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Abstract. Cyber-physical systems consist of control software systems
that interact with physical components that obey the fundamental laws
of physics. It has been long known that exhaustive verification of these
systems is a computationally challenging problem and distribution makes
the problem significantly harder. In this paper, we advocate for run-
time verification of cyber-physical systems and layout a road map for
enhancing its effectiveness and efficiency by exploiting the knowledge of
dynamics of physical processes.

1 Introduction

Cyber-physical systems (CPS), the Internet of Things (IoT), and edge applica-
tions appear in many different applications in our daily lives. CPS generally
have safety-critical nature and as in other such systems, runtime verification
(RV) is a complementary approach to static verification and testing in order to
gain assurance about the health of the system. CPS is particularly becoming
distributed over networks of agents, e.g., in sensors in infrastructures, health-
monitoring wearables, networks of medical devices, and autonomous vehicles.
Moreover, CPS and IoT often have to deal with resource constraints and any
improvement in minimizing resource utilization and consumption is in pressing
need.

While there have been proposals for monitoring CPS [2,4,5], predictive moni-
toring [3], monitoring using worst-case bounds [6], mitigating the effects of timing
inaccuracies [1,12], and for minimally intrusive CPS monitoring [9], to our knowl-
edge, the work on distributed RV and exploiting system dynamics to reduce the
overhead of RV is limited to [11]. System dynamics is especially an interesting
feature of CPS, as physical processes are assumed to obey the laws of physics. For
example, a car cannot accelerate from 1–150 km/h in only one second. Knowing
this could significantly assist in designing runtime monitors that monitor the
state of the system while ignoring scenarios that cannot be reached.

Our goal in this paper is to explore the idea of combining RV with a pre-
computed knowledge of system dynamics to enhance the effectiveness of RV and
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reduce its runtime overhead. To this end, we introduce a set of ideas on the types
of dynamics knowledge that can be available and how it might be leveraged by a
runtime monitor, in the centralized and distributed setups. Specifically, we look
at:

– Types of dynamics knowledge: from simple bounds on the state changes to
full knowledge of the dynamics but only over a short amount of time.

– Different system models: we consider continuous-time and discrete-time mod-
els in a unified manner, to maintain maximum applicability of the monitors.

– Different ways to leverage the dynamics: from skipping parts of the signal
where nothing interesting can happen, to early termination of the monitoring
process.

We also discuss that the impact of the knowledge of the dynamics when
the monitor is distributed over the agents, with each agent knowing only its own
dynamics, and show how access to information about offline model-checking runs
on the model can be leveraged.

The Model-Based Design Cycle and Runtime Verification. Knowledge of the
dynamics, and offline formal verification, are possible in the model-based design
cycle, in which a model of the system-under-development is created, refined and
ultimately synthesized. Thus, by construction, the system can predict its own
future, up to a certain horizon, and up to a certain accuracy. This knowledge,
available by construction, can accelerate or improve the accuracy of online RV.

Organization. The rest of the paper is organized as follows. In Sect. 2, we present
the preliminary concepts. Section 3 discusses the role of system dynamics in
improving the runtime overhead. We discuss the distributed setting and its chal-
lenges in Sect. 4 and the impact having access to verified dynamics in Sect. 5.
Finally, we conclude in Sect. 6.

2 Preliminary Concepts

First, we set some notations. The set of reals is R, the set of non-negative reals
is R+, and the set of positive reals is R

∗
+. The set of integers {1, . . . , N} is

abbreviated as [N ].

2.1 Signal Model

In this section, we review our signal model, i.e., our model of the output signal
of an agent from [11].

Definition 1. An output signal is a function x : I → R
d, which is right-

continuous, left-limited, and is not Zeno. Here, I is an interval in R+ (which
could be all of R+), and will be referred to as the timeline of the signal. �
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Right-continuity means that at all t in its support, lims→t+ x(s) = x(t). Left-
limitedness means the function has a finite left-limit at every t in its support:
lims→t− x(s) < ∞. Not being Zeno means that x has a finite number of dis-
continuities in any bounded interval in its support. This ensures that the signal
cannot jump infinitely often in a finite amount of time. A discontinuity in a
signal x(·) can be due to a discrete event internal to agent A (like a variable
updated by software), or to a message sent to or received from another agent A′.

2.2 Signal Temporal Logic (STL) [8]

Let AP be a set of atomic propositions. The syntax for signal temporal logic
(STL) is defined for infinite traces using the following grammar:

ϕ := � | p | ¬ϕ | ϕ ∧ ϕ | ϕU[a,b] ϕ

where � is the logical constant standing for true, p ∈ AP and U is the
‘until’ temporal operator. We view other propositional and temporal operators
as abbreviations, that is, ⊥ = ¬� (false), [a,b] ϕ = �U [a,b]ϕ (eventually),

[a,b] ϕ = ¬( [a,b] ¬ϕ) (always). We denote the set of all STLformulas by ΦSTL.
Let a trace σ = (x1, . . . , xN ) be a set of N signals with common support R+.

Thus, a trace is, by definition, of infinite duration. This models that all agents
are executing concurrently, and that time does not stop. Even if the agent does
nothing over some interval [a, b], its physical output signal still has a value. This
models the output of a set of N agents operating concurrently. Each signal might
be d-dimensional. For simplicity of presentation and without loss of generality
in this paper, we assume d = 1.

To every atom p in AP is associated an N -ary function fp : RN → R.
Let |= denote the satisfaction relation. We write σ, t |= ϕ to signify ‘the

infinite trace σ satisfies formula ϕ starting at time t’. Since the signals share
a support, time t is in that shared support. Satisfaction is formally defined as
follows.

(σ, t) |= � (no condition, � is satisfied by all traces at all times)
(σ, t) |= p iff fp(x1(t), . . . , xn(t)) > 0
(σ, t) |= ϕ ∧ ψ iff (σ, t) |= ϕ ∧ (σ, t) |= ψ
(σ, t) |= ¬ϕ iff ¬((σ, t) |= ϕ)
(σ, t) |= ϕU [a,b]ψ iff ∃t′ ∈ [t + a, t + b] : (σ, t′) |= ψ ∧

∀t′′ ∈ [t, t′) : (σ, t′′) |= ϕ

Note that for the Until operator, formula ϕ is required to hold starting at the
evaluation moment t up to and excluding the ‘hand-over’ moment t′. When t = 0
we write σ |= ϕ instead of (σ, 0) |= ϕ. For example, given the trace σ shown in
Fig. 1, the STLformula ϕ = pU [4,6.5]q holds at time 0, that is, σ |= ϕ. However,
ϕ does not hold after time 2, as in that case, q must be observed after time 2+4
and before 2 + 6.5, which does not happen.

A subtlety of the online monitoring setup is that only a finite-duration seg-
ment of a trace is available at any given time, not an infinite trace. This is handled
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in the classical manner: given a finite duration signal x, we say it satisfies/violates
ϕ iff every extension (x.y), where y is an infinite signal, satisfies/violates ϕ. Oth-
erwise, the monitor returns Unknown. Here, the dot ‘.’ denotes concatenation in
time.

p

q

0 4.5 6
t

�
⊥
�
⊥

Fig. 1. A trace σ generated by a system.

3 Exploiting Knowledge of System Dynamics

RV first emerged as a set of techniques for monitoring a signal against a specifi-
cation, without paying any attention to the dynamics that generates the signal.
This was deliberate: the setup imagined by RV pioneers was one in which a
model of the systems was not available, or was available but too complicated
for exhaustive verification (i.e., model checking). The advantage of ignoring the
signal-generating dynamics is that the resulting monitor is maximally applica-
ble: all it needs is the signal to monitor. It might also be thought that this
creates a faster monitor, since taking signal dynamics into account might add a
computational burden.

In this section, we argue that this is not always the case – indeed, we argue
that exploiting available knowledge of signal dynamics can reduce the monitor’s
run time. In a sense, this parallels earlier developments in cyber-physical sys-
tems which brought together computer scientists and control theorists to develop
model-checking and verification algorithms for hybrid dynamical systems. The
new model checking algorithms had to account for the dynamics to verify prop-
erties expressed in terms of the state variables.

3.1 Motivating Example

To motivate the benefit of using systems dynamics, we repeat one of our examples
from [11] (see Fig. 2). From knowing the rate bound |ẋ| ≤ 1 (shown by a dashed
line), the monitor concludes that the earliest x can satisfy the atom x ≥ 3 is τ1.
Similarly for y. Given that τ1 > τ2, the monitor discards, roughly speaking, the
fragment [0, τ2] from each signal and monitors the remaining pieces.

In [11] we demonstrated that such dynamics knowledge can significantly
reduce the runtime of the monitor. This paper explores other possibilities for
exploiting other forms of knowledge.
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Fig. 2. Leveraging dynamics.

3.2 System Model

We consider signals x generated by a system under observation. A system is
modeled as a tuple Σ = (X, I, U, f,H), where X ⊆ R

d is the state space, I ⊂ X
is the set of initial states, U ⊂ R

m is the input space, f : X × U → X is the
transition function, and H : X → R

o is the output or observation function.
The model is either an Ordinary Differential Equation (ODE) in continuous

time
ẋ(t) = f(x(t), u(t)), x(0) ∈ I, u(t) ∈ U, t ∈ [0,∞)

or a Difference Equation (DEs) in discrete time

x(t + 1) = f(x(t), u(t)), x(0) ∈ I, u(t) ∈ U, t ∈ N

The DE can model, as a special case, finite state automata: in this case f models
the transition relation of the automaton. In both cases, u is the input signal,
provided by the system’s controller; in the discrete-time case, u is of course a
(discrete-time) sequence. We write x

u→ x′ to indicate a transition from x to x′

under input signal or sequence u of unspecified length.

3.3 Knowledge of Signal Dynamics

In this section, by ‘signal dynamics’, we mean the dynamics of the model that
is generating the monitored signal. E.g., the signal x might be the position of a
car which obeys an ODE

ẋ(t) = v(t)cos(θ(t)),

where v̇(t) = a(t), a is the acceleration input, and θ(t) is the steering input.
Thus the input signal is 2-dimensional: u = [a, θ].

The monitor, which runs on-board the system, may have different kinds of
knowledge about the dynamics:

1. Bounds on the signal’s derivative/difference: |ẋ(t)| ≤ L or |x(t + 1) −
x(t)| ≤ L. This is the simplest form of knowledge that we consider.

2. Local model: To each value of the state, the monitor associates a local
approximation of the dynamics. That is, if the measured state at time t is
x, the monitor considers that the signal obeys ẋ(t) = fx(x(t), u(t)), where
fx is the local model. We do not commit to how fx and f are related: the
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former may be a linearization of the latter, or something else entirely. For
fx to be useful, we must assume that its error to f is bounded, namely
‖fx(y, u)−f(y, u)‖ ≤ e(x) for all x, y and u. (Note that sometimes fx does not
take the same input as f , in which case we must also assume some mapping
from f -inputs to fx-inputs). Presumably fx is also faster to simulate than f .
Similar equations apply to the DE case.

3. Simulating model: In this case, the monitor has access to a dynamical
model Σ′ = (Xg, Ig, Ug, g,H), with state space Xg and control space Ug,
which simulates f . This means that there is relation R between Xf and Xg,
called the simulation relation, such that:
(a) Any two related states have the same output: H(xf ) = H(xg) for all

(xf , xg) ∈ R. Thus, an observer cannot tell whether they are observing
a state of f or g.

(b) For every x in If there exists a point y in Ig s.t. (x, y) ∈ R (initial
conditions are related).

(c) For every (x, y) ∈ R it holds that: x
u→ x′ in the f -system implies the

existence of a transition y
u′
→ y′ in the g-system s.t. (x′, y′) ∈ R. That

is, related states evolve into related states.
We say g simulates f . Note that every f -behavior has a corresponding g-
behavior, but not necessarily the other way around.
The notion of ε-simulation generalizes the above definition by requiring
bounded error between related states rather than equality. That is, ‖H(xf )−
H(xg)‖ ≤ ε for all (xf , xg) ∈ R

4. Short model: the monitor has access to the ‘true’ model f but can only
execute it for a short amount of time. E.g., it can only solve the ODE up to
time 5, or it can only see 5 hops ahead in the automaton.

We do not consider the case where the monitor has access to the true model
f and can execute it to any length since then, the monitor can predict exactly
the future trajectory and monitor it in a dynamics-agnostic manner.

Of course, there may be combinations of the above types of knowledge, e.g.,
a short local model.

3.4 Using Partial Knowledge

How might the monitor use these kinds of partial knowledge? And why would
that reduce the monitoring overhead? By default, we present all examples for
continuous-time signals. Obvious modifications can be made for the DE case,
unless otherwise indicated. Our approach in this section will be to start from
simple concrete examples which clarify the basic idea and technique to leverage
dynamics in runtime monitoring. We then raise some of the challenges that will
arise when we try to generalize, and suggest ways forward.
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Early Termination: the most concrete idea, and one which can be readily
implemented on top of existing software, is to use the dynamics knowledge to
potentially terminate monitoring early. For instance, consider the atom p :=
(x ≥ 0) and suppose the formula is p. So far no p has been observed, and at
the present moment t, x(t) = −5. If the monitor knows that ẋ(s) ≤ −1 from
here on out (s ≥ t) then it can immediately declare a violation since x will never
go positive.

The same principle applies if the monitor has a local model with a known
deviation e to the true dynamics. The local bound provides a more refined bound,
one that is not uniform, thus reducing the conservatism of the answer, but at
the cost of solving the local model’s time-varying ODE.

A simulating model is also useful for achieving the same task if the simulation
relation meets a certain property. Namely, the state space of g, Xg, is obtained by
partitioning X, where the states in each part all satisfy a particular combination
of atoms. Formally, Xg is the quotient set of X by the equivalence relation

x ≡ y iff for all atomic propositions p, x |= p iff y |= p.

We say that the simulation respects AP. If the simulation relation respects AP,
then it is enough to execute g to get a peek at the future. This is because g
contains all the information necessary to monitor the formula: In such a case,
the monitor executes g however long is feasible and tries to predict a violation
or satisfaction, if they occur within the prediction horizon.

The above reasoning might be generalized somewhat if we find a notion of
approximate satisfaction of an atom, which we then lift to the notion of a sim-
ulation relation that approximately respects AP. This might coincide with the
notion of approximate simulation introduced in 2. Approximate simulations are
well-known in the hybrid systems literature and have been successfully used to
verify the safety of complex dynamics by reasoning over the simulating sys-
tem. For general properties expressed in a temporal logic, this is more compli-
cated as it compounds the errors in complex ways. One possible approach is to
study the formula’s language directly, and lift the approximate simulation to the
languages. It is less clear whether a general simulating model, which does not
(approximately) respect AP, can enable early termination.

It is fairly obvious that a short model can help in early termination: just
execute the model as long as feasible, say for H time units, and see if the pre-
dicted trajectory already satisfies or violates the spec. However, since we assume
the execution horizon H to be very short, this will probably waste more energy
in trajectory prediction than it saves in early termination, since most predic-
tions won’t yield a decisive verdict. An interesting research direction arises if we
assume that the monitor can query the model f at particular states: meaning
that it can simulate f for H units from a state q of its choosing, not necessarily
the current state x(t). If this is possible, then the monitor can pre-emptively
explore the model’s behavior around potentially troublesome states from which
violations of the formula can arise. Research is needed to define“troublesome
states”, and to do so in a way that takes into account the current on-going
execution and the ways in which the formula can still be violated.
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If f is an ODE or DE, the model can be queried in a straightforward fashion
by setting the initial condition to q – but the difficulty immediately arises of
what input signal to apply to solve the ODE ẋ = f(x, u). If the controller is a
state-feedback controller, the answer is trivial, but in general, this is an open
question. If f is an automaton, querying it requires communication between the
monitor and the system itself (or perhaps the controller), in which the monitor
asks to obtain that piece of the automaton which is centered on q; i.e., q and
its out-neighbors up to H hops away. Whether this is realistic or not depends
on the system architecture: for instance, many systems do not carry a model of
their own dynamics at all, or that model is not all available in memory at any
given point in time due to memory constraints.

Skipping Parts of the Signal: The same types of knowledge might allow
skipping parts of the signal: they are not monitored, thus saving in monitor-
ing energy consumption, or freeing the monitor for other tasks, like monitoring
multiple signals in alternating fashion. This is true for instance if the monitor
knows bounds |x(t)| ≤ L. Let’s reprise the above example: consider the atom
p := (x ≥ 0) and suppose the formula is p. So far no p has been observed, and
at the present moment t, x(t) = −5. If the monitor knows that |ẋ| ≤ 1 from here
on out, then it knows x will remain negative at least for the next 5 s. So it can
ignore the next 5 s of the signal, saving processing power, and start observing
again at t + 5. The same reasoning applies if the monitor has a local model, the
only difference being that we now have possibly less conservative bounds on the
derivative and trajectory.

The use of a simulating model to skip signal segments is much less obvious.
One of the difficulties is that the simulating model g does not have the same
notion of time as the original model f . While every f -transition x

u→ x′ has

a corresponding transition y
u′
→ y′ in the g-system, the two transitions do not

necessarily take the same amount of time, and in general, there is no known
relation between the timelines. In fact, one of the reasons we develop a simulating
model is that it can abstract away or accelerate time, allowing us to run faster
simulations with it.

The use of a short model is also not obvious, because of the short horizon.
It is not clear to us whether adding the ability to query the short model at will
helps: questions of where and when to query it must be driven by the formula
being monitored and the history of the system trajectory so far, and all of these
are challenging research questions.

An additional challenge to all the above methods in the case of a general
temporal logic formula is that the monitor must track all the ways the formula
might be satisfied or violated, to avoid skipping signal segments that affect the
truth value of the formula. While in principle possible (for a finite duration tra-
jectory), it poses a heavy memory burden on the RV module, which needs to be
lightweight. A partial workaround is to simply track each atom individually and
avoid any truth value changes of the atoms. This is only a partial workaround:
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as shown in the example, the truth value can change simply due to time passing,
without change in the values of any atoms.

4 Monitoring Distributed CPS

If the system under monitoring consists of multiple nodes or agents, each of
which has a local clock, then new challenges arise for runtime monitoring. These
challenges further complicate our attempts at leveraging system dynamics.

At the highest level, the biggest challenge is that local clocks can and do drift:
thus when one agent reports x1(5) = 3 and the other agent reports x2(5) = 2,
these are not necessarily truly synchronous readings. I.e., the first clock reads
5 at a different (physical) time than the second clock. Such drift can obviously
affect the validity of the monitor’s calculations.

The second high-level challenge, which is independent of clock drift, is that
each agent only has access, a priori, to its own state. So formulas that couple
agents’ states, like (x1 > 0)U (x2 > 3), require communication between agents
and exchange of information. Thus we must design a low-overhead communica-
tion protocol between the agents.

In this section, we first describe the formal setup of a distributed CPS. Then
we describe the challenges that arise when trying to leverage system dynamics’
knowledge in RV.

4.1 Distributed CPS Architecture

We assume a loosely coupled system. Specifically, the system consists of N reli-
able agents that do not fail, denoted by {A1, A2, . . . , AN}, without any shared
memory or global clock. The output signal of agent An is denoted by xn, for
1 ≤ n ≤ N . We will need to refer to some global clock which acts as a ‘real’ time-
keeper. However, this global clock is a theoretical object used in definitions and
theorems, and is not available to the agents. Messages that are passed between
agents as part of their normal functioning (i.e., independently of the monitoring
task) can be modeled as instantaneous changes in signal value, and will not be
modeled separately here. We make two assumptions:

– (A1) Partial synchrony. The local clock (or time) of an agent An can be
represented as an increasing function cn : R+ → R+, where cn(χ) is the value
of the local clock at global time χ. Then, for any two agents An and Am,
where m,n ∈ [N ], we have:

∀χ ∈ R+.|cn(χ) − cm(χ)| < ε

with ε > 0 being the maximum clock skew. The value ε is assumed fixed and
known by the monitor in the rest of this paper. In the sequel, we make it
explicit when we refer to ‘local’ or ‘global’ time.

– (A2) Deadlock-freedom. The agents being analyzed do not deadlock.
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Assumption (A1) is met by using a clock synchronization algorithm, like
NTP [10], to ensure bounded clock skew among all agents. Assumption (A2)
is stronger, meaning that some systems do indeed deadlock, while others are
explicitly guaranteed not to deadlock.

In the discrete-time setting, a distributed signal is defined as a set of events
(where an event is a value change in an agent’s variables, due to a software update
for example). We now update this definition for the continuous-time setting of
this paper. Namely, we define a distributed signal to be a set of signals (one per
agent), where each timeline is measured using the local clock cn defined above,
an event on the nth agent is a pair (t, xn(t)), and inter-agent events are partially
ordered by a variation of the happened-before (�) relation [7], extended by our
assumption (A1) on bounded clock skew among all agents. The formal definition
follows.

Definition 2. A distributed signal on N agents is a pair (E,�), where E =
(x1, x2, . . . , xN ) is a vector of signals, one for each agent. All signals xk share
a support, modeling that all agents execute in parallel and that time (measured
locally) does not stop. The relation � is a relation between events in signals such
that:

(1) In every signal xn, all events are totally ordered, that is,

∀n ∈ [N ]. ∀t, t′ ∈ In.
(
t < t′

)
⇒

(
(t, xn(t)) � (t′, xn(t′))

)
,

where the set In is a bounded nonempty interval.
(2) If the time between any two events is more than the maximum clock skew ε,

then the events are totally ordered, that is,

∀m,n ∈ [N ]. ∀t, t′ ∈ In.
(
t + ε < t′

)
⇒

(
(t, xm(t)) � (t′, xn(t′))

)
. �

We use a new symbol E for the trace in a distributed signal, rather than σ, to
emphasize that signals in E are partially synchronous, and that their supports
are bounded (which is a technical requirement - see [11]).

Example. Figure 3 shows two timelines, generated by two agents execut-
ing concurrently. Every moment in each timeline corresponds to an event
(t, xn(t)), n ∈ [2]. Thus, we see that the following hold: (1, x1(1)) �
(2.3, x1(2.3)), (2.3, x1(2.3)) � (2.94, x2(2.94)), (1, x2(1)) � (2.94, x2(2.94)), and
(2.94, x2(2.94)) �� (3, x1(3)).

The classic case of complete asynchrony is recovered by setting ε = ∞.
Because the agents are only synchronized within an ε, it is not possible to actu-
ally evaluate all signals at the same moment in global time. The notion of con-
sistent cut and its frontier, defined next, capture possible global states: that is,
states that could be valid global states (see Fig. 3).
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94

Fig. 3. Two partially synchronous continuous concurrent timelines with ε = 0.1. C
is a consistent cut. C′ is not a consistent cut: indeed (1, x1(1)) � (3.1, x2(3.1)) by
definition of happened-before. Moreover, (3.1, x2(3.1)) ∈ C′ but (1, x1(1)) is not in C′,
which violates the definition of consistent cut.

Definition 3. Let (E,�) be a distributed signal over N agents and S be the set
of all events defined as follows:

S =
{

(t, xn(t)) | xn ∈ E ∧ t ∈ In ∧ In ⊆ R+

}
.

A consistent cut C is a subset of S if and only if when C contains an event e,
then it contains all events that happened before e. Formally,

∀e, f ∈ S . (e ∈ C) ∧ (f � e) ⇒ (f ∈ C).

�

From this definition and Definition 2 it follows that if (t′, xn(t′)) is in C, then
C also contains every event (t, xm(t)) s.t. t + ε < t′. Observe that due to time
asynchrony, at any global time χ ∈ R+, there exists infinite number of consistent
cuts denoted by C(χ). This is attributed to the fact that between any two local
time instances t1 and t2 on some signal x, there exists infinite number of time
instances. Therefore, infinite number of consistent cuts can be constructed.

A consistent cut C can be represented by its frontier

front(C) =
{

(t1, x1(t1)), . . . , (tN , xn(tN ))
}

,

in which each (tn, xn(tn)), where 1 ≤ n ≤ N , is the last event of agent An

appearing in C. Formally:

∀n ∈ [N ] . (tn, xn(tn)) ∈ C and

tn = max
{

t ∈ In | (t, xn(t)) ∈ C
}

.
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Example. Assuming ε = 0.1 in Fig. 3, it comes that all events below (thus,
before) the solid arc form a consistent cut C with frontier front(C) =
{(3, x1(3)), (2.94, x2(2.94))}. On the other hand, all events below the dashed
arc do not form a consistent cut since (2.3, x1(2.3)) � (3.1, x2(3.1)) and
(3.1, x2(3.1)) is in the set C ′, but (2.3, x1(2.3)) is not in C ′.

4.2 Additional Challenges in the Distributed Setup

We can conceive of numerous additional challenges arising in the distributed
setup.

The first class of challenges of distributed monitoring is that the knowledge
of the dynamics is distributed over the agents, with each agent knowing only its
own dynamics a priori. Already, even if we assume total synchrony between the
agents, there is a need to design a protocol by which this information is shared,
or some summary of it is exchanged. We will give an example of the complexity
of the task: assume that each agent has bounds on its own dynamics. In the
centralized setting, this can be used to skip parts of the signal, as described
earlier. In the distributed setup, this cannot be done directly: indeed whether a
formula will change truth value in the next second, say, depends on the bounds
of two or more agents. The relevant segment of x1 (signal of agent 1 that should
be monitored) depends on the relevant segment of x2 and vice versa. E.g., if the
atom is (x1 +x2 > 0) then, without knowing the bounds of x2, the entire x1 can
be relevant for monitoring.

On the other hand, if agent 1 know that −1 ≤ x2 ≤ 1 then it can conclude
the only relevant portion of x1 is 1 ≤ x1. Agent 1 can then send only those
segments where its signal is larger than 1. Thus there are at least two kinds of
tokens (packets of information) that must be exchanged: tokens with bounds
(from Agent 2 to Agent 1) and tokens with pieces of the signal (from Agent 1
to Agent 3, etc.).

Secondly, the partial synchrony creates difficulties in trying to leverage the
model knowledge. Indeed, even on a single agent whose clock is drifting relative to
global physical time (cn(χ) �= χ), there is an error between the model predictions,
which embody an error-free timeline, and the measurements, which integrate a
drifting timeline. For example, assume the monitor has a short model, which
it uses to predict the trajectory x1[0, 1] → R. Based on this it concludes it
can ignore the segment x1[0 : 0.3], i.e., the first 0.3 s of the signal, measured
on a perfect clock. But its local clock has an unknown, ε-bounded drift from
physical time. So, measured on its local clock, the conservative thing is to skip
x1[0 : 0.3 − ε].

It might be that the general case is a tedious, but ultimately straightforward,
generalization of this calculation: conservatively ignore shorter pieces. The tech-
nical problem is then to build an inductive argument for the general case, taking
into account the nature of the dynamics knowledge that is available.

The case of a simulating model is particularly interesting: recall that Σg

simulates Σf if for every (x, y) ∈ R it holds that: x
u→ x′ in the f -system implies
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the existence of a transition y
u′
→ y′ in the g-system s.t. (x′, y′) ∈ R. The key

characteristic is that u and u′ are not necessarily of the same duration - indeed,
in general, it is difficult to get some kind of relation between the two durations.
So far in the literature, the properties verified on the simulating g-system have
not depended on time. It is not at all clear how we might apply a conservative
ε-shortening to the time bounds when the relation between the g and f timelines
is unknown.

5 Using Verified Dynamics

In this section, we explore a different kind of information: the monitor does not
have access to any kind of model. Rather, it has access to information about
offline model-checking runs on the model. That is, offline, the designer ran a
series of model-checking runs on the model, and the verdicts of these runs are
available to the monitor. Every piece of information is thus structured as a tuple
(x, h, V, φ), where:

1. x is the state from which the verification ran
2. h is the verification horizon, if applicable. E.g., in bounded model checking,

this would be the bound.
3. φ is the formula against which the model was checked. That is, the designer

checked whether the model satisfies M,x |= φ. (Here, M is the model).
4. V ∈ {�,⊥} is the verdict, or result, of the verification.

Such information is naturally available in a model-based design cycle where
formal methods play a role. Note we allow the possibility that the model-checking
runs were limited, both in terms of their bounds, and in terms of the states they
are run from.

The runtime monitor is monitoring for some property(ies) ψ that, in general,
is different from φ. The question then: can the monitor leverage the knowledge
that M,x |= φ to monitor ψ more efficiently? Intuitively, that should be possible
some of the time: when the current state is ‘near’ x, and the formula ψ is somehow
related to φ.

The following trivial cases illustrates that intuition: if the current state is
exactly x, and ψ = φ, the obviously there is no need to monitor. Or, assume the
model is a finite automaton. The current state is within s ≤ h hops of x, and
ψ ⇒ s φ. Here too, it is not necessary to monitor since the satisfaction of φ
now is implied by that of ψ earlier.

A more involved example is provided by offline reachability: suppose the
model has been verified to not enter a set of states S within h time units if it
starts from some set J . (Reachability tools like SpaceEx and Flow∗ could be
used for this). Such a guarantee holds under some assumptions on the system’s
environment, say the assumption that any disturbance w is bounded: |w(t)| ≤ 1
for all time t. Now the atomic proposition p that ‘x ∈ S’ might appear in formulas
that are monitored online. The offline reachability result can be leveraged in the
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monitor in a predictive manner: whenever the state x is about to enter (or enters)
set J , every appearance of p in the monitored formula can be replaced by false,
as long as it appears within the scope of a temporal operators whose combined
intervals add up to less than h time units.

The challenge is to formalize then generalize this intuition to more cases. We
will also need to account for the fact that the monitor does not actually know
the current state: in general, it only has access to observables, i.e., to H(x(t))
rather than x(t).

6 Conclusion

In this paper, we explored the idea of combining runtime verification (RV) with a
pre-computed knowledge of system dynamics to enhance the effectiveness of RV
and improve its runtime overhead. To this end, we introduced a set of ideas on
how different aspects of system dynamics can be potentially leveraged to equip
the monitor with tools to decrease it involvement by ruling out certain scenarios.

Our next natural step is to materialize these ideas by developing the theory
as well as conducting rigorous experiments to validate our results. Stream-based
runtime verification techniques such as RTLola1 allows real-time monitoring for
cyber-physical systems and networks but they currently cannot handle data
streams coming from components that do not share a common clock and do not
take system dynamics into account. Thus, longer-term interesting problem is to
integrate our ideas in this on using system dynamics as well as our results in [11]
with RTLola.
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