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Abstract—We demonstrate the first Recurrent Neural Network
architecture for learning Signal Temporal Logic formulas, and
present the first systematic comparison of formula inference
methods. Legacy systems embed much expert knowledge which
is not explicitly formalized. There is great interest in learning
formal specifications that characterize the ideal behavior of such
systems — that is, formulas in temporal logic that are satisfied by
the system’s output signals. Such specifications can be used to
better understand the system’s behavior and improve design of its
next iteration. Previous inference methods either assumed certain
formula templates, or did a heuristic enumeration of all possible
templates. This work proposes a neural network architecture that
infers the formula structure via gradient descent, eliminating the
need for imposing any specific templates. It combines learning of
formula structure and parameters in one optimization. Through
systematic comparison, we demonstrate that this method achieves
similar or better mis-classification rates (MCR) than enumerative
and lattice methods. We also observe that different formulas
can achieve similar MCR, empirically demonstrating the under-
determinism of the problem of temporal logic inference.

Index Terms—Temporal Logic, Inference, Recurrent Neural
Networks, Formal Methods.

I. INTRODUCTION

EGACY systems encode a great amount of expert knowl-
edge accumulated over time by the system’s designers.
This knowledge is implicit as often as it is explicit: while good
design practice calls for Design Requirements documents to be
created and referred to throughout the design and verification
cycles, these requirements are still, more often than not, in
natural language (e.g., English). Further, they leave much that
is unspecified, and which is thus specified implicitly in the
design choices. These choices are guided by the designer’s
intuition and training, and are not necessarily documented.
The extraction of such implicit specifications from legacy
systems, and turning them into explicit, formal specifications
has many benefits. First, it makes explicit the properties of
a ‘good’ design, as understood by the expert designers. This
helps design future versions of the system. These specifica-
tions can be used in model-checking and control synthesis
algorithms, thus automatically improving the quality of future
design versions. Finally, they can serve as formal contracts
between interacting systems. Namely, this system guarantees
that its outputs satisfy these extracted properties, which makes
it possible to use it as a black-box when building a larger
system in an Assume-Guarantee fashion [1].

This work was partially funded by NSF Grant 1925652.

In this paper, the formalism for expressing specifications is
past-time Signal Temporal Logic (ptSTL). Intuitively, ptSTL
extends Boolean logic by introducing temporal modalities, like
Historically [E (the past counterpart of Always) and Once <
(the past counterpart of Eventually), which allow us to speak
of behavior over time.

The main difficulty in learning a ptSTL specification from
positive and negative examples of system behavior is the
learning of the formula structure: e.g., What operators does
it include? And in what order? Should it use a disjunction or
conjunction? Etc. This is a combinatorial search problem. We
refer to this as the structure of the formula. Thus ©[=p and
&[Eq have the same structure, but ©&Ep and F<S p do not.
State-of-the-art work either enumerates (almost) all possible
structures and tries each one, or it endows the search space
with some order (like a lattice). Enumerative methods face a
possibility of combinatorial runtime explosion, while lattice
methods must confine themselves to a fragment of the logic.
In this paper, we develop a neural network-based approach to
solving the structure learning problem without restrictions on
the logic and without enumeration.

The computation graph of a Recurrent Neural Network
(RNN) is a natural representation of ptSTL robust semantics
[2], [3]. This representation has been observed before [4].
We extend this representation to include choice over temporal
and boolean operators, and let the network learn continu-
ous weights between the various choices. These continuous
weights can be thought of as inducing soft choices between
ptSTL’s operators. We combine this with a weight quantization
procedure, which is incorporated in the training stage [5] to
ultimately learn binary weights. The final trained network thus
implements the (robust) semantics of a ptSTL formula that can
be simply read from the network. This contrasts with other
works which learn a classifier or regressor, then try to extract
an ‘explanation’ from it [6]. The RNN also learns the atoms in
the same training stage. Thus a combinatorial search problem,
structure inference, is solved with stochastic gradient descent.

In existing methods, the time intervals decorating the tem-
poral operators of the logic are learned after a structure (also
called a template) is chosen. Our proposed RNN-based method
can also learn these intervals simultaneously with the structure
learning, and we give examples. Because our focus is on
solving the harder problem of structure learning, we focus our
systematic analysis to infinite horizon formulas — i.e., ones
where the temporal operators have the unbounded intervals
[0, 00). In fact, our method can learn temporal constraints that
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are not continuous intervals, e.g., of the form [0,1] U [5, 7],
and is the first method with this capability. Such disjoint
intervals are a compact and more optimization-friendly way of
representing conjunctions and disjunctions of constraints; for
instance o 1)up5,71 = po,1) V r5,7)- This allows us to then
perform the first systematic comparison between TL inference
methods, including our proposed method. Our experiments use
four datasets and several configurations.

One way to think of the Temporal Logic (TL) inference
problem is as a classification problem in which we seek to
learn a classifier with a special structure: namely, the classifier
is a ptSTL formula. There can be many different formulas
that achieve similar mis-classification rate (MCR) on a given
dataset. We present empirical evidence of this phenomenon.
In the case of ptSTL inference, this under-determinism is
particularly problematic: TL inference attempts to give a
meaningful explanation of why some behavior is considered
good, and other behavior is considered bad. The idea is that
the learned formula tells us something ‘real’ about the data.
However, if many different formulas yield the same MCR, and
so are equally good explanations, then it is less reasonable to
think of them as explanations at all. Thus, we also present
qualitative examinations of formulas as part of our comparison.

The paper is organized as follows: related works are re-
viewed in Section II, and technical preliminaries on temporal
logic and RNNs are provided in Section III. The computation
of robust semantics by an RNN is covered in Section IV-A.
Section IV-B describes our approach to training with quantized
weights such that the resulting trained network immediately
yields a formula that classifies the dataset. We call such a
network built under this approach a Formula Extractable RNN
(FERNN). The experiments in Section V perform an extensive
comparison of FERNN with the enumerative and lattice meth-
ods, which are representative of the existing approaches to
(S)TL inference. Section VI presents further discussion of the
validity of our approach given experimental results. Section
VII concludes the paper.

II. RELATED WORKS

The main challenge in TL inference is inference of the
formula structure - that is, the choice and ordering of operators
- rather than inference of their (continuous-valued) parameters.
Here, ‘parameters’ refers to the time bounds on the temporal
operator and the thresholds in the atomic propositions.

Most existing methods learn Signal Temporal Logic (STL)
formulas [7]-[9], while the work in [10] explicitly targets
LTL learning. STL inference methods include the enumerative
method of [8], which enumerates almost all formula structures,
and the lattice method of [7] and follow-on works, which
is restricted to a fragment of STL and searches over it by
leveraging a lattice defined over the restricted search space.
Both approaches first propose a formula structure, then learn
its parameters. If the resulting formula has too high an MCR,
a new structure is proposed, and the cycle repeats.

Enumeration achieves good MCR in practice, but its runtime
can increase dramatically as the inferred formula size is
increased, as we will show. This is inherent to the method,

which from a formula of a given size L tries all ways of
modifying it to get a formula of size L+1." The lattice method
is restricted to reactive STL, which consists of formulas of
the form @[T}T’)(@C = ), where the cause and effect
formulas ¢, and . are only allowed to be conjunctions
and disjunctions of delayed linear predicates, $; ¢ and E; /.
Reactive STL has a partial order that is leveraged by the
learning algorithm. Moreover, both the enumerative and lattice
methods work only with monotone formulas.

Our proposed method FERNN differs in that it combines in-
ference for structure and atom thresholds, potentially avoiding
the sub-optimality that arises from separating these two steps.
Our method also does not require monotony with respect to the
thresholds. It handles the full LTL grammar, unlike the order-
based lattice method. Most notably, it leverages differentiable
optimization to explore the combinatorial structure space, and
represents up to 2"V formula structures in a compact RNN
architecture with N branching choices.

The samples2LTL tool [10] uses MaxSAT to infer an
LTL; formula (LTL for time-bounded signals) from a set of
positive and negative traces. Unlike our method, it cannot learn
formula size, or intervals on the temporal operators. Similar
in spirit is the approach of [11] which uses OptSAT to learn a
formula interactively with a human user. The technique in [12]
uses a pre-specified set of parametric formula templates from
which to learn a root-cause for a system’s failure. Finally, the
algorithm in [9] takes a given formula structure and computes
the set of parameters that achieve a given false positive and
false negative rates, where possible.

III. BACKGROUND

A. Temporal Logic Preliminaries

1) Definition, Syntax, and Semantics: Signal Temporal
Logic (STL) [13] is used for specification of desired system
behaviors over time. This work uses ptSTL, a variant that
specifies past behaviors such as “The robot was always within
100 meters of its base station” or “At one point in the last 5
minutes, the robot returned to charge”. We use ptSTL, rather
than the more familiar future-time STL, to be consistent with
the convention for RNNs to compute their outputs based on the
previous outputs and inputs - not future ones. However, this
paper’s techniques are equally applicable to future-time STL;
the choice of ptSTL is made for simplicity of presentation.

The syntax of a ptSTL formula is defined recursively as:

o:=Tlul-¢loVve|oSie

where T is the constant True and w is an atomic proposition
from a set of atomic propositions AP. In operator Sy, I is
a subset of R, and for convenience we define I,,, := inf ]
and Ip; := sup I. The formula ¢ Sy v is read as “1 held true
at some point between [,,, and I, time units ago, and ¢ has
held Since then”. Using the Since operator, two other temporal
operators < and [F are derived as:

IFormula size will be defined later, and we will see that different authors
use different definitions.
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The operator <; is the Once operator, and [E; is the
Historically operator.

We now define the semantics for ptSTL. It is a logic
interpreted over signals x : R — R® For every p in AP
we associate vector W, and scalar b,,.
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p iff W[t + b, >0 (1)
¢ iff (x,t) b ¢ )
b1V ¢ iff (x,1) = ¢y or (x,1) =2 (3)
oS iff /W et —Ist (x,t') =

and Vt" € [t',t) (x,t") = ¢ 4)
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For instance we can now derive

(x,t) B &piff I et—1Ist (x,t')E=o (5
(x,t) &= Op iff V¢ et —1T st (x,t')=¢ (6)

In words, Q[a’b] ¢ says that ¢ held (at least) once between
a and b time units in the past, while F, 5 ¢ says that ¢
held continuously between times a and b. Note that atomic
propositions are given by linear functions of the state.

2) Robustness: A quantitative measure of how well a ptSTL
formula is satisfied by a signal is given by the robustness.
The robustness is a conservative estimate of the distance to
violation of the formula by the signal at time ¢. Robustness of
signal x to ¢ at time ¢, denoted by p,(x,t) is defined as [2].

P=¢ (x,t) = —P¢ (x,1) (8)

Popvap (X, t) = max(p¢ (X, t)7 P (X, t)) 9)
posiu(xt) = sup (min(Pw (x,t), inf (pg(x, t”))>

tret—1I t e[t ,t) (10)

Thus we derive that pg, (b(x,t) = SUPyes_g Pp(x,t’) and

/e, o(X,t) =infye g p(;(x,t’).

We will give examples of our method learning bounded time
intervals I. But to focus on the structure inference problem,
and unless otherwise stated, by default in this paper we
consider time-unbounded formulas. That is, we set I = [0, c0),
and drop it from the notation.

B. Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a type of artificial
neural network that uses its hidden states to retain memory of
past inputs for use with current inputs to generate its output
[14]. These hidden states, or memory units, enable processing
of variable length sequential data. Figure 1 illustrates a simple
example of a single RNN cell which takes as input a sequence
of length T, x = [x1,...,2¢t—1, T+, x| and for each element
of the sequence produces an output o; using a hidden value
h:. The general functions for computing h; and o, are:

T’ a,T_, ? °:;1
x—»a [ h1 }—- A-Iht; ]—'[ ?t Hhtf"‘]
= i

Fig. 1: Example of an RNN cell in compact form (left) and
unfolded (right). The input z, is used with hidden state h; to
produce output o, for every ¢ element of the input sequence.

he = on(Whay + Upoi—1 + by)
Uo(Woht + bo)

O¢ =
where the W’s and U’s are row vectors, b’s are scalars, and
the o are activation functions like sigmoids.

IV. LEARNING FORMULAS WITH FERNN

FERNN is an RNN architected to compute the robustness
of any ptSTL formula (Section IV-A). We can, in fact, have
a single FERNN compute the robust semantics of any given
number of formulas, by quantizing the values of the learnable
weights in the network (Section IV-B). Assuming for now
that our dataset consists of signals and their robustness values
relative to some unknown formula, we train the network
(that is, optimize weights and biases) to learn this robustness
function. We can then read the learned formula by simple
inspection of the final trained network. In practice, robustness
values are not available — after all, the formula is not available
and we are trying to infer it. Thus our datasets actually consist
of signals and their binary labels: +1 for positive examples, and
-1 for negative examples. We will see that even this discrete
labeling is enough for our method to perform well.

A. Temporal Logic Operators as RNN Cells

In this section, we show how the robust semantics of a
given formula ¢ can be computed by a FERNN. This forms
the basis for the next section, which shows how the FERNN’s
weights can be trained to learn a formula classifier from a
given dataset. The cells of a FERNN are illustrated in Fig.
2. A model comprised of these cells takes as input a signal
x and outputs robustness pg(x,-). The hidden neurons take
robustness signals as inputs (computed by previous layers)
and output other robustness signals. In this section we fix
the signal x. We will write ¢[t] instead of pg(x,t) for the
robustness signal input to a hidden neuron, and r4[t] for the
output robustness signal from a hidden neuron. Thus in this
notation, the FERNN computing p, » has a hidden neuron
that receives p[t] and outputs T@p[t .

a) Atomic Proposition: The robustness plt] is easily
computed by a single neuron with bias b, and input weight
vector W, and identity activation.
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Fig. 2: Tllustration of STL operators as RNN cells as defined in Section IV-A

b) Negation: This is trivially implemented by a neuron
with one input ¢[t], (scalar) weight W = —1, 0 bias, and
identity activation.

The following boolean and temporal operators fit the general
equation for output of an RNN cell with a weights vector of
all 1s and bias of 0.

c) Conjunction and disjunction: These are implemented
with neurons that apply max/min activations to two inputs:

ronyli] min(¢[t], ¢ [t]) (1)
rovylt] = max([t], ¥[t]). (12)

For all the above neurons, no memory units are required.
For the temporal operators, we present the unbounded
versions here for conciseness; Section V-H of the Experiments
will illustrate how we can also learn temporal intervals.
d) Once and Historically: We compute & ¢ and F¢ as
recurrent cells with a single memory unit and functions with
max/min activations given a single input.

rglt] = max(6ff], gt — 1)) (13)

T@d)[t] = min(qS[t],T@(b[t —1)) (14)

e) Since: Following the robust semantics given in Eq.

(10) we represent ¢S as a recurrent cell with a single
memory unit and function given two inputs:

rosylt] = min(@t], max(rg s y[t — 1, ¢[t]))  (15)

The derivation for Eq. (15) from the semantics of the S
operator is provided in the Appendix.

A few important remarks are in order: it is obvious that
we can implement any formula’s robustness as an RNN using
these cells, so we are not constrained to a fragment of the logic.
In the other direction, given such an RNN, we can simply
read off the corresponding formula — no need for a subsequent
‘extraction’ or ‘explanation’ step. The number of layers of
the FERNN directly measures the complexity of the formula
(number of nesting levels); thus we have a convenient handle
on the complexity/goodness-of-fit trade-off.

r¢,[‘] — 1 X

+ — 1= rt]

rw[t] — =X

Fig. 3: Basic structure of a FERNN choice block. Inputs 7
and ry, represent robustness of two possible formulas. Input
r¢ is multiplied by weight 1¥/; and input 7, is multiplied by
weight Ws. A one-hot quantization is applied to weights W;
and W5, after learning, so exactly one of them is 1 and the other
0. Thus the output r equals exactly 4 or ry. The input with
the non-zero quantized weight is “chosen” for the formula.

B. Choice Blocks and Learning Formula Structure

If the formula structure, and therefore the corresponding
FERNN architecture, is pre-fixed, it is trivial to learn the
parameters W, and b, of the atoms. However, our goal is to
learn the structure itself. We introduce new cells called choice
blocks that contain learnable weights enabling FERNN to
choose which operators or atomic propositions belong in the
formula. In typical RNNs, weights are continuous and real-
valued. To translate these weights to discrete choices, we apply
a quantization within the choice blocks.

Figure 3 illustrates an example choice block. It takes
as input the robustness output signal of two FERNN cells
(though any number of inputs is possible) and yields a single
robustness value from exactly one of the cells, essentially
‘choosing’ which of the cells’ information is passed forward.
This selection is done by learning a weight W, for each choice
block input. Exactly one weight will be either 1 or -1, and the
rest will equal 0. The input assigned the non-zero weight is
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‘chosen’ to be included in the formula. Now, how do we learn

these discrete weights? In fact, the learned real-valued weights

are transformed into discrete, one-hot weights via quantization.
The output of the choice block is then calculated as:

N

rlt] = aBjrlt] (16)
n=1

where B; is the quantized value of W; and « is a scaling

factor such that W =~ «B. Thus, because all but one of the

B; equal 0, only the input with the non-zero quantized weight

is passed forward.

a) Learning one-hot weights: We modify the binary
quantization method proposed in [5] to implement this one-
hot constraint. Let W be a real-valued weight vector and B
be the corresponding one-hot quantized weight vector. To find
an optimal value for B and scalar « such that W ~ aB for
some a > 0, we solve the following optimization.

J(B,a) =

o, B* =

W — aB|?

argmin,, 5 J(B,a)

a7

By expanding Eq. (17) above we have
J(B,a) = o*BTB—-2aWTB+WTW

Because B is one-hot, BT B = 1. Additionally, W™ W is a
known constant. Setting WTW = ¢, we now have

J(B,a) = o®*—2aWTB+c
Because « is positive, minimizing J requires maximizing the
second term. Without loss of generality, we can first find the
optimal B* for a generic positive a:

B* = argmax,, ..,y W' B (18)

The optimizer is B} = sign(W;) where W; = max(W) and
B 2= 0. Then, to find the optimal o*, we take the derivative
of J with respect to a and set it to O:

o = WTB* = max(W) (19)

During training of the network, the real-valued weights
are quantized using Eqgs. (18),(19) before performing the
forward pass. The output of the forward pass is calculated
using the quantized weights according to Eq. (16). During
backpropagation, the gradients computed from this output are
used to update the real-valued weights.

In general, quantizing the weights of a neural network de-
creases accuracy due to loss of information when approximat-
ing of the real-valued weights. However, in practice we found
this difference in performance can be minimal — an acceptable
trade-off for extracting a readable, logical representation of the
trained network. Table V in the Appendix shows the effects
of quantization in our method.

Finally, the steps to learn and extract a formula as a binary
classifier for a data set using FERNN cells are as follows:

1) Obtain a set of signals labelled with robustness values.

Positively labeled signals are examples of desired behav-
ior, and negatively labeled signals are examples of bad

behavior. Note that typically, it is not always possible to
obtain actual robustness values for the training signals
since that assumes that we already know a ground
truth formula (which defeats the purpose a learning
one). Other quantitative measures that may approximate
robustness can be used in practice (e.g., scores given
by experts), but in the general absence of such values,
binary labels can be used. With binary labels, +1 labeled
signals are examples of desired behavior, and -1 labeled
signals are examples of bad behavior.

2) Construct a network architecture with the FERNN cells.
This step can be very flexible: a network with /N choice
blocks embeds 2V possible formulas. Prior domain
knowledge may be used to impose a structure for the
final formula: e.g., if we expect that a formula in reactive
PSTL [7] is called for, we can use the architecture
in Fig. 4(c). But choice blocks can also be used to
construct a much more general structure space and let
FERNN learn the appropriate structure simultaneously
with the atom parameters.

3) Train the network by using quantized weights in the for-
ward pass and updating the real-valued weights during
backpropagation. Loss is calculated using the difference
between predicted robustness and the data labels. If
binary labels are used instead of true robustness values,
a non-linear activation is applied to the final layer output
to force positive robustness outputs near 1 and negative
robustness outputs near -1.

4) After training, recover the learned atomic propositions
and the chosen (non-zero) inputs from each choice block
to construct the formula.

V. EXPERIMENTS

This section describes application of our method to clas-
sification problems on different datasets. We compare our
method’s performance against two existing temporal logic
inference methods: 1) an Enumerative method [8] and a 2)
Lattice based method [7]. In the Enumerative method, all pos-
sible formula structures up to a pre-specified formula length
are enumerated and stored in a database. For each formula
structure in the database, different values for the parameters
are tested until a target mis-classification rate (MCR) against a
holdout dataset is met. In the Lattice method, possible formula
structures for a reactive PSTL formula are organized as nodes
in a graph. Pruning and growing of the graph refines the search
for the best formula structure. For each node in the graph,
different parameter values are tested until a satisfactory MCR
is found. We refer the reader to the respective papers of each
method for further details. We evaluate FERNN against these
methods in terms of MCR and wall clock runtime. We also
discuss the quality of the best formulas found by each of the
methods based on domain knowledge of the datasets. Finally,
we demonstrate how our method can also learn temporal
intervals for the operators.

Past vs Future STL: We presented our method for learning
past STL formulas, whereas the Enumerative and Lattice
methods are formulated to learn future STL formulas. To
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Fig. 4: Examples of using choice blocks and FERNN cells to construct networks that learn the structure and parameters of
STL formulas. (a) learns a formula of the form C'u where C' is a choice between & and [, (b) learns a formula of the form
¢ S 1 where each ¢ and 1 have two possibilities, and (c) learns a formula given in reactive PSTL (defined in [7]).

compare the methods, we feed signals in reverse chronological
order to the FERNN models to generate future STL formulas.

A. Datasets

a) Cruise Control of a Train (CCT): We recreate the
train cruise control experiment from [8]. The cruising speed
of a three-car train is set to 25m /s with oscillations £2.5m/s.
Under normal conditions, the train maintains its cruising speed
and applies brakes when the speed exceeds some upper limit.
Anomalous conditions are simulated by disabling the train’s
brake system. We generate traces for the velocity signal v of
the train from 2000 simulations, half under normal conditions
and half under anomalous conditions, which are given labels
+1 and —1 respectively. Additionally, we generate continuous
labels for each of the traces by calculating robustness at ¢ = 0
for each trace with respect to the formula G(v <= 34.2579),
which was the final learned STL formula in [8].

b) Lyft Vehicle Trajectories: We attempt to learn a
formula description for vehicle trajectories from the Lyft
Prediction dataset [15] by classifying the true Lyft trajectories
from artificial trajectories.

The features of the traces provided by the Lyft dataset
include the x and y coordinates of a vehicle’s ground truth
trajectory relative to its starting position on a semantic map.
Two additional features were derived, xgy and ygy, which
capture the change in coordinate values between time steps.
Artificial trajectories were generated by randomly sampling
trajectories from the Lyft dataset and adding a fixed scalar
uniformly sampled from range (—20,20) to the x values and
similarly for the y values. The artificial trajectories are given
label —1 and the true trajectories are given label +1.

c) Electrocardiogram (ECG): We use the processed ECG
data from [16] to train a classifier for normal heart rate. We
use 131 traces of 10-second ECG signal fragments exhibiting
normal sinus rhythm (label 1) and 133 traces of equal length
exhibiting atrial fibrillation (label —1). From the raw ECG
signal, we also derive a feature for change in heart rate (hrgg)
from the previous time step. Additionally, as with the CCT
dataset, we generate continuous labels for each of the traces
by calculating robustness at t = 0 for each trace with respect
to the formula G(hrgy < 5.795), which was the final learned
STL formula by the Enumerative method in our experiments.

d) Human Activities and Postural Transitions (HAPT):
We use the smart phone data from [17] to train a classifier
for dynamic activities (eg. walking) over static activities (eg.
sitting, lying down). We use fifty dynamic and fifty static
10-second traces of standard deviation of acceleration signal
in the x-direction collected from the smart phone triaxial
accelerometer. Dynamic traces of this signal are given label
+1 and static traces are given label —1.

B. Experimental Setup

We trained five different FERNN model architectures on
each dataset to learn formulas of lengths 2 to 6. That is,
there is a model to learn formulas of length 2, another
model that learns formulas of length 3, etc, and larger models
incorporate the architectures of smaller models. We define
length of a formula as the count of atomic propositions and
operators to follow the convention used by the Enumerative
method. In the Lattice method, formula length is defined as
the number of atomic propositions in the formula. The formula
¢ =S > ¢ N y > d) has length 4 according to the
convention we follow, but length 2 in the Lattice convention.
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We choose a maximum formula length of 6 for practicality of
our experiments, though a FERNN may be designed to learn
any arbitrary length formula.

For classification tasks with £1 labels, the final layer of
each FERNN model was passed into a tanh activation layer.
We used mean absolute error as our loss function and an
Adam Optimizer with initial learning rate of 0.003. Each
dataset was split 80-20 for training and testing and normalized
between 0 and 1 before passing to FERNN. We did not apply
this normalization to the Enumerative and Lattice methods.
Instead, we specified a search range for the parameters of the
atomic propositions based on the feature values. We forced the
Enumerative and Lattice methods to skip the search over time
bounds and set each temporal operator to be time-unbounded,
to focus on analyzing structure learning.

Both the Enumerative and Lattice methods terminated
their search when finding a formula with MCR < 0.2.
FERNN stopped training early if loss did not decrease in the
last 50 epochs, otherwise training ceased after 5000 epochs.

The FERNN models were implemented in Python. For the
Enumerative and Lattice methods, we used the MATLAB
implementations provided by the authors. Code and data
available at https://github.com/nicaless/fernn_stl_inference.

C. Quantitative Comparison with Existing Methods

In general, we found that early stopping had little impact
on the MCR of FERNN, as shown in Table I. Figure 5
shows the MCR and runtime comparisons for Enumerative,
Lattice, and FERNN under early stopping, over all datasets.
FERNN under early stopping often yielded lower MCR than
the Lattice method, and as good or better MCR than the
Enumerative method. One exception is the ECG dataset for
which FERNN formulas of length > 2 had much greater MCR
than those of the Enumerative method. For the HAPT and
CCT datasets, the early stopping conditions proved to be too
loose, allowing FERNN to run substantially longer than the
other two methods. For ECG and Lyft, the other methods had
longer runtimes than FERNN, with the Enumerative method
timing out at formula lengths > 2.

D. Qualitative Comparison of Learned Formulas

In this section we take a qualitative look at the best formulas
learned by each method for each of the datasets, including
informal inspection of bounds on signal variables. Because
signals are multi-dimensional, we expect the methods to find
bounds on different variables.

a) HAPT: There is a clear distinction between the dy-
namic and static traces in the dataset. Figure 6 shows a sample
of both types of traces alongside the decision boundaries
described by the following formulas:

o FERNN: G —(z < —0.81)

o Enumerative: G(z > —0.65)

o Lattice: Gy 5y(z > 0.94) = Fi510)(z > —0.57)

All methods learned that dynamic traces have a signal value
greater than some constant that is higher than the signal value
of static traces. Both FERNN and Enumerative formulas yield

Dataset MCR Runtime

& Length No ES ES A No ES ES A

ECG 2 | 0.10 0.09 0.20 177.3 112.1 0.58
3| 047 0.47 0.00 469.5 7.0 65.7
4 | 047 0.47 0.00 611.9 9.3 64.6
5 | 047 0.50 -0.07 | 973.2 20.0 47.6
6 | 047 0.50 -0.07 | 763.0 16.1 46.3

Hapt 2 | 0.00 0.00 0.00 154.7 152.7 0.01
3 | 0.00 0.00 0.00 202.8 200.6 0.01
4 | 0.00 0.00 0.00 249.9 212.3 0.2
5 | 0.00 0.10 -1.00 | 470.3 18.2 24.8
6 | 0.00 0.00 0.00 332.3 280.3 0.2

CCT 2 1 0.03 0.03 0.00 843.1 826.2 0.02
3| 0.03 0.03 0.00 16553  1481.1 0.1
4 1 0.03 0.03 0.00 1886.9  1375.0 0.4
5| 0.03 0.03 0.00 2879.5  1873.1 0.5
6 | 0.03 0.03 0.00 26249  1967.6 0.33

Lyft 2 | 0.30 0.5 -0.40 | 1063.8 142 74.0
3 | 0.50 0.50 0.00 2514.5  30.05 82.7
4 | 0.50 0.50 0.00 35105 41.2 84.2
5 1 0.50 0.50 0.00 5985.1 127.9 45.8
6 | 0.50 0.50 0.00 47469  96.9 48.0

TABLE I: The MCR and runtime of FERNN with early
stopping (ES) and without early stopping (No ES) conditions
for formulas, of length 2-6. Additionally, column A shows the
relative improvement of No ES over ES. In most cases, MCR
was similar between the two training schedules. A decrease in
MCR is seen for Lyft at length 2 and for HAPT at length 5
when removing early stopping. Improvements in runtime with
early stopping were greatest for ECG and Lyft.

0.0 MCR. As shown in Figure 6, FERNN finds a tighter upper
bound for the static traces. For Lattice, only the classification
part of formula is able to distinguish between the two sets of
traces.

Because the distance between the two classes of traces is
large, FERNN found a distinct formula for each formula length
from 2 to 6, which all yielded 0.0 MCR. We share the length-
2 formula above to compare with the formulas found by the
Enumerative and Lattice methods.

b) CCT: The simulated cruise control train data also
shows a clear distinction between the normal and anomalous
traces, though there is some overlap. Figure 7 shows the
decision boundaries of each of the methods’ best formulas
alongside the traces. The formulas are:

e FERNN: G —(v > 39.8)

o Enumerative: G(v < 34.3)

o Lattice: G[1750.5) (’U > 247) - G[50A5,101) (’U < 347)

As with the HAPT data, FERNN found multiple formulas
that yield similar MCR of 0.03. Ignoring the prediction part of
the Lattice formula, all formulas found that normal behavior
for the train meant velocity maintained below a certain value
between 34-40m/s. Though FERNN found a looser bound, it
yielded the same MCR as the Enumerative formula.

c¢) ECG: Distinguishing a normal sinus rhythm from
atrial fibrillation requires looking at both the instantaneous
heart range signal hr and the change in heart rate signal hrgy.
Figure 8 shows sample traces for both hr and hrgy signals
with boundaries found by the learned formulas:

o FERNN: G —(hrgz < —3.78)

o Enumerative: G(hrgy < 5.80)

o Lattice: G[175) (hT’ > 12021) - G[G,IO) (h?" < 8668)


https://github.com/nicaless/fernn_stl_inference
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Fig. 5: The MCR (top) and runtime (bottom) of each method on all four datasets. FERNN with early stopping conditions
yielded better MCR than the Lattice method and comparable MCR to the Enumerative method on all but the ECG dataset.
Runtime for FERNN was typically worse. However, for larger datasets such ECG and Lyft, runtime for FERNN was better

and still produced results while others timed out.
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Fig. 6: Samples of dynamic (green) and static (red) traces
of standard deviation of acceleration in the x direction from
the HAPT dataset. The decision boundaries of the formulas
found by the FERNN, Enumerative, and Lattice methods are
shown as differently-styled horizontal lines. The prediction
and classification sub-formulas found by the Lattice method
are plotted separately. Except for the Lattice prediction sub-
formula, all boundaries perfectly classify the two sets of traces.

The FERNN and Enumerative methods generate a formula
with an atomic proposition using the hr gy signal. FERNN gen-
erated a lower bound while the Enumerative algorithm gener-
ated an upper bound. As shown in Figure 8 the bound found by
FERNN is tighter. The two formulas yield similar MCR. The
Lattice method chooses an upper bound for the hr signal in
its classification formula. While an upper bound for a normal
heart rate is useful, this does not fully describe whether the
heart is also free of atrial fibrillation. As a result, the Lattice
formula yields a much larger MCR.

We also found that longer formulas generated by
FERNN for this dataset yielded poor MCR because either the

=== RNN

—-+=— Enumerative
Lattice (Class)
Lattice (Pred)

velocity

time

Fig. 7: Velocity traces from the CCT simulation under nor-
mal conditions (green) and anomalous conditions (red). The
formulas found by FERNN, the Enumerative method, and
Lattice Classification method provide reasonable upper bound
to distinguish normal traces (between 34-40m/s).

bounds chosen for hrgz were too loose or it got stuck in a local
minimum searching for bounds for hr. For example, the length
6 formula was —(F hr < 571.061 A FF hr > —25.751).
This essentially says that hr must be between -25 bpm and
571 bpm, which is not a useful result.

d) Lyft: By far the most difficult task for all three
methods was distinguishing between the true Lyft trajectories
and the artificial trajectories. Under early stopping conditions,
FERNN did not yield an MCR better than 0.50. However,
the best formula found by FERNN under the normal training
conditions for length 2 yielded an MCR of 0.302. The Enu-
merative method found a similar formula with slightly better
MCR of 0.296, but timed out for lengths longer than 2. The
best formula found by the Lattice method yielded MCR of
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Fig. 8: Sample traces of heart rate hr (top) and change in
heart rate per second hrgy (bottom) for normal sinus rhythm
(green) and atrial fibrillation (red). The Lattice method found
bounds for Ar while the Enumerative and FERNN methods
found bounds for hrgyy, yielding lower MCR.

0.50. These formulas are:

o FERNN: F(y > —1.4)

o Enumerative: F(y < 1.5)

o Lattice: G[1725) (ZL’ > 50) - F[26750) (l’ < —1034)

Figure 9 depicts sample traces for the x and y positions
for the Lyft trajectories and artificial trajectories with the
bounds described in the above formulas. Both x and y signals
are similar in that the true and artificial traces have much
overlap. Both the FERNN and Enumerative methods generate
loose bounds for y (FERNN finds a lower bound while the
Enumerative method finds an upper bound) while the Lattice
method generates bounds for x.

All other FERNN tests on the Lyft dataset yielded MCR
of 0.5. While structure of the generated formulas varied with
length, as expected, so too did the chosen atomic propositions.
This leads us to believe that the given features of the dataset
are not enough to distinguish a useful classification boundary.

E. Performance Using Continuous Labels

The objective in this experiment is to observe how
FERNN performs given noisy data. We accomplish this by
using continuous labels instead of binary labels. For CCT and
ECG datasets, we computed robustness values from formulas
obtained by the Enumerative method and used these as labels.

Table II shows the best formulas found by the continuous-
trained FERNN model compared to the formulas used to
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40 + Lattice (Pred)

20 |

—40 F ]

—60 F ]

---RNN
—-— Enumerative

time

Fig. 9: Sample of the traces for x (top) and y (bottom)
positions of the Lyft trajectories (green) and artificial trajecto-
ries (red). The Lattice method found bounds for  while the
Enumerative and RNN methods yielded bounds for y. MCR
from all methods on this dataset was poor.

generate robustness labels. Because the labeling formulas did
not have perfect MCR, the theoretical ‘best’” MCR for a
FERNNItrained on these labels would not be 0, but instead
would match the labeling formulas’ MCR. For CCT, the
continuous-trained FERNN yielded a comparable formula to
the labeling formula with similar MCR. In contrast, for the
ECG, the continuous-trained FERNN found a very different
formula, with only slightly worse MCR.

FE. Performance With and Without the Since Operator

We observed that neither the Enumerative nor Lattice meth-
ods generated formulas using the Until operator. Similarly, the
FERNN models did not often choose the Since operator. Thus,
as another test, we trained the same FERNN architectures
described in Section V-B without the S layers to see if
reducing complexity of the network improves performance.
Table III shows that more often than not, removing the S
layers reduced runtime, as expected, and MCR either remained
unchanged or even improved. One particularly impressive
improvement was in the case of the length 5 formula learned
from the ECG data with continuous labels. The original
formula learned by FERNN for the ECG dataset, given in
Section V-D yielded an MCR of 0.466. This formula did not
actually use S even though it was a choice in the network.
The formula learned by the network without S layers was
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Dataset  Labeling Formula  Labeling Formula MCR ~ FERNN Formula FERNN MCR
ECG G(hrgy < 5.8) 0.069 —((Fhr > 19.7) U (hrgy < —4.8))  0.103
CCT G(v < 34.3) 0.030 G—(v > 34.2) 0.033

TABLE II: The best formulas found by the continuous-trained FERNN compared to the labeling formulas. For the CCT dataset,
a nearly identical formula to the original was found with nearly the same MCR. The formula found for the ECG dataset was
longer and more complex with only slightly worse MCR than the original.

Length = 3 Length = 4 Length = 5 Length = 6

Dataset MCR Runtime MCR Runtime MCR Runtime MCR Runtime

ECG 0.47 (0.00) 376.19 (-0.20) 0.47 (0.0) 414.84 (-0.32) 0.47 (0.00) 903.59 (-0.07) 0.47 (0.00) 627.67 (-0.18)
ECG (Cont. Labels)  0.09 (-0.83)  363.56 (-0.20) 0.41 (-0.11)  404.96 (-0.29) 0.03 (-0.93)  785.06 (-0.16) 0.03 (-0.93)  590.79 (-0.22)
Hapt 0.00 (0.00) 226.69 (0.12) 0.00 (0.00) 237.91 (-0.05) 0.00 (0.00) 413.03 (-0.12) 0.00 (0.00) 394.42 (0.19)
Lyft 0.50 (0.00) 1936.01 (-0.23)  0.50 (0.00) 1704.17 (-0.52)  0.50 (0.00) 4957.23 (-0.17)  0.50 (0.00) 3149.60 (-0.34)
CCT 0.03 (0.00) 1554.85 (-0.06)  0.50 (15.67)  1231.70 (-0.35)  0.03 (0.00) 2287.07 (-0.21)  0.50 (15.67)  2187.82 (-0.17)
CCT (Cont. Labels)  0.04 (-0.80) 1674.62 (-0.09)  0.04 (0.00) 1217.47 (-0.42)  0.04 (0.00) 2470.13 (-0.24)  0.50 (13.29)  2179.31 (-0.26)

TABLE III: Results of a FERNN trained without the S operator for lengths 2-6. Proportion of change in performance over
a FERNN trained with S operators are in parentheses (lower is better). In all of the above, the FERNN was trained without

early stopping. In most cases, runtime is reduced and MCR remains unchanged or shows slight improvement.

Dataset MCR Runtime Formula

ECG 047 18642  F (hrgy < 71.0)

ECG (Cont. Labels)  0.50 208.51 (hr > =102.3) U (hr > —60.0)

Hapt 0.00 470.41 (=(z>—-04) U —(x <1.6)) V(G z>-0.8)
Lyft 0.50 1280.96  F (zqy < 150.0)

CCT 0.03 317068 G (v > 39.8)

CCT (Cont. Labels)  0.04 601.79 G (v >34.2)

TABLE IV: Results of an experiment in which FERNN was permitted to choose a formula of up to length 6. In most cases,

FERNN selects the simpler formula (i.e., shorter length).

—(G—(hrgy > —71.33) AG(hrgy < 5.40)), and yielded 0.034
MCR given the more reasonable bounds found over hrgy.

G. Experiment on Choosing Formula Length

Up until now, our experiments used FERNN models de-
signed to learn formulas exclusively of a certain length. In
this experiment, we train a FERNN to search over formulas
up to length 6. This is accomplished by connecting the
outputs of each sub-network — that each learn a formula of
a specific length — to a single final choice block. In actuality,
these connections of sub-networks already exist in the largest
network (length 6), as smaller formulas are used to compose
larger formulas, but are not themselves choices for the fi-
nal formula unless specified in initialization of the network.
When specified, this gives the network the most flexibility
in its search over formula structure. Both the Enumerative
and Lattice methods have this flexibility, but require more
manual intervention if a specific formula length is desired. For
FERNN, this is done simply by setting an additional parameter.

We use a similar training schedule as described in Section
V-B but start with initial learning rate of 0.001 and terminate
early if after 5 reductions in learning rate, the loss ceases to
decrease. The change to a smaller learning rate accounts for
the increased complexity of the network. Table IV shows the
performance results and the learned formulas. The MCR was
comparable to FERNN models learning formulas of length
> 2. In most cases, FERNN chooses the simpler formula.

H. Experiment with Time Bounds

We now show how our method can be used to learn bounded
time intervals for temporal operators in addition to the struc-

ture and parameters of the formula. This is accomplished
by assigning weights to the inputs of the temporal operators
and quantizing these weights using the technique described in
Section IV-B. For example, for the bounded operator Q[a,b],
to learn the values of a and b, the input to the & cell will
be r[0],...,r[T], where r is the cell’s input robustness signal
which has been pre-processed to be non-negative, and T is
a hyper-parameter. Each of these inputs is weighted, so the
output of the FERNN cell for this operator is

max(wor[0], wir[l],...,wper[T])

Each weight is learned and quantized during training to either
1 or a large negative value — M. After training, time steps with
weight 1 are part of the interval, and those with weight —M
are effectively dropped. Note that the resulting time interval
can have ‘holes’ in it, e.g., if w3 = w3 =1 and wy = —M.
Ours is the only method that can learn such time constraints.

Similarly, for the bounded operator [F];, inputs included in
the interval are assigned a weight of 1 and all others are
assigned a large positive number M.

To test this method, we created an artificial dataset of a sig-
nal x in which the negatively labeled traces have range [0, 0.5)
throughout the interval 7_ = [1,6), and the positively labeled
traces have range [0.5, 1] throughout the interval I, = [1, 3)
and range [0,0.5) throughout interval I;o = [3,6). Using
this dataset, we train a FERNN model of length 2 to find a
formula with structure [=]; p where the parameters of p and the
interval I must be learned. The model produced the formula
Hia x> 0.42 which yielded an MCR of 0.08.
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VI. DISCUSSION

Even though FERNN is architected to compute robustness,
we are able to train it with boolean +1 labels and obtain
competitive results. Recalling that robustness is positive for
satisfying signals, and negative for violating signals, we can
see that the discrete labels are actually sign(p(x,t)). Thus
this is a case where we want to learn a function from its sign;
another perspective is that we are dealing with a regression
problem where only noisy robustness values are available.

It is possible to justify the strong performance of FERNN by
a more direct observation: boolean semantics, which evaluate a
formula to 41, are a special case of robust semantics. Namely,
if we define an atom’s robustness to be £1, and keep the rest
of Eqgs.(8)-(10) unchanged, we obtain the boolean semantics.
Thus there is reason to believe that supplying the boolean
labels would still yield good results, though of course this
required the empirical confirmation we have presented.

Domain knowledge of the model can aid design of the
FERNN architecture. For instance, choice block inputs can
be curated to specify which signal dimensions should be
included in atomic propositions, or which temporal operators
are appropriate for signal constraints. Additionally, cells can be
constructed to impose any known constraints. As an example,
a FERNN model learning on the ECG dataset could include
fixed (un-learnable) cells that constrain the search over heart
rate bounds within expected human heart rate range. This
would promote learning new constraints that may be useful.

In contrast to existing template based methods, FERNN is
able to conduct the template search and parameter search
simultaneously using gradient descent. We have shown this
method is comparable to the existing ones in that its generated
formulas which are equal in simplicity (length) more often
than not yield the same MCR or better. Another strength of
our method we have shown is the possibility for learning
future time STL formulas by feeding the signal in reverse
chronological order, from ¢t =T to t = 0.

It must be noted, however, that training a FERNN takes
considerably longer time. In some cases early stopping can be
applied to to reduce training time without loss in performance.
For larger datasets like Lyft, this actually reduced runtime to
less than that of the Lattice and Enumerative methods, the
latter of which timed out. Thus, for smaller datasets with few
features, these methods can be preferred, assuming a monotone
formula. Otherwise, a FERNN model may be more suitable.

The fact that different formulas can yield the same MCR
highlights that further research is required to discover more
appropriate metrics. In our qualitative examinations, we looked
at tightness of bounds, simplicity of the formula in terms
of length, and appropriateness of variables chosen for atoms
based on knowledge of the dataset. Future work may consider
these aspects when developing new quantitative metrics.

Additionally, that several learned formulas were ‘simple’
suggests there is still a need for a richer selection of datasets
in temporal logic inference research. Of course, we can create
artificial datasets, but the real interest is in seeing what learning
approaches work on real problems.

VII. CONCLUSION

We demonstrated FERNN, an RNN-based learning algo-
rithm for past-time STL, and provide a systematic comparison
of this method against existing STL inference techniques.
The differentiable nature of FERNN enables learning of a
formula’s structure and parameters simultaneously using gra-
dient descent, without requiring enumeration or restriction to a
fragment of the logic. Future work will consider embedding an
equivalence check in the RNN creation phase to avoid search-
ing over equivalent formulas, and a more efficient quantized
training procedure.
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APPENDIX A
QUANTIZATION IN FERNN

For each of the FERNN models trained as described in
Section V-B, we also trained an ‘unquantized’ version of the
network. That is, the weights in each choice block were real-
valued weights and not the one-hot weights as discussed in
Section IV-B. Table V shows minimal performance loss in
the use of quantized weights over unquantized weights in
FERNN models for these experiments.

APPENDIX B
DERIVATION OF THE RNN CELL FOR SINCE OPERATOR

This section walks through how we devised the cell archi-
tecture for the semantics of the S operator. In the following,
we simplify some of the notation by writing a M b for the
minimum of ¢ and b, and a LI b for the max of a and b. We
also write ¢[t] instead of py(x,t), where the signal x is fixed.

We present this derivation for discrete-time signals and
logic. Extending it to dense time sequences is possible, and
requires treating the time-stamps as inputs to the network,
which can then learn how time-stamps affect the robustness.

Minimum of sequences: Suppose we have 2 sequences of
numbers, a and b (not necessarily of the same length). The
max of their respective mins is:

M := max(min(a), min(b))

Let d be a number that is appended to both sequences. Then,
recomputing the max of their mins is:

M’ = max(min(a, d), min(b, d))
which can also be done by reusing the previous max M:
M’ = min(d, M) (20)

Now, recall the robust semantics of ¢S :

r[t] = max

. / . 1!
i (mmw[t g ol ]))

We can break this down into functions, f(¢,t') and g(¢,t'):

rlt] = m{%}i]f(t )
f,t) = mln(ﬂ)[t/},tulél(itlllt]gf)[t//])

= min(y(t), g(t,t'))

As we are working in discrete time, we can rewrite this as

f(t, 1) = min(e[t'], o[t'], ot + 1], 0[t])

We now show how to obtain robustness for t = 0, 1, 2.

min(¢[0], 1[0])
max(f(1,0), f(1,1))
max(min(t[0], $[0], ¢[1]), min(4[1], $[1]))
¢[1] M max(min(4[0], ¢[0]), ¥[1])
NS
r[0] By Eq.(20)
¢[1] M max(r[0], ¢[1])
max(f(0,2), f(1,2), (2,
max(min(¢[0], ¢[0], #[1],

2))
¢[2]),
min(y[1], (1], ¢[2]), min(¥[2], 9[2]))
= ¢[2] M max(min(¥[0], #[0], ¢[1]),
min(¥[1], [1]), [2])
= o[]2] Mmax(y[2],
max(min(¢[0], p[0], p[1]), min(¥[1], ¢[1])))
r[1]
= ¢[2] Mmax(r(1],¢[2])
More generally, it holds that
rlt] = ft] Mmax(r[t — 1], 4[t])
Proof of Eq. (20) The proof is by case analysis. If
d < min(a) and d < min(b) then M’ = max(d,d) = d =
min(d, M).
If d > min(a) and d > min(a) then M’ = M =
min(d, M).
If min(a) < d < min(b) then M = min(b) and M’ =
max(min(a), d) = d = min(d, M).
By symmetry, the case where min(b) < d < min(a) is
handled in the same way as this last case.
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