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Deeply virtual Compton scattering (DVCS) allows one to probe generalized parton distributions
describing the 3D structure of the nucleon. We report the first measurement of the DVCS beam-spin
asymmetry using the CLAS12 spectrometer with a 10.2 and 10.6 GeV electron beam scattering from
unpolarized protons. The results greatly extend the Q2 and Bjorken-x phase space beyond the existing data
in the valence region and provide 1600 new data points measured with unprecedented statistical
uncertainty, setting new, tight constraints for future phenomenological studies.
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Introduction.—Generalized parton distributions (GPDs)
serve as a powerful tool for describing the three-dimensional
dynamics of nucleon structure, including the composition of
spin and pressure distributions [1–5]. These functions can be
accessed via exclusive processes in deep inelastic scattering,
where the squared four-momentum transfer from the lepton
to a parton in the nucleon is quantified by Q2 and the
resulting change in the nucleon’s momentum is contained in
the Mandelstam variable t.
Deeply virtual Compton scattering (DVCS) is charac-

terized by the struck parton (with longitudinal momentum
fraction x) emitting a high-energy photon and the nucleon
remaining intact (Fig. 1). The amplitudes of the process are
parametrized by Compton form factors (CFFs), complex
functions that are x integrals of the corresponding GPDs.

DVCS is sensitive, at high Q2, low t, and leading order in
perturbative quantum chromodynamics, to the CFFs cor-
responding to four GPDs: H, E, H̃, and Ẽ [1–4]. In the
experimentally indistinguishable process, Bethe-Heitler
(BH) process, the photon is instead radiated by the
incoming or scattered lepton. As BH and DVCS share
the same final state, the observed photon electroproduction

FIG. 1. DVCS: an electron of momentum k scatters from a
parton in a nucleon of momentum N. As a result, there is a change
of 2ξ in the parton’s longitudinal momentum fraction.
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results from the interference of both processes and the cross
section can be written as

σe
�pγ ¼ σBH þ σDVCS ∓ ðIRe þ λeI ImÞ; ð1Þ

where λe is the beam polarization, σBH and σDVCS are the
cross sections of BH and DVCS, respectively, and IRe and
I Im are the real and imaginary parts of the interference term
between the amplitudes for both processes.
The beam-spin asymmetry in photon electroproduction

is an experimentally attractive observable, since, to first
approximation, detector acceptance effects cancel. Produced
mostly by the interference of BH and DVCS, for a proton
target in the valence region, it can reach up to ∼20% (as
observed in the previously collected data) and is dominated
by ImH, the imaginary part of the CFF corresponding to the
GPD H [6,7].
Exclusive photon electroproduction on the nucleon has

been successfully studied at a number of facilities around
the world, such as DESY with H1 [8–11], ZEUS [12,13],
HERMES [14], COMPASS [15,16], and Jefferson Lab
Halls A [17–22] and B [23–29]. In this Letter, we report the
first DVCS measurements performed with a beam energy
of just over 10 GeVand the CLAS12 spectrometer in Hall B
at Jefferson Lab. Approximately 89% of the new data cover
a phase space in the valence quark region that has never
been probed with DVCS before. The data were collected
in the fall of 2018 with a beam energy of 10.6 GeV and
in the spring of 2019 at 10.2 GeV. For both run periods,
which used an unpolarized liquid-H2 target, the longi-
tudinal beam polarization was ∼86%. This, along with very
large statistics, enabled measurements of the beam-spin
asymmetry in DVCS off the proton to be made in 64 bins of
xB, Q2, and t.
The CLAS12 spectrometer.—The CLAS12 spectrometer

[30] can be decomposed into a central and a forward part.
The central part, around the target, is placed in a 5 T
solenoidal magnetic field, detecting particles emitted at
polar angles between 35° and 125° with respect to the beam
direction. Silicon and Micromegas trackers are used to
reconstruct charged tracks, while a time-of-flight scintilla-
tor detector enables particle identification. At the heart of
the forward part are drift chambers placed in a toroidal
magnetic field for charged track reconstruction. Electron
identification is provided by a high-threshold Čerenkov
detector complemented with an electromagnetic sampling
calorimeter. Hadrons are identified using a scintillator time-
of-flight detector placed between the drift chambers and the
calorimeter.
Scattered electrons are detected in the forward part of

CLAS12. About 80% of the recoil protons are detected in
the central part, while the remaining 20% go forward.
Finally, the photon is detected either in the electromagnetic
calorimeter or in a specialized forward tagger, designed to
cover polar angles of 2°–5° from the beam direction.

Beam-spin asymmetry in ep → e0p0γ.—Events with a
single high-energy electron, a single proton, and at least
one photon above 2 GeV were considered as BH-DVCS
candidates. The highest-energy photon is selected if more
than one meets the criteria in the event. Exclusivity was
ensured by application of cuts on the following variables:
θγγ: The cone angle between the detected photon and the

expected photon direction in ep → e0p0γ, derived kinemat-
ically using the scattered electron, the detected proton, and
momentum conservation. It is cut at 0.6° and shown in
Fig. 2 (right).
Emiss: The “missing” energy balance between the initial

state, ep, and the e0p0γ final state. It is cut at 0.5 GeV.
pTmiss: The missing transverse (with respect to the beam)

momentum balance between the ep and the e0p0γ states is
cut at 0.125 MeV.
M2

e0γX: The squared missing mass of X in the process
ep → e0γX, which should correspond to a proton for
exclusive reconstruction of DVCS or BH and is conse-
quently cut at 1.25 GeV2. The distribution is displayed in
Fig. 2 (left).
The main background to the DVCS-BH process, which

is reduced but not entirely eliminated by the exclusivity
cuts, comes from π0 electroproduction. In this process,
instead of a photon, the target proton emits a neutral pion
with energy similar to that of a DVCS photon, since the
pion mass is low. The exclusive π0 production is also
sensitive to GPDs and carries its own beam-spin asymme-
try, although it is typically on the few-percent level [31] and
much lower than that of DVCS-BH.
In its center-of-mass frame, the pion decays into two

back-to-back photons, but in the laboratory frame, their
direction and energy depend on the relative orientation of
their momenta with respect to the boost direction defined
by the pion momentum. When the decay is collinear to
the pion momentum, one photon carries almost all of the
pion energy and may mimic a DVCS photon, passing the
exclusivity cuts. To subtract this contamination, we applied
the technique developed in [18]. Applying identical selec-
tion criteria for the electron and the proton as in the DVCS
analysis, a π0 sample was created from the data by cutting
on the two-photon invariant mass and loosely cutting on
M2

e0γγX, the squared missing mass associated with X in

ep → e0γγX. This selects a sample of ep → e0p0π0 events.
Next, for each π0 in this sample, the associated DVCS
contamination was derived by generating 1500 decays of
π0 → γγ and normalizing those of the decays that lead
to DVCS contamination by the number of decays leading
to a detected π0. The number of decays was optimized
between desired statistics and processing time. In the
simulation, pair conversion for the photons and calorimeter
reconstruction efficiency were both taken into account.
Figure 2 shows the integrated distributions of two exclu-
sivity variables, the squared missing mass and the
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cone angle, for the determined π0 contamination, the
negligible contribution of η production (estimated with
the same method), and the DVCS-BH sample after meson-
background subtraction.
The π0 contamination was determined for each helicity

state, thus entangling the π0 beam-spin asymmetry in the
subtraction from the distributions passing the DVCS
selection, which was done on a bin-by-bin basis. In
addition to the statistical uncertainty induced by the
subtraction of the π0 events, the systematic uncertainty
related to it is given for each bin by

ΔA ¼ σf × ðAraw − AπÞ
ð1 − fÞ2 ; ð2Þ

where f is the fraction of contamination, σf is the
associated uncertainty, and Araw and Aπ are the asymmetries
prior to π0 contamination subtraction and of the subtracted
π0 contamination, respectively. Using Monte Carlo simu-
lations with two different π0 event generators (DVCSGEN
[32,33] and AAO_RAD [34]), we estimated σf ¼ 0.1 × f.
As the π0 statistics may not be high enough to derive its
beam-spin asymmetry with accuracy, Aπ was set to 0 for a
conservative estimate of the systematics. Since the fraction
of contamination depends on exclusivity cuts as well as on
the ratio between the DVCS and π0 cross sections, and thus
varies from bin to bin, the systematic uncertainty was added
quadratically to the statistical uncertainty of the DVCS
beam-spin asymmetry.
The detection of the scattered lepton in ep → e0p0γ

allows one to describe the reaction kinematics in terms of
the variables Q2 ¼ −q2 ¼ −ðk − k0Þ2 and xB ¼ Q2=ð2qNÞ
(see Fig. 1). The variables t and ϕ (the angle between the
leptonic and hadronic planes in the process) were computed
using the scattered lepton kinematics and the direction of
the photon, the latter being a well-reconstructed quantity.
As shown in Fig. 3, there are 16 bins covering the Q2=xB
phase space. Each Q2=xB bin was further subdivided into
4 bins in tminðQ2; xBÞ − t, with tminðQ2; xBÞ the minimal

squared momentum transfer. An adaptive binning was
implemented for the variable ϕ, as the cross section exhibits
a steep dependence on this variable. The widths of the ϕ
bins were allowed to vary, chosen to optimize the statistics
in each bin, while, on the one hand, remaining above
the ϕ resolution and, on the other hand, keeping the bins
sufficiently narrow to minimize acceptance effects. For
each Q2=xB=t=ϕ bin, the averaged kinematic values were
computed, corrected for the π0 contamination bias.
Detector acceptance and fiducial cuts applied for particle
selection result in a non-negligible variation of xB and t,
which can be observed as a function of ϕ. Thus, the average
kinematics are not necessarily the same for neighboring
ϕ bins.
Radiative effects, where either a soft photon was radiated

by the incoming or outgoing electron, or there was a
QED loop involving the virtual photon vertex, were
considered and corrected for. These effects may result in
bin migration—where the reconstructed kinematics of an
event differ from the true kinematics at the vertex. The bin
migration was corrected by deriving a migration matrix
from a Monte Carlo simulation using a DVCS event
generator that included soft photon radiation, based on
the calculations by Akushevich and Ilyichev [33].
Results.—In total, the beam-spin asymmetry was

obtained for 64 bins in Q2, xB, and t, each of which
contained between 10 and 33 bins in ϕ, separately for the
two datasets obtained with a beam energy of 10.2 and
10.6 GeV. These datasets provide a tremendous addition to
the world data. In order to put the results of the CLAS12
datasets into perspective, we will refer to two studies
performing global fits, prior to the inclusion of the current
data, using very different approaches. The first study has
been performed by Kumericki et al. and is based on a
GPD-hybrid model [35], with sea partons described by a
Mellin-Barnes partial-wave expansion, while dispersion
relation techniques are applied to the valence region.
The few parameters of the model are then fitted against
most of the DVCS data available, yielding the KM15
model. The second approach, developed by the PARTONS
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Collaboration, is based on artificial neural networks (ANNs)
[36,37], trained on the world dataset of DVCS measure-
ments. In both the KM15 and ANN methods, the fit in the
valence region occurs at the level of Compton form factors.
As is the case for any neural-network-based approach,
the ANN method leads to a minimally biased description
of the DVCS measurements. To propagate uncertainties, the
PARTONS Collaboration smeared the datasets 100 times
according to the quoted systematic uncertainties by the
experimental collaborations, thus yielding a library of 100
ANNs whose mean is the fitted CFF value and whose
standard deviation provides the CFF uncertainty.
For bins in phase space that are sufficiently close to or

partly overlapping with the ANN training measurements, it
is possible to use a Bayesian reweighting technique to test
each ANN against the DVCS asymmetries presented in this
Letter. Regularly applied in the parton distribution function
field [38], the technique consists of computing a weight
associated with each ANN, which reflects how closely it
agrees with the new data. The weightωk associated with the
k replica is given by [39]

ωk ¼
1

Z
χn−1k e−ðχ

2
k=2Þ; ð3Þ

where Z ¼ P
k χ

n−1
k e−ðχ

2
k=2Þ, n is the number of points

used to compute χ2k ¼
P

nðy − ynÞV−1ðy − ynÞT , y are the
asymmetry values from CLAS12 with V as the associated
covariance matrix, and yn are the predictions of the k
replica. By computing the weighted average and standard
deviation of the 100 ANNs, the impact of the CLAS12 data
can thus be visualized. As outputs of a minimally biased
approach, the ANN fits provide a firm constraint on CFFs
only within the training phase space. Therefore, to perform
the reweighting, two Q2=xB=t bins that had similar kin-
ematics to previously published CLAS data were chosen. In
Fig. 4, it can be seen that both KM15 and ANN predictions
agree very well, but seem to slightly underestimate the
asymmetry at xB ¼ 0.15. Although in similar kinematics to
previous CLAS data, this new dataset obtained using a
significantly different beam energy provides measurements
of beam-spin asymmetry, presented in this Letter, as well as
of an unpolarized cross section which will be extracted in a
near future. These two observables may thus bring new
constraints to separate the imaginary and real parts of CFFs
through a Rosenbluth separation.
The quantity Neff allows one to estimate an effective

number of ANNs contributing significantly to the
reweighted average and standard deviation,

Neff ¼ exp

�

−
XNrep

k¼1

ωk lnωk

�

: ð4Þ

Neff is found to be ∼30 in Fig. 4, meaning that the precision
of the new data provided by CLAS12 rejects 70% of the

ANNs that are in agreement with the Jefferson Lab 6 GeV
data within the statistical accuracy. Its constraining and
highly discriminative power illuminates the necessity for a
full global fit of all world data sensitive to CFFs, with the
inclusion of this vast, newly collected dataset.
Figure 5 displays three additional bins in regions of

phase space that could only be reached with a 10 GeV
beam. Established GPD models, such as Goloskokov-
Kroll (GK) [41,42] and Vanderhaeghen-Guichon-Guidal
(VGG) [43,44], describe the new data in the unexplored
phase space reasonably well, while KM15 seems to
underestimate the amplitude of the asymmetry for some
of the new bins.
Conclusion.—In conclusion, we report the first measure-

ments of the beam-spin asymmetry in deeply virtual
Compton scattering with a lepton beam energy of just
over 10 GeV. This has extended the explored Q2 and xB
phase space greatly beyond the valence-region measure-
ments done at Jefferson Lab with a 6 GeV beam. Together
with future measurements of unpolarized cross sections
from the same dataset, the new beam-spin asymmetry
(BSA) measurements will allow results from both 6 and
10 GeV beam energies to be studied in a Rosenbluth-like
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FIG. 4. Beam-spin asymmetries in two kinematic bins, com-
pared with PARTONS ANNs before and after reweighting, as
well as with KM15. The kinematics listed are approximate; point-
by-point kinematics are available in the tables of the Supple-
mental Material [40].
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separation to access the purely DVCS terms in the scatter-
ing amplitude.
Although representing only 25% of the beam time

allocated to the CLAS12 experiment for DVCS on an
unpolarized proton, these new results are already sta-
tistically competitive with the entire 6 GeV program, as
demonstrated by the reweighting technique. In the terra
incognita, which forms the great majority of the phase
space covered by the new measurement and accounts for
almost 89% of the points, while GPD models seem to be in
fair agreement with the newly collected data, some tension
can be seen with the KM15 global fit. This illuminates the
need for the inclusion of the new data, which have greatly
enriched the world set, extending the probed phase space in
the valence region with high-precision measurements, and
promise to provide both very significant constraints for
global fits across new kinematic ranges and a crucial means
of validating and refining GPD models. All data points can
be found in the Supplemental Material [40].
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