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Abstract
We study a classic Darcy’s law model for tumor cell motion with inhomogeneous
and isotropic conductivity. The tumor cells are assumed to be a constant density fluid
flowing through porous extracellular matrix (ECM). The ECM is assumed to be rigid
and motionless with constant porosity. One and two dimensional simulations show
that the tumor mass grows from high to low conductivity regions when the tumor
morphology is steady. In the one-dimensional case, we proved that when the tumor
size is steady, the tumor grows towards lower conductivity regions. We conclude that
this phenomenon is produced by the coupling of a special inward flow pattern in the
steady tumor and Darcy’s law which gives faster flow speed in higher conductivity
regions.
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1 Introduction

In 1856, Henry Darcy introduced what is now known as Darcy’s law to model ground-
water flowing in porousmedia,which has become a foundation for hydrogeology (Bear
1972). The first explicit claim1 of the application of Darcy’s law for tumor cell motion
in porous extracellular matrix (ECM) is by Byrne and Chaplain (Byrne and Chaplain
1996) in 1996, who explained “given its heterogeneous structure, it seems reasonable
that the internal microstructure of the tumour can be described as a porous medium
and that Darcy’s law can be used to model the motion of the tumour cells through the
tumour matrix”. Since then Darcy’s law has flourished in tumor modeling including
(Byrne and Chaplain 1997; Cristini et al. 2003; Zheng et al. 2005; Cristini et al. 2005;
Frieboes et al. 2006;Wise et al. 2008; Giverso and Ciarletta 2016; Zheng and Sweidan
2018) and analysis such as (Friedman and Reitich 2001; Bazaliy and Friedman 2003;
Friedman and Hu 2006; Friedman 2008), to name a few in each type of literature.
For a comprehensive review of continuum models of tumor growth, please refer to
(Lowengrub et al. 2010; Sciumè et al. 2013).

1.1 Darcy’s lawmodel of tumor growth with inhomogeneous conductivity

Here we present a new form of a classic tumor growth model using Darcy’s law that
includes spatial variations inECMconductivity,where the details ofmodel formulation
can be found in the Appendix. Denote the tumor domain as� ∈ R

dim , where dim =1,
2, or 3, which evolves with time t , thus can be denoted as�(t). Denote the porosity as
φ, that is, at any point x ∈ �(t), the void space volume fraction is φ. Besides Darcy’s
law, the following assumptions are implemented.

(A1) The ECM has a constant density ρ and it is inhomogeneous, isotropic, rigid,
and motionless. However, we keep in mind that ECM biomechanical properties
are constantly remodeled by ECM-cell interactions (Malandrino et al. 2018;
Giussani et al. 2019), such as matrix stiffening, fiber rearrangement, and ECM
component degradation and production.

(A2) The porosity φ is constant in space and time.
(A3) The tumor cells are regarded as a single phase fluid of the same constant density

as the ECM and are flowing in the void space.

Then Darcy’s law can be written as

u = −K (x)∇ p, x ∈ �(t), (1)

where u is the tumor cell velocity and p is a scaled pressure expressed as p =
ps/(ρgφ), where ps is hydrostatic pressure and g is gravity acceleration. In this form,
the dimension of p is length. The quantity K (x) is hydraulic conductivity of dimension
length/time and

1 Although Darcy’s law in the form u = −∇ p was used in Greenspan’s work (Greenspan 1976) in 1976,
neither the concept of porous media nor the phrase “Darcy’s law” appeared in it.
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K = ρgk

μ
, (2)

where k is ECM intrinsic permeability and μ is the tumor cell dynamic viscosity.

Remark 1 Rewriting (1) as K = |u|/|∇ p| clarifies that K represents the fluid
speed under an external pressure. In the context of cell motion, K measures the
cell speed under pressure. So it is also called cell motility. However, motility in
cell biology refers to the spontaneous, self-generated movement of a cell from one
location to another by consumption of energy (Risler 2013) (also see the website
https://www.nature.com/subjects/cellular-motility). In contrast, the motion in Darcy’s
law model of tumor cells is created by the pressure due to the birth and death of col-
lective cells. Therefore, we will only use the concept “conductivity” for the parameter
K in this work.

Remark 2 Darcy’s law (1) remains valid when K is a variable in space, as stated in
Bear’s book (Bear 1972) (section 5.2.1). This form is also derived in (Moura Neto and
Melo 2001) from Stokes flow.

The only difference we make here is that the ECM conductivity K is a variable of
spatial position, in contrast to being as a constant in previous tumor modeling except
in (Sweidan et al. 2020). According to the expression (2), when both ρ and g are
constants, there are two variables to modulate: k and μ. According to (Caliari and
Harley 2011), “Permeability of tissue engineering scaffolds is dictated by a variety
of microstructural characteristics including porosity, pore size and orientation, pore
interconnectivity, fenestration size and shape, specific surface area, and applied strain”.
For example, the permeability of collagen-glycosaminoglycan (CG) scaffold without
applied strain is, according to (Brace 1977; Gibson and Ashby 1997; O’Brien et al.
2007),

k = A′d2φ3/2, (3)

where A′ is a dimensionless constant and d is the pore size. In (O’Brien et al. 2005),
CG scaffolds with a constant porosity (φ = 99.5%) but having four different pore
sizes are manufactured. Based on these facts and (3), it is possible for ECM to have
spatially variable permeability under assumption (A2).

On the other hand, the tumor cell viscosity can be also inhomogeneous across the
tumor body. As summarized in (Shimolina et al. 2017), although it is established
that the relative viscosity of whole tumor cells is higher than that of normal cells,
some domains of the tumor cell body may have the lower viscosity than the normal
cells, such as the aqueous cytoplasm domain. Furthermore, some treatment protocols
such as chemotherapy and photodynamic therapy could lead to the increase of the
plasma membrane microviscosity, with different levels dependent on drug-resistent
phenotypes. Therefore, both the ECM permeability and the tumor cell viscosity can
contribute to the spatial dependence of the conductivity. In this work, various forms
of conductivity K will be used, such as exponential functions and piecewise constant
functions.
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The following boundary condition is imposed for the pressure

p|∂�(t) =
{

τκ, dim = 2, 3
0, dim = 1

}
. (4)

When dim = 2, 3, the boundary condition is taken from (Cristini et al. 2003). The
quantityκ is themean curvaturewhich is simply the curvature in twodimensional space
and the average of two principle curvatures in three dimensional space, and τ is the
surface tension representing the adhesion force between cancer cells. When dim = 1,
the model represents a slender tumor that is approximately one dimensional, such as
some spinal cord tumors. In this case, there is no curvature and the boundary condition
of the pressure has been discussed in (Zheng and Sweidan 2018). In this work, to focus
on the effect of K (x), we simply choose p|∂� = 0 in the one dimensional case.

According to (Byrne and Chaplain 1996; Friedman and Reitich 2001; Cristini et al.
2003) and many other work, a nutrient (oxygen or glucose) consumed by tumor cells
with concentration n(x, t) satisfies the quasi-steady state equation and boundary con-
dition as follows,

− D∇2n + γ n = 0, x ∈ �(t), (5)

n|∂�(t) = 1, (6)

where D is diffusion rate and γ is consumption rate by tumor cells. For simplicity, we
take D = γ = 1 in this work. The mass balance equation for tumor cells is

∇ · u = G(n − A), x ∈ �(t). (7)

where G is the cell mototic rate and A is the apoptotic threshold, both are constants.
The full model will be the above equations equipped with the initial position of the

tumor domain �(0) and the evolution equation of the tumor boundary, whose details
will be given in the following sections. The one dimensional simulation and analysis
will be given in Sect. 2 and two dimensional simulations in Sect. 3. The conclusions
will be given in Sect. 4.

2 One dimensional analysis and numerical simulations

2.1 One dimensional Darcy’s lawmodel and steady state of tumor size

Following (Sweidan et al. 2020), the complete one dimensional tumor model is given
by:

−n′′(x) + n = 0, x ∈ � = (xL , xR), (8)

n(xL) = 1, n(xR) = 1, (9)

u = −K (x)p′, (10)

u′(x) = G(n(x) − A), (11)
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p(xL) = 0, p(xR) = 0, (12)
dxL(t)

dt
= u(xL),

dxR(t)

dt
= u(xR), (13)

along with the initial values xL(0) and xR(0). Here, prime denotes d
dx (′ = d

dx ).
It is easy to compute that the nutrient distribution is

n(x) = cosh(x − xC )

cosh(β)
, xL ≤ x ≤ xR, (14)

where xC = (xL + xR)/2 is the tumor center and

β = (xR − xL)/2 (15)

is one half of the tumor size. We have the following results about the steady state of
the tumor size and the associated velocity field. Note when the tumor domain moves
with a fixed size, the velocities at the two boundaries are the same, i.e, u(xL) = u(xR),
and thus they are defined as the entire tumor velocity.

Theorem 1 Suppose G > 0 and 0 < A < 1.

(i) There is a unique, nonzero, stable steady state of the tumor size satisfying
tanh(β) = Aβ.

(ii) In the steady state of the tumor size, the velocities at the left endpoint, the tumor
center, and the right endpoint are the same, i.e., u(xL) = u(xC ) = u(xR). The
adjusted velocity

ũ(x) � u(x) − u(xL) = sinh(x − xC )

cosh(β)
− A(x − xC ), (16)

which is positive when xL < x < xC and negative when xC < x < xR, and
symmetric around the point xC , that is, ũ(x) = −ũ(xR + xL − x).

(iii) Suppose the tumor size is fixed. If u(xL) < 0, then |u(x)| > |u(xL + xR − x)| for
x ∈ (xC , xR). If u(xL) > 0, then |u(x)| > |u(xL + xR − x)| for x ∈ (xL , xC ).

(iv) Suppose further the conductivity K (x) is continuous, positive, and strictly
increasing in R. Then in the steady state of the tumor size, the entire tumor
velocity is negative, i.e., u(xL) < 0. On the other hand, when K (x) is strictly
decreasing, then in the steady state of the tumor size, the entire tumor velocity is
positive, i.e., u(xL) > 0.

(v) Suppose the conductivity K (x) is continuous and positive. If the tumor size is
fixed and the entire tumor velocity becomes zero, then

∫ xR

xL

ũ(x)

K (x)
dx = 0. (17)

Remark 3 This theorem suggests that between a pair of symmetric points around the
tumor center, excluding the endpoints, the velocity of tumor cells has a larger magni-
tude on the point in the higher conductivity region, when the tumor size is fixed.
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Remark 4 All the results still holdwhen the pressures on the two endpoints are nonzero
but equal.

Proof For simplicity, we take G = 1.
Part (i). Since u′ = n − A,

d(xR − xL)

dt
= u(xR) − u(xL) =

∫ xR

xL

u′(x)dx =
∫ xR

xL

(n(x) − A)dx

=
∫ xR

xL

(
cosh(x − xc)

cosh(β)
− A

)
dx = 2(tanh(β) − Aβ). (18)

This yields

dβ

dt
= tanh(β) − Aβ. (19)

Thus, the steady state of the tumor size must satisfy tanh(β) = Aβ, which has nonzero
solutions only if 0 < A < 1. Since tanh is monotonically increasing, it is easy to see
the nonzero steady state solution is unique and stable.

Part (ii). Integrating u′(x) = n(x) − A from xL to x results in

ũ(x) � u(x) − u(xL) =
∫ x

xL

(n(x) − A)dx = sinh(x − xC ) + sinh(β)

cosh(β)
− A(x − xL)

= sinh(x − xC )

cosh(β)
− A(x − xC ) + tanh(β) − Aβ. (20)

In the steady state of the tumor size, ũ(x) = sinh(x−xC )
cosh(β)

− A(x − xC ). It is easy to
check ũ(xL) = ũ(xC ) = ũ(xR) = 0, ũ(x) = −ũ(xL + xR − x), and ũ(x) > 0 when
xL < x < xC and ũ(x) < 0 when xC < x < xR .

Part (iii). For any x ∈ (xC , xR), denote its mirror image with respect to xC as xs ,
that is, xs = xL +xR −x . From Part (ii), it is known that ũ(x) < 0 and ũ(xs) = −ũ(x).
Thus, if u(xL) < 0,

|u(x)| = |u(xL) + ũ(x)| = −u(xL) − ũ(x) = −u(xL) + ũ(xs)

> max{u(xL) + ũ(xs),−u(xL) − ũ(xs)} = |u(xL) + ũ(xs)|. (21)

The second inequality when u(xL) > 0 can be proven similarly.
Part (iv). Since p′ = − u

K and u = ũ + u(xL), then p′ = − ũ+u(xL )
K (x)

. Integrating p′
from xL to x with p(xL) = 0 gives

p(x) = −
∫ x

xL

ũ(y) + u(xL)

K (y)
dy.
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x
L

x
C

x
R

nutrient

adjusted velocity
u(x)-u(x

L
)

A:
apoptotic 
threshold

Fig. 1 Solutions of nutrient and adjusted velocity u(x)−u(xL )when the tumor size is in the steady state. The
tumor domain is the interval (xL , xR) where xC is the center. The nutrient n(x) = cosh(x − xC )/ cosh(β)

and is symmetric around the x = xC vertical line. The adjusted velocity = sinh(x−xC )
cosh(β)

− A(x − xC ) and
is symmetric around the tumor center point xC

The boundary condition p(xR) = 0 yields
∫ xR

xL

ũ(x)+u(xL )
K (x)

dx = 0. By mean value

theorem, we have
∫ xR

xL

u(xL )
K (x)

dx = u(xL )
K (ξ)

(xR − xL) for some ξ ∈ (xL , xR). Then

u(xL)

K (ξ)
= − 1

xR − xL

∫ xR

xL

ũ(x)

K (x)
dx . (22)

Note that since ũ(x) = −ũ(xL + xR − x), then we have

∫ xR

xL

ũ(x)

K (x)
dx =

∫ xC

xL

ũ(x)

K (x)
dx +

∫ xR

xC

ũ(x)

K (x)
dx

=
∫ xC

xL

ũ(x)
( 1

K (x)
− 1

K (xL + xR − x)

)
dx .

Because K (x) is strictly increasing and x < xL + xR − x when xL < x < xC , we
know 1

K (x)
− 1

K (xL+xR−x)
> 0 when xL < x < xC . Moreover, we have shown above

that ũ(x) > 0 when xL < x < xC . Hence, it holds that

∫ xC

xL

ũ(x)
( 1

K (x)
− 1

K (xL + xR − x)

)
dx > 0.

Therefore,
∫ xR

xL

ũ(x)
K (x)

dx > 0. Thus, it follows from K (x) > 0 and (22) that u(xL) < 0.
The proof when K (x) is strictly decreasing is similar.

Part (v). The formula (17) is a natural extension of (22) when u(xL) = 0.

This theorem is illustrated in Fig. 1. Note the steady state of the tumor size and the
adjusted velocity are irrelevant to Darcy’s law (10) and thus the conductivity, because
they are solely determined by the nutrient equations (8), (9) and the tumor volume rate
equation (11).
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2.2 One dimensional simulation when K(x) = ecx

First, we consider a special case where K (x) = exp(cx), where c is a constant.
According to the calculations in (Sweidan et al. 2020), the velocity in the tumor for
x ∈ (xL , xR) is

u(x) = G

(
A

c
− c

c2 − 1
+ c2

c2 − 1
tanh(β)

1 + e−2cβ

1 − e−2cβ

+ sinh(x − xL − β)

cosh(β)
− A(x − xL) − 2Aβ

e−2cβ

1 − e−2cβ

)
. (23)

Thus, the velocities at the tumor boundary x = xL , xR are:

u(xL) = G

(
A

c
− c

c2 − 1
+ tanh(β)

c2 − 1
· 1 + (2c2 − 1)e−2cβ

1 − e−2cβ
− 2Aβe−2cβ

1 − e−2cβ

)
,

(24)

u(xR) = G

(
A

c
− c

c2 − 1
+ tanh(β)

c2 − 1
· 2c2 − 1 + e−2cβ

1 − e−2cβ
− 2Aβ

1 − e−2cβ

)
. (25)

At the steady state of the tumor size, u(xL) = u(xR) and the entire tumor velocity
is

utbs = G
(A − 1)c2 + c tanh(β) coth(cβ) − A

c(c2 − 1)
. (26)

Because this velocity is a constant in both space and time, the entire tumor domain
moves with a steady velocity. Since it is an odd function of c, when c switches sign,
the tumor will change its direction but grows with the same speed.

Note that the velocity u(x) in (23) can be rewritten as u(x) = û(x − xL) where

û(z) = G

(
A

c
− c

c2 − 1
+ c2

c2 − 1
tanh(β)

1 + e−2cβ

1 − e−2cβ

+ sinh(z − β)

cosh(β)
− Az − 2Aβ

e−2cβ

1 − e−2cβ

)
. (27)

Therefore, the velocity profile over the tumor domain is invariant. In other words, the
velocity field is identical when the tumor domain moves from one location to another.
Integration of p′(x) = −u(x)/K (x)with K = ecx , u(x) = û(x −xL), and p(xL) = 0
yields

p(x) = −
∫ x

xL

û(x − xL)

ecx
dx = −e−cxL

∫ s

0

û(s)

ecs
ds, (28)
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Fig. 2 Tumor velocity in (26)
for some values of A and
K = ecx . G = 1

0 2 4 6 8 10
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A=0.2
A=0.4
A=0.8

Fig. 3 One dimensional simulation. G = 1, A = 0.2, K = e0.5x . a plots of nutrient, velocity, and pressure
at t = 20. b is the boundary positions vs time.

where s = x − xL . This indicates the pressure field over the tumor domain is also
identical up to a multiplicative factor e−cxL when the tumor domain moves in the
steady state.

The steady state tumor boundary velocity in (26) is shown in Fig. 2 for several
values of 0 < A < 1 and c > 0 in K (x) = ecx . It is clear from these numerical
values that the velocity is always negative in these cases, thus in the negative gradient
direction of K .

Next, we use the numerical scheme developed in (Zheng and Sweidan 2019; Swei-
dan et al. 2020) to solve the system in Sect. 2.1 and illustrate the numerical results for
A = 0.2 and K (x) = e0.5x . The initial position of the tumor is (− 3

11 ,
59.6
11 ). From

the results presented in Fig. 3a, the pressure has a much larger gradient at the front
(x = xL ) than at the rear (x = xR). In the steady state of the tumor size, the tumor
domain moves with a constant negative velocity (Fig. 3b).

2.3 One dimensional tumor growth when conductivity K(x) is piecewise constant

We present more examples in the one-dimensional case with G = 1, A = 0.2. In this
case, the steady tumor size is 10. First, we set up a step function for the conductivity
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Fig. 4 Step function case. a step function in (29). b tumor boundary evolution. c nutrient, pressure, velocity
profiles at t = 800

K1(x) = 5 + tanh

(
x + 5

ε

)
+ tanh

( x

ε

)
+ tanh

(
x − 5

ε

)
+ tanh

(
x − 10

ε

)
,

(29)

where ε = 0.05, whose graph is shown in Fig. 4a. The initial tumor domain is
(7.5, 17.5), so the tumor size is already in the steady state. Under this step func-
tion, the tumor domain moves to the left without changes in its size (Fig. 4b). The final
tumor domain is (−15,−5) and thus is completely located in a region with constant,
lowest value of K1.

Second, we set up an L-step conductivity function

K2(x) = 6 − tanh

(
x + 10

ε

)
+ tanh

(
x + 5

ε

)
+ tanh

( x

ε

)
+ tanh

(
x − 5

ε

)

+ tanh

(
x − 10

ε

)
, (30)

where ε = 0.05, whose shape is shown in Fig. 5a. Note the lowest K2-region is the
interval (−10,−5). The tumor starts the same position as in the step function K1 case
but its final state is (−12.5,−2.5). That is, the tumor center, x = −7.5, coincides
with the center of the lowest K2-region. Note the conductivity in the tumor domain is
an even function with respect to the tumor center. Therefore, the necessary condition
(17) for the zero entire tumor velocity is achieved in the final state.

Next, to examine the preference of the tumor to grow to low conductivity region,
we design the following K function

K3(x) = −(1 − h

2
) tanh

(
x + 2.5

ε

)
+ tanh

(
x − 2.5

ε

)
+ 3 − h

2
, (31)

where ε = 0.05 and h is the drop from the right bank to the left bank, as shown in
Fig. 6a. The right bank is in the interval (2.5, 10) and its K -value is kept as 3. The bed
occupies the region (−2.5, 2.5) and its K -value is 1. The left bank is (−10,−2.5) and

123



Tumor growth towards lower extracellular matrix conductivity… Page 11 of 23 5

Fig. 5 L-step function case. a L-step function in (30). b tumor boundary evolution. c nutrient, pressure,
velocity profiles at t = 800

-10 -5 0 5 10
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jump h
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Left boundary

Tumor center

Right boundary 

0 0.5 1 1.5 2
jump h

0
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2
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4

5
Length on left bank
Length on right bank

(a) (b) (c)

Fig. 6 a K function with jump defined in (31). The middle low value region (bed) is (−2.5, 2.5). The K
value on the right bank is kept as 3. b final tumor domain vs jump value h. c lengths of the final state tumor
on both banks vs jump h

its K -value is 3 − h. The initial tumor domain is set as (−5, 5). The simulations are
implemented for several values of h ∈ [0, 2] and each simulation runs to time t = 500
to ensure that the tumor evolves to a steady state. The final tumor position with respect
to the jump value h is summarized in Fig. 6b. It is observed that the tumor size remains
as 10 in all the simulations. When h = 0, that is, the left and right banks having the
same conductivity, the final tumor domain takes the central position and has the same
length on both banks. When 0 < h < 2, the lengths of the tumor on both banks are
nonzero. However, with the increase of the jump, the length on the left bank increases
and that on the right bank decreases (see Fig. 6c). When h = 2, the left bank levels
with the bed and the final tumor domain is (−7.5, 2.5), thus entirely growing out of the
right bank. The necessary condition (17) for the zero entire tumor velocity is satisfied
in all these states. Although this example is quite complicated, it still demonstrates
the tendency of tumor growth towards the region of low conductivity.

2.4 Some extreme cases in one-dimensional tumor growth

To provide more insights to the impact of inhomogeneous conductivity on the tumor
growth, we consider a few extreme cases: the apoptosis rate A = 0 and the nutrient
n = 0. Note that when G = 0, the divergence of velocity is zero, which leads to
−∇ · (K (x)∇ p(x)) = 0. Along with the Dirichlet boundary condition p|∂� = 0, the
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Fig. 7 a boundary evolution when A = 0 and K (x) = e0.5x . b boundary and tumor size evolution when
nutrient n = 0 and K (x) = e0.5x .

Table 1 Left and right tumor boundary velocities when A = 0

c in K (x) = ecx Left boundary velocity Right boundary velocity

0.5 −0.67 1.33

0.25 −0.80 1.20

0.125 −0.89 1.11

0 −1 1

pressure has a unique zero solution, which results in the zero solution of the velocity.
Thus, in the case of G = 0, the tumor domain does not move.

In the first extreme case, A = 0, the tumor cells never die. We set G = 1 and
K (x) = ecx . Following the calculation in (18), we get dβ

dt = tanh(β). The solution
is sinh(β(t)) = sinh(β0)et . Since sinh is a monotonically increasing function, it
is easy to see that as t → ∞, the tumor size increases to infinity. When β � 1,
sinh(β) ≈ eβ/2 and (xR − xL)(t) ≈ 2t + 2 ln(2 sinh(β0)). So the tumor size expands
to infinity linearly. To find out the speed of the left and right boundaries, we performed
some numerical simuations with the initial tumor position (−3/11, 59.6/11). From
the result in Fig. 7a for c = 0.5, the tumor expands in both directions. However, the
right boundary moves faster to the right than the left boundary moving to the left. The
change of the boundary speeds with respect to c is summarized in Table1. As c tends
to zero, the magnitudes of boundary velocity approach the same. When c > 0, the
right boundary always moves faster than the left boundary. The larger value of c, the
larger difference between the two boundary velocities.

In the second extreme case, n(x, t) = 0, that is, the nutrient is depleted. The
equations u′ = −G A and d(xR−xL )

dt = ∫ xR
xL

u′dx = −G A(xR − xL) lead to (xR −
xL)(t) = (xR − xL)(0)e−G At . So the tumor size shrinks to zero exponentially. In the
numerical simulations, we take the initial tumor position as (−35, 35) and the result
is shown in Fig. 7b for the parameters G = 1, A = 0.2, and K (x) = e0.5x . The
average left and right boundary velocities for several values of c in K = ecx functions
are shown in Table2. When c > 0, the right boundary always moves faster than the
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Table 2 Left and right tumor boundary average velocities when nutrient n = 0, G = 1. Average veloc-
ity=total displacement/time duration

c in K (x) = ecx Left boundary average velocity Right boundary average velocity

0.5 0.32 −3.06

0.25 0.54 −2.84

0.125 0.83 −2.55

0 1.69 −1.69

left boundary, and the gap between the boundary speed increases as c value becomes
larger.

In summary, the results in this subsection demonstrate when the whole tumor is
expanding or shrinking in one dimensional space, the two tumor endpoints move in
the opposite directions but the motion in the high conductivity region is faster than
that in the low conductivity region.

3 Two dimensional simulations

In this case,we solve the equations (1), (4), (5), (6), (7) in two dimension. The evolution
of the tumor boundary is implemented by the level-set method. Let ψ be the signed
distance function to the tumor boundary ∂�(t), thus ∂�(t) = {x ∈ R

2 : ψ(x) = 0}.
Then

∂ψ

∂t
+ u · ∇ψ = 0. (32)

We used the interface-fitted adaptive mesh method developed in (Zheng and Lowen-
grub 2016) to solve this problem and evolve the tumor boundary. To confirm
convergence, all the simulations were performed with three different mesh sizes and
the convergence was observed in all the cases. The results presented here are from the
finest resolution, where the smallest mesh size of the adaptive mesh is h = 0.01.

3.1 Perturbed circular tumor under radially symmetric conductivity

If both the initial tumor shape and the conductivity are radially symmetric, the tumor
always grows in the radially symmetric manner irrelevant to the conductivity. Indeed,
the solution uniqueness implies the nutrient, pressure, and velocity are all radially
symmetric. Denote r as the polar radius. The radial component of the velocity ur

satisfies 1
r

∂(rur )
∂r = G(n(r) − A). Along with the non-singular condition ur (0) = 0,

the velocity field is fully determined.
In the first group of nontrivial two-dimensional simulations, the initial tumor bound-

ary is set as a perturbed circle: (2 + 0.1 cos(2s), 2 + 0.1 sin(2s)), s ∈ [0, 2π ]. The
other parameters are G = 20, A = 0.5, τ = 1. When K = 1, the linear analysis
in (Cristini et al. 2003) shows the tumor growth is unstable, which agrees with the
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Fig. 8 a evolution of equivalent tumor radius for the conductivity K = exp(cr). A curve stops when the
tumor bulbs merge or one part of the tumor grows out of the computational domain [−6, 6] × [−6, 6]. b–e
evolution of tumor shape with different conductivity K

numerical solution (Fig. 8d) produced by themethod used in this work (the direct com-
parison is given in (Zheng and Lowengrub 2016)). Here, we choose the conductivity
as K = exp(cr), where c is a constant. The evolutions of equivalent tumor radii and
shapes for some values of c are shown in Fig. 8. When c ≥ 0.6, the tumor grows to a
disk of radius 3.324, which is the steady state radius when the initial tumor boundary
is a circle. But when c ≤ 0.5, the tumor volume increases with time and some bulbs
are formed that merge at a finite time, where the volume increase rate is higher and
the merging time is earlier for smaller c values,

According to the discussion in (Zheng et al. 2005), the formation of bulbs is pro-
duced by diffusion instability because the bulbs possess greater perimeter to area ratios,
which allow them to be exposed to more nutrient within a unit tumor area diffusing
from the boundary than a flat region. This mechanism drives the bulbs to grow larger
and larger. On the other hand, according to the findings in the one dimensional case,
the conductivity K = exp(cx) with c > 0 would induce the inward growth and the
counterpart with c < 0 would induce outward growth. Both the diffusion instabil-
ity and the directed growth induced by conductivity exist, sometimes competing and
sometimes cooperating, in these simulations.

In particular, when the conductivity increases with radius and has a sufficiently
large gradient magnitude (c ≥ 0.6), the tumor grows to a stable disk centered at the
origin with the initial perturbation vanished. In this case, the inward growth suppresses
the diffusion instablility. When the increasing conductivity has a sufficiently small
gradient magnitude (0 < c ≤ 0.5), the diffusion instability exceeds the inward growth
in the competition and thus the tumor grows to an unstable phase but with a slower
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Fig. 9 τ = 0 case. a path of tumor center. b, c, d pressure field and boundary velocity. The vectors are the
velocity on the tumor boundary. The maximum magnitudes of velocity of these pictures are between 0.04
and 0.08

volume increase rate compared with the K = 1 case, where the conductivity has no
effect. Finally, when the conductivity decreases with radius (c < 0), the diffusional
instability is enchanced by the conductivity induced outward growth and thus leads to
ever faster unstable growth.

3.2 Circular tumor under non-radially symmetric conductivity

We fix G = 1, A = 0.8. In the case of a circular tumor, the steady state radius is
approximately 1.47. We use this value as the initial radius of a tumor which is a circle
centered at (0, 0). The conductivity is chosen as

K (x, y) = exp(4x + 2y). (33)

Thus, its negative gradient direction is (−4,−2) at any point in space.
The simulation results of the zero surface tension are shown in Fig. 9. Figure9a

shows the path of tumor center with different line types indicating different directions.
From the temporal snapshots of the tumor’s pressure field and boundary velocity
depicted in Fig. 9b–d, we see that the tumor domain moves along the (−4,−2) direc-
tion from t = 0 to t = 14 and at the same time the tumor is bent forward because the
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Fig. 10 a path of tumor center vs time where the arrow indicates the tumor center movement direction. All
the cases when τ > 0 are roughly the same. b evolution of equivalent tumor radii. c, d evolution of tumor
center

speed on the center rear of path is larger than on the wings. However, after t = 14,
the two bulbs at the back of the tumor grow larger in the backward direction, which
pulls the tumor center back towards (0, 0). A little after time t = 31, the two bulbs
are ready to merge.

When the surface tension is τ = 0.05, 0.2, 0.5, 1, 4 or 8, the tumor center moves
along the negative gradient direction of K without any reverse motion up to time
t = 120 (Fig. 10a). The equivalent tumor radii decrease initially for all the positive
surface tension values, more rapidly when the surface tension is larger (Fig. 10b).
Afterwards the radii increase roughly linearly in time. Both the x and y coordinates
of the tumor center evolve linearly in time (Fig. 10c, d).

When τ = 0.05, 0.5, 8, the tumor morphology, pressure field, and velocity field on
the tumor boundary at some later times of tumor growth are shown in Fig. 11. Some
morphology snapshots can be found in Fig. 12. With the increase of surface tension,
the tumor tends to keep a more compact form with less bulbs.

There are some similarities about the results between the one-dimensional (1-D)
and two-dimensional (2-D) simulations in Sect. 3.2 2. The first is that the tumor grows
towards the negative gradient direction of conductivity. The second is that the tumor
thickness in 2-D case or the tumor size in 1-D case is almost steady in time. In 2-D

2 The simulations in Sect. 3.1 possess the same properties but the results in Sect. 3.2 are easier to present.
For instance, the front part of each bulb in Fig. 8 can be regarded as a crescent moving in the negative
gradient direction of the conductivity, where the pressure field has the same profile as that in Fig. 13.
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Fig. 11 Comparison of tumor pressure and velocity fields under different surface tensions
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Fig. 12 Snapshots of tumor evolution in the same axes.When τ = 0, t = 0, 6, · · · , 30, 31.When τ = 0.05,
t = 0, 10, . . . , 110, 115. When τ = 0.5 and 8, t = 0, 10, · · · , 120.

Fig. 13 Pressure field after the advancing front at time t = 120 when surface tension τ = 8. a top view. b
side view perpendicular to the growth direction. The tumor domain moves to the left

case, when the surface tension is positive, the tumor roughly adopts a crescent shape
at the later stage and one portion of the boundary forms a clear advancing front. The
tumor thickness is not only quite uniform across the front but also roughly constant
in time (by visual examination). In 1-D case, the tumor size is fixed once the tumor
reaches the steady size. The third similarity is the pressure distribution after the center
of the front, as shown in Fig. 13. It jumps sharply from a nearly zero value on the
tumor boundary to a large positive value after the front, then drops to a large negative
value in the middle, and then slowly goes up to zero to the rear boundary. It resembles
the pressure field in the 1-D case in Fig. 3a.
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4 Discussion

In this work, we discovered a phenomenon from one and two dimensional numerical
simulations using a Darcy’s law model of tumor growth that the tumor tends to grow
to regions of low hydraulic conductivity, when the tumor morphology is steady. The
examples in two-dimensional space indicate the tumor would grow in the negative
gradient direction of the conductivity. This phenomenon is accompanied with a critical
condition: in one-dimensional case the tumor size is fixed, and in two-dimensional case
the tumor thickness in the direction of the growth is roughly fixed. Especially in one-
dimensional case, we proved in Theorem1 part (iv) that when the tumor size is steady,
the tumor must favor growth towards lower conductivity regions if the conductivity
is strictly increasing or decreasing in space. If the tumor size is not fixed, then this
phenomenon might not be true. For example, when the cell death is turned off, the
tumor size grows to infinity and the two boundaries expand outwards but the boundary
in the larger conductivity region moves faster.

The similarities of the one- and two-dimensional cases make it plausible to look
into the one-dimensional case to understand this phenomenon. Twomechanisms stand
out as follows.

I. The special inward flow pattern inside the tumor when the size is steady. The
velocity field relative to the tumor center3 is towards the tumor center and sym-
metric around the center. It is completely determined by the nutrient distribution
and cell division and death. This leaves only one degree of freedom for Darcy’s
law to play around: the entire tumor domain moves to left or right, or stays still.

II. The faster flow speed in higher conductivity regions due to Darcy’s law. Remark3
states when the tumor size is steady, the speed is faster on a point of higher
conductivity than on its symmetric point across the center (not including boundary
points). The extreme cases in Sect. 2.4 demonstrate when the tumor size is not
steady, the boundary in the higher conduction region travels faster. This is a nature
of Darcy’s law because of |u| = K |∇ p|, that is, under the same pressure gradient
magnitude, the larger conductivity yields the larger flow speed.

To understand how these mechanisms generate this phenomenon, we design a com-
parison experiment. A tumor domain is chosen as (−5, 5). Let G = 1, A = 0.2. The
tumor size is steady with these parameters. At first, we set the conductivity K = 1
everywhere. As shown in Fig. 14a, the pressure profile is symmetric around the tumor
center. However, when the conductivity on the right half is suddenly changed to 11
while the conductivity on the left is kept the same as before, Fig. 14b shows the veloc-
ity on the right increases the negative magnitude. At the same time, the pressure from
the right of the center is larger than from the left. This implies the flow from the right
exerts compressing force to the left. The pressure reaches the maximum value near the
left endpoint because the conductivity is lowest there and an extra force is required
to push the left endpoint to move in the same speed as the right endpoint. Therefore,
we conclude the growth to lower conduction regions, under steady morphology, is

3 Because the velocities at the left boundary, the center, and the right boundary are identical when the tumor
size is fixed (Theorem1 part (ii)).

123



Tumor growth towards lower extracellular matrix conductivity… Page 19 of 23 5

Fig. 14 Comparison of velocity and pressure fields with uniform conductivity (a) and with higher conduc-
tivity on the right half of tumor domain (b)

induced by the pushing force from the faster inward flow in the higher conductivity
regions.

The finding that the tumor grows towards regions of low conductivity is deduced
from both mathematical analysis and numerical experiments of the growing dynam-
ics. Although there are many experiments evaluating single cell movement through
a heterogeneous ECM (e.g. (Harley et al. 2008; Wolf et al. 2013)), we have not seen
any biological or clinical reports on the collective movement of proliferating cells
in response to inhomogeneous conductivity. However, we believe this work is mean-
ingful for the cancer research community. Above all, the ECM has a high degree
of heterogeneity due to the intrinsic disorder of the fiber network (Malandrino et al.
2018). Therefore, if this finding can be verified experimentally, then it can be used as
a basis for further development of mathematical models and design of potential ther-
apy. One possible experimental setup to test this finding is using a nondegradable and
nondeformable substrate as in (Wolf et al. 2013). On the other hand, if this prediction
is not observed in experiments given the same assumptions of this model, it would be
an opportunity to consider the range of validity of this model.

The existing understanding of collective cancer invasion (e.g., (Wu et al. 2021))
involves many features such as distinct cell phyenotypes at leading and trailing edges,
and pericellular proteolysis mediated ECM reorganization, neither of which is present
in this work. In contrast, this work shows that the motion under Darcy’s law could
solely drive the tumor to spread from high to low ECM conductivity regions. Thus,
the mechanism, if verified in cancer biology, would unveil a new mode of collective
tumor invasion that may lead to complications of cancer therapy. For instance, in all
the possible responses to a therapy, there is a special category named stable disease
(Therasse et al. 2000), where the tumor could stay in relatively the steady size (between
30% decrease and 20% increase since the initial baseline measurement) over 6 to 8
weeks. Under this mechanism, the tumor may spread to nearby tissue or organs, which
would increase the risk of metastasis and the difficulty of prognosis.

Note that the tumor boundary remains smooth for all the two-dimensional simu-
lations until the possible merging occurs, which is also true when the conductivity is
a constant in space (see (Cristini et al. 2003)). This tumor model has a strong corre-
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lation with the Hele-Shaw flow problem, where Darcy’s law is applied to the motion
of incompressible viscous fluid between two parallel horizontal plates separated by a
thin gap. The fluid domain is expanding or shrinking due to a point source or sink in
the center of the domain. The cusp singularity (a zero angle corner) occurs in Hele-
Shaw flows for shrinking fluid with zero surface tension (Howison 1986). This type
of singularity is not observed in this work even when the tumor surface tension is
zero. We postulate this is because in this tumor growth model, the nutrient level is
always set as one on the tumor boundary and thus whenever A < 1, the volume change
rate ∇ · u = G(n − A) is always positive near the tumor boundary. Therefore, this
tumor model seems more similar to the expanding Hele-Shaw problem near the tumor
boundary. According to (Howison 1986), the expanding Hele-Shaw problem is well-
posed and the boundary is analytic as long as the domain keeps simply connected,
which agrees well the simulations in this work. But certainly it will be worthwhile to
perform rigorous theoretical and numerical analysis in this direction.
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Appendix

Basics of Darcy’s law andmass transport in porous media

This section extracts some information useful for our discussion from a classic book by
Bear (Bear 1972).Above all, notice that in the continuumapproach of fluid dynamics in
porousmedia, all the kinematic and dynamic variables are defined as averaged values in
a proper volume (representative elementary volume), such as porosity, velocity, pres-
sure. Darcy’s law for homogeneous fluid flowing through inhomogeneous isotropic
porous media can be written as

q = −K∇ϕ, (34)

where q is the specific flux with dimension length/t ime, measuring the volume of
fluid discharged through porousmedia per unit area per unit time. Let φ be the porosity
(the fraction of pores or void space in a unit volume) and u be the flow velocity of the
fluid in the pores, then relation between specific flux and velocity is expressed with
the following Dupuit-Forchheimer equation,

q = φu. (35)

The value of φ is between 0 and 1 and often expressed by a percentage. The porosity
is defined in such a way that around any point in the porous media, the void space
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Table 3 Quantities used in Darcy’s law for porous media. Here the units are the ones usually used in
groundwater hydrology

Symbol Meaning Dimension Unit

q specific flux in the whole porous
media, q = φu

length/time cm/s

K hydraulic conductivity, K = ρgk/μ length/time cm/s

k intrinsic permeability length2 cm2

ϕ piezometric head, ϕ = p/(ρg) + z length cm

u flow velocity in empty space length/time cm/s

φ porosity or fraction of empty space dimensionless

μ fluid dynamic viscosity force· time/length2 dyn·s/cm2.

ρ fluid density mass/volume g/cm3

g gravitational acceleration length/time2 cm/s2

p hydraulic pressure force/area dyn/cm2

z height length cm

fraction is φ. The coefficient K = K (x), x ∈ R
3, is the hydraulic conductivity and a

scalar variable for inhomogeneous isotropic media. Its expression is

K = ρgk

μ
, (36)

where ρ is the fluid density, g is the gravity acceleration, k is the intrinsic permeability
(dependent solely on the property of the solid matrix) with dimension length2, μ is
the dynamic viscosity of the fluid. Thus, the dimension of K is length/t ime. The
quantity ϕ is the piezometric or hydraulic head and given by

ϕ = p

ρg
+ z. (37)

Here, p is hydrostatic pressure and z is the height. All these quantities with their
dimensions are listed in Table3. Using relation (35), the Darcy’s law (34) can be
rewritten as

u = − K

φ
∇ϕ. (38)

The mass balance equation for the tumor cell component according to (Bear 1972)
(equation 4.3.1 therein) is

∂(ρφ)

∂t
+ ∇ · (ρφu) = It , (39)

where It is the tumor cell source term. Under the assumption of constant density ρ and
fixed porosity in time, ∂(ρφ)

∂t = 0. The source of tumor cells given in (Cristini et al.
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2003) is ρG(n − A), where G is the division rate and A is the apoptotic threshold.
Because the tumor cell source term must be only present in the void space, therefore,
It = φρG(n − A). Then the mass balance equation is reduced to

∇ · (φu) = φG(n − A). (40)

In (Cristini et al. 2003), the mass equation is simply

∇ · u = G(n − A). (41)

Compared with (40), this must be done by assuming φ is a constant in space. For the
sake of simplicity and comparison, we accept the assumption here.

Define p̃ = ϕ
φ
and use the definition of K in (36), then (38) becomes

u = −K∇ p̃. (42)

Ignoring z in (37) and dropping the tilde for p̃, we get (1).
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