be a (j +1i, &) SI operator satisfying

NT lyisorn sy —yikr S 1
for some p € P, and p = p(p) € (d, 00). Then, for (Iyl, |y2]) < (j, i),
D'T (x{", x}*) € BMO  for [y1| = j. Iya| =1,
DT ()", x)) =0 for ly| < j+i.
As in the above discussion, such a result does not apply to our multilinear operators directly since they
do not, as a whole, preserve homogeneous Sobolev spaces. However, if some portion of the operator —

as seen from the proof, I'l B —does map accordingly, then we recover the conditions on bg. We present
the proof of Proposition 4.4 in Section 4B2.

4B1. Proof of Theorem B. We first deal with U j] for j > ko. Integrating by parts twice, we have, with
z=(w,1),
D f @), g = Y (f®g, vt Rk, 9 ¢:)

lic|=ko lic|=ko

= > D {f @ TR0 v ) (h, 1095 ).

|«c|=ko |y |=ko
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Noting that t|V|8y_y\I/Zj’8;1’O C \IJS"S;I’O for |y| < j (see Proposition 2.5), we obtain v, € \P?"S;l’o and
¢’ = 9¥¢ with mean zero such that

Y@L g)= Y Y (f®7g, )k, ¢)).

|«c|=ko lc1=ko |y |=ko
In this way,

Y IUfg IS Y T 97 g, h).

lie|=ko ¥ I=ko

The same argument is applied to each U jz, placing all the derivatives on f and bounding above by
Z‘ vl=k, 11(8, 8" f, h) since in this case g is in the noncancellative position. For the remaining wavelet
forms, U 1.3, U j6 — the “adjoint” ones — we have more freedom with the derivatives. In fact, for any
|k| = k* < ki + kp, we can unwind the wavelet form and integrate by parts there. Let us only do U3J .
Integrating by parts twice as before,

UP(f. & 9h)

1 p ds du dv df dw
= (w,t)eZd Tj(u?vvw?sv t)(f’ ¢w,l><g"(/fv,5><a h? ¢M,S>T
(u,v,8)eZ(w,t)
Y;i(u, v, w,s, )t B ds du dv dr dw
= , = (87 £, (077 $)u) (8. W) V(. (3 )uy) e e T
(w,1)eZ skl

St

[y I=k*" (u,v,5)eZ(w,t)
The new symbol Y (u, v, w, s, t)(t/ s)"’| satisfies much better estimates than needed in Proposition 2.5,
and in fact supplies v, € v/ L0 - \pg,a;o,l’ which by the same argument as before gives

YU (fig. " mIS Y T, 7 f,h).
lic| =k ly |=k*
The argument used on U}, U jz also applies to H;’}‘ y for i =1, 2 since they have the same cancellation
structure in the first two arguments. In this way, g

2
2.0 My (fg 8 WS Y my (g, 97 f) + 7y (f.h. 07 9).

i=1 |i|=k* ly |=k*

However, we can actually see that the number of derivatives, k*, can be taken all the way up to k; + k3
since we placed the extra ones in the fully cancellative position.

The final term to estimate is the paraproduct I1 By We are restricted here since the y,-family 9" only
has vanishing moments up to ;. So we can only place |y;| derivatives on f and |y»| on g, and k* — |y |
derivatives remain on /. These must go on the symbol b,,. We follow the above reasoning to obtain

drd
S, fean=Y Y % / (@, (417
lic|=k* lic|=k* Jae|=lyel |B|=k*—1y|
X (0% f, (07%197%)u,1) (0728, (020" )u,1) (h, (0°P)u,r)
< DD m @ £, ). O

leel=lyel 1Bl=k*—|y|
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From the proof we can see that all that is holding us back from taking kg all the way up to k; + k;
(represented by k* in the proof) are the wavelet forms U jl and U jz for j < ki + k. Thus, if these vanish
or have some hidden regularity, we obtain the better result.

Corollary B.1. Let A be a (ky, kz, 8) CZ form. Assume that k* < ki +k,, Dk*_“"bg € BMO for |y| < k¥,
and that Uj1 and Uz are zero for j < k*. Then, for any p € P,, p = p(p),and v € Aj,

max{p}.p5.p}
17T (f, g)”Wk*p(Rd 1/v3) ~ S [U]A- " | f i (U])”g”Wk*»pz(Uz)-

The assumption that U jl and U jz vanish is the same as checking that A has vanishing half paraproducts
of appropriate orders. However, this condition can be difficult to check, and it is not even clear that the
product operator satisfies this assumption. One could replace this with the assumption that U;, ! U; 2 are
smoothing in some appropriate sense, similar to the assumption that D*" |”'b € BMO, which makes the
paraproduct forms smoothing operators. This is essentially what we do in assuming A has more than
ko smoothness in Theorem B.

4B2. Proofs of sharpness. Let us now return to the proofs of Propositions 4.3 and 4.4, which demonstrate
the sharpness of the exponent on the weight characteristic and the paraproduct assumptions (4-5) in
Theorem B.

Proof of Proposition 4.3. From [Li et al. 2014], the bilinear operator given by
iy
(Iy112 4 [y2[?)@d+D/2°

R(f, g)(xo)=/K(Xo—Xl,xo—xz)f(xl)g(xz), Ky, y2) =

satisfies
I Rll0,5,5

ﬁeA;, w([ﬁ]Aﬁ) N
R is a (ky, ky, 1) CZO for any ky, k> € N and for any o,

0“R(f,g)=) R@ f,9°7g),

y<a
which implies that || R||x,, 5,5 ~ ||R||0,5’;, for any weight v. O
Proof of Proposition 4.4. Let |a| =k, |y1| = j, and |y»| =i. First we will show for each cube Q, setting

po(x1, x2) = (x1 —x0)” (sz—JCQ)y2 =: p, (x1)py (x2),
f [0°Tpo —coldx S 1, 4-9)
0

where cp = f 8)‘3‘0K(x1, x2,x0)(1 — o) po(x1, x2) dx1 dxz and x¢ is the center of the cube Q. Take the
decomposition pp = ¢popo + (1 — o) po, where

Polx, 1) = ¢<X1£(_Q);Q)¢<xzz<_Q§Q>

and ¢ € C;°(B(0,2)), with ¢ =1 on B(0, 1). We estimate

f 10“Tdopildx < Q17 1QI'""VPID ¢op Il )1 D dopp lILro) S 1.
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On the other hand, for xo € Q,

‘/QC g, K (x1, X2, x0) — 33 K (x1, X2, Xx0) (1 — ¢ (x1, X2)) (x1 — x0)"" (x2 — x0)"* dx1 dx2

lx1 —xgl/|x2 — xgl’
oc (Ixg — x1|+ |xg — xp|)2dHi+i+s

<) dx;dx, S 1.

Thus (4-9) is established. To complete the proposition, we must replace Tpop by T applied to the
untranslated polynomial. To do so, we will show that the mapping properties of 7' imply that T (x}", x5°)
is a polynomial of degree < k for (|ky|, |k2|) < (j, i). Indeed, ||x1'¢)(x1R 1)||W”, < RIkil=i+d/p1 apd
similarly for 7, i, and p;,. Thus, for any ¢ € &,

UT (1", %00, ¥)| = Jim (T (' o R, x5 (2R, ¥)|
S Jim TG e R™Y, x5 ¢ R™D) s
< Jim 161 ¢ et R~ [l 1652 eaR™ ) lyjir = 0,
which implies 7 (x}', x5?) is a polynomial of degree strictly less than k. In particular,
T (x}', xy?) =
For each cube Q and (|y1], |y2]) = (J, i),

T(xl ,xz )= Z CK,Vx T(xl ) xzz) +Tpo.

K<y

Therefore 3%T (x{", x}*) = 3% Tpy. O

4C. Weighted fractional Sobolev space estimates. Until now D?, the Fourier multiplier by |£|°, has only
been used when o is a positive integer. We now generalize to any o positive. Denote by W7 (v) the
weighted inhomogeneous fractional Sobolev space on R? with norm defined by

o)

I fllwor@y = LD f1vll Lo wey + Z ILDY f1vll L gdy-
j=0
Two new features enter here, which will require some modification of the intrinsic forms. First, D
applied to a mother wavelet will no longer be a mother wavelet; however, it (and many of its derivatives)
will still have rapid decay. Second, when D is applied to a noncancellative wavelet, its decay will only
be (- )?*° (see Lemma 4.6 below). This motivates the introduction of limited decay wavelets and intrinsic
forms, 77 and I1°, which we will define later. For now, know that they are defined the same as ), and
IT above, but the wavelet class corresponding to the first argument has worse decay, depending on o.
Furthermore, as we will show in Proposition 5.1 below, these forms have sparse (1, p», p3) bounds for
1 1 o+d

_+_<

P2 p3 d
This implies the following weighted Lebesgue space bounds.
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Proposition 4.5. Let T be the bilinear operator defined by either (T (f1, f2), h) = 7, (h, fi. f2) or
I1°(h, fi. f»), defined by (4-11) and (4-13) with b € BMO. Let p € P,, V€ Aj, p = p(p) > d /(o +d).
Forv = (ri,r2, D withl <r; <p;jand 1/ri+1/r; < (o +d)/d,

HT(fl»fz)

2
<1y max{p;/(pi—ri),p} | | il ]
3 N[ ]A~~ ”fj ]”L 7 (R4)

p.r
Jj=1

LP(RY)
This proposition is proved in the same manner as Proposition 4.2.
Theorem C. Let ki, ky € N and 0,5 > 0, with o < min{ky, k2}. If A is a (ky, k2, §) CZ form satisfying

D "p) e BMO, |y| <o,
then,

A(f, 8, DM ST (h, g, D° )+ T (h, f, D" @) + TI(f, D"g, h) + T1(g, D° f, h)
+ D iy (h g, D7)+ (b, f. D7)

lvel<ke

+ Z ”D”—lﬂbg} (Db/llf’ Dlmg, h)
lvel<ke

lyl<o 4 Z T (pminlosnl) ¢ po—mintoslvi} g py. (4-10)

lyel<ke
lyl>o

Applying the estimates on T1°, T1, it} , and ), from Propositions 4.2 and 4.5, we obtain the following
fractional weighted Sobolev space estimate. Let p € P,, p = p( 13) > (0 +d)/d, and ¥ = (r1, 1, 1)
satisfying 1 <ri < pj and 1/r1 +1/ry < (0 +d)/d. Then, forany v € A} ;,

T (fs @ llwor1yop) S [B1XP/PDPYY £l o 1€ e o)

p,r

As in the classical case, if bg = 0 then the corresponding terms vanish in (4-10) and we obtain the
following simplification for the homogeneous norms.

Corollary C.1. If in addition to the assumptions of Theorem C,

by =0, (Inl yah < (k1. ka),
then, for any v € Aj ;,

H DT (f. g)

U3

LP(Rd)
ST PTOPYAEDE Flor ooy g2l o ey + L Forll o ety IED° @102 s )
These new forms will only be needed to represent U}, 3 Uy, 6, and 1'[’* for i = 1,2 —the ones with

h in a noncancellative position. So first we give the proof representlng all the other terms using the
original intrinsic forms IT and .
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4C1. Proof of terms involving 11 and mp. For the remammg wavelet forms, U ! U 2 U 4 U > we use
the fact that D*° ¢, ; = sT° (D ¢), s and, since qb has a zero of order larger than 0 at the origin,
||Di"¢>||*,M,1 <1 for any M > 0. Let us focus on Ujl. For any 0 < min{ky, k»}, we unwind the wavelet
form

U (f.g,D°h) = / Y, v,w,s, t)st (D f, (D" P)u.s)
(u,v,s)eZ(w,t)

(w)ezs | 3 ds du dv d dw
X (g, Yy ) h, (D°P)ws) —————.

st

By Proposition 2.5, Y (u, v, w, s, 1)(s/t)° supplies v, € \IJZLJHTJ’S;()’l C \IJS"S‘O’I.

The paraproduct term H,,g ., follows this same outline since we will not have to apply D to a
noncancellative wavelet.

4C2. Intrinsic forms I1° and 7). Let us begin by constructing the intrinsic form to represent U ].3 (and
similarly U?). As before,

(D°h @ g, v:)(f, ¢z) = (h® g, 17 D{v:)(D f, (D™ $):).

Setting v =1? D v, and ¢’ = D7 ¢, we obtain

U foe. 07 = [ (h®g 21 D" £ 80 o)

which is dominated by the intrinsic form

Ha(h,g,f)=/z sup  (h®g, Y)W (D7 f)du(z) (4-11)

d o ook 8iL0

for some new wavelet class W? 4*.8:1,0 which we now define. The decay of v? can be computed, but it
will be asymmetric in the two variables, so let us introduce a new norm

y+n-o ¥ (x) =¥ (x+h)]

¥ llo.ps = sup (x)*7 (14 [x2D“ 7 |y (x) [+ sup (x)T* (1 + |xa] g (4-12)
xeR2d xeR2d |h|
if o <d +n. Otherwise || - [l5..5 = |l - [l,5,s from (2-3). Define the associated wavelet class by
W0 = (g € CF 1 1Sy, SyD ™ W llokss < 1),
o,k,8;i,j

Notice that if k > o0 > d, then ¥~ \I!? %1J The next lemma will establish that this norm and

wavelet class are the correct ones for the modified intrinsic forms.
Lemma 4.6. Let 0 < o < k. There exists C > 0 such that
le.2v—1
t711(Sy;Sy;)™ D velloktss < C
forallv, € \Df’“’o.

In this way, Uf( f.g.h) <T°(h, g, D°f), Uf( f.g.h) < TI°(h, f, D°g), and similarly for the
paraproducts, defining

7wy (fr g h) = /Z YR OWIEEL(f W (h) du (). (4-13)
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Proof of Lemma 4.6. If v, is Schwartz, then this is well known; see [Grafakos and Oh 2014]. Our starting
point is from the book [Grafakos 2008, Definition 2.4.5 and Theorem 2.4.6, pp. 127-130], which states
that, for all ¢ Schwartz and o > 0,

/ £1766) ds = ca0 / Jul 77 ¢ (u) du.
The right-hand side is well-defined once understood as

— @ (0)/a!)u®
/| 1<z><u> Z'a;j’[d(i ©/abus /| b (u) + Y bo, kg 0)

d+o
ul>1 |u| loe| <k

for any k > o. Written this way the integrals are all absolutely convergent with bounds depending on
d, o, k and linearly on the Holder constant for 9%¢ near 0 and [|¢@ (0) | so. By density, the definition can
be extended to functions in q;é‘(f{)l . Moreover, replacing ¢ by ¢ (- — x) for some x, we obtain that the first
and last terms decay as well as (1 + |x])~k+d+) The remaining (middle) term is estimated by splitting
the integral into the region |u| > |x|/2 and |u| < |x|/2. The first region is controlled by the decay of ¢,
let us say it is M > d, using the fact that the kernel is bounded away from zero since |u# 4+ x| > 1. Then,
for any n > 0,

/ ¢ ()| du < (1+ |x)?H1=M /(1 + )M~ (u)| du.
[u|>|x]/2]

The other range is limited by o using the fact that in this range |u + x| > |x| — |u| > |x|/2 so that
u
/ IO Z' du < |x|417.
ul<lxlj2 1+ x4t

To complete the proof we use the translation invariance and homogeneity of the kernel to obtain

(SyHTHDZ v, (x1, x2) = 177 DY (Sy}) v (x1, x2)

1

for any v, € \Ifé"‘s *I.1 and applying the previous estimate to (Syi Syg)_1 v,(-, x2) to get that the decay is
either
max {1, [x1], |2}~ (1 xpy T
or
max (1, xi], [} A+ o)™

with M =k + 2d + §, whichever is worse. |

5. Sparse bounds for intrinsic forms

Proposition 5.1. Let I, 7y, 117, ;) be defined by (4-1), (4-2), (4-11), and (4-13). Let b € BMO.

(1) The forms T1 and mp, have sparse (1, 1, 1) bounds.

(2) The forms I1° and 7y have sparse (1, p2, p3) bounds for any 1 < p>, p3 < 0o, with 1/p>+1/p3 <
(oc+d)/d.

Before beginning the proof, we collect some estimates in the following simple lemma.
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Lemma 5.2. Let n > 8 > 0, and Q C RY be a cube with center c(Q) side length £(Q). For all
z=(w,1) € Z9and |Sy; 0, lluns < 1. if w €30 then

L)t

1o 0ol S (flomec s = o 5-1)
If in addition f has mean zero, then
K(Q)d-i-(Stn—(S
106l S U)o o (5-2)
On the other hand, if w € Q, then
n
(flzoy, 01 S (@) inf M(f)(u). (5-3)

Proof. We begin with (5-1). If x € Q and w € 3Q, then |x —w| > %|w —c(Q)|. Since

(d+n)
wt(x)<t_d(1+| tw|> ,

this implies
t"

max{z, |w —c(Q)|}4+n

/Q 1 ()80, (0] dx < (£) 0] O

If f has mean zero, then

[(f 1o, buw.i)| =

(d+m) d+8,n—8
56<Q>5/Q|f<x>|r“<1+'(@ ') dr < (f)p L@

max{z, |w —c(Q)[}+n

/Q F O[O, (x) = b, (c(Q))] dx

For (5-3), decompose the integral into dyadic annuli A; = B(u, 2710 (Q)\B(u, 27¢(Q)) for any
u € Q. We can skip the ball B(u, £(Q)) since B(u, £(Q)) C 3Q. Therefore,

[{f, 6uw.r) |< / |f<x)9w,<x)|dx<Z|A| )1.4,1"27(Q))” <"+’7><( Mf@w). O

E(Q))
There are only two points at which we will need to distinguish among the four forms, so we will use

A to represent any one of them except at these two crucial points. The key property of .4 — the shared
property of I, mp, 17, and 7y —is the bound

LA, fos IS / SV )W () dp),  WPEN(f) = sup [(f.0)] (54)

4 0,ewds!
All four forms also satisfy the bound A( f1, f2, f3) ,S]_[?:l | fillg, where 1 <g; <ocoand ) qi_l =1, though
for different reasons. This is the first point at which we consider each form separately, since the bound
in (5-4) above is not L? bounded. For IT and I1°, they can be bounded by || M fi||za |SfallLe |Sf3llLe
where M and S are modified maximal and intrinsic square functions for which the linear L?-mapping
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properties are well known [Di Plinio et al. 2022]. For the paraproducts, it is a little more complicated, yet
still within the realm of the standard linear theory, so we do not prove it here.

Proof of Proposition 5.1. In the course of this proof, we will use the following notation. First, to unify,
the tuple 7 = (r1, 2, r3) is set as
4 {(1, L1,  Ae(n xf),
Fi=
(1, p2, p3), Ae{llm}.

There is no loss in generality with the assumption 1 < p,, p3 <2 since (o +d)/d > 1 and p sparse bounds
imply p’ sparse bounds for any p < p’. Let D be the standard dyadic system on R?. For a cube Q € D,
T (Q) is the Carleson box T(Q) = (0, £(Q)] x Q C (0, o) x RI.IfECDisa pairwise disjoint cover of
E C R4 take T(E) := T (Q): O € &}. Finally, if F C (0, 00) x R4, the truncated operators Ap are
defined for any F C Z¢ by integrating over only F in (5-4).

Our task is to prove (4-3) holds for all triples f; € L>®(RY) with compact support. Fix such a triple
and take Qo € D with the property that supp f; C 3Q for all j =1, 2, 3. The proof is iterative in nature,
and we begin the main step of the iteration by defining an exceptional subset. Let

3
E:=[Jix eR":M,, f;(0) > C(f))r,30,)-
j=1
For C large, by the maximal inequality, |E| < 274 Qy|. Let now & be the maximal elements of the

collection {Q € D:90Q C E}. Clearly € is a pairwise disjoint cover of E. Moreover, the stopping nature
of O € & yields the property

irQlerj f] S <fj>rj73Q0

uniformly over Q € £ and j =1, 2, 3. This property will be tacitly used throughout the proof. We use E
to induce the decomposition A = Ar gy + Ar(g), whose terms we estimate separately. Let us begin with
Ar (k). Break this up as

Ar@ (fi, fr 3) =) Y Arcg)(g1, 82, 83),

Qe€ g

where each g = (g1, g2, g3) runs over 2° possibilities where each g j is either f;130 (in) or f;13g) (out).
We leave alone the term consisting entirely of “in” functions. “Out” functions are good so let us assume g;
is out and the others are in. This is the second point at which we distinguish among the four forms for A.
For IT and 7, 7 = (1, 1, 1). We obtain, applying (5-3) to g; with n =d + 6,

dw dt UQ)  pd+s dr

(g, Ow.i)| —— N/ me (M)<| [, / 0w, Idw>|| [P

/T(Q)l_[ AR o LQ)¥ P uco ! f2 0o Fallrt 3
S 10| irQlfM(l(sg)ffl)(fz)z.Q(f3)3Q,

where we used the fact that fQ |Ow.¢ (x)|dw < ||0x (]l z1 S 1. Therefore, summing over Q € £,

Z |Q|1nfM(1(3Q)cf1) f2h30(f3)01.30 Nl_[ 1Qol(fj)r;.300-

Qe j=1
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One can verify the same result for two out functions, and when all three are out, use the improved decay
to obtain

l_[lnfMgJ — 310l H(fj)rj,BQo-

/ (2d+o) 3 dw dr ]
7(0) K(Q)Z(d—i—S) P

j=1

For I1? and 7], consider the case where there is only one out function and it is in the first position; this
is the worst case as the other cases actually result in the same situation above with the power d + §. The
second wavelet in [1° has decay greater than d + §; see (4-12) since k — o > 0. Thus, for any g > 1, set

d+6
_ x| B
xi(x) =1 d(1+ v NOwelle < lxellpe S e@/a=D,

-1
1 1 1 1
i=—+ oqi= —+1——) > 1

/ (Pz P3)pl AN (Zj pj

and apply Young’s inequality to obtain

For j =2, 3 set

l/r,
(/ (g} Ouw.0 )7 dw) < gl xellzrs < lgjlorilxellze < llgjllpeitdd/ai—b
o

Applying Holder’s inequality with exponents z, and z3 along with the above estimate gives

/|g2, Bl {82 . s < 440121059 T s
j=2

Now we use the fact that 1/py 4+ 1/p3 < (0 +d)/d. This implies 0 +d(1 —1/p> — 1/p3) > 0 so that

3 0Q) o
dw dr t dr
, fM 1 . t4(=1/p2=1/p3)
/T(Q | | 1(gi, Ow,i)l ; N/O 20y 1 inf M(130)-g1) () g2l Lr2 1183l Lrs "

<o) =1/pa=1/ps) (irQlf M(1Ggyg)llg2lle llgall e

= |Q|(iglf Mg1)(82) pr.0(83) ps.0-

Thus far we have shown
A(fil3g,, 21304, [3130,)
3

S Ar(filsg. folag. f3130) +1Qol [ [(fi)r; 300 + Areye (fil30,: f21300: f31300)
Ot j=1

We create the sparse collection by applying the same argument to each Q € £ as if it were Qg; see
[Conde-Alonso et al. 2017] for details. Iterating this, we will be done once we show

3
Ar gy (filagy: f2l30y: f31300) S 1Q0l [ [(fi)r300- (5-5)
j=1
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Perform a Calderén—-Zygmund decomposition of each
0
fj:gj+bj:gj+2bj
Qe&

with respect to the collection of cubes £ and at the level (f}),; 30,- The good functions g; are estimated
using the L3 x L3 x L? boundedness,

3
Aty (81, 82, 83) < A(g1. &2, 83) S 1Qol H(fj)rj,3Q0-
j=1
The remaining terms all have at least one bad term. Let us say it is in the first argument. The functions
in the other two arguments will be estimated using

(&) Ow.dls [(bj, Owi)l S (fidrj300, (W, 1) € T(E). (5-6)

For the good functions, (5-6) is an obvious consequence of ||g;llcc < (fj)r;.30,- The bad one requires
some work. Decompose the sum into two regions:

I={0ef:wegldQ}), HN={0ec&:9t>L(0), we3Q}.

Since (w, t) ¢ T(E), we claim £ = I U II. Indeed, for each Q € &, if w € 3Q, then w € Q’ for some
Q' € & with £(Q") > £(Q)/9. Therefore 9t > £(Q). Considering I first,

S 102 0001 = Y D000 = () 500 Y 101

Qell Qell Qell

But the cubes are disjoint and contained in the cube centered at w with side length 18¢. This means
ZQ e 191 S t¢. For I, the estimate immediately follows from Lemma 5.2 if we can establish

3 |0 min{¢(Q), 1} _

lw—c(Q)dts ~

(5-7

Qel

Let us now complete the proof, postponing (5-7) until the end. For the same reason that £ = I U II above,
T(E) C{w ¢30}U {9 = ()} =:T*(Q)°

for any Q € £. Let hj be either g; or b; so that by (5-6) [(h;, 0.)| < (fj)30, for z € T(E)°. Using the
first two statements from Lemma 5.2,

Ar gy (b1, ha, h3)

< b2, 0.)(hy, 6,)(h3, 0,)|d
”Qzeg/rw'(l )(ha, 6:) (h3, 6:)| dja 2)

< drson(fihrsoe Y Q|Q|( / / .
Qeg ©Q)/9

S {n300(F) 300 (fadmas D 101S IQoll_[ (f)300-

Qe

dw dr min{z, £(Q)}° dw dr
/*(Q)c max{z, [w —c(Q) |} ¢ )
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In the third inequality, we used the fact that, for any § > 0 and Q cube,

/ min{¢(Q),}*  dwdr
0y Max{t, lw —c(Q)[}4+5 1

</°° / €(Q)° dwdt+/°° / €(Q)°
~ Jey Jw—coy<r 1t 000)/9 J{lw—c(0)>1) 1w — c(Q)[4+

/‘“QW/ 3 dw dr
+

e lw—c(Q)4e 1
B /oo “o’ | /f@ Podr_ ¢ e

~Jeuo 1 o Q¥ 1™

This is the continuous version of (5-7) so it is established. O

6. General cases

The results and arguments can be almost immediately extended to m-linear operators and the associated
(m+1)-linear forms. At the same time, we would like to generalize to kernels which have varying degrees
of smoothness in each variable. This second generalization is motivated by the fact that the assumptions
in the first representation theorem were symmetric in A and both its adjoints. However, in the Sobolev
mapping theorem, we saw that the conditions were asymmetric, and in fact some of the estimates on the
adjoint terms were a bit too good. So, we give a representation theorem which is asymmetric and allows
us to prove the Sobolev result under weaker assumptions. We must slightly alter the definitions above.

6A. Singular integrals. Let ld = (1 ,1) € R?. Given [ = (Lo, L1, ..., L, € N1 a function
K e L1 (R(’"“)d \ R1(n41)q) is an (Z 8) SI (singular integral) kernel if there exist C, § > 0 such that,

for all 0 <|k| <¥;,
C

d+lie|
(X i —xj1)" «
C|h|?

d+k|+8
(Zj;éi | xi —xj|)m “

|V,Ir(l-K(x07x17 ~--7xm)| S

|V;LA;1K(XO’XI’ ... ,xm)| S

We say A is an (£, 8) (m + 1)-linear SI form if
m
/ K (xo. x1 . ...xm) [ [ £i ) dx = A(F)
(Rdym+1 =0
for all f (fo, fis s fn) € S™F1 with N —0 supp fi = & and an (Z 8) SI kernel K. Notice that an
(E 8) SI form is an (Z’ 8") form for any ¢’ <fand§ <.

6B. Calderon-Zygmund forms. 1t is useful at this point to define the adjoints of an (m+1)-linear form.
Foreachi =0,1,...,m,

ASCFY = Afis fis oo os ity foo fitt o os fin)-

In other words, A™* permutes fy and f; and it is clear that A% = A.
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6B1. Paraproducts. We say A has 0-th order paraproducts if for eachi =0, 1, ..., m, there exists bf) in
BMO such that

A* W, 1,1, 1) = (B, )

for all i € Sp. For ; = (jo, ji»---» jm) € (N™)"+1 we define the f—th order paraproducts inductively.
We again use the paraproduct forms, now defined for any y = (y1, ..., ¥m) € (N)" and b € BMO by

My ()= [ 60 [Tt 023 o 02 o)
i=1

Suppose foreachi =0, 1, ..., m, A has paraproducts b;, forall (|y1l, ..., |¥ml) < ji. Then, we say A has
Jj-th order paraproducts if for each (|y1], ..., |vm|) = Jji, there exist b;'/ € BMO such that, for all ¥ € §};),

m
Aj=A=d, ) T,

i=0 (lic1]seo leml) < ji
satisfies
i Vi 02 ] -
A’;.*(W,xl X)L ’x’);lm) — (b;,, g~ n+ +}’m)w>'

Under this definition, one can verify by induction that A H has vanishing paraproducts of all orders < ]
Definition 6.1. Let £ € N™*! and k = (ko, k1, . . ., k) € (N™)" 1, with
kil <€, i=0,1,...,m.

An (t7 ,0) SI form A is called a (ié, 8) CZ (Calderén—Zygmund) form if it has paraproducts up to order k
and satisfies the weak boundedness property: there exists C > 0 such that

MAWL Y < C
for all 1//§ € \113’5‘1 supported in the ball B(w, t).

6B2. Wavelet forms. The trilinear wavelet forms and wavelet classes must also be extended to the m-linear
setting. Extending the norm || - ||, , s to functions defined on (RY)™, the wavelet classes ‘llf”s” are the
collection of all ¢ € C¥(R™?) such that

NSyl Sy T Y pllairs s ST fory e NI |y | <k,

and ¢ € {0, 1} controls the cancellation in the obvious way. The main case we will need is ¢t =
(1,1,...,1,0), in which case ¢ satisfy

/Rd x)mo(xy, ..., xm)dx, =0 for|y|<k.

A (j, 8) wavelet form U; is now defined, for some v, € \IJZ]"&(]’”"]’O), by

Uj(f) = /Zd<® Jis Vz>(f0: ¢z) du(2).
i=1
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Theorem D. Let0<n<$ and k = (ko, kiy ... k) € (N Let kf be the smallest entry of k; and let

A bea (k 8) CZ form. Then there exists (j, 77) smooth wavelet forms U and paraproduct forms T1,,
such that

m |ki|
A(f)=Z|:ZZU”T(ﬂ(fo,---afi—l,ﬁ'+17---»fm)»fi)+ >, my (f)]

i=0"j=kfmes" UyilseeslymD=ki

forall f=(fo, fis..., fu) €S™HL

If m = 2, the proof is the same as before, only the steps with I/ and /1] are carried out as if (k;, k») is
replaced by k; and k, € N?. For larger m, we outline the necessary modifications. Again, decompose
A(f) using the Calderén formula (2-2) m + 1 times to get

AGH = /( o A [T 92 dte.
i=0

Split (Z4Hm+! into m + 1 regions Z; = {z; = (w;, #;) : t; = ming #y} and each Z; again into Y; ; =
{tj =ming4; t,}. On each Y; ; use Lemma 2.7 m — 1 times to bring the integration down to the two scales
tj > t;. In this way,

MH=L Y / y / /(W)MHA"*(%,I,-,v7><ﬁ,¢wi,t,-><f,~,¢>wj,f,.> [T b, —dwf]‘_zdfﬁ

i=0 j#i H’ 7r £=0,0+#£i, j

Each 1// is a vector of m functions where one entry is the mother waveleit ¢w;.1; and the others are either
Wiy, OF Yy, ,, — the cancellative functions from Lemma 2.7 —and  is either y* or y*. This gives
(m 4 1) x m x 2™~ terms which correspond to the 12 terms I + II + III from the proof of Theorem A.
Each summand is handled in the same way as o7 in (3-9) above. The kernel estimates and wavelet
averaging lemma (Lemmas 2.4 and 3.3) can be easily reproduced in the same way as in the bilinear case.

Our extension to the nonsymmetric case generalizes results of [Frazier et al. 1988; Bényi 2003] to
forms whose paraproducts of lower orders do not vanish. In particular, we obtain Sobolev bounds when
the kernel only has extra smoothness in one of the m + 1 variables.

Corollary D.1. Let kg € N™, k = (ko, 0, ..., 0), and A be a (k, 8) CZ form with
D~1B) e BMO  for |y| <k,

where k is the minimum entry of ko. Then, for p € P,, p = p(p), and v € Aj,

amax{p, p}
1T ) Loy < 1, Z]‘[nﬁnwm(v),

|jl<kg i=1

- max{pl p}
1T i,y S T 1'[||f,||wopl(v)

If in addition bg = 0for (|y1l, 112!, - -+ |Ym|) < ko, then

m
max{p,
1T )i, S T 7Y ks, T L0 -
j=1 i#j
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7. Comments and further questions

We first discuss the laborious definition of the paraproducts introduced here (Section 3B2) and in [Di Plinio
et al. 2022]. The reader might object to this definition because, by looking at any SI form, one cannot
immediately tell whether it has paraproducts of, let us say, order (1,0), even after constructing by and
subtracting IT,.

It may be proposed that one may more immediately test A(x, 1, ¢) than Ajo(x, 1, ¢). However,
we do not know whether A(x, 1, ¥) has anything to do with the boundedness properties of A. A first
example is the form I, o. As shown above, it is enough for b, Db € BMO for I ¢ : Whax wht - wi2,
However, using the ideas of Calderén—Toeplitz operators [Rochberg 1990; Nowak 1993], it can be shown
that Iy o(x, 1, ¥) ~ (xb, ¥) 4 - - and we see no reason why D(xb) € BMO should imply b, Db € BMO
or vice versa. If some real connection could be realized between IT; o(x, 1, ¢) and b, |Vb|, then we could
simplify the definition of paraproducts. We also refer to [Wang 1997] where this iterative definition is
avoided; however, one must pay a price in the testing condition, so that 7'(x?) is replaced by T ((x — w)¥)
for infinitely many w.

Secondly, we would like to remark that our results may be extended to the full spectrum of smoothness
spaces, say Triebel-Lizorkin and Besov scales, by simply adjusting the procedures of Section 4C to
handle the corresponding smoothness norm. In fact, our framework is particularly apt to handle spaces
characterized by wavelet coefficient estimates such as those of Besov or Triebel-Lizorkin type. One
can obtain some negative Sobolev space results of the type T : W=kri(v)) x WhP2(vy) - WRP(v) by
applying our theorems to T*!. Using T*> would exchange the two input spaces. However, we do not
know how to obtain 7" : [ ]I, W—kPi » W=KP with our methods, except when m = 1.

Finally, the constraint 1/r;+1/r, < (0 +d)/d in the sparse domination result of Proposition 5.1, which
was the main ingredient leading to the fractional Sobolev space bound of Theorem C, is sharp up to the
equality possibly holding. Indeed, taking f (x) =e'%*¢(x) for ¢ € CS°(B(0, 1)), D7 (f )~ (1+]x])?*+°
for large x. For g = 1p5(0.2¢+1) — 15(0,2%)>

(DO‘ (ff_‘)’ g> ~ 2kd2—k(d+0’).

However, if one had a sparse bound of the form (D¢ (ff_), g < ZQ |OI{D? f)r1,0(f)r2,0(8)rs, 0, then
(D° (f f), g) would be controlled by

2kd(DUf)rl,B(o,2k+5)<f>r2,3(0,2k+5)(g>r3,B(o,2k+1) < 2kdpkd/ng=kd/n

sothatd(1/r1+1/r) <d +o,ie, 1/r1+1/r < (d+0)/d.
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