Faster Linear Algebra for Distance Matrices

Piotr Indyk Sandeep Silwal
MIT MIT
indyk@mit.edu silwal@mit.edu
Abstract

The distance matrix of a dataset X of n points with respect to a distance function
f represents all pairwise distances between points in X induced by f. Due to their
wide applicability, distance matrices and related families of matrices have been
the focus of many recent algorithmic works. We continue this line of research
and take a broad view of algorithm design for distance matrices with the goal of
designing fast algorithms, which are specifically tailored for distance matrices, for
fundamental linear algebraic primitives. Our results include efficient algorithms
for computing matrix-vector products for a wide class of distance matrices, such
as the ¢; metric for which we get a linear runtime, as well as an Q(n?) lower
bound for any algorithm which computes a matrix-vector product for the /., case,
showing a separation between the ¢ and the ¢/, metrics. Our upper bound results,
in conjunction with recent works on the matrix-vector query model, have many
further downstream applications, including the fastest algorithm for computing
a relative error low-rank approximation for the distance matrix induced by ¢,
and /3 functions and the fastest algorithm for computing an additive error low-
rank approximation for the /5 metric, in addition to applications for fast matrix
multiplication among others. We also give algorithms for constructing distance
matrices and show that one can construct an approximate ¢> distance matrix in
time faster than the bound implied by the Johnson-Lindenstrauss lemma.

1 Introduction

Given a set of n points X = {x1,...,x,}, the distance matrix of X with respect to a distance function
f is defined as the n x n matrix A satisfying A; ; = f(x;, z;). Distances matrices are ubiquitous
objects arising in various applications ranging from learning image manifolds [TSLOO, [WSO06],
signal processing [SYO7], biological analysis [HS93], and non-linear dimensionality reduction
[Kru64, Kru78, [TSLO0, ICCO8], to name a fe Unfortunately, explicitly computing and storing A
requires at least (n?) time and space. Such complexities are prohibitive for scaling to large datasets.

A silver lining is that in many settings, the matrix A is not explicitly required. Indeed in many
applications, it suffices to compute some underlying function or property of A, such as the eigenvalues
and eigenvectors of A or a low-rank approximation of A. Thus an algorithm designer can hope to use
the special geometric structure encoded by A to design faster algorithms tailored for such tasks.

Therefore, it is not surprising that many recent works explicitly take advantage of the underlying
geometric structure of distance matrices, and other related families of matrices, to design fast
algorithms (see Section [I.2]for a thorough discussion of prior works). In this work, we continue this
line of research and take a broad view of algorithm design for distance matrices. Our main motivating
question is the following:

"'We refer the reader to the survey [DPRV15] for a more thorough discussion of applications of distance
matrices.
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Can we design algorithms for fundamental linear algebraic primitives which are
specifically tailored for distance matrices and related families of matrices?

We make progress towards the motivating question by studying three of the most fundamental
primitives in algorithmic linear algebra. Specifically:

1. We study upper and lower bounds for computing matrix-vector products for a wide array of
distance matrices,

2. We give algorithms for multiplying distance matrices faster than general matrices, and,

3. We give fast algorithms for constructing distance matrices.

1.1 Our Results
‘We now describe our contributions in more detail.

1. We study upper and lower bounds for constructing matrix-vector queries for a
wide array of distance matrices.

A matrix-vector query algorithm accepts a vector z as input and outputs the vector Az. There is
substantial motivation for studying such queries. Indeed, there is now a rich literature for fundamental
linear algebra algorithms which are in the “matrix free" or “implicit" model. These algorithms only
assume access to the underlying matrix via matrix-vector queries. Some well known algorithms in
this model include the power method for computing eigenvalues and the conjugate gradient descent
method for solving a system of linear equations. For many fundamental functions of A, nearly
optimal bounds in terms of the number of queries have been achieved [MM 15, BHSW20![BCW22].
Furthermore, having access to matrix-vector queries also allows the simulation of any randomized
sketching algorithm, a well studied algorithmic paradigm in its own right [Wool14|. This is because
randomized sketching algorithms operate on the matrix ITA or ATl where II is a suitably chosen
random matrix, such as a Gaussian matrix. Typically, II is chosen so that the sketches ITA or AIl
have significantly smaller row or column dimension compared to A. If A is symmetric, we can easily
acquire both types of matrix sketches via a small number of matrix-vector queries.

Therefore, creating efficient versions of matrix-vector queries for distance matrices automatically
lends itself to many further downstream applications. We remark that our algorithms can access to
the set of input points but do not explicitly create the distance matrix. A canonical example of our
upper bound results is the construction of matrix-vector queries for the function f(z,y) = |lz — y|[}.

Theorem 1.1. Let p > 1 be an integer. Suppose we are given a dataset of n points X =
{1,..., 2.} CRL X implicitly defines the matrix A; j = ||x; — x5 Given a query z € R™, we
can compute Az exactly in time O(ndp). If p is odd, we also require O(ndlogn) preprocessing time.

We give similar guarantees for a wide array of functions f and we refer the reader to Table[1| which
summarizes our matrix-vector query upper bound results. Note that some of the functions f we
study in Table[l|do not necessarily induce a metric in the strict mathematical sense (for example the
function f(x,y) = ||z — y||3 does not satisfy the triangle inequality). Nevertheless, we still refer to
such functions under the broad umbrella term of “distance functions" for ease of notation. We always
explicitly state the function f we are referring to.

Crucially, most of our bounds have a linear dependency on n which allows for scalable computation
as the size of the dataset X grows. Our upper bounds are optimal in many cases, see Theorem[A.T3]

Combining our upper bound results with optimized matrix-free methods, immediate corollaries of
our results include faster algorithms for eigenvalue and singular value computations and low-rank
approximations. Low-rank approximation is of special interest as it has been widely studied for
distance matrices; for low-rank approximation, our bounds outperform prior results for specific
distance functions. For example, for the ¢; and E% case (and in general PSD matrices), [BCW20]]
showed that a rank-k approximation can be found in time O(ndk /e + nk*~'/e*~1). This bound
has extra poly(1/¢) overhead compared to our bound stated in Table E The work of [IVWW19]
has a worse poly(k, 1/¢) overhead for an additive error approximation for the /> case. See Section
[I.2]for further discussion of prior works. The downstream applications of matrix-vector queries are
summarized in Table



Function fz,y) Preprocessing | Query Time Reference

¢b for p even |z —yllb - O(ndp) Thms. %‘/%

v for p odd |z —yllp O(ndlogn) O(ndp) Thms. 2.2//|A.4
Mixed /o max; ; |z; — y;| O(ndlogn) O(n?) Thm. |A.5
Mahalanobis Distance? 2T My O(nd?) O(nd) Thm. [A.6
Polynomial Kernel (x,y)P - O(ndP) Thm. [A.7]
Total Variation Distance TV(z,y) O(ndlogn) O(nd) Thm. [A.8
KL Divergence Dkr ([ y) - O(nd) Thm. [A2
Symmetric Divergence | Dki(z ||y) + Dxo(y || z) - O(nd) Thm. [A.9
Cross Entropy H(x,y) - O(nd) Thm. [A.9
Hellinger Distance? S Va(i)y(D) — O(nd) Thm. I@I

Table 1: A summary of our results for exact matrix-vector queries.

We also study fundamental limits for any upper bound algorithms. In particular, we show that no
algorithm can compute a matrix-vector query for general inputs for the £, metric in subquadratic time,
assuming a standard complexity-theory assumption called the Strong Exponential Time Hypothesis
(SETH) [1PO1} IPZO1]].

Theorem 1.2. For any a > 0 and d = w(logn), any algorithm for exactly computing Az for any
input z, where A is the {, distance matrix, requires Q(n?=<) time (assuming SETH).

This shows a separation between the functions listed in Table [1|and the /o, metric. Surprisingly, we
can create queries for the approximate matrix-vector query in substantially faster time.

Theorem 1.3. Suppose X C {0,1,...,0(1)}% We can compute By in time O(n, - d°(V4108(d/2)))
where ||A — Blloo < €.

To put the above result into context, the lower bound of Theorem@holds for points sets in {0, 1,2}¢
in d ~ logn dimensions. In contrast, if we relax to an approximation guarantee, we can obtain a
subquadratic-time algorithm for d up to ©(log®(n)/ loglog(n)).

Finally, we provide a general understanding of the limits of our upper bound techniques. In Theorem
[B.1, we show that essentially the only f for which our upper bound techniques apply have a “linear
structure” after a suitable transformation. We refer to Appendix Section [B]for details.

2. We give algorithms for multiplying distance matrices faster than general matrices.

Fast matrix-vector queries also automatically imply fast matrix multiplication, which can be reduced
to a series of matrix-vector queries. For concreteness, if f is the ég function which induces A, and
B is any n x n matrix, we can compute AB in time O(n?dp). This is substantially faster than the
general matrix multiplication bound of n% ~ n?-37. We also give an improvement of this result for
the case where we are multiplying two distance matrices arising from £3. See Table for summary.

3. We give fast algorithms for constructing distance matrices.

Finally, we give fast algorithms for constructing approximate distance matrices. To establish some
context, recall the classical Johnson-Lindenstrauss (JL) lemma which (roughly) states that a random
projection of a dataset X C R of size n onto a dimension of size O(log n) approximately preserves
all pairwise distances [JL84]. A common applications of this lemma is to instantiate the {5 distance
matrix. A naive algorithm which computes the distance matrix after performing the JL projection
requires approximately O(n?logn) time. Surprisingly, we show that the JL lemma is not tight with
respect to creating an approximate {5 distance matrix; we show that one can initialize the /- distance
in an asymptotically better runtime.

Theorem 1.4 (Informal; See Theorem ). We can calculate a n X n matrix B such that
each (i,7) entry B;; of B satisfies (1 — ¢)||a; — zjll2 < Bij < (14 ¢)||zi — x;||2 in time
O(e2n? log* (e~ logn)).



Problem f(z,y) Runtime Prior Work
(1 + ¢) Relative error rank k& 6.0 0 (% + E?k_%) O (Tlaﬂ + Z]flu:l)
low-rank approximation Theorem'& [BCW20]|
Additive error £ A rank k . 0 (gﬁ’; 7’17‘)/) O(nd - poly(k, 1/¢))
low-rank approximation Theorem |C.6 [IVWW19]
. ~ n w—1 ~ n2 . n w—1
(1 + ¢) Relative error rank k Any in Table|1 (@) (;f/kg E(k_ﬁ) 0] ( Elﬁk + ﬁ)
low-rank approximation Theorem|C.7 [BCW22|
. . ~ nk2 3 ~ 2 k> 33/2
(1 £ &) Approximation to Any in Tablel 0] (gﬁ + 5 + E{;/g) O <517§ + i‘ + % )
top k singular values Theorem Iﬁ MMI5]
Multiply dist trix A or
u 1P y distance matrix Any in Table 1 (Tn) O™
with any B € R™*™ Lemma@
Multiply two distance 2 O(n2d*—2) o)
matrices A and B 2 Lemma|C.11

Table 2: Applications of our matrix-vector query results. 7' denotes the matrix-vector query time,
given in Table ll} w =~ 2.37 is the matrix multiplication constant [AW21]].

Our result can be viewed as the natural runtime bound which would follow if the JL lemma implied
an embedding dimension bound of O(poly(loglogn)). While this is impossible, as it would imply
an exponential improvement over the JL. bound which is tight [LN17], we achieve our speedup by
carefully reusing distance calculations via tools from metric compression [IRW17]]. Our results also
extend to the #; distance matrix; see Theorem [D.5]for details.

Notation. Our dataset will be the n points X = {z1,...,z,} C R?. For points in X, we denote
z;(j) to be the jth coordinate of point z; for clarity. For all other vectors v, v; denotes the ith
coordinate. We are interested in matrices of the form 4; ; = f(z;,z;) for f : R? x R? — R which
measures the similarity between any pair of points. f might not necessarily be a distance function but
we use the terminology “distance function" for ease of notation. We will always explicitly state the
function f as needed. w == 2.37 denotes the matrix multiplication constant, i.e., the exponent of n in
the time required to compute the product of two n x n matrix [AW21].

1.2 Related Works

Matrix-Vector Products Queries. Our work can be understood as being part of a long line of
classical works on the matrix free or implicit model as well as the active recent line of works on the
matrix-vector query model. Many widely used linear algebraic algorithms such as the power method,
the Lanczos algorithm [Lan50], conjugate gradient descent [ST94], and Wiedemann’s coordinate
recurrence algorithm [Wie86], to name a few, all fall into this paradigm. Recent works such as
[MM 15, BHSW20, I BCW22] have succeeded in precisely nailing down the query complexity of these
classical algorithms in addition to various other algorithmic tasks such as low-rank approximation
[BCW22], trace estimation [MMMW?21]], and other linear-algebraic functions [SWYZ21b, RWZ20].
There is also a rich literature on query based algorithms in other contexts with the goal of minimizing
the number of queries used. Examples include graph queries [Goll7/], distribution queries [[Can20],
and constraint based queries [ES20] in property testing, inner product queries in compressed sensing
[EK12], and quantum queries [LSZ21,I(CHL21].

Most prior works on query based models assume black-box access to matrix-vector queries. While
this is a natural model which allows for the design non-trivial algorithms and lower bounds, it is
not always clear how such queries can be initialized. In contrast, the focus of our work is not on
obtaining query complexity bounds, but rather complementing prior works by creating an efficient
matrix-vector query for a natural class of matrices.



Subquadratic Algorithms for Distance Matrices. Most work on subquadratic algorithms for
distance matrices have focused on the problem of computing a low-rank approximation. [BW18§,
IVWW19] both obtain an additive error low-rank approximation applicable for all distance matrices.
These works only assume access to the entries of the distance matrix whereas we assume we also
have access to the underlying dataset. [BCW20] study the problem of computing the low-rank
approximation of PSD matrices with also sample access to the entries of the matrix. Their results
extend to low-rank approximation for the ¢; and ¢3 distance matrices in addition to other more
specialized metrics such as spherical metrics. Table[2/lists the runtime comparisons between their
results and ours.

Practically, the algorithm of [[VWW19] is the easiest to implement and has outstanding empirical
performance. We note that we can easily simulate their algorithm with no overall asymptotic runtime
overhead using O(log n) vector queries. Indeed, their algorithm proceeds by sampling rows of the
matrix according to their /3 value and then post-processing these rows. The sampling probabilities
only need to be accurate up to a factor of two. We can acquire these sampling probabilities by
performing O(logn) matrix-vector queries which sketches the rows onto dimension O(log n) and
preserves all row-norms up to a factor of two with high probability due to the Johnson-Lindenstrauss
lemma [JL84]. This procedure only incurs an additional runtime of O(T logn) where T is the time
required to perform a matrix-vector query.

The paper [ILLP04] shows that the exact L distance matrix can be created in time O(n(w+3)/ 2) ~
n?%9 in the case of d = n, which is asymptotically faster than the naive bound of O(n?d) = O(n?).
In contrast, we focus on creating an (entry-wise) approximate distance matrices for all values of d.

We also compare to the paper of [ACSS20]. In summary, their main upper bounds are approximation
algorithms while we mainly focus on exact algorithms. Concretely, they study matrix vector products
for matrices of the form A; ; = f(||x; — ;||3) for some function f : R — R. They present results
on approximating the matrix vector product of A where the approximation error is additive. They
also consider a wide range of f, including polynomials and other kernels, but the input to is always
the /5 distance squared. In contrast, we also present exact algorithms, i.e., with no approximation
errors. For example one of our main upper bounds is an exact algorithm when A; ; = ||z; — x;]1
(see Table 1 for the full list). Since it is possible to approximately embed the ¢; distance into ¢3, their
methods could be used to derive approximate algorithms for /1, but not the exact ones. Furthermore,
we also study a wide variety of other distance functions such as /., and ¢} (and others listed in Table
1) which are not studied in Alman et al. In terms of technique, the main upper bound technique of
Alman et al. is to expand f(||z; — z;||3) and approximate the resulting quantity via a polynomial.
This is related to our upper bound results for £§ for even p where we also use polynomials. However,
our results are exact, while theirs are approximate. Our ¢; upper bound technique is orthogonal to the
polynomial approximation techniques used in Alman et al. We also employ polynomial techniques
to give upper bounds for the approximate /., distance function which is not studied in Alman et
al. Lastly, Alman et al. also focus on the Laplacian matrix of the weighted graph represented by
the distance matrix, such as spectral sparsification and Laplacian system solving. In contrast, we
study different problems including low-rank approximations, eigenvalue estimation, and the task of
initializing an approximate distance matrix. We do not consider the distance matrix as a graph or
consider the associated Laplacian matrix.

It is also easy to verify the “folklore" fact that for a gram matrix AA”, we can compute AAT v in
time O(nd) if A € R"*4 by computing ATv first and then A(A”v). Our upper bound for the ¢2
function can be reduced to this folklore fact by noting that ||x — y||3 = ||z||3 + ||y||3 — 2(z, y). Thus
the ¢3 matrix can be decomposed into two rank one components due to the terms ||z||3 and ||y||3, and
a gram matrix due to the term (x, y). This decomposition of the £3 matrix is well-known (see Section
2 in [DPRV15]]). Hence, a matrix-vector query for the ¢3 matrix easily reduces to the gram matrix
case. Nevertheless, we explicitly state the /3 upper bound for completeness since we also consider all
¢8 functions for any integer p > 1.

Polynomial Kernels. There have also been works on faster algorithms for approximating a kernel
matrix K defined as the n x n matrix with entries K; ; = k(z;, x;) for a kernel function k. Specifically
for the polynomial kernel k(z;, z;) = (x;, z;)?, recent works such as [ANW14, AKK™" 20, WZ20,
SWYZ21a] have shown how to find a sketch K’ of K which approximately satisfies | K'z||s ~
| z||2 for all z. In contrast, we can exactly simulate the matrix-vector product K z. Our runtime
is O(ndP) which has a linear dependence on n but an exponential dependence on p while the



aforementioned works have at least a quadratic dependence on n but a polynomial dependence on
p. Thus our results are mostly applicable to the setting where our dataset is large, i.e. n > d and
p is a small constant. For example, p = 2 is a common choice in practice [CHC*10]. Algorithms
with polynomial dependence in d and p but quadratic dependence in n are suited for smaller datasets
which have very large d and large p. Note that a large p might arise if approximates a non-polynomial
kernel using a polynomial kernel via a taylor expansion. We refer to the references within [ANW 14|
AKKT20, WZ20, [SWYZ21a] for additional related work. There is also work on kernel density
estimation (KDE) data structures which upon query y, allow for estimation of the sum ) __ k(z,y)
in time sublinear in | X | after some preprocessing on the dataset X. For widely used kernels such
as the Gaussian and Laplacian kernels, KDE data structures were used in [BIMW21] to create a
matrix-vector query algorithm for kernel matrices in time subquadratic in | X | for input vectors which
are entry wise non-negative. We refer the reader to [[CS17, BCIS1S, SRB*19, BIWT9, [CKNS20]
and references within for prior works on KDE data structures.

2 Faster Matrix-Vector Product Queries for /;

We derive faster matrix-vector queries for distance matrices for a wide array of distance metrics.
First we consider the case of the ¢; metric such that A; ; = f(x;,z;) where f(z,y) = ||z —y|1 =

d
Zi:1 |$z - Z/i|'

Algorithm 1 Preprocessing

. Input: Dataset X C R¢
: procedure PREPROCESSING
for i € [d] do
T; < sorted array of the ¢th coordinates of all x € X.
end for
end procedure

SAANE A S

Algorithm 2 matrix-vector Query forp = 1

1: Input: Dataset X C R¢
2: Output: z = Ay
3: procedure QUERY({T; }ic[q)» ¥)

4: Y1, ,Yn < coordinates of .
5: Associate every x; € X with the scalar y;
6: for i € [d] do
7: Compute two arrays B;, C; as follows.
8: B; contains the partial sums of y;z;(¢) computed in the order induced by T;
9: C; contains the partial sums of y; computed in the order induced by T;
10: end for
11: z <+ 0"
12: for k € [n] do
13: for i € [d] do
14: q + position of xy(7) in the order of T;
15: Sl «— B; [q]
16: SQ «— Bi[n} — Bi[q]
17: S3 + C; [q]
18: Sy Cl[n] - C; [q]
19: Z(k‘)+ = l‘k(’t) < (S3—84)+ 52— 51
20: end for

21: end for
22: end procedure

We first analyze the correctness of Algorithm 2]
Theorem 2.1. Let A; ; = ||z; — x;||1. Algorithm|2|computes Ay exactly.



Proof. Consider any coordinate k € [n]. We show that (Ay)y, is computed exactly. We have

Z%ka_%nl—zz%uk — (i |—ZZyJ|Tk ) — x; ().

Jj=11i=1 i=1 j=1
Let 7 denote the order of [n] induced by 7;. We have

d

Z il (@) =z (D] =) Yoo yilw@) —a@) + Y yilan() —a5(0)

=1 \jir (k) <7 (5) gt (k)>m(5)

HM&

We now consider the inner sum. It rearranges to the following:

(1) D SR 7 ISR SRR -1 () R S P21 ()

gt (k)>m(5) gt (k) <mi(4) gt (k)< (4) gt (k) > (4)

= :Ck(l) . (Sg — S4) +SQ — 51,

where Sy, Sz, S3, and Sy are defined in lines 15 — 18 of Algorithm [2 and the last equality follows
from the definition of the arrays B; and C;. Summing over all ¢ € [d] gives us the desired result. [

The following theorem readily follows.

Theorem 2.2. Suppose we are given a dataset {x1, ..., x,} which implicitly defines the distance
matrix A; j = ||z; — x;||1. Given a query y € R%, we can compute Ay exactly in O(nd) query time.
We also require a one time O(ndlogn) preprocessing time which can be reused for all queries.

3 Lower and Upper bounds for /.,

In this section we give a proof of Theorem [I.2] Specifically, we give a reduction from a so-called
Orthogonal Vector Problem (OVP) [Wil05] to the problem of computing matrix-vector product Az,
where A; ; = ||z; — 2| 0, for a given set of points X = {x1,...,z,}. The orthogonal vector
problem is defined as follows: given two sets of vectors A = {a,...,a"} and B = {b},...,b"},
A, B C {0,1}¢, |A| = |B| = n, determine whether there exist # € A and y € B such that the dot

product x - y = Z?Zl x;1; (taken over reals) is equal to 0. It is known that if OVP can be solved in

strongly subquadratic time O(n?~%) for any constant o« > 0 and d = w(logn), then SETH is false.
Thus, an efficient reduction from OVP to the matrix-vector product problem yields Theorem

Lemma 3.1. If the matrix-vector product problem for {, distance matrices induced by n vectors of
dimension d can be solved in time T (n, d), then OVP (with the same parameters) can be solved in
time O(T'(n, d)).

Proof. Define two functions, f,g : {0,1}¢ — [0,1], such that f(0) = g(0) = 1/2, f(1) = 0
g(1) = 1. We extend both functions to vectors by applying f and g coordinate wise and to sets by
letting f({a,...,a"}) = {f(a'),..., f(a™)}); the function g is extended in the same way for B.
Observe that, for any pair of non-zero vectors a,b € {0,1}4, we have || f(a) — g(b)|| = 1 if and
onlyifa-b>0,and ||f(a) — g(b)||cc = 1/2 otherwise.

Consider two sets of binary vectors A and B. Without loss of generality we can assume that the
vectors are non-zero, since otherwise the problem is trivial. Define three distance matrices: matrix M 4
defined by the set f(A), matrix M p defined by the set g(B) and M 4 p defined by the set f(A)U f(B).
Furthermore, let M be the “cross-distance” matrix, such that such that M; ; = || f(a’) — g(b") || ce-
Observe that the matrix M 4 p contains blocks M 4 and Mp on its diagonal, and blocks M and M T
off-diagonal. Thus, Myp-1= M4 -1+ Mp -1+ 2M -1, where 1 denotes an all-ones vector of the
appropriate dimension. Since M -1 = (Map -1 —M4s -1 — Mg -1)/2, we can calculate M - 1 in
time O(T'(n, d)). Since all entries of M are either 1 or 1/2, we have that M - 1 < n? if and only if
there is an entry M; ; = 1/2. However, this only occurs if a’ - b = 0. O



3.1 Approximate /., Matrix-Vector Queries

In light of the lower bounds given above, we consider initializing approximate matrix-vector queries
for the ¢, function. Note that the lower bound holds for points in {0, 1, 2}d and thus it is natural to
consider approximate upper bounds for the case of limited alphabet.

Binary Case. We first consider the case that all points » € X are from {0, 1}%. We first claim
the existence of a polynomial 7" with the following properties. Indeed, the standard Chebyshev
polynomials satisfy the following lemma, see e.g., see Chapter 2 in [SVT14].

Lemma 3.2. There exists a polynomial T : R — R of degree O(\/dlog(1/¢)) such that T(0) = 0
and |T(z) — 1| <eforallxz € [1/d,1].

Now note that ||z — y||o can only take on two values, 0 or 1. Furthermore, ||z — y|lc = 0 if and
only if |z — y||3 = 0 and ||z — y||c = 1 if and only if ||z — y||3 > 1. Therefore, ||z — y||oo = 0 if
and only if T'(||z — y||3/d) = 0 and ||z — y||oc = 1if and only if |T'(||lz — y||3/d) — 1] < e. Thus,
we have that

i = T(lzi = 2513/d)| = [llzi = @jlloc = T(l2s — z5]13/d)] < €
for all entries A; ; of A. Note that T'(||z — y||3/d) is a polynomial with O((2d)") monomials in the
variables z(1), ..., z(d). Consider the matrix B satisfying B; ; = T'(||z; — x;||3/d). Using the same
ideas as our upper bound results for f(z,y) = (x, y)P, it is straightforward to calculate the matrix
vector product By (see Section . To summarize, for each k € [n], we write the kth coordinate of
By as a polynomial in the d coordinates of zj. This polynomial has O((2d)") monomials and can be
constructed in O(n(2d)") time. Once constructed, we can evaluate the polynomial at x1, . .., x,, to

obtain all the n coordinates of By. Each evaluation requires O((2d)?) resulting in an overall time
bound of O(n(2d)").

Theorem 3.3. Let A; ; = ||z; — xj|lco. We can compute By in time O(n(2d)Va1e(1/)) ywhere

Entries in {0,...,M}. We now consider the case that all points = € X are from {0, ..., M}%.
Our argument will be a generalization of the previous section. At a high level, our goal is to detect
which of the M + 1 possible values in {0, ..., M} is equal to the £, norm. To do so, we appeal to
the prior section and design estimators which approximate the indicator function “||x — y|s > 7”.
By summing up these indicators, we can approximate ||z — y||oo-

Our estimators will again be designed using the Chebyshev polynomials. To motivate them, suppose
that we want to detect if ||z — y||oo > 7 orif ||z — y||co < 4. In the first case, some entry in x — y will
have absolute value value at least ¢ where as in the other case, all entries of  — y will be bounded by
1 — 1 in absolute value. Thus if we can boost this ‘signal’, we can apply a polynomial which performs
thresholding to distinguish the two cases. This motivates considering the functions of ||z — y||¥ for a
larger power k. In particular, in the case that ||z — y|| > i, we have || — y||}; > i* and otherwise,
lz — y||¥ < di*~1. By setting k ~ log(d), the first value is much larger than the latter, which we
can detect using the ‘threshold’ polynomials of the previous section.

We now formalize our intuition. It is known that appropriately scaled Chebyshev polynomials satisfy
the following guarantees, see e.g., see Chapter 2 in [SVT14].

Lemma 3.4. There exists a polynomial T : R — R of degree O(v/tlog(t/e)) such that |T(z)| < ¢/t
forallz € [0,1/(10t)] and |T(x) — 1| < e/t? forall x € [1/t,1].

Given z,y € RY, our estimator will first try to detect if ||z — y||o > 7. Let T} be a polynomial
from Lemmawith t = O(M¥) for k = O(M log(Md)) and assuming k is even. Let T be a
polynomial from Lemmawith t = O(v/dlog(M/e)). Our estimator will be
d . .
1 (x(j) —y(G)"
m{ gom (MR
Jj=1
If coordinate j is such that |2(j) — y(j)| > ¢, then
()~ v@)* _ 1
k. MF = MF



and so 7} will evaluate to a value very close to 1. Otherwise, we know that

z(5) —y(4))* i—1)k 1 . 1 1
((Qﬁ(ﬁ)) S(ikM’Z :W(l_l/l)k<<W'poly(M,d)

by our choice of k, which means that T} will evaluate to a value close to 0. Formally,
d . .
1 (z(j) —y(i)*
d 2.7 ( ik MF
=1

will be at least 1/d if there is a j € [d] with |z(j) — y(j)| > 7 and otherwise, will be at most 1/(10d).
By our choice of T%, the overall estimate output at least 1 — ¢ in the first case and a value at most € in
the second case.

The polynomial which is the concatenation of Tb and Ty has O ((dk : deg(Tl))deg(T2))

(dM )O(M Vdlog(Md)) monomials, if we consider the expression as a polynomial in the variables
x(1),...,z(d). Our final estimator will be the sum across all ; > 1. Following our upper bound
techniques for matrix-vector products for polynomial, e.g. in Section[A.Z, and as outlined in the prior
section, we get the following overall query time:

Theorem 3.5. Suppose we are given X = {x1,...,x,} C {0,..., M} which implicitly defines the

matrix A; ; = ||x; — | co. For any query y, we can compute By in time n - (dM)O M Vdlog(Md/z))

where |A — Bl < &

4 Empirical Evaluation

We perform an empirical evaluation of our matrix-vector query for the ¢; distance function. We
chose to implement our ¢; upper bound since it’s a clean algorithm which possesses many of the
same underlying algorithmic ideas as some of our other upper bound results. We envision that similar
empirical results hold for most of our upper bounds in Table[I. Furthermore, matrix-vector queries
are the dominating subroutine in many key practical linear algebra algorithms such as the power
method for eigenvalue estimation or iterative methods for linear regression: a fast matrix-vector query
runtime automatically translates to faster algorithms for downstream applications.

Dataset (n,d) Algo. | Preprocessing Time Avg. Query Time
Gaussian Mixture | (5 -10%,50) Naive 453.7 s 433s
Ours 0.55s 0.09 s
MNIST (5. 104, 784) Naive 26725s 38.6s
Ours 55s 19s
Nai - ~ 2. i
Glove (1.2 106, 50) ave 6 days (estimated)
Ours 16.8 s 34s

Table 3: Dataset description and empirical results. (n, d) denotes the number of points and dimension
of the dataset, respectively. Query times are averaged over 10 trials with Gaussian vectors as queries.

Experimental Design. We chose two real and one synthetic dataset for our experiments. We have
two “small" datasets and one “large" dataset. The two small datasets have 5 - 10* points whereas the
large dataset has approximately 10° points. The first dataset is points drawn from a mixture of three
spherical Gaussians in R%°. The second dataset is the standard MNIST dataset [LeC98] and finally,
our large dataset is Glove word embeddings?in R5° [PSM14].

The two small datasets are small enough that one can feasibly initialize the full n x n distance matrix
in memory in reasonable time. A 5 - 10* x 5 - 10* matrix with each entry stored using 32 bits requires
10 gigabytes of space. This is simply impossible for the Glove dataset as approximately 5.8 terabytes
of space is required to initialize the distance matrix (in contrast, the dataset itself only requires < 0.3
gigabytes to store).

2Can be accessed here: http://github.com/erikbern/ann-benchmarks/


http://github.com/erikbern/ann-benchmarks/

The naive algorithm for the small datasets is the following: we initialize the full distance matrix
(which will count towards preprocessing), and then we use the full distance matrix to perform a
matrix-vector query. Note that having the full matrix to perform a matrix-vector product only helps
the naive algorithm since it can now take advantage of optimized linear algebra subroutines for
matrix multiplication and does not need to explicitly calculate the matrix entries. Since we cannot
initialize the full distance matrix for the large dataset, the naive algorithm in this case will compute
the matrix-vector product in a standalone fashion by generating the entries of the distance matrix on
the fly. We compare the naive algorithm to our Algorithms|[T]and [2]

Our experiments are done in a 2021 M1 Macbook Pro with 32 gigabytes of RAM. We implement all
algorithms in Python 3.9 using Numpy with Numba acceleration to speed up all algorithms whenever
possible.

Results. Results are shown in Table[3. We show preprocessing and query time for both the naive
and our algorithm in seconds. The query time is averaged over 10 trials using Gaussian vectors as
queries. For the Glove dataset, it was infeasible to calculate even a single matrix-vector product, even
using fast Numba accelerated code. We thus estimated the full query time by calculating the time on
a subset of 5 - 10* points of the Glove dataset and extrapolating to the full dataset by multiplying
the query time by (n/(5 - 10%))? where n is the total number of points. We see that in all cases, our
algorithm outperforms the naive algorithm in both preprocessing time and query time and the gains
become increasingly substantial as the dataset size increases, as predicted by our theoretical results.
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2022448), Simons Investigator Award, MIT-IBM Watson Al Lab, GIST- MIT Research Collaboration
grant, and NSF Graduate Research Fellowship under Grant No. 1745302.
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