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Abstract

Glioblastoma is an aggressive brain tumor with cells that infiltrate and proliferate rapidly into sur-
rounding brain tissue. Current mathematical models of glioblastoma growth capture this behavior using
partial differential equations (PDEs) that are simulated via numerical solvers—a highly-efficient im-
plementation can take about 80 seconds to complete a single forward evaluation. However, clinical
applications of tumor modeling are often framed as inverse problems that require sophisticated numer-
ical methods and, if implemented naively, can lead to prohibitively long runtimes that render them
inadequate for clinical settings. Recently, physics-informed neural networks (PINNs) have emerged as a
novel method in scientific machine learning for solving nonlinear PDEs. Compared to traditional solvers,
PINNs leverage unsupervised deep learning methods to minimize residuals across mesh-free domains,
enabling greater flexibility while avoiding the need for complex grid constructions. Here, we describe
and implement a general method for solving time-dependent diffusion-reaction PDE models of glioblas-
toma and inferring biophysical parameters from numerical data via PINNs. We evaluate the PINNs
over patient-specific geometries, accounting for individual variations with diffusion mobilities derived
from pre-operative MRI scans. Using synthetic data, we demonstrate the performance of our algorithm
in patient-specific geometries. We show that PINNs are capable of solving parameter inference inverse
problems in approximately one hour, expediting previous approaches by 20-40 times owing to the robust
interpolation capabilities of machine learning algorithms. We anticipate this method may be sufficiently
accurate and efficient for clinical usage, potentially rendering personalized treatments more accessible in

standard-of-care medical protocols.

1 Introduction

Glioblastoma multiforme (GBM) is the most aggressive and common malignant primary intracranial tumor,

comprising 57% of gliomas and 48% of malignant central nervous system tumors [1]. GBM is characterized
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by infiltration and microvascular proliferation beyond visible lesions on medical scans, with a median survival
time of 15 months [2]. While there is no cure, treatments include resection, radiotherapy, and chemotherapy;
these procedures are generally derived from population studies and fail to account for individual patient
details (for instance, current radiotherapy plans construct a simple uniform margin beyond visible tumor

volumes, neglecting the anisotropic and patient-specific nature of t umor growth).

Mathematical models that incorporate raw patient data may address this shortcoming with computational
analyses, offering doctors a better understanding of a tumor’s prognosis, morphology, and response to various
treatments [3,4]. These models can be used to rationally generate personalized RT plans, surgical operations,
and chemotherapy dosages [5-8| that reduce overtreatment, increase the targeted accuracy of malignant

tissue, and improve patient outcomes.

Existing models often formulate tumor growth with partial differential equations (PDEs); these equations are
used to construct inverse problems in which biophysical parameters of the model are inferred from empirical
tumor observations [9-16]. Solving the patient-specific inverse problem thereby calibrates the model, enabling
personalized prognoses and treatment decisions. However, simulation methods remain a challenge—even
highly-efficient numerical solvers can re quire 60180 se conds [3, 17] to produce a single forward evaluation.
With approximate [10, 18] and fully Bayesian [3] calibrations requiring tens of thousands of evaluations
that translate to weeks of computation, this cost is prohibitive at the scale needed for widespread clinical

viability.

Over the last two decades, deep learning has driven revolutionary advancements in image classification,
drug discovery, and reinforcement learning [19]. Ounly recently, however, has attention been diverted toward
solving PDEs with these methods. Introduced in [20], physics-informed neural networks (PINNs) map input
parameters to the solution of a differential e quation, c onstructing a 1 oss function d efined fr om th e PDE’s
residual. In contrast to data-driven methods [21], PINNs do not serve as surrogates for externally-generated
data, but instead directly learn the PDE by expressing differential o perators with automatic differentiation
(AD) [22]. Here, we consider the application of PINNs to glioblastoma growth models.

First, we develop a PINN to solve a forward problem simulating tumor growth over a designated time period,
mapping spatial locations & at times ¢ to output tumor concentrations. Second, following [23], we modify
the forward problem by changing the loss function to solve a parameter inference problem in which unknown
biophysical values of the model are recovered by the network using the same training algorithm in the forward
problem. Third, we demonstrate the performance of the approach using synthetic data generated by the
solution of the forward problem. We show that PINNs can resolve the parameters to 15% accuracy within
1.25 hours for an approximately 20—40-fold speedup compared to traditional methods, lowering the cost and

increasing the potential accessibility of personalized cancer treatments in clinical settings.
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2 Tumor Simulator

2.1 MRI Dataset

We consider de-identified pre-operative patient MRI scans acquired from the McConnell Brain Imaging
Centre and the Montreal Neurological Institute at McGill University [3]. Included in the dataset are white
matter, gray matter, and cerebrospinal fluid segmentations, which we use to construct a patient-specific

domain. Fig. 1 presents a single slice of the data.

White Matter (left), Gray Matter (center), and Cerebrospinal Fluid (right)

Figure 1: Axial view of white matter (left), gray matter (center), and cerebrospinal fluid (right). Scans were
acquired at a resolution of 1 mm® with dimension 193 x 193 x 229. Length scale: 1 unit = 10 cm.

2.2 Mathematical Growth Model

We consider the Fisher-Kolmogorov diffusion-reaction equation with logistic growth [6,24,25], selecting this
model for its ability to describe infiltration and proliferation of tumor cells, and because it serves as a baseline

for more complicated approaches.

Let u € [0,1] denote normalized tumor cell density, D(x) denote the diffusion coefficient representing the
infiltration of the tumor cells at position x, and p denote the proliferation rate of the tumor cells. Let

Q denote the brain anatomy as defined by the MRI scans. Then we construct the following differential

equation:
Diffusion Proliferation
i V- [D(x)Vu]+ pu(l —u) in Q, (1)

where D, p serve as downstream parameters describing more complex behavior (e.g. individual cell move-
ments [26]). Equation (1) mathematically describes a “traveling wave” solution [27] in which the tumor

expands radially outwards by the diffusion t erm w hile i ncreasing in d ensity t o a carrying c apacity by the

proliferation term. Fisher’s equation [28] approximates the speed of the traveling wave’s “edge” as 2+/Dp,

which we use to verify our simulations.
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Table 1 summarizes the salient elements of the mathematical model.

Symbol Value Units Definition
Variables
x mm Spatial coordinate
t days Temporal coordinate
U - Tumor concentration
Parameters
D, 0.13 mm? days~! Measure of random tumor dispersal in white matter
Pw — - Proportion of white matter
D, 0.013 mm? days~! Measure of random tumor dispersal in gray matter
Dy — - Proportion of gray matter
p 0.025 days~! Measure of net tumor proliferation from natural processes
Tic (105,140,99) mm Tumor origin location
T {150,300}  days Simulation duration

Table 1: Variables and parameters in the diffusion-reaction growth model.

2.2.1 Diffusion and Proliferation Constants

The diffusion coefficient is patient-specific, defined as a weighted sum of gray and white matter [6]: D =
DPwDy + pgDg where the values of p,, and p, denote heterogeneous tissue proportions that are determined
from the patient MRI scans [3]. This accounts for observations that tumor growth is more pronounced along
white matter tracts. We assume D,, = 10D [29] and apply a bilinear interpolation [30] to approximate the
white and gray matter concentrations at fine resolutions, finding this method to be within our computational

restraints and less prone to oscillations than higher-order alternatives.

We set D, = 1.3 x 107! mm? days—! and p = 2.5 x 1072 days~! [25], consistent with a standard high-grade
glioma. We consider simulation durations of 150 and 300 days, finding the former is sufficient in the patient-

specific case to form a tumor with a radius of roughly 1.5 cm. Using Fisher’s approximation, we estimate

1

the radial velocity of the tumor’s expansion to be 0.11 mm days™", implying radii of 1.7 and 3.4 cm for the

tumors at 150 and 300 days, respectively.

2.2.2 Initial Condition

The tumor concentration is initialized as a Gaussian distribution about a point z;. [24]:
IC(x) = 0.1exp(—10||x — x;c||?). (2)

The distribution is chosen such that the initial tumor has an approximate radius of 5 mm.
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2.2.3 Boundary Condition

Phase-Field Function (left), Segmented Gray & White Matter (center), T1 Intensities (right)

Figure 2: Azial plane view of phase-field function (left), diffusion coefficients (center), and T1 scans (right).
The phase-field function defines the boundary of the simulation domain. Length scale: 1 unit = 10 cm.

Since tumor cells cannot penetrate the skull or enter the ventricles [6,31] we impose a no-flux boundary

condition:

Vu -7 =0 on 09, (3)

where 7 represents the normal surface vector and 0€2 denotes the boundary of the skull and ventricles. We
enforce these boundary conditions using the diffuse domain method (DDM) [32-34], allowing us to express
the complex brain geometry. To generate the phase-field function ¢ from a binary segmentation of combined
gray and white matter, we construct a simple rectangular prism containing the cropped brain geometry
Qp = [0,138] x [0,167] x [0,123][mm?] and solve the following Cahn-Hilliard equation [3]:

00—V 1o(1-9)- V(5 (6) - ), 0
where
1 in Q,
P(t=0)= , (5)
0 in Qr\Q.

We take g(¢) = iqb?(l —¢)? as a double-well potential and € = 0.1. The equation is simulated in time until a
sufficiently thin interface forms between the brain geometry and surrounding space (Fig. 2, left). Following
the DDM, Eq. (1) is reformulated as [32]:

%(d)u) = V- (D¢Vu) + dpu(l — u). (6)

This modification to the PDE implicitly enforces the boundary condition in Eq. (3).
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2.3 Physics-Informed Neural Network

Next, we use a neural network to learn the PDE subject to patient-specific domains and boundary conditions.
In particular, we construct a PINN with spatial and temporal inputs. Spatial values are selected by sampling
a radially-symmetric uniform distribution centered at x;. while temporal values are uniformly randomly
sampled from the interval [0, T][days]. We define the input space as 6, with the neural network operation

u(fp) mapping to tumor concentrations. The neural network is implemented with DeepXDE [23], a deep

learning library built from TensorFlow [30]. We also apply a hard-constraint [23] to the PINN output @ such
that u(z,t = 0;0) = IC(x):

u(zx,t;0) := i(x, t;0)t + IC(x). (7)

PDE Residual

——————————————————————————————

Loss 0%, D*, p*

Observational Data

Figure 3: Diagram of a physics-informed neural network with three hidden layers used for parameter in-
ference. The differential equation and observational data are used to concurrently optimize 8, D, and p,
yielding 8, D*, and p*, respectively.

Let Ty C 6, denote a set of training data and 8 denote the parameters of the neural network. We construct
the loss function from the mean-squared residuals of the differential equation:

£r0:T) = 77 3 12 (6u) — [V - (DoY) + dpu(1 — )3 )
T

F
Thus minimizing £;(0;T) approximates the differential e quation. We train the network on this loss function
with two gradient-based optimizers: the Adam [35] and Broyden-Fletcher-Goldfarb-Shanno (BFGS) [36]

algorithms. Automatic differentiation is used to expresseach termofthe PDE ( e.g. 2 (¢u), ppu(l — u)).
ot

We select a feedforward neural network with three hidden layers of 100 neurons each and input/output
layers corresponding to 6, and u(8,), respectively. We use the hyperbolic tangent for the activation, set the
learning rate to 1.0 x 1072, and initialize @ from a Glorot distribution [37]. In the patient-specific forward
problem, we batch train 100,000 epochs with the Adam scheme followed by the BFGS scheme. Simulations
were performed on NVIDIA Tesla V100s.
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2.4 Parameter Inference

PINNSs can be readily modified to solve inverse problems for parameter inference [23]: given a dataset T; € 6,

with corresponding observations U;, we define a loss metric:

Li(0.D,pT)) = = > I Z(u,7)ll3 9)

1
il T€T;

|T:

where Z(u,x) is the elementwise difference between the observational data U; and the predicted neural
network inferences. Note that D and p have been embedded into the loss function; we aim to determine
these values from empirical data. We initialize D,, = 1.0 x 107! mm? days~! and p = 1.0 x 1072 days~! [3§]
as guesses that are successively inferred with the differential equation and additional information provided

from 7;. Hence the parameter inference loss function is
L(O,D,p;T) =wsLy(0,D,p;Ty) +wiLi(0, D, p; Ti), (10)

where wy, w; are weights. Here, we choose wy = w; = 1, finding it suitable for obtaining convergence.
Because this algorithm is iterative, we establish a stopping criterion by tracking the relative changes every

1,000 epochs for the biophysical constants across a 10,000 epoch window. We stop if for epoch N,

i | DN +1000(k+1) — DN+1000%] 2 |PN+1000(k+1) — PN+1000k]
> +2 (11)
k=0 k=0

< €¢ol
| D 41000k | |oN+1000k| o

where €,,; is a user-supplied tolerance. We train the PINN over 800,000 epochs, halving the learning rate
to 5.0 x 10~ after 400,000 epochs to decelerate the network’s fluctuations. A schematic of the PINN for

parameter inference is presented in Fig. 3.
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3 Results

We consider two forward problems in 2D: one on a circular domain with a radius of 5 cm and another
on a patient-specific domain constructed from MRI scans (Fig. 2, axial plane). Using the synthetic data

generated from solutions to the forward problems, we infer the parameter values of D and p.

3.1 Simple Domain
3.1.1 Forward Problem

We set T' = 300 days and solve the forward problem in Eq. (6) over the radially-symmetric domain via a
finite-difference numerical solver [39]. We let ¢ = 0.5+ 0.5 tanh (50 — r) where r is the distance from a point
to the origin, creating a boundary at r = 50 mm. In Fig. 4, we present the solutions u at 30-day intervals;
we observe that the tumor expands radially outward, grows to a maximum concentration of about v = 0.9,

and has a radius of approximately 3.5 cm.

Tumor Concentration v. Radial Distance

Time
300

Inferred Solution

* Forward Solution
0.8

250
0.6

0.4

0.2

Distance from Tumor Origin [cm]

Figure 4: Plot of u vs. radial distance colored by time to Day 300. Solid: radially-symmetric, finite difference
numerical solver. Circles: PINN solutions with inferred parameters. Solutions presented in 30-day intervals.

3.1.2 Parameter Inference

From the forward problem solution in Sec. 3.1.1, we sample 20,000 new inputs and observations up to
T = 300 days. We infer parameters from this data for 800,000 epochs and consider tolerances from 0.04 to
0.20. The total runtime is 250 minutes.
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Predicted and Ground Truth Diffusion Coefficient v. Epochs
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Figure 6: Predicted and actual proliferation rates against epochs. Initial value of p = 1.0 x 1072 days—! is
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The PINN solution to Eq. (6) with inferred parameters and the ground truth radially-symmetric solution
are shown in Fig. 4. Notably, the agreement is excellent; the PINN solution (solid) and the ground truth
(circle) exhibit a high degree of overlap. The mean-squared difference between the trained PINN’s solution
and the radially-symmetric finite difference solution in Sec. 3.1.1 is £; = 2.71 x 10~7 while the final PDE
residual is £; = 2.19 x 1076.

From Figs. 5 and 6, we observe that the final predicted values of D and p differ from their true values
by 5 and 1 percent, respectively. Further inspection of the graphs reveals rapid initial movements in both
parameters for the first few thousand epochs, followed by gradual asymptotic increases toward the ground
truth values. From Fig. 7, both parameters have relative errors within approximately 15% after 234,000
epochs (1.25 hours of training). The inferred parameters continue to fluctuate before demonstrating more
stable behavior after 400,000 epochs. Table 2 presents the runtimes at various tolerance levels, along with

corresponding epochs and relative errors in D and p.

Tolerance (€;5;) Epoch  Time (mins.) D, % Error p % Error

0.20 82000 26 46.69 8.74
0.15 234000 75 16.00 2.36
0.10 428000 136 9.97 0.74
0.05 512000 163 6.78 1.06
0.04 700000 223 5.54 0.81

Table 2: Epochs, times, and relative errors for diffusion and proliferation constants against error tolerances
in the radially-symmetric domain.

Diffusion and Proliferation Relative Errors v. Epochs
1

— Diffusion
— Proliferation
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Figure 7: Relative errors between predicted and ground truth diffusion coefficients and proliferation rates
versus epochs in radially-symmetric domain.
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Tumor Concentration v. Radial Distance

Time

Inferred Solution
* Forward Solution
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Figure 8: Plot of u vs. radial distance colored by time from Day 300 to 450. Solid: radially-symmetric,
finite difference numerical solver. Circles: trained parameter inference PINN solutions on new time domain.
Solutions presented in 30-day intervals.

Loss v. Epochs

Loss (MSE)

0 5k 10k 15k 20k 25k 30k
Num Epochs

Figure 9: Plot of mean-squared loss versus training epoch while minimizing residual with fized inferred
parameter. The network trains for 20,000 epochs with the Adam scheme followed by L-BFGS-B, finishing in
8 minutes with a final loss 0f2.81 x 1076,

Additionally, we test how well the PINN with inferred parameters can predict the solution at later times.
We solve Eq. (6) from T' = 300 to 7" = 450 using the PINN with the inferred parameters held fixed. After
30,000 epochs, we report a total runtime of 8 minutes and a final loss of 2.81 x 1075. Thus, the re-trained
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PINN is able to approximate unseen data with high accuracy. The comparison between the numerical solver
and re-trained PINN is presented in Fig. 8. The mean-squared difference between the trained PINN and

numerical solution is 6.62 x 107°.

3.2 Patient-Specific Domain
3.2.1 Forward Problem

We solve Eq. (6) via PINNs in a patient-specific geometry defined from a cross-section of MRI scans (Fig.
2) and simulate the tumor evolution for 7' = 150 days. We sample 20,000 collocation points for the training

data and present the solution in Fig. 10 along with training logs in Fig. 12.

Tumor Concentrations at 50 (left), 100 (center), and 150 (right) Days After Initialization

0.8

Figure 10: Azial view of tumor concentrations at 50-day intervals in patient-specific geometry as generated
by a forward PINN solver. Tumor growth is anisotropic. Length scale: 1 unit = 10 cm.

Tumor Concentrations at 50 (left), 100 (center), and 150 (right) Days After Initialization

0.8

Figure 11: Azial view of tumor concentrations at 50-day intervals in patient-specific g eometry a s learned by
the trained PINN with inferred parameters. The concentrations exhibit close agreement with ground truth
concentrations in Fig. 10. Length scale: 1 unit = 10 cm.
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Loss v. Epochs
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Figure 12: Plot of mean-squared loss versus training epoch. The network trains for 100,000 epochs with the
Adam scheme followed by the BFGS scheme, finishing in 50 minutes with a final loss of 1.29 x 1072,

Figure 10 reveals anisotropic diffusion, with infiltration more rapid along white matter tracts, as the tumor
expands across the right frontal lobe. The tumor radius we estimated at Day 150 is 1.5 cm. The tumor
avoids infiltrating the skull and ventricles, observing the no-flux condition. The network rapidly optimizes
the PDE residual for the first 20,000 epochs followed by slower progress until the BFGS scheme converges
the loss to the order of 1075 (Fig. 12). Table 3 presents the losses, diffusion coefficients, and proliferation

rates for the last 5,000 epochs of parameter inference.

Epoch Loss D,, [mm? days~!]  p [days~!]
795000 [4.19 x 107°%,4.96 x 107 7] 1.26 x 101 2.48 x 1072
796000 [2.05 x 1075, 1.58 x 1079 1.28 x 1071 2.46 x 1072
797000 [1.48 x 107°,1.33 x 1079 1.25 x 1071 2.49 x 1072
798000 [2.79 x 107°,1.57 x 107 1.24 x 1071 2.50 x 1072
799000 [2.37 x 1075,8.33 x 1077 1.26 x 1071 2.47 x 1072
800000 [3.78 x 1076,5.36 x 1077] 1.26 x 1071 2.48 x 1072

Table 3: Losses, diffusion coefficients, and proliferation rates for the last 5,000 epochs of parameter inference
in the patient-specific d omain. Thelossis formatted as[L;(0;Tr), L£;(0, D, p; T;)], presenting the P DE and
observational residuals.

3.2.2 Parameter Inference

From the forward problem in Sec. 3.2.1, we sample 26,830 new inputs and observations up to T' = 150 days.
We infer parameters from this data for 800,000 epochs and consider tolerances from 0.07 to 0.20. The total

runtime is 450 minutes.
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Predicted and Ground Truth Diffusion Coefficient v. Epochs
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Figure 18: Predicted and actual diffusion coefficients against epochs in patient-specific geometry. Initial
value of Dy = 1.0 x 107 mm? days~! is optimized to Dy, ~ 1.26 x 107! mm? days—'. Tolerances and
corresponding epochs shown as colored vertical lines.
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Figure 14: Predicted and actual proliferation rates against epochs in patient-specific geometry. Initial value
of p=1.0x10"2 days~ ! is optimized to p ~ 2.48x 102 days~'. Tolerances and corresponding epochs shown
as colored vertical lines.
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Figure 11 presents the PINN solutions after training and inferring the parameters from the forward solution
in Sec. 3.2.1. There is excellent agreement between the PINN and ground truth tumor concentrations—
the mean-squared difference between the trained PINN’s solution and the forward solution in Sec. 3.2.1 is
L; = 5.36 x 10~7 while the final PDE residual is Ly =3.78x 10-6

From Figs. 13 and 14, we observe that the final predicted values of D and p differ from their true values
by 3 and 1 percent, respectively. Further inspection of the graphs reveals rapid initial movements in both
parameters for the first few thousand epochs, followed by gradual asymptotic increases to the ground truth
values. From Fig. 15, both parameters have relative errors within 15% after 137,000 epochs (1.25 hours of
training). Table 3 shows that the final loss is small for both the PDE and observational residuals, having
reached the orders of 107 and 1077, respectively. Table 4 presents the runtime at various tolerance levels,
along with corresponding epochs and relative errors in D and p. Strikingly, the computation times are very
similar to those in the simple geometry (Table 2). The errors in D and p are even smaller in the patient-
specific geometry, likely because the ground truth tumor concentrations were generated by the forward solver
of the PINN.

Tolerance (€40;)) Epoch  Time (mins.) D, % Error p % Error

0.20 137000 76 12.90 3.87
0.15 407000 224 4.15 1.74
0.10 490000 271 3.54 1.28
0.07 663000 365 3.53 0.92

Table 4: Epochs, times, and relative errors for diffusion and proliferation constants against error tolerances
in the patient-specific domain.
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Figure 15: Relative errors between predicted and ground truth diffusion coefficients and proliferation rates
versus epochs in patient-specific domain.
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4 Discussion

We find t hat PINNs p erform robustly in forward and inverse diffusion-reaction simulations of glioblastoma
in both simple and patient-specific g eometries. T he P DE a nd o bservational | osses a re m inimized t o the
orders of 1076 and 10~7, respectively. Close agreement between predicted and actual tumor radii (1.7 and
1.5 cm in the simple geometry, 3.4 and 3.5 cm in the patient-specific g eometry) further s uggests accurate
learning of the differential e quation. M oreover, t he PINN captures t he anisotropic growth of brain tumors

in patient-specific geometries, implying functionality in heterogeneous domains.

In Sec. 3.1.1, we use a radially-symmetric finite d ifference me thod to provide gr ound tr uth data to train
the PINN and infer the diffusion c oefficient D and proliferation rate p. Onc e the net work has completed
training, we hold constant the predicted parameters for D and p and then solve a forward problem in a
time domain beyond the original problem, introducing unseen data to the network. The resulting solution
is highly accurate relative to the ground truth radial solution, yielding a mean-squared error on the scale of
10~°, and converges in only 8 minutes. We find that continuing to train from the PINN trained over earlier

spatiotemporal data yields significantly faster convergence than re-initializing a new network.

In Sec. 3.2.1, we solve forward problems via a PINN in 50 minutes; utilizing the flexibility o f t he mesh-
free neural network, we successfully account for heterogeneous diffusion. C ompared t o t he 6 0-180 seconds
required by modern finite difference methods [3,17], we agree with the author of [40] that PINNs fare poorly
against traditional solvers in evaluating forward problems. Nevertheless, we solve them to construct synthetic
data for the parameter inference inverse problem and ensure the functionality of PINNs over patient-specific

domains.

We conclude that PINNs are highly capable of recovering biophysical parameters. Notably, the diffusion and
proliferation constants are determined to within five and one p ercent accuracy, respectively, in b oth simple
and patient-specific g eometries with a bout an h our of ¢ omputation. I n f uture work, we p lan t o generate
data from a different numerical solver in time for the patient-specific geometry, thus creating an independent
source to construct the inference dataset. We may also consider adding varying degrees of noise to gauge

the robustness of the PINN approach to parameter inference.

We find t hat t he e rror t olerances b ased o n r elative c hanges o f i terates p rovide a n e ffective co ndition for
halting the training process; relying on relative changes over a moving window of 10,000 epochs grants the
network greater resistance to minor fluctuations. From Tables 2 and 4, we observe that lower tolerances tend
to imply better agreements between the predicted and ground truth values, though at the cost of increased
training time. We also find that reducing the learning rate is crucial to improving c onvergence: after halving
the learning rate at 400,000 epochs, we observe significantly r educed v ariation in t he p redicted v alues on
Figs. 6, 7, 11, and 12. We caution that the selection of the tolerance is largely heuristic, and can be improved
provided one is willing to continue training the network; here, we prioritize speed for medical applicability.
In future works, we may consider using dropout [41] and B-PINNs (Bayesian PINNs) [42] to construct

uncertainty bounds for the problem parameters, providing an alternative to user-supplied tolerances.

We observe that while traditional numerical methods in [3,17] can efficiently solve a single forward problem,

they must be used to solve thousands of problems in order to address inverse problems—particularly using
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Bayesian approaches—translating to lengthy computational costs. In contrast, PINNs bypass the need for
forward solvers by concurrently minimizing the residual from the PDE and the differences between predicted
and observed data. Here, we recover patient-specific problem parameters to within 15% accuracy in as little
as 1.25 hours (Secs. 3.1.2; 3.2.2); in [3], the authors suggest 6,000 forward simulations of their numerical
solver are sufficient for in ference, eq uating to 10 0-300 ho urs of co mputation. Thus we ac hieve anywhere
from an 80-240-fold increase in speed (we note that the relative errors in their simulations for diffusion
and proliferation constants were 0.2 and 20 percent, respectively). However, the inverse problems we solved
involved fewer parameters than the ones in [3,11,21], including statistical variables and initial positions, and
were evaluated over two dimensions, not three. Assuming the complexity of the 3D problem is O(n?) and
the 2D problem is O(n?), we conservatively estimate their numerical solver would require 15-30 seconds per
simulation of a 2D problem (exponentiating to 2/3). This limits our speedup to 20-40 times; nevertheless, we
find that PINNs are a promising alternative to sequential forward computations in parameter inference tasks.
More conservative conditions, such as training for 400,000 epochs so that relative errors are bounded within
5%, would reduce our speedup to 5-10 times. In follow-up works, we plan to incorporate these additional
parameters in the inference problem and consider similar models for other solid tumors such as melanomas,

colon cancer, breast cancer, and lung cancer.

It should be noted that the required runtime for parameter inference varies greatly. In [14-16], a fine-
resolution reaction-diffusion s ystem in t hree d imensions r equires m erely six h ours t o r ecover d iffusion and
proliferation constants within relative errors of 22 and 15 percent, respectively. The results presented here
ought to be viewed as a baseline for expediting current numerical algorithms using non-traditional meth-
ods.

Extending our methodology to three dimensions is limited by the phase-field f unction: t he d iscrete reso-
lution of the MRI scans causes accidental artifacts after solving Eq. (5) (e.g. tissue connections between
brain hemispheres, disrupting the boundary). Though we manually check for this in our two-dimensional
simulations, a more rigorous algorithm may be needed to efficiently define the boundary in three-dimensional
volumes. Moreover, effective interpolation algorithms should be explored for smoothing p ,and p 4. The lin-
ear interpolation we apply here creates discontinuities in the diffusion term, as first-order spatial derivatives
of linear interpolations produce piecewise values. While we do not find that t his significantly im pacted our

solutions, it remains desirable that a superior method be developed.

We observe that the hyperparameters of the PINNs can be improved: our chosen feedforward networks
may benefit f rom g reater d epth, b readth, a nd t raining d atain a ddressing t hel oss f unction. However,
increasing any of these quantities will incur additional computational expenses, forming a trade-off between
model complexity and accuracy. Other architectures such as residual or convolutional networks may be
considered, along with an assortment of parameters (e.g. learning rates, batch sizes, activation functions)
that can be heuristically determined. Moreover, our choice of a diffusion-reaction m odel c an b e replaced
by a Fokker-Planck equation [43] or other models that may describe the tumor’s progression by accounting
for more biophysical processes. We can also directly encode treatments such as resection, radiotherapy, and
chemotherapy into the solver by changing the model equation [38,44]. To fully validate the capabilities of
this computational framework, it could be tested on a cohort of patients to investigate whether the predicted

parameters and subsequently-generated treatments accurately combat in vivo tumor growth.
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5 Conclusion

We have demonstrated that PINNs are capable of solving patient-specific d iffusion-reaction eq uations for
glioblastoma in forward and parameter inference problems, the latter holding clinical significance f or its
applications to personalized medicine. In our experiments, we find t hat P INNs r equire a bout an h our to
accurately calibrate a set of biophysical parameters against empirical observations, improving upon the weeks
of computational expenses incurred by certain standard approaches by 20-40 times. While this metric is
not representative of all current numerical methods, we find it is a promising direction for future research.
Moreover, we have extended the functionality of PINNs to arbitrary geometries, encoding patient-specific
variations with the diffuse d omain m ethod. T hese c ontributions m ay e xpedite p rogress i n computational
medicine, thereby increasing the efficacy of existing treatments for glioblastoma pa tients. Due to the flexible
nature of neural networks, this approach is readily modifiable t o address other models for d iseases such as
breast cancer and lung cancer, offering d octors and p atients alike a m athematically-guided t ool t o inform

medical decisions.
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