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ABSTRACT

This work gives a logical characterization of the (ethical and social)
obligations of an agent trained with Reinforcement Learning (RL).
An RL agent takes actions by following a utility-maximizing policy.
We maintain that the choice of utility function embeds ethical and
social values implicitly, and that it is necessary to make these values
explicit. This work provides a basis for doing so. First, we propose
a probabilistic deontic logic that is suited for formally specifying
the obligations of a stochastic system, including its ethical obliga-
tions. We prove some useful validities about this logic, and how its
semantics are compatible with those of Markov Decision Processes
(MDPs). Second, we show that model checking allows us to prove
that an agent has a given obligation to bring about some state of
affairs - meaning that by acting optimally, it is seeking to reach that
state of affairs. We develop a model checker for our logic against
MDPs. Third, we observe that it is useful for a system designer to
obtain a logical characterization of her system’s obligations, which
is potentially more interpretable and helpful in debugging than the
expression of a utility function. Enumerating all the obligations of
an agent is impractical, so we propose a Bayesian optimization rou-
tine that learns to generate a system’s obligations that the system
designer deems interesting. We implement the model checking and
Bayesian optimization routines, and demonstrate their effectiveness
with an initial pilot study. This work provides a rigorous method
to characterize utility-maximizing agents in terms of the (ethical
and social) obligations that they implicitly seek to satisfy.
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1 INTRODUCTION

As automation increases in homes, hospitals, and on the streets,
so too does the need to understand which norms an autonomous
system has learned to follow. For a society to guarantee safe au-
tomation, we must know which ethical guidelines an autonomous
robot — perhaps implicitly — follows; particularly when that robot
autonomously interacts with us, and shares our daily environment.
To prove this guarantee, we must obtain such knowledge rigorously
and traceably from the numerical utility function that the robot
maximizes. The extracted ethical guidelines must be expressed in a
formal, unambiguous language to permit further automated analy-
sis and reflection by the designer, and for communication with the
community where the robot is deployed.

To illustrate, consider an autonomous vehicle (AV) that is per-
mitted to put others at risk to reduce risk for its passengers. If we
do not know that the AV has such a permission, then, as drivers,
we can not know if we are at risk for driving near the vehicle, and
thus we can not know how to safely interact with the vehicle. As
designers, we can not know if this permission satisfies our desired
specifications or is a negative side effect [2], and thus can not know
how to safely design the vehicle. If we do have knowledge of this
permission, but that knowledge was not obtained traceably or rig-
orously, or is expressed ambiguously, then we may have cause to
doubt that knowledge, and again face difficulty safely designing,
or interacting with the AV. And if our knowledge is not expressed
formally, then any conclusions we draw about the AV’s ethics may
also be ambiguous.

First we must consider how these ethical guidelines are formal-
ized. The preferences and permissions of a single agent [10], or
those of a population [19], are often implicitly encoded numerically.
We might expect to discover the norms a robot follows based on the
numerical values in its decision model. However, these values are
usually opaque and difficult to interpret. We believe that explicit,
interpretable expressions of a robot’s norms provide additional
value to its designers and to the society in which the robot operates
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beyond knowledge of individual rewards. So, to describe norms,
we turn to formal logic — deontic logic specifically [9]. Deontic log-
ics were developed specifically to formalize reasoning with ethical
norms, and they lend themselves well to interpretation. Typically,
three kinds of statements are formalized in a deontic logic: state-
ments of obligation, or permission, and of prohibition. We will only
speak of ‘obligations’ in this paper because we use a logic that
derives permissions and prohibitions from obligations.

Many deontic logics have been developed [11], starting with
von Wright’s “Standard Deontic Logic” [22]. However, many lack
corresponding agent models on whose executions the logical for-
mulas are interpreted, or fail to model stochastic systems, both of
which are necessary to describe agents in Reinforcement Learning
(RL). A logic for describing the obligations of RL agents must be
probabilistic. Then, to determine if an agent has a given obligation
(i.e., whether it is trying to meet that obligation), we must be able
to check if the obligation is consistent with the model of the agent’s
decision process and the environment. So a suitable logic must also
permit a model checking algorithm.

The norms followed by an RL agent are determined by its policy —
amapping from states to actions that maximize the agent’s expected
rewards. For an agent with a simple model, it may be feasible to
characterize the agent’s norms by viewing the model’s rewards
and probabilities. For an agent with a larger model, however, it will
be difficult to intuit the agent’s obligations from these numerical
values.

Further, a system may technically have thousands of obligations;
many of which are ethically irrelevant, or trivial (e.g. an obligation
to start from the starting state). To generate useful obligations,
we need a criterion to filter the space of valid obligations. In this
work, we propose a criterion based on what a stakeholder finds
“Interesting” in an obligation. For example, she may wish to see those
obligations that are ethically relevant and safety critical, or that
she didn’t expect the system to have. Whatever the stakeholder’s
objectives, we need a procedure that learns what features of an
obligation a stakeholder finds interesting so that we can generate
obligations that are useful to the stakeholder.

We solve these problems with the following contributions:

(1) we design the novel Expected Act Utilitarianism (EAU) deon-
tic logic, purpose-built to describe the obligations of Markov
Decision Processes (MDPs) — a popular class of model for
agents in reinforcement learning.

(2) we develop a model checking algorithm that verifies if an
MDP has a given obligation.

(3) we demonstrate and test a Bayesian optimization routine that
uses human feedback and model checking to find interesting
obligations in a given agent MDP.

With these tools to express, verify, and explore the obligations
of an agent, we can evaluate what ethical guidelines an agent has
learned — aiding in system safety, trust, and explainability.

2 BAKGROUND

This work seeks to enable the formal verification of the ethical
obligations learned by reinforcement learning systems, and explore
those obligations by efficiently modeling a system designer’s inter-
ests. To do so, we specify obligations in deontic logic, verify deontic
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obligations with model checking, and model systems as Markov
decision processes.

Deontic Logic. Deontic logic can be considered as the formal
study of norms and their interaction with each other [6]. Previous
work has aimed to build deontic logic-based agents “ground-up”
by specifying a base of norms, and deriving what action to take
via deduction [3, 6]. In [1], deontic logic is proposed as a method
for formal verification and monitoring of normative properties in
automata, and we advanced this proposal by developing model-
checking algorithms for deontic logic formulas in [18]. These ap-
proaches are strongly principled, but currently lack interoperability
with the highly effective domain of reinforcement learning. The au-
thors of [16] use deontic logic “top-down” to supervise a RL agent.
That work enforces deontic logic constraints on the operation of an
agent after it has been trained, but does not account for stochastic
dynamics common in RL, nor does it aid in explainability of the
agent.

Markov Decision Processes. Markov decision processes (MDPs)
are commonly used in reinforcement learning to model a proba-
bilistic agent in an environment. An MDP is a discrete time control
process in which an agent chooses an action, the result of that ac-
tion is stochastic, and the result provides some reward [5]. An MDP
is defined by the states an agent can be in, the actions available
to the agent in each state, the probability that it transitions from
one state to another after taking a given action, and the reward the
agent receives when it enters different states.

Model Checking. Given a model of a system, a system designer
may want to formally ensure that system meets some given specifi-
cations. This is the general model checking problem. Model check-
ing is especially important in complex, embodied systems as: a)
their complexity makes it difficult to informally determine that the
system behaves as intended; and b) their physical nature makes
the safety of their operation a paramount concern. Many tech-
niques have been developed to check system models for various
formalisms, but few exist for deontic logic [4].

3 EXPECTED ACT UTILITARIANISM

Most previous deontic logics prove unfit for describing agents
trained by modern reinforcement learning techniques as they lack
notions of agency or stochastic dynamics. We introduce expected
act utilitarianism (EAU) as a deontic logic for describing the obli-
gations of stochastic control systems. EAU is based on dominance
act utilitarianism (DAU) [12]. DAU is a logic designed for nondeter-
ministic decision problems, and is so named because it defines an
agent’s best action as the action whose possible utilities dominate
the utilities of other actions. In contrast, EAU can reason about
probabilities, and so includes a tense logic with modalities that han-
dle probability and undetermined actions, and uses expected utility
as the criterion for determining an agent’s best action. (Note that
neither logic makes a commitment to a particular ethical framework
and are named “utilitarian” just for their evaluation of utility on
agents’ histories). With these considerations, EAU permits formal
specifications of the obligations learned by a probabilistic decision
process, such as an MDP.
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3.1 EAU Syntax
The syntax of EAU is as follows.

A=¢|-A|AANA| [acstit: A] | ® [acstit: A]

where « is an agent in a finite set of agents Agents, A and — are
boolean conjunction and negation, and ¢ is a formula in the logic
PCTL [4]. PCTL is a widely used branching-time logic that bounds
the probability of some event occurring in an MDP. PCTL uses
probabilistic and temporal modalities to describe a state of affairs,
or an agent’s mission. Intuitively, the PCTL temporal modality O
means Always (now and in every future moment along a trace), &
means Eventually (now or at some future moment along a trace),
and U means Until: #U means that ¢ holds in all moments until
there is a moment in which ¢ holds. We skip other operators and
refer the reader to [4] for details. The probabilistic modality takes
the form P.qp, where >a€ {<,<,>,>} and p € [0,1]. In an MDP
with an unknown policy, an upper-bound (P<,¢ or P<,¢) means
that ¢ has a chance less than (or equal to) p of occurring for any
possible policy. In other words, the policy that maximizes the prob-
ability of ¢ occurring can not satisfy ¢ more than p of the time. A
lower-bound (P> ,¢ or P>,@$) means that ¢ has a chance greater
than (or equal to) p of occurring for any possible policy.

3.2 EAU Semantics

The EAU-specific operators informally mean the following. Opera-
tor [« cstit: A] is the agency operator and says that « sees to it, or
ensures, that A is true; and ® [« cstit: A] is the expected obligation
modality and says that « ought to ensure that A is true.

For example, to specify that a nurse robot will decide to help a pa-
tient we can write [a cstit: help]. To say that a nurse robot should
not choose to move speedily we can write ®[a cstit : —speed].
We can include the temporal modality Eventually to say the robot
should never speed as ® [« cstit: =< speed]; and with the proba-
bility modality we can say that the robot’s choices should ensure
a minimal probability of 0.1 that it will never speed: ®[« cstit :
Pso.1[0-speed]].

This section develops the formal semantics of these deontic
operators, and may be skipped on a first reading, if the reader
grasps the intuitive meaning we just gave of these operators.

Branching time. Time in EAU is framed as a Tree of moments
with a unique root moment ‘0’ from which all other moments span.
Moments are ordered by an irreflexive, transitive relation <, that
may be interpreted as saying m; happens earlier than mj if and
only if m; < my. A history is a maximal, linearly ordered set of
moments in Tree; i.e. a branch of the tree that extends infinitely into
the future. In the context of a timed-MDP, a moment is a time-state
pair, and a history is an execution of that automaton. The set of
histories that go through a moment m € Tree is Hy, := {h | m € h}.
We will frequently refer to moment/history pairs m/h, where m €
Tree and h € Hy,.

DEFINITION 3.1. With AP a set of atomic propositions, a branching
time model is a tuple M = (Tree, <,v) where Tree is a tree of moments
with ordering < and v is a function that maps moments m in M to
sets of atomic propositions from 247 the set of subsets of AP.
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Figure 1: An EAU model for agent @, showing moments
m < m’ with histories Hy, = {hy,...,hs},and Hyy = {hy, ..., h3}.
The actions available in moment m are Choice]]! = {K1, K2},
and in m’ are Choice&”, = {K3,K4}. Action Ky = {hy, hy, h3}, K2 =
{h4, h5}, K4 = {h1}, and K5 = {hy, h3}. Each history is labeled
with the formula(s) it satisfies, and its values Value(h); e.g., h1
satisfies A and has a value of 7. The probability of an action
being able to effect a history is also given; e.g. Pry (hz|m) = 1.0,
and Pry(hz|lm’) = 0.7. The index m/hy | [acstit : B] since
Choice}(hy) = Ky = {hg, hs}, and both hy and hs satisfy B.
However, m/hy | [acstit : H] because hs does not satisfy
H. Still, m/hy E [acstit : P~=o5[H]] since Pry(hs|lm) >= 0.5.
And m/hy [ [acstit : P<=o7[H]] because Choicel}(hy) =
{h1, h2, h3}, hy is the only history among those that satis-
fies H and [1,,,, > men, Pra(h2lmn) <= 0.7. The Utilityg' (hs) =
Value(hz) * [1m,>meh, Pra(h2lmp) = 5.6. The Q(Kz) = 7.5,
while Q(K;) = 1.0 * max{Q(K3), Q(K4)} = max{7.0,6.8} = 7.0,
so E-Optimal} = {Kz}. Hence m/hy = ®[a cstit : B]. Finally,
E—Optimalg(”’ ={K3}, so m’/hy £ ®[a cstit: B].

A formula in EAU holds (or not) at an m/h pair. We denote
model satisfaction as M, m/h |= ¢, where it is always the case that
h € Hy,. An EAU statement A is a generic PCTLformula of the form
Poop (Y], where we restrict ¢ to LTL formulas for simplicity. The
proposition expressed at moment m by the EAU statement A is the
set of histories, starting at m, in which the statement holds

|AJM .= {h € Hp | M,m/h |z A} 1)

When it is clear what the model of evaluation is, we drop M from
the notation, writing, e.g., |A|m, m/h | A.
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Choice. At any moment m, an agent o € Agents may take an
action K. The action K is identified with the histories in Hy, that
are still realizable after taking this action. The choice of actions at
moment m with which « is faced is denoted by Choice]}'. In this
work, we assume that Choicel? is finite for every a and m.

Probability. When an agent takes an action there is a probability
associated with which moment the agent next finds itself in. We
call these next moments “MI’(”, and are reachable from moment m
by taking an action K, where My = {m’ > m|m"" : m" > m"" >
m and Vh € m’ : h € K}. The probability of moving from m tom’ €
M, by taking action K € Choicey is given by Pro(m’|m) € [0,1].

The probability with which an agent can execute a particular
history h from moment m is Pry(h|m). Because a history is an
infinite sequence of moments, by Bayes’ theorem we can compose
this probability as a product of the probabilities of executing that
sequence of moments (e.g. Pry(my|mg) * Prg(ma|my) *...). This
can be written as a product of sequential pairs of moments in a

history:
[

(mi,mip1) € h
stmij>m

Prg(hlm) = Pro(mi1|m;)

Agency. In EAU, agency is defined by the ‘Chellas sees to it’
operator cstit, named after Brian Chellas [7]. We say an agent sees
to it, or ensures, that A holds at m/h if it takes an action K such that
Aholds in m/h’ for all b’ € K. Le., probability does not prevent
from guaranteeing A. In practice, the use of PCTL as a tense logic
allows us to say that an agent ensures some fact about a bound on
the probability of a possible state of affairs.

DEFINITION 3.2 (CHELLAS STIT). [12, Def. 2.7] With agent o and
DAU statement A, let Choice]' (h) be the unique action that contains
h. Then

M, m/h [ [acstit : A] iff Choice™ (h) < |AIM
If K C |A|m we say K guarantees A.

Optimal actions. To speak of an agent’s obligations, we will need
to speak of ‘optimal actions’, those actions that bring about an
ideal state of affairs. Let Value : Hy — R be a value function
(such as a discounted sum of rewards) that maps histories of M to
utility values from the real line R. This value represents the utility
associated by all the agents to this common history. Let Utility}y (h)
be equal to Value(h) * Pry(h|m). This represents the utility of «
trying to realize history h from moment m. Then, in a moment m
such that either

e m has no succeeding moment m’ where |Choice,’x”’| > 1, or
e m has no succeeding moment m’ where 3K, K’ € Choice!””
such that K # K’ and Yj,cx Utility (h) >
S ek Utilityll (')
we take the quality of an action Q(K) as Y, Utilityt (h) — the
sum of the utilities of its composing histories. The first case handles
models with end states (like finite games), or absorbing states. The
second case handles models with states where future choices don’t
change the available utility. The latter is useful when Value is
discounted sum, and in practice an € difference may be assumed
between available utilities.
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In a moment m that doesn’t meet the above criteria, we define
Q(K) recursively with respect to the “next” moments M;. that
follow from an action.

QK) = > Pra(m'|m)

Py
m’ eMy,

max  Q(K’)

K’eChoicel}

@)

This means an action K’s quality is determined by the quality of the
best action K’ in each of the moments m’ that K leads to, modified
by the probability of ending up in each moment m’ after taking the
action.

An optimal action at moment m is thus an action whose quality
is not less than the quality of any other action at m:

E-Optimall} := {K € Choicel)’ | AK’ € Choicel}
st Q(K) < Q(K")}

Expected Ought. We are now ready to define Ought statements,
i.e., obligations. Intuitively we will want to say that at moment m,
agent a ought to see to it that A iff A is a necessary condition of
all the actions considered optimal at moment m. This is formalized
in the following expected Ought operator, which is pronounced “a
ought to see to it that A holds”.

©)

DEFINITION 3.3 (ExPECTED OUGHT). With a an agent and A an
obligation in a model M,

M,m/h E ®[acstit: A] iffK C |AIM
for allK € E-Optimal}}'

3.3 Logical Validities

When designing a new logic it is important to verify whether it
supports validities (or inference principles) that are intuitively ac-
ceptable, or desirable. We discuss some of these now, and give their
proofs in appendix A.

The Expected Ought operator validates the formula:

Dy® : ®[acstit: A] = Olacstit: Al

In deontic logic, this expresses “ought implies can” — if the agent
ought to ensure that the probability of reaching the goal is high,
then it follows that the agent can ensure this. This is central to most
deontic logics, as it seems unfair for an agent to have an obligation
to ensure something that it cannot ensure.

The following inference rule is also valid:

A=B
®[a cstit: A] = ®[a cstit: B]

RE,® :

Le., if two formulas are equivalent, then an agent’s obligation to
ensure one is equivalent to that agent’s obligation to ensure the
other. This inference rule ensures that two identical states of affairs
imply identical obligations.

Necessitation — the principle that something universally true is
obligatory — is also valid in this logic:

Ny® : Q[acstit: T]

In EAU the obligation for an agent to ensure formula A A B means
also that there are separate obligations for the agent to ensure A,
and to ensure B.

My® : Q[acstit: ANB] = Q[acstit: A] A®[a cstit: B
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The reverse is also true:
Ca® : ®[acstit: A] AQ[acstit: Bl = ®[acstit: AAB]

These are especially useful in determining if an obligation arises
from a set of other obligations.

These previous four validities (RE;®, Nu®, My ®, and C,®) con-
firm that the Expected Ought operator is normal.

In EAU it can not be the case that an agent has conflicting obli-
gations. That is:

D;®: =(®[acstit: A] A®[acstit: =A])

thus avoiding direct normative conflict. And two distinct agents «
and f can’t have conflicting obligations either. Le.:

D;ﬂ® : (®[acstit: Al A®[Bcstit: —A])

4 MODEL CHECKING EAU

We use Expected Act Utilitarian deontic logic as a specification
language for the obligations of Markov decision processes. This
requires developing a correspondence between an MDP and an EAU
branching time model, showing that the EAU notion of optimal
actions can be identified as Bellman optimality in the MDP, and
introducing an algorithm for model checking EAU obligations in
an MDP.

4.1 Expressing MDPs in EAU

Formally, an MDP is a tuple (S, A, T, R). S is the set of states that
can be reached by the process, A is the set of actions that can be
chosen, T is the set of transitions between states, and R is the set of
rewards. A(s) is the set of actions available in the process at a given
state s € S. The transition function T (s, a,s”) is the probability of
reaching state s’ by taking action a € A(s) and is often denoted by
Pr(s’|s, a) The reward function R(s) is the reward r € R that the
process receives for entering state s.

Given an MDP and a function that maps states in S to sets of
atomic propositions, we elicit an EAU branching time model M
identifying properties of the model with the properties of the MDP.
The model M contains a Tree of histories composed of moments. We
identify a moment m in a model M with a tuple (s, t) where s € S,
and ¢ € R is a time that denotes the order in which states are visited.
This tuple respects the ordering relation >’ such that my, my € M
and m; < my justinthe case sy, sy € Sandt; < ty. The starting state
of the MDP maps to the root moment my. A history h is identified
with an execution of the MDP — a sequence of transitions (s, a, s”).
The Tree is set of possible executions in the MDP. The probability
Pro(m’|m) is taken as T(s, a, s”) for a transition (s, a,s’) in h where
the state associated with m is s, and s’ with m’. Finally, the function
Value(h) is taken as the discounted sum of rewards on the sequence
of states corresponding to the history: 3¢5 syen v!#R(s)

4.2 Optimal Actions and Bellman Optimality

We align EAU with practice in reinforcement learning by respecting
the Bellman optimality condition in the design of EAU’s evaluation
rule for optimal actions (eq. 3). To see this, recall that in an MDP the
optimal action at a state is that which maximizes the expected value
of the next state given that the agent continues to act optimally,
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that is:
¢ — P ’ : Vn* ’
7 (s) arenjlé) si r(s’|s,a)V" (s")

where A is the set of actions, s is a state, A(s) is the set of actions
available at state s, Pr(s’|s, a) is the probability of reaching state s’

by taking action a from state s, and 7 : s — a. V7 is:

V™ (s) = R(s) + y max 0(a)

where R(s) is the reward received for entering state s, and y is a
discount factor on future rewards. Q(a) is:

0@ = Y Pr(s'ls, V" (5)

thus admitting a recursive definition for VT
V7' (s) = R(s) + y max Pr(s’|s,a)V™ (s’
(s) = R(s) yaeA(s); (ls @V ()

In the limit, this recursion converges due to the discount factor y.
From this we can determine a recursive definition of Q(a):

Q@) = D Prisle.m) + RS + Pris sy max, Q)

which says the quality of an action is equal to expected reward for
performing that action plus the expected quality of the best action
next. We can also rephrase 7*(s) in terms of Q(a):

7 (s) = a?f()i) ; Pr(s’|s,a)R(s") + Pr(s’|s, a)y a/glj();) Q(a")

= max Q(a)

acA(s)

In other words, 7*(s) is that action in A(s) which has the highest
quality Q(a).

In EAU, we use the Value function to determine the worth of
a history, and so there is no reward R or discount y in the EAU
equation for the quality of an action (eq. 2). In the case that Value
is a discounted sum of rewards on moments, however, we can show
that the quality of an action (and therefore the optimal action) in
EAU is the same as in an MDP. Beginning from the base case, we
have

O(K) = Z Value(h) * Prg(h|m)
heK

When Value(h) is the discounted sum of rewards on moments, we
can write

QK) = > [
heK' (mj, mis1) € h
st.m; > m

Pro(misimi) | > y'« R(m)

m;€h

To avoid calculating the discounted sum and total probability of
a history for each action, we use dynamic programming to ac-
cumulate the rewards and probabilities throughout the recursive
procedure. Equation 2 can then be written:

max
K’eChoicel}

O(K) = Z Pro(m’|m) |R(m’) +y

Iy
m’ eM

JO(K')

This identifies EAU action quality under discounted sum history
values with Bellman action quality in MDPs. It follows, then that
the EAU optimal action and the Bellman optimal action are the
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same in such cases. This means in EAU an agent’s obligations are
properties of a world where it has taken its Bellman optimal action.

4.3 Model Checking Obligations

The problem of EAU model checking is: given an EAU branching
time model M, determine whether M,0/h = ®|[a cstit : A] for
some history h € Hyp, where A is a formula in PCTL. By Defini-
tion 3.3, this model checking problem can be performed in two
sequential steps: first, find the optimal actions at Hy (i.e. all K* €
E-OptimalY), and second, determine if all these optimal actions K*
guarantee A (i.e. K* C |A| (/)\4)' If all optimal actions guarantee A,
then we can say M has the obligation to ensure A at index 0/h.

Algorithm 1: EAU Model Checking
Data: an MDP MDP, a state s in MDP to check from, the
PCTL component A of an EAU obligation.
Result: a Boolean value result: T if the model has the
obligation to ensure A, L otherwise.
result «— T;
/* use value iteration to find optimal actions */
Optimal «— Valuelteration(MDP,s);
for K € Optimal do

/* create EAU model with first action K */
Mg < ModelAction(MDP, K);
/* call PRSIM to check PCTL formula */
valid — Mg E A;
if —walid then
/* not all optimal actions ensure A */
result «— 1;
return result;
end
end

return result;

To find the optimal actions of an EAU branching time model
elicited from an MDP, we perform value iteration [5]. Value iteration
is a dynamic programming technique that can be used to find an
optimal policy in an MDP. In finding an optimal policy for the
MDP upon which the EAU model is based, we find the optimal
action to take from any given state in that model. Then, for each
K € E-OptimalY, we construct a model M for which the only
available action at moment 0 is K (i.e. Choice$ = K). For each model
Mk, we employ the PRISM model checker to verify if Mg E A
[13]. If a model M satisfies A, then we can say that the action K
ensures A. If every My satisfies A, then all optimal actions ensure A,
which, by Definition 3.3, means that the agent « has the obligation
to ensure A.

5 EXTRACTING DEONTIC OBLIGATIONS

When designing the agent, including its reward function, the sys-
tem designer is trying to endow the agent with certain objectives,
including certain obligations. A complex agent, however, will dis-
play behavior that is unforeseen by the designer, especially an agent
that actively learns and modifies itself. Indeed such an agent, by
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modifying its reward function and/or its policy, is giving itself new
objectives and obligations. It is thus necessary to explore the obli-
gations that a given agent has to understand what it is trying to
achieve, and use this understanding and formal methods to improve
its design where needed. For example, the designer may think to
check that a nurse robot has an obligation to eventually help a pa-
tient (® [« cstit: P>=1.9[< helps]]), but would be surprised to find
that it also has the obligation to sometimes speed away to the next
patient after helping (® [« cstit: P>=g 4[O(helps = speeds)]]).

One approach to exploring the space of obligations is to enu-
merate all obligations that an agent has, up to a given obligation
length (measured, for instance, by the number of production rule
applications in the grammar of EAU). However, for even small max-
imum lengths, this process of enumeration can produce upwards of
100,000 formulas — more than any designer would care to address.
Further, as we will see in section 7, the average random obligation
is not likely to be pertinent to the designer’s task. Our challenge
then is to develop a way of generating the agent’s obligations that
are interesting to the designer.

To model designer interest, we rely on a Bayesian Optimization
(BO) setup [17]. BO seeks to minimize an expensive black-box
function f(x) using a small number of evaluations. To do so it
samples the search space, and with each sample x; it computes
f(xx) and uses it to refine a surrogate model g(x). The surrogate,
which is typically stochastic, is cheaper to evaluate than f(x), and
guides the selection of the next sample, balancing exploration and
exploitation. See [8] for details of BO. BO is commonly used in
domains where evaluating the objective f(x) is costly, such as
material engineering [21], hyper-parameter tuning [20], and A/B
testing [14].

In our case, we seek to maximize the ‘interest function’ of a given
designer, which maps an EAU formula ¢ to how interesting it is.
Evaluating f(¢) for a given formula ¢ involves asking the human
designer to score it on a scale of [0, 100]. Thus the search space is the
space of all EAU formulas (over a given set of atomic propositions).
One novelty of our setup is that our search space is constrained
by the model checker: we are only interested in formulas that are
valid for the MDP under study (the model checker returns True for
them).

For this work, we adapt the grammar-constrained Bayesian opti-
mization over string spaces approach of BOSS [15]. This approach
uses a Gaussian process with a string kernel as its surrogate model,
expected improvement as its acquisition function, and a genetic
algorithm to maximize the acquisition function. See [15] for details.

To seed the Bayesian optimization process, we generate N ran-
dom, valid obligations; this is done by sampling using the strategy
from [15], then rejecting invalid formulas and sampling new ones,
until the desired number of seed formulas is reached. The designer
using our tool then assigns an interest score in the range [0, 100]
to each obligation.For every subsequent iteration, the Gaussian
process fits itself to the previous data, and the genetic algorithm
produces a population of formulas designed to maximize the acqui-
sition function. Out of these, the most interesting valid formula is
selected, scored by the designer, and the next iteration begins.

Once a pre-fixed number of optimization steps have completed,
the genetic algorithm produces a population of valid formulas. In
this final execution of the genetic algorithm, the fitness of a formula
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Figure 2: Diagram of the Bayesian optimization search of the
space of valid obligations.

is determined by a function of three variables: the surrogate model’s
predicted score of the formula, the validity of the formula, and
which generation the formula comes from. We employ an annealing
process to move from high-scoring, but potentially invalid formulas
in the earlier generations of genetic optimization to descendants
that are valid, and still high-scoring. These final, high-scoring, valid
obligations, or optimized formulas, are presented to the designer.
This provides an alternative to reviewing thousands of enumerated
formulas, and to trying to hand-design potential formulas that
hopefully cover all desired obligations.

6 EXPERIMENTAL SETUP

We implemented the above algorithm into a tool available to review-
ers in an anonymous repository at https://github.com/sabotagelab/
generating-mdp-obligations. To demonstrate that our tool can gen-
erate interesting, valid obligations, we devised experiments to mea-
sure a system designer’s interest in the optimized formulas; that
is, after the BO completes, the trained surrogate interest model
generates ten valid formulas: these are rated by the designer, and
we evaluate whether she indeed found them to be interesting. We
performed an initial pilot study (N=4) of computer science gradu-
ate students familiar with formal logic and MDPs. We familiarized
users of our tool with the “cliff-world” MDP (figure 3), which is
used in these experiments. We asked the users to take the role of a
system evaluator — to imagine that they had trained an autonomous
system to learn values as a black box, and that it had been trained to
avoid obstacles and reach the goal state.! Their task in evaluating
this MDP was to determine if the system’s obligations aligned with
their expectations; that is, that the agent had obligations to reach
the goal state reliably, and to avoid reaching the failure state.

An experiment proceeded as follows. First, to seed the optimiza-
tion, the evaluator was given a list of 10 randomly generated, valid
formulas, and was asked to assign a value to each of these for-
mulas indicating how interesting they found that formula to be: 0
for an uninteresting formula, and 100 for a maximally interesting
formula. After seeding, the evaluator participated in 20 iterations
of Bayesian optimization as the tool explored the space of valid
obligations. Then the tool generated 10 formulas that were valid,

! Though our aim is to explore ethical obligations, and the cliff-world example lacks
ethical content, it remains an important step in showing our tool’s effectiveness.
Systems with more ethically relevant labels would support ethical obligations more
directly.
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name=15 name=16 name=17 name=18 name=19
name=12 EREIENE] name=14
name=5 name=6 name=7 name=8 name=9

Figure 3: The “cliff-world” MDP. State 0 (the “cliff”) is an
absorbing failure state, and state 14 is an absorbing goal state.
State 10 is the starting state, and cannot be accessed after
being exited. States 11 and 13 are walls and cannot be entered.
An agent in cliff-world has 4 actions available to it in any
state: up, down, left, and right. A chosen action has a 70%
chance of success, and each of the remaining three actions
has a 10% “slip” chance. An action result that would move
the agent into a wall, or other inaccessible state, leaves the
agent in the same starting state.

and maximized the model’s response - which we call the ‘optimized
formulas’. These were mixed with 10 random, valid formulas. Fi-
nally, this mix of random and optimized formulas formed their
validation set, and was scored by the evaluator to validate the tool’s
performance.

The code used for this experiment, including model checking and
obligation generation, is available to reviewers in an anonymous
repository available at https://github.com/sabotagelab/generating-
mdp-obligations.

7 RESULTS

We investigate the usefulness of our tool through experimental
results from the initial pilot study (N=4).

We will first present an example of an obligation generated
randomly: ®[a cstit: ~P>g g[name = 13 U name = 0]]. This obli-
gation is for the agent to ensure that the lower-bound probability is
not greater than 80% that it is always in state 13 until it reaches state
0. Of course, since state 13 can not be reached by any means, and
since the agent does not start in either state 13 or state 0, the prob-
ability has a minimum value 0%. Thus, this obligation is trivially
met. We found that the majority of randomly generated formulas
were of this nature.

Now we will show examples of obligations generated by the
trained tool. Our first example is ® [« cstit: =P< ¢[ name = 14]].
This is an obligation for the agent to ensure that the upper-bound
probability is not less than 60% that it eventually reaches state
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Percent of Quartile Optimized

Evaluator | Q1 | Q2 | Q3 Q4
1 0.8 1.0 | 0.2 0.0
2 1.0 0.8 | 0.2 0.0
3 1.0 04 | 0.4 0.2
4 1.0 1.0 | 0.0 0.0
Mean 0.95 | 08 | 0.2 0.05

Table 1: Proportion of each quartile composed by optimized
formulas.

RMSE
Evaluator Optimized | Random | All
1 14.30 17.21 15.82
2 27.31 20.07 23.97
3 31.63 27.25 29.52
4 17.93 13.98 16.08
All Evaluators | 23.84 20.23 22.11

Table 2: Root Mean Squared Error of the model’s predictions
for optimal formulas, random formulas, and all formulas;
for each individual evaluator, and all evaluators combined.

14 (the goal state). This obligation is directly related to the task
of the agent, which piqued the interest of evaluators. However,
this obligation can be met regardless of what the agent chooses
as its first action. Another example of an optimized formula is
®[a cstit: Pxg.[<>name = 15]]. This obligation is for the agent to
ensure that the lower-bound probability is greater than 60% that
it eventually reaches state 15. While this obligation doesn’t seem
immediately related to the task of the agent, it does give insight
into the agent’s values. Both of these obligations were generated
for different evaluators — the former for an evaluator interested in
the agent reaching its goal, and the latter interested in the agent’s
specific decisions. This shows the tool’s ability to adapt to different
evaluator objectives.

Quantitatively, the success of the tool is best indicated by the
proportion of tool-generated (“optimized”) formulas in a user’s top
quartile of evaluated formulas. A strong separation in evaluator
interest would show that the optimized formulas are more useful to
the evaluator than random formulas, and would suggest that gener-
ating more optimized formulas is better than randomly exploring
the space of valid obligations.

As shown in table 1, the mean of this top quartile proportion
is 0.95. This indicates that the tool indeed generates obligations
that are more interesting than random formulas. More generally,
figure 4 shows the bi-modal distribution of interest associated with
random and optimized obligations. This figure shows that the peak
of the optimized formula distribution is more interesting than the
peak of the random formula distribution by more than 70 points
out of 100. The average optimized and random formula received a
score of 66 and 13, respectively — a difference of 53; more than half
the range of interest.

Another measure of performance for our tool is the surrogate
model’s accuracy at predicting an evaluator’s interest in a formula.
Table 2 shows that the root mean squared error for all formulas is
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Evaluator Score Distributions

I Optimized Formulas
Random Formulas

25 F
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Evaluator Score
(higher is better)
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Figure 4: Histogram of evaluators’ scores in the validation
stage, separated between optimized formulas and random
formulas. Random formulas have a mean score of 12.50 (stan-
dard deviation = 22.04), and optimized formulas have a mean
score of 66.38 (std. dev = 20.89). Higher score is better.
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Figure 5: Evaluators’ interest scores vs. surrogate model
scores across the validation sets of all evaluators.

fairly low overall, but can vary appreciably between evaluators, and
we believe a lower RMSE is desirable and achievable. We attribute
some of this variance to the sensitivity of the optimization process
to the seed formulas — if the model is seeded with 10 low-scoring
formulas, the search for high-scoring formulas progresses much
more slowly.

Figure 5 shows each formula evaluated in the validation stage of
the experiments, with the evaluator’s interest in a formula on the
x-axis, and the model’s prediction of interest on the y-axis. This
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Evaluator Score vs. Model Score
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Figure 6: Evaluator interest scores vs. surrogate model scores on validation set formulas; separated by evaluator.

figure shows some notable trends in the behavior of the evaluators
and the model. As seen in figure 4, most random formulas received
an evaluator score of 0, but the model spreads its predictions for
random formulas between 0 and 40. Evaluator scores for optimized
formulas cluster around 66 (fig. 4), and we see here that the model
always scores optimized formulas higher than 40.

We are also interested in how well the model’s scores correlate
with the evaluator’s scores. We measure this correlation with the
Pearson correlation coefficient (R), shown in table 3. If the correla-
tion is strong, then we can expect the tool to continue to generate
interesting formulas for the user. Otherwise, the correlation is loose,
and we would expect higher error between the model’s predictions
and the evaluator’s scores. A perfect predictor would have an over-
all R value of 1.0. As the table shows, there was poor correlation
between model and evaluator scores for evaluator 3. This is made
especially clear in figure 6, where the correlation is clearly poor,
but the model fails to score beyond a fairly limited range for ei-
ther random or optimized formulas. Measured across all evaluators,
however, correlation is strong (R = 0.77), so we should expect future
optimized formulas to continue to be interesting.

Qualitatively, the optimization process tends to converge on
certain features very quickly. This is evidence that the model is
effectively learning, but it introduces two downsides. The first is
that formulas that the evaluator is queried with can become repeti-
tive as the optimizer attempts to fine-tune an already high-scoring
formula. The second is that the optimizer can sometimes become
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PCC
Evaluator Optimized | Random | All
1 0.11 0.89 0.93
2 -0.06 0.10 0.79
3 -0.06 -0.15 0.50
4 0.45 Und. 0.93
All Evaluator | 0.16 0.55 0.77

Table 3: Pearson Correlation Coefficient (PCC) of the model’s
predictions and evaluator scores for optimal formulas, ran-
dom formulas, and all formulas; for each individual evalu-
ator, and all evaluators combined. The PCC of random for-
mulas for evaluator 4 is undefined because the only line that
could describe the correlation of these scores is vertical.

focused on a particular proposition that the evaluator routinely
finds interesting — helpfully exploring the contexts in which that
proposition is useful, but less helpfully ignoring other propositions
that may be equally as interesting. These downsides may be ame-
liorated by encouraging more exploration, or by other techniques
we address in section 8.

8 DISCUSSION

This work introduced a new deontic logic — Expected Act Utilitari-
anism — designed to describe the ethical obligations of models used
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in reinforcement learning. We also developed theory and proce-
dures to evaluate Markov decision processes in this logic, including
a model checking algorithm. Finally, we demonstrated a tool for
effectively exploring the space of valid obligations in an MDP using
Bayesian optimization. This human-guided approach to exploring
obligations is novel, and so we evaluate its performance in a pi-
lot study by comparison against random exploration, and through
qualitative analysis. We show that our approach performs much
better than random, and that its model’s deviations average to less
than a quarter of its range.

In future work, beginning with the logic of EAU, we would
like to encourage its development into a more expressive logic.
In particular, we would like to include an evaluation index that
specifies a policy, so that an obligation may belong to a certain
plan an agent has adopted. While model checking with respect to
a policy would be straightforward to implement, the implications
of such an adoption on the mechanisms of the logic would require
further attention. We are also interested in including conditional
modalities, and developing model checking algorithms to suit.

We suggest future experiments with more complex systems as
well. Especially systems with more salient propositional labels —
this would lend richer semantic context about the environment to
the formulas, and may highlight whatever ethical dilemmas the
system comes across.

Regarding the Bayesian optimization algorithms, we suggest the
investigation of a number of potential improvements. Model tuning
was not a priority in this work, and may yield significant increases in
performance. We also found that the model faced difficulty learning
to tighten bounds on the probability modality (e.g. P~=o.9[q] is
inherently more interesting than P> 3(q] if both are valid). To
this end, we suggest exploring evolution strategies in the genetic
algorithm that penalize loose bounds, or automatically pursue the
tightest bounds feasible. Similarly, rejection sampling and annealing
to valid formulas may not be necessary (or ideal) if the model
is taught offline to score invalid formulas poorly. However, we
have not determined if the Gaussian process with string kernel is
complex enough to capture the relevant features. To that end, we
are interested in the learning capabilities of models with potentially
more representational power.

Finally, how the human evaluator interacts with the tool may
also play an important role in its effectiveness. Switching from a
score out of 100 to pairwise comparisons between formulas may
increase the reliability of human reporting, but changes the learning
objective from predicting a score to predicting a probability that
one formula is more favorable than another. Finally, allowing the
user more avenues of interaction with the tool (other than question
answering) may lead to more effective use. For example, including
a method to tell the tool that an evaluator is no longer interested
in a proposition they once found interesting could allow the model
to retain a general knowledge about the evaluator’s interests while
avoiding the space of formulas including that proposition.

9 CONCLUSION

The logic and associated algorithms introduced in this paper estab-
lish a thread between formal methods, reinforcement learning, and
explainability. These tools arm us with the capability to describe,
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reason about, verify, and search ethical specifications in a large class
of autonomous agents.
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A VALIDITY PROOFS

Following are the proofs for the validities introduced in section 3.3.

Da® : Qlacstit: A] = Olacestit: Al
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By Definition 3.3, the antecedent holds that, for all K € E-Optimal}},
it is the case that K C |A|,/,\,/I By Equation 3, all K € E-Optimal}}
are also in Choicel'. The consequent [a estit @ A] is valid just
in case there is an action K € Choice]}' such that K C |A|,/,\,/( [12,
pg. 23]. Since every K € E-Optimal} is K C |A|,/,\l4, it follows that
there is an action K € Choice]' for which K C |A|,/,\14. Thus the
consequent must be implied by the antecedent, and D,® must hold.
]

A=B
®[acstit: A] = ®[a cstit: B]

To show this, let A = B. It follows that the histories in moment m
that are labeled A are labeled such if and only if they are labeled
B; that is |A|,/>{( = |B|,/,\l/l Thus, for any K € Choice}' such that
K c |A|,/>l/[, it is also the case that K C |B|,¢{(, and vice-versa. Then,
ifall K € E-Optimall}! are also K C |A|,/,\14, then K € |B|,/,\l’(, Further,
if all K € E-Optimal}' are also K C |B|,/,\14, then K C |A|,/,‘l4. Thus,
by Definition 3.3, when A = B is taken as true, ®[a cstit: A]
®|[a cstit: B], so RE,® must hold. m

RE,® :

No® : ®[acstit: T]
By N for cstit [12, pg. 17], it is the case that Choice}' (h) C |T|,/>l/[
for all h € Hp,. Thus, for all K in Choice, K C |T|2L. Since
E-Optimall}! is a subset of Choicel]' by Equation 3,all K € E-Optimal}!
also hold K C |T|,/,\l/(. Thus, by Definition 3.3, ® [« cstit: T] holds.
]

My® : Q[acstit: ANB] = Q®[acstit: A] A®[acstit: B]

From the antecedent we know that all optimal actions K*|K* €
E-Optimal™ ensure K* C |A A B|\! by Definition 3.3. By Equation
1, we know that all K* are in the set of histories {h € Hy, | M,m/h E
A A B}. From the evaluation rule for conjunction [12, Def. 2.3],
M,m/h E AANBIff M,m/h = Aand M,m/h E B. Thus, the
set of histories |A A Bl,/,\l/[ must be composed of histories that sat-
isfy A at moment m and that satisfy B at moment m. That is
[AABIM = {h € Hy | M.m/h = Aand M,m/h E B}. Thus,
all K* € |AIM n |BIM 1t follows that K* € |A|M and K* C |BIM.
Now, by Definition 3.3, we have ®[a cstit: A] and ®[a cstit: B],
since all optimal actions K* guarantee A and guarantee B. Thus the
consequent holds, and so too does the principle M,®. ®

Ca® : ®[acstit: A] AQ[acstit: Bl = ®[acstit: AAB]

From the antecedent we know that all optimal actions K*|K* €
E-Optimal™ ensure K* C |A|M and K* < |B|X! by Definition
3.3. Thus K* must be composed of histories that satisfy A A B at
moment m. That is, K* C {h € Hy, | M,m/h E AAB}. This is
also the set of histories |A A B! by Equation 1. So we can say
K* € |AAB|M. Since K* is the set of optimal actions, we have
that all optimal actions guarantee A A B, which, by Definition 3.3,
validates ® [« cstit: A A B], and so C,® holds. B

D;®: =(®[acstit: A] A®[acstit: =A])
By contradiction, we assume
®[acstit : A] AQ[acstit : =A] to be valid. By C,® we retrieve
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®[acstit : AA-A]. By Da® we can infer Olacestit : AA-A].
Using the evaluation rule for $[a estit: A] ([12, pg. 23]), we know
there is some action K € Choice]' such that AA —A is true for
every history in K at moment m. That is, every index of evaluation
m/h € K validates m/h |= A A =A. Thus, by the conjunction rule
[12, Def. 2.3] every evaluation index m/h € K validates m/h |= A
and m/h | =A. Using the rules of evaluation for negation we have
m/h |= Aand m/h & A. This is a contradiction, so the principle D,
must hold.

DZ(,,B® 1 ~(®[acstit: A] A®[Bcstit: —A])

Again by contradiction, we assume ®[«a cstit: A] A®[f cstit: —A]
to be valid. By D,® we can infer $[a estit: A] and O[S estit: —A].
Using the evaluation rule for $[a estit: A] ([12, pg. 23]), we know
there is some action K, € Choice]}' such that A is true for every
history in K, at moment m, regardless of the actions of other agents.
Similarly, we know there is some action Kz € Choicegl such that
—A is true for every history in Kz at moment m, regardless of the
actions of other agents. By independence of agents [12, pg. 30]
the intersection of all selected actions must be nonempty. That is,
K, N Kﬂ # 0, so it follows that there exists a history A’ in both
Kp and K. Since all histories in K, satisfy A at moment m, and
all histories in Kp satisfy —A at moment m, the history k" must
satisfy both A and —A at moment m. This is a contradiction, so the
principle D; 5 ® must hold. m
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