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DUFLO-SERGANOVA FUNCTOR AND SUPERDIMENSION
FORMULA FOR THE PERIPLECTIC LIE SUPERALGEBRA

INNA ENTOVA-AIZENBUD, VERA SERGANOVA

To Pavel Etingof for his 50th birthday

ABSTRACT. In this paper, we study the representations of the periplectic Lie superalge-
bra using the Duflo-Serganova functor. Given a simple p(n)-module L and a certain odd
element = € p(n) of rank 1, we give an explicit description of the composition factors of
the p(n — 1)-module DS;(L), which is defined as the homology of the complex

oM 5 M 5 1M,

where IT denotes the parity-change functor — ® COI'.

In particular, we show that this p(n — 1)-module is multiplicity-free.

We then use this result to give a simple explicit combinatorial formula for the su-
perdimension of a simple integrable finite-dimensional p(n)-module, based on its highest
weight.

In particular, this reproves the Kac-Wakimoto conjecture for p(n), which was proved
earlier by the authors in [EnS19].

1. INTRODUCTION

1.1. Consider a complex finite-dimensional vector superspace V', and let C°I' be the odd
one-dimensional vector superspace.

The (complex) periplectic Lie superalgebra p(V') is the Lie superalgebra of endomor-
phisms of a complex vector superspace V' preserving a non-degenerate symmetric form
w : S?V — CY (this form is also referred to as an “odd form”). Note that w exists
if and only dim V5 = dim V3, and in this case it is unique up to the action of the group
Aut(V). Assume that V,, = C"" and w, : S?V,, — C'' pairs the even and odd parts of
V,., we denote the corresponding Lie superalgebra by p(n) := p(V},).

The periplectic Lie superalgebra p(n) has an interesting non-semisimple representation
theory; some results on the category of finite-dimensional integrable representations of
p(n) can be found in [BaDE*16, Chels, Coul6, DeL.Z15, Gor01, HolR19, IRS19, Moo03,
Ser(02].

We denote by F, the category of finite-dimensional p(n)-modules such that the
p(n)y = gl, action can be lifted to an action of GL(n). An important tool in studying
representations of Lie superalgebras, particularly the connection between representation
theory of Lie superalgebras of same type but different rank, is the Duflo-Serganova func-
tor. Given an odd element = € p(n) satisfying [z, 2] = 0, and a p(n)-module M, we denote
by DS, M the homology of the complex

M 3 M S 1M,

where we denote by II the parity-change functor — ® C'. The resulting homology is
a module over the Lie superalgebra DS,(p(n)), and DS, can be seen as a symmetric
monoidal functor

Fn — Rep(DS.(p(n))).
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This functor is called the Duflo-Serganova functor.

This functor has been introduced in [DuS05] in a general Lie superalgebra setting. The
Duflo-Serganova functor has been studied extensively for different Lie superalgebras, see
for example [EnS18, EnS19, GS17, HeW14, HoR18, TRS19, Ser11]. Its precise effect in
the periplectic case has been unknown until now, although it was shown that it can be
used to compute Grothendieck rings for p(n), see [IRS19].

Note that GL(n) acts on p(n); via the adjoint action. It is easy to see that this action
has a unique orbit of minimal positive dimension consisting of odd elements of rank 1.
For any x € p(n) of rank 1, the Lie superalgebra DS, (p(n)) is isomorphic to p(n — 1).
Hence in this case, the Duflo-Serganova functor becomes a symmetric monoidal functor
DS, : F, — Fa1.

Although this DS functor is not exact on either side, it turns out to be extremely useful
to carry information between the categories.

1.2, We recall that p(n)s = gl,,(C) and we will use the set of simple roots
€2 —€1,.---,&n —&n—1, —En—-1 — En

where the last root is odd and all others are even. Thus the dominant integral weights
of p(n) are of the form A = ). \ig;, where Ay < Xy < ... <\, are integers. The set of
dominant integral weights for p(n) will be denoted by A,,.

Let L,,(\) be a simple module in F,, with highest weight A whose highest weight space is
purely even. All simple modules in F,, are of the form L, (\) or IIL,(\) for some A € A,,.

For each such weight A we can construct its cap diagram dy: namely, we consider the
integer line, and draw a black bullet e in each position \;+ (i —1), 7 = 1,2,...,n; the rest
of the positions are empty (we draw the white bullet symbol o in all empty positions).
We then draw “caps” in this diagram. Each such “cap” is an arc connecting two positions
in a diagram; it has a bullet on the right end and an empty position on the left end. The
cap diagram is drawn iteratively: at each step, we take the leftmost black bullet which
is not yet part of a cap, and draw a cap connecting this bullet with the closest empty
position on its left, which is not yet part of any cap.

Here is an example of a cap diagram, corresponding to weight A = 0 for p(5):

Naa=\}

There is a bijection between weight diagrams and cap diagrams. When considering cap
diagrams, we will usually not draw bullets since they can be inferred directly from the
cap diagram (being the right endpoints of the caps drawn).

We will use the following terminology. If a cap ¢ is sitting “inside” another cap ¢, we
say that the ¢ is internal to ¢ (we will also set ¢ to be internal to itself); if ¢ # ¢ and
there are no intermediate caps to which ¢ is internal and which are internal to ¢ (different
from ¢ and (), we say that ¢ is a successor of c.

A cap c is called mazimal if it is not internal to any cap other than itself.

Let z € p(n); correspond to the root 2¢,,. The first main result of this article, concerning

the action of the DS, functor on simple modules, is as follows:
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Theorem 1 (See Theorem 3.1.1, Corollary 3.1.4).

The p(n —1)-module DS, (L, (X)) is multiplicity free. Its composition factors can be ex-
plicitly described as simple modules HZ(A’“)Ln,l(u), where the cap diagram of p is obtained
by removing a single maximal cap from the cap diagram of \.

The parity z(\, ) € Z/27 is given by z(A\, ) = z mod 2, where \,,_, + (n — z —1) is
the rightmost end of the removed cap.

Remark 1.2.1. A similar result for the general linear Lie superalgebra was proved
in [HeW14] using a similar technique. However, in contrast with the gl(m|n)-case,
DS, (L,())) may be not semisimple. For example, consider the case n = 2 and the
simple module V5= C?? with the tautological action of p(2). Then DS, (V) = V; (the
(1]1)-dimensional tautological representation of p(1)), which is indecomposable but not
simple. Another example is n = 3 with L,(\) being isomorphic to the simple ideal
sp(3) of matrices with zero supertrace. Then DS, (L, (X)) is isomorphic to sp(2) which is
indecomposable but not simple p(2)-module.

In Section 3.4, we state some corollaries of this theorem, such as a criterion describing
when the p(n — 1)-module DS, (L,(\)) is simple.

1.3.  We next proceed to compute the superdimension of any simple finite-dimensional
p(n)-module. This is done by defining a subset of A,, consisting of worthy weights. For any
worthy weight A, we construct a rooted forest graph F). If A is not worthy, we show that
sdimZL, (A) = 0. If A is worthy, then sdimZ, () # 0, and we give a simple combinatorial
formula for sdimZ,,(\) based on the rooted forest graph F). Below we elaborate on this
result.

To state the result on superdimensions, we will need additional terminology.

A cap c in a cap diagram is called odd if there is an odd number of caps internal to c,
including c itself. A weight A€ A,, is called worthy if each cap c in d) has at most one odd
successor, and there is at most one maximal odd cap (such a cap will appear for worthy
weights only when n is odd).

If A is worthy, we will construct a rooted forest F corresponding to A as follows.

We begin by constructing a reduced cap diagram d5®®: this is done by erasing the odd
caps in dy. The partial order on the caps of dy induces a partial order on the caps of d}°?.
The notion of “successor” for caps in d5* is defined accordingly.

The reduced cap diagram defines a rooted forest F):

Definition 1.3.1. Let A be a worthy weight. We construct a rooted forest F) as follows.
e The nodes of F) are caps c in the reduced cap diagram d}.
e There is an edge from a node ¢ to a node ¢’ in F) if ¢ is a successor of c.

Remark 1.3.2. This is a slightly different (but equivalent) version of Definition 4.1.11.

We can now state our second main theorem. Recall that sdimV = dim V5 — dim Vj for
any finite dimensional vector superspace V.

Theorem 1.3.3 (See Theorem 4.2.1).
Let A € A,, and let L,(\) be the corresponding simple module in F,, (as in Section 1.2).
If the weight X is not worthy, then

sdimZL,(\) = 0.
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If the weight X is worthy, let F be the corresponding rooted forest. Then

. | !
sdimL,,(\) = —/—
(A) X

where |Fy\| = |21 is the number of nodes in the forest Fy, and

= H f descendants of v in F)

v a node of Fy

is the forest factorial of F\'.
Example 1.3.4. For the weight
A =¢e3+ 3e4 + 365 + 3e¢ + bey + Teg + Teg + Teqg

of p(10), the cap diagram is

Cr =N o~ o o~ =)
-3 —2 —1 0 1 4 5 6 7 8 9 10 11 12 13 14 15 16

2 3

This is a worthy weight, with odd caps (—1,0), (2, 3), (5,6), (10,11), (13,14); the rest
of the caps are even. The reduced cap diagram is

-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 1

12 13 14 15 16

1

The rooted forest is

A

Hence sdimL, (\) = 555 = 20.

As a corollary, we recover the result of [EnS19] proving the Kac-Wakimoto conjecture
for p(n): any module lying in a “non-principal” block of F,, (in the sense of [EnS19]) has
superdimension zero.

1.4. Acknowledgements. I.LE.-A. was supported by the ISF grant no. 711/18. V.S.
was supported by NSF grant 1701532. Part of the work was carried out during the visit
of V.S. to Ben Gurion University of the Negev, which was supported by the Faculty of
Natural Sciences Distinguished Scientist Visitors Program and by the Center of Advanced
Studies in Mathematics in Ben Gurion University.

The authors would like to thank Catharina Stroppel for her explanations on the cap
diagrams, and the anonymous referees for carefully reading an earlier version of this
manuscript and for their very helpful comments.
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2. PRELIMINARIES

2.1. General. Throughout this paper, we will work over the base field C, and all the
categories considered will be C-linear.

A wvector superspace is defined as a Z/2Z-graded vector space V = V5@ V;. The parity of
a homogeneous vector v € V is denoted by p(v) € Z/2Z = {0,1} (whenever the notation
p(v) appears in formulas, we always assume that v is homogeneous).

2.2. The periplectic Lie superalgebra.

2.2.1. Definition of the periplectic Lie superalgebra. Let n € Z~g, and let V,, be an (n|n)-
dimensional vector superspace equipped with a non-degenerate odd symmetric form

(1) w:V,@V,—=C, ww) =ww,v), and w(v,w)=0if p(v) = p(w).

Then Endc¢ (V) inherits the structure of a vector superspace from V,,. We denote by
p(n) the Lie superalgebra of all X € Endc¢(V},) preserving w, i.e. satisfying

w(Xv,w) + (=1)PEPO (0, Xw) = 0.

Remark 2.2.1. Choosing dual bases vy, v, ..., v, in Vg, and vy, vy, ... vy in Vi, we can

write the matrix of X € p(n) as (é —i*) where A, B,C are n x n matrices such that
B'=B,C'=-C.

We will also use the triangular decomposition p(n) = p(n)_, ® p(n), ® p(n), where
p(n), = gl(n), p(n)_, LI A*(C")*, p(n), 2 IS*C".
Then the action of p(n)4; on any p(n)-module is p(n),-equivariant.

2.2.2. Weights for the periplectic superalgebra. The integral weight lattice for p(n) will be
spanz{e; Y.
x We denote by by, the Borel subalgebra of p(n), consisting of lower triangular
matrices A under the identification p(n)o = gl(n) as in Remark 2.2.1.
We also fix the “lower-triangular” Borel subalgebra b, = b, ,, +p(n)_1 in p(n).
In terms of the matrix description given in Remark 2.2.1, the elements of b are

given by matrices (é _(1)4,5) in p(n) where A is lower-triangular.

* The choice of the Borel subalgebra b, gives us the set of simple roots g5 —

Ely-+yEn — En—1, —En—1 — &p for p(n), where the last root is odd and all oth-
ers are even. The set of all dominant integral weights for p(n) will be denoted by
A,.

* The dominant integral weights with respect to this choice of the Borel subalgebra
are of the form A =Y. A\jg;, where Ay < Xy <... <A,

* We fix an order on the integral weights of p(n): for weights i, A, we say that p > A
if p; < \; for each 1.

Remark 2.2.2. It was shown in [BaDE*16, Section 3.3] that the order < corre-
sponds to a highest-weight structure on the category of finite-dimensional rep-
resentations of p(n). Note that in the cited paper we use slightly different set
of simple roots —e; — 9,61 — €9, ...,6n_1 — €,. Our choice of a different Borel
subalgebra is a matter of convenience since we would like to avoid the shift in
the combinatorial algorithm for Duflo-Serganova functor. Indeed, as we use an
embedding p(n — 1) C p(n) it is natural to require that the Weyl vector p(™ de-

fined below is given by the uniform formula for all n. The results of [BaDE"16]
5



are applicable in this case since the only difference is in permutation of indices
1,...,n.

* The simple finite-dimensional representation of p(n) corresponding to the weight
A whose highest weight vector is even will be denoted by L, ().

Example 2.2.3. Let n > 2. The natural representation V,, of p(n) has highest
weight —ey, with odd highest-weight vector; hence V,, = I1L,,(—e1). The represen-
tation /\2 V,. (the second exterior power of the vector superspace V;,) has highest
weight —2¢;, and the representation S?V,, (the second symmetric power of the
vector superspace V,,) has highest weight —e; — 9; both have even highest weight

vectors, so
AV, = Lp(—2¢1), Ly(—e1 —g3) < S*V,.
* Set p(™ =3"" (i —1)g;, and for any weight A, denote
A=A+ pm,

2.2.3. Representations of p(n). We denote by F,, the category of finite-dimensional rep-
resentations of p(n) whose restriction to p(n)s = gl(n) integrates to an action of GL(n).

By definition, the morphisms in F,, will be grading-preserving p(n)-morphisms, i.e.,
Hompg, (X, Y) is a vector space and not a vector superspace. This is important in order
to ensure that the category F,, be abelian.

The category F, is not semisimple. In fact, this category is a highest-weight category;
more about the highest-weight structure can be found in [BaDE™16].

2.2.4. Weight diagrams and arrows. The following notation has been introduced in
[BaDE"16].
For A\ a dominant weight we define the map
1 ifie{\,j=1,...,n}
0 else.

Hh:Z—{0,1} as fa(i) = {

The corresponding weight diagram d, is the labeling of the integer line by symbols e
(“black bullet”) and o (“empty”) such that i has label o if f(i) = 1, and label o otherwise.
Definition 2.2.4. For A € A,, we define the function g, : Z — {—1, 1} by setting
(i) = (~1HOH,

So gx(i7) = 1 if d has a black bullet at the i-th position and g,(i) = —1 otherwise.
Notation 2.2.5. For any i < j set r\(j,7) = Z;ZI ax(s).

As in [BaDE'16, Section 6.2], in the diagram dy we will draw a solid® arrow from
position j to position i < j if fy(7) =1 = g\(j), and if

ra(4,4) =0, and Vi <s <y, r\(j,s) >0.

Example 2.2.6. Let n = 6, A = €1 + &9 + 3e3 + He4 + bes + beg. The diagram dy with
solid arrows is given by

2In this paper we do not use any other types of arrows, but in [BaDE"16] “dual” dashed arrows were
introduced as well.
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and all other positions on the integer line are empty.

Definition 2.2.7. Let A € A,,. Consider the solid arrows in the diagram d,. We will call
a solid arrow mazimal if there is no solid arrow above it; in other words, a solid arrow
from j to ¢ is called maximal if there is no solid arrow from k to [ where [ < i, k > j and

(k1) # (5,7)-
Example 2.2.8. In Example 2.2.6, the two maximal solid arrows are (0, 2), (6, 10).

Definition 2.2.9. A (black) cluster in a weight diagram d,, is a sequence of consecutive

black bullets:

d, = o ° ° . ° ° o
1—1 7 1+1 7—1 j j+1
In other words, it is a segment in of the form [i, j], i < j such that
fa(i - 1) =0, fa(i> = fa(i + 1) == fa(j - 1) = fa<]) =1, fa(j + 1) =0.

Position 7 is called the beginning of the cluster, and position j is called the end of the
cluster.

2.2.5. Cap diagrams. Consider the weight diagram d, of . Instead of drawing arrows,
we can draw a cap diagram on the integer line Z. Each “cap” is an arc connecting two
positions in our diagram. The cap diagram is drawn iteratively: at each step, we take
the leftmost black bullet which is not yet part of a cap, and draw a cap connecting this
bullet with the closest empty position on its left, which is not yet part of any cap.

We denote by (i, j) the cap whose left end is in position i and right end is in position
j (so fa(i) =0, fr(j) = 1).

Clearly, every black bullet in d) is the right end of exactly one cap and the obtained
caps are non-crossing. The weight diagram d, can be uniquely determined from the cap
diagram (by abuse of notation, the cap diagram is also denoted dy).

Definition 2.2.10.
o A cap (i,7) is called internal to a cap (i',5) if i/ < i < j < j. We denote:
(4,7)<(7', 7"). If these caps to not coincide (that is, if (i,7) # (¢, 7)) we denote
(,7) < (@', 5').
e A cap (i,)) is called mazimal if it is not internal to any other cap.
e A cap (i,7) is called a successor of a cap (¢, j") if (,7) < (¢/,j") and there is no
cap (i”,7") such that (i,7) < (¢", ") < (¢, 7).

Example 2.2.11. Consider the weight A = &1 + &3 + 3e3 + 54 + bes + beg for p(6), as in
Example 2.2.6. Here we draw the cap diagram for A\ on top of the weight diagram dj:

— (= =)
52 8 ¥ 2 $ 9 2 & 5 3§ 3§ D2

The partial order on the caps in this diagram is:

The maximal caps here are (—1,2) and (3, 10). The successors of the cap (3, 10) are (4, 5),
(6,9).
7



Remark 2.2.12. Every solid arrow goes from the right end of a cap to the left end of one
of its successor caps. In particular, the total number of solid arrows equals n minus the
number of maximal caps.

Lemma 2.2.13. Let (i,5) be a cap in the cap diagram dy. Then exactly one of the
following s true:
o We havei+1=j.
e There is a solid arrow from j toi+1, and this is the longest solid arrow originating
mj.
Proof. First of all, if i + 1 = j then clearly there is no solid arrow from j to ¢ + 1. Assume
1+ 1 # j. By the construction of the cap diagram, we have:

j—1
Vi+1<I<j—1, r\(J ZgA )>0, ra(j,i +1) = Zg,\(s):O, ra(7,4) <0
s=i+1
Hence the statement follows. O

Corollary 2.2.14. Let (i,7) be a mazimal cap in the cap diagram of dy. Then either
1+ 1 =74 or there is a solid arrow from j to v+ 1, and this solid arrow is mazximal.

2.2.6. Tensor Casimir and translation functors. The constructions in this section follow
[BaDE"16, Section 4].
Recall that p(n) is the set of fixed points of the involutive anti-automorphism o :

gl(n|n) — gl(n|n) defined as
@5 =(2 %),

Then p(n) C gl(n|n) is given by all elements fixed by ¢ and we have a p(n)-equivariant
decomposition gl(n|n) = p(n) ® p(n)* where

{z € gl(n|n) [2” = =z} = p(n)".
Both p(n) and p(n)* are maximal isotropic subspaces with respect to the invariant
symmetric form on gl(n|n) given by the supertrace, and hence this form defines a non-
degenerate pairing p(n)* ® p(n) — C.

Definition 2.2.15 (Tensor Casimir). For any M € F,, let Q) be twice the composition

1+ ®Id act®(Toact)

MV, M@pn)@pn) @V, — Mepn)2gl(V,) @V, MV,
where i, : p(n)* — gl(V,) denotes the p(n)-equivariant embedding defined above, and
coev : C — p(n) ® p(n)* denotes the coevaluation morphism (sending 1 to > . X; ® X/
where X; form a basis in p(n) and X form the dual basis).

Finally, act : gl(V,,) ® V, = V,,, act : p(n) ® M — M denote the action maps and
T: M ®p(n) — p(n) ® M the (super) symmetry morphism.

We write 2™ for the corresponding endomorphism of the endofunctor (—) ® V;, of F,,.

Id ®coev®ld
T

Definition 2.2.16 (Translation functors). For k € C, we define a functor ©’ ,(Cn) c Fn — Fa
as the functor ™ = (—)®V,, followed by the projection onto the generalized k-eigenspace
for Q™ e

(2) O\ (M) = | J Ker(Qy — kId)["
m>0

and set @5:) = H’“@’,(f) in case k € Z (it was proved in [BaDE™ 16, Proposition 4.1.9] that
Vk ¢ 7, 0" =),

|M®Vn
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The functors @,(:L) are exact (since — ® V,, is an exact functor) and @,(Cn) is left adjoint

to @gi)l for each k € Z (see [BaDE"16, Proposition 4.4.1]). Furthermore, we have the
following result, proved in [BaDE*16, Corollary 8.2.1].

Theorem 2.2.17 (See [BaDE116].). Let L, L’ be non-isomorphic simple modules in J,.
Leti € Z.

(1) The module O™ L is multiplicity free.

(2) The modules @En)( L) and @Z(»n)(L’) have no common simple subquotients (that is,
their sets of composition factors are disjoint).

For more details on the structure of F,,, see [BaDE*16].

Lemma 2.2.18. Let A € A,,.

(1) We have: © (L, (\) # 0 iff fr(i) =1, frli — 1) = 0.
(2) Assume we have: f\(i) =1, fa(i —1) =0. Let N € A,, such that dy be obtained
from dy by moving e from position i to positz’on 1 — 1.
(a) We have: [0 (L,(\)) : T L, (V)] =
(b) If [0 (Lo(N)) : P L, (1)] # O for some =z € {0,1} and pu # N, then f,(i) # 0
or fu(i—1) # 1.
(¢) I 107" (La(N)) : TELo ()] # 0 for some = € {0,1} and fu(i) = fu(i =1) =0,
then f,(s) = fi(s) for any s <i—1.

Proof. The implication “0\™ (L, (X)) # 0 implies f1(i) = 1, fx(i — 1) = 07 of (1) has been
proved in in [BaDE*16, Corollary 8.2.2]. In the other direction, the implication follows
from (2a) proved below.

To prove the remaining statements, let V,(\) denote the thin Kac module for the
weight A. This is the costandard module in the highest weight category JF, with the
highest weight structure given by our Borel subalgebra b, in p(n). The modules V,,()\)
were introduced in [BaDET16, Section 3.1].

To prove (2a), we recall an exact sequence established in [BaDE™ 16, Proposition 5.2.2]:

0 — IV, (X) = 0/ (V,(N)

The cokernel of the rightmost map is either 0 or V,,(\”) where dy~ is obtained from d, by
moving e from i to ¢ + 1 if it is possible. Therefore we have an embedding IT""! L, (\) —

@E")(Vn(/\)). On the other hand, by [BaDE"16, Theorem 6.3.3], all composition factors
(up to change of parity) L,(v) of V,(A) satisfy the condition v = XA+ >, a(e; + &)
for some a;;, € N. That ensures that [L,(v) ® V,, : L,(X)] = 0 unless v = X\. Hence
(07" (Ln(Y)) : U+ Ly (V)] =

7

To show (2b), assume the opposite, i.e., f, (i) = 0 and f,(:—1) = 1. Let d, be obtained
from d,, by moving black bullet from 7 — 1 to 7.

Then by (2a), we have [0 (L, (v)) : I+ L, (11)] = 1. Therefore L, (y ) (up to change

of parity) appears as a composition factor in both @g")(Ln(A)) and @ (Ln(v)). This
contradicts Theorem 2.2.17 (2).
The statement in (2c) is proved in the same methods as in the proof of [BaDE'16,

Corollary 8.2.2]. Assume that [@En)(Ln()\)) II*L,, ()] # 0 for some z € {0,1} and that
fu(i) = fu(i —1) = 0. Denote by P,()), P,(1) the projective covers of L, (X), L, (u)
9



respectively. Then by the adjointness of O, and " we have:
dim Homy) (O17) (1), Ln(X)) = dim Homyg (P(11), ©F” (La()))
= [0 (Ln(\)) : TI* Ly (1)) # 0.

7

Now, by [BaDE*16, Lemma 7.2.3], the statement of (2c¢) follows. O

2.2.7. Blocks. Tt was proved in [BaDE™"16, Theorem 9.1.2] that there are 2(n + 1) blocks
in the category F,,. These blocks are in bijection with the set {—n, —n+2,...,n—2,n} x
{+7 _}'

We have a decomposition

Fo = P (Fu)i @ ) (Fu)y -

where the functor IT (parity change) induces an equivalence (F,); = (F,),. Hence we
may define up-to-parity blocks

fk:(‘/rn)lj@(]:n)l;

n

The block F* contains all simple modules L()\) with

NSNS
By abuse of terminology, we will just call these “blocks” throughout the paper. The
following theorem was proved in [BaDE" 16, Corollary 9.2.1]:

Theorem 2.2.19 (See [BaDE'16].). Leti € Z, k € {—n,—n+2,...,n—2,n}. Then we
have
o £k FE2if i is odd
Lo Fr=2if i is even
2.3. The Duflo-Serganova functor. Let n > 2, and let x € p(n) be an odd element
such that [z,z] = 0. Let s := rk(z). We define the following correspondence of vector
superspaces:

Definition 2.3.1 (See [DuS05]). Let M € F,, and consider the complex
M = M = IIM
We define DS, (M) to be the homology of this complex.

The vector superspace p, := DS.p(n) is naturally equipped with a Lie superalgebra
structure. One can check by direct computations that p, is isomorphic to p(n — s) where
s is the rank of x. The above correspondence defines a symmetric monoidal functor
DS, : F, = F,._s, called the Duflo-Serganova functor. Such functors were introduced in
[DuS05].

An important feature of the Duflo-Serganova functors is that they preserve categorical
dimensions (“superdimensions”). That can be proved by direct computation (see [DuS05,
Lemma 2.2(6)]. For completeness of presentation, we give a short proof of this classical
statement using the fact that DS, is symmetric monoidal:

Lemma 2.3.2. For any finite dimensional vector superspace M and linear map x : M —
[IM such that Iz o x = 0, we can define DS, (M) as the homology of the above complex

and have: sdimDS, (M) = sdimM.
10



Proof. The superdimension of M is defined as follows: sdimM Id¢ is defined to be the

composition
coev,

C=MoM 5 M @M= C

where coev : C — M @ M* denotes the coevaluation morphism (sending 1 to ). e; ® e}
where e; form a basis in M and e} form the dual basis in M*), 7: M @ M* — M* @ M
denotes the (super) symmetry morphism and ev : M*®@ M — C, f ® v — f(v) denotes
the evaluation morphism. Monoidal functors take coevaluation morphisms to coevaluation
morphisms and evaluation morphisms to evaluation morphisms (see [EtGNO15, Exercise
2.10.6]) and the fact that DS, is symmetric means that it takes symmetry morphisms to
symmetry morphisms. Hence

sdimM DS, (Idc) = DS, (sdimM Id¢) = sdimD S, (M) Idc
and thus sdimDS, (M) = sdimM. O

The following lemmata are used extensively throughout this paper (see also [DuS05]?,
a similar result appears in [HeW14, Lemma 2.1]).

Lemma 2.3.3 (Hinich Lemma). Given a short ezact sequence
0— My L My & My — 0
in Fn, we have an exact sequence
0= E— DS,(M) 22U ps,(My) 229 ps,(My) — TIE — 0
for some E C DS,(My) in F,_s.

Proof. Applying the Zig-Zag Lemma to the following infinite complex (vertically periodic,
with period 2):

0 M, —1

o T O

g

O'———€>IIA4i IIA4§ IIA43 0
Hxl Hml Hml
f g
0 A4i A4é A4é 07

we obtain an infinite periodic long exact sequence

... = IIDS, (M) % DS, (M) 229 ps, () 2229 ps, (M) 24 1DS, (M) — . ..,

for some linear map d : I1DS,(M3) — DS, (M;). Taking E := Im(d) = Ker(DS,(f)) we
obtain the required result. 0

In particular, if L is a simple composition factor of DS,(M;), then it is a simple
composition factor of DS, (M) or of DS,(Ms).

Lemma 2.3.4 (See [EnS19]). The functor DS, commutes with translation functors, that
18 we have a natural isomorphism of functors

DS,0M = 0" pg,
for any k € Z.

3The lemma appears in an unpublished version.
11



3. THE DUFLO-SERGANOVA FUNCTOR: MAIN THEOREM

Let z, € p(n);,x, # 0 be an odd element corresponding to the root 2e,. Then
[, ,]) = 0 and we may define a Duflo-Serganova functor

DS, : Fn = Fna

as in Section 2.3.
Throughout this section, we will write D.S = DS, for short.

3.1. Statement of the theorem. Let A € A,,.
As before, we denote by L,(A\) the simple finite-dimensional integrable p(n)-module
with an even highest weight vector of weight A\. We consider the simple subquotients of

DS(L,(X\)) in F, 1.
Theorem 3.1.1. Let A€ A, and p € A,,_1.

The following are equivalent:

(1) [DS(Ln(N)) : II*Ly—1 ()] # 0 for some z € Z.

(2) The diagram d,, is obtained by removing one black bullet from position i in dj,
where i satisfies the Initial Segment Condition:

Vi >4 1, ra(j,i+1)<0,
In other words, f\(i) =1, fA(i+ 1) = 0 and there is no solid arrow in dy ending
m o+ 1.
Furthermore, if these conditions hold, then
[DS(La(N) : Ly 1 ()] = 1

where i = \,_, (that is, 0 < z <n—1 and n — z is the sequential number of the removed
black bullet (counting from the left)).

Remark 3.1.2. For any position ¢ in dy, the following is an equivalent formulation of the
Initial Segment Condition: for any j > i+ 1, in the segment [i + 1, j] in d) the number of
empty positions is greater or equal to the number of black bullets in that segment.

Proof of Theorem 3.1.1. The proof goes as follows:
(1) Assume [DS(L, (X)) : DS(L,_1(p))] # 0.

e First, we prove:

fui=1)=0, fu(i) =1 = fi(i—1)=0, fi(}) = 1.

In other words, the clusters in d,, begin in the same positions as in dy. This
is proved in Lemma 3.2.1.
e Secondly, we prove:

Vi, fa(i) = ful(i).

In other words, if a position in d) was empty, so is the corresponding position
in d,. This is proved in Proposition 3.2.2.
Hence we conclude: if [DS(L,(N)) @ Ly—1(p)] # 0 then d,, is obtained from dy by
removing one black bullet from the right end of some cluster.
(2) Next, we prove Proposition 3.2.8, stating that black bullets which do not satisfy
the Initial Segment Condition (2) cannot be removed.
(3) We prove Proposition 3.3.2, which completes the proof of the Theorem.

12



Example 3.1.3. For the weight
)\:€3+3€4+3€5+6€6+8€7+888+889

of p(9), the arrow diagram is

L L m\

©) [ ] [ ] O [ ] @) O [ J [ ] @) O O [ J O @) [ ] [ ] [ ] O
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Then the simple factors of DS,,(Lg(\)) are IT1Lg(p1), Ls(p2), Ls(13), Ls(ps) where
U1 = 269 + 4dez 4+ 4eq + Tes + 9e6 + 9e7 + 9es,
o = 4eg +4ey + Tes + 96 + 9e7 + 9eg,
W3 = €3+ 364 + Tes + 9e6 + 97 + 9eg,
Wy = €3+ 34 + 3¢5 + 6eg + 8e7 + 8es.

are weights in Ag with arrow diagrams

/,1,1 m
VRS 2SN

/1’2 m
2 e P

s m
2 P

Ha

o
°
~e
o
o
o)
o
°
°
©0
o
o
°
o
o
°
°
°
o

o
°
~e
o
°
O
o
°
o
©0
o
o
°
o
o
°
°
°
o

o ® e O [ ]
1 2 3

0
o
°
°

(@] O O [ ] O O [ ] [ (0] (¢]
8

We also give a formulation of the theorem using cap diagrams, which will suit our needs
better when computing superdimensions.
The following is a rephrasing of the statement of Theorem 3.1.1, using Corollary 2.2.14:
Corollary 3.1.4. Let A € A,,, p € A,,_1. The following are equivalent:
(1) [DS(Ly(N)) : IIPL,,—1(p)] # 0 for some z € Z.
(2) The diagram d,, is obtained from dy by removing one mazimal cap.

Furthermore, if these conditions hold, then [DS(Ly,(X)) : IIL,_1(p)] = 1, where position
An_- 18 the rightmost end of the removed cap.

Remark 3.1.5. Equivalently, z is the number of caps whose right end is (strictly) to the
right of the removed cap.

Example 3.1.6. For the weight
)\:83+384+385+686+887+888+889
of p(9) as described in Example 3.1.3, the cap diagram is
f 'O Y D U G W //_\ f A \\
—2 -1 0 1 4 5 6 7 9 10 11 12 13 14 15 16

2 3

8
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Then the simple factors of DS,,(Lo())) are I1Lg(p1), Ls(p2), Ls(1t3), Ls(14) as in Ex-
ample 3.1.3, and the corresponding cap diagrams are as follows:

me N~ A
R '
4 5 6 7 9 10 11 12 13 14 15 16

-2 -1 0 1 2 3

8

= e
'
4 5 6 7 8 9 10 11 12 13 14 15 16

" / Y Y Y N /K_\ [ N \\

-2 -1 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16

M/m\r-\rf-\\ S T A N

—2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3.2. Proof of Theorem 3.1.1: auxiliary results, part 1.
Throughout this subsection, we consider all modules in F,, Fn_1 up to parity switch.

Lemma 3.2.1. Let L,(\) as above. If [DS(L,(\)) : Lp—1(p)] # 0 then we have:
fui—=1) =0, f.(i) =1 implies fr(i —1) =0, f1(7) = 1.

Proof. Assume the contrary. Then there exists a position ¢ which is the beginning of a
cluster in d,, but not in d.

Apply the translation functors @5”), @§"*1) to modules L, () and L, (u) respectively.
By Lemma 2.2.18(1), the functor @5") : Fon = Fu (m > 1) annihilates any simple module
L,,(7) unless d, has a black bullet in position ¢ and an empty position (“white bullet”)
in position ¢ — 1. Hence

O (Ln(N) =0, O (Ly_1(n)) #0.

But ©" " is an exact functor, so O Y(L,_i(u)) is a subquotient of
@En_l)(DS(Ln()\))) = DS(@E")(Ln(A))) = 0. This contradicts our observation that
0" (L,_1(1)) # 0, and the claim of the Lemma follows.

0

Proposition 3.2.2. Assume [DS(L,(\)) : Ln,—1(p)] # 0.
Then for any i € Z, we have: fy(i) > f,(i). That is, if a position in dy was empty, so
is the corresponding position in d,,.

Proof. Define M as the set of all quintuples (A, u, 4, j, k) satisfying the following conditions
(1) [DS(Ln(N)) : Lp—1(p)] # 0 (recall that modules are considered up to parity shift!);
(2) £2(7) =0, fu(j) = 1 and j is minimal with this property (that is, for any s < j
we have: fi(s) > f.(s));
B)i<jand f,(i)) = fu(i+1)=---=f.(j—1) =1, fu(i—1)=0;
(4) k is the number of s < j such that f,(s) = 1.
By Lemma 3.2.1 we have that

(3) k>1, i<j, HA@)=AH+1)=--=A@H-1) =1
14



Our goal is to prove that M = (). Let us assume that M is not empty and let k be
minimal with property (A, u,1,j,k) € M for some A, u,4,j. Let X and ' be obtained
from A and p respectively by moving e from i to ¢ —1. We are going to prove the following

Lemma 3.2.3. If (A, u,14,7,k) € M, where k is minimal then (N, p/,i+1,j,k) € M.
Proof. By Lemma 2.2.18 (2a) @("71)([/”,1(/1)) has a composition factor L,_;(x’). This

composition factor appears in DS (@gn)(Ln()\))). Therefore it appears in DS(L,,(v)) for
some composition factor L,(v) in @E")(Ln(/\)). We claim that v = X'. Indeed, by Lemma
3.2.1 we have f,(i) =0, f,(i+ 1) = 1since f,(i) =0, fu(i+1) =1
Assume v # X. Then Lemma 2.2.18 (2b) implies that f,(i —1) =0< f (i —1) = 1.
Let us show that ¢ — 1 is the minimal position with such property. Indeed, f,(i — 1) =
f,(i) = 0. Hence by Lemma 2.2.18 (2c) we have:

Vs <i-— ]-a f)\(S) = fv(s)
Furthermore, by our assumption (A, p, 1,5, k) € M, so

Vs<i =1 <j, fu(s) = fa(s) = fu(s) = fu(s).
Hence (v, p/,i',i — 1, k") € M for some ¢/ < i—1 and k¥’ < k. Since k is chosen minimal
this is impossible. Hence v = X" and clearly (N, u/,i+ 1,75, k) € M. O

The statement of the Proposition follows from this lemma since after applying it several
times we get a tuple of the form (N’ 1", j, 7, k) € M which is impossible by (3). O

The next statements will rely on the following corollary of Lemma 3.2.1 and Proposition
3.2.2:

Corollary 3.2.4. If [DS(L,()\)) : Ly—1(p)] # 0 then d,, is obtained from dy by removing
one black bullet from the end of some cluster.

Definition 3.2.5. Let a be a dominant integral weight for p(n). Denote by a® the weight
whose diagram is obtained from d, by moving each black bullet through the longest solid
arrow originating at this position.

Lemma 3.2.6. Let a be a dominant integral weight for p(n). Let o* be the highest weight
of the dual module L,(a)*. Then d,- is obtained from d.a by reflecting with respect to
position 0.

Proof. This is a direct consequence of [BaDET16, Propositions 3.6.1, 8.3.1]. OJ

Remark 3.2.7. In Proposition 3.3.2, we also use the weight af, defined in [BaDET16,
Section 5.3]. Tts weight diagram d,+ is obtained from d,« by reflecting with respect to the
position (n — 1)/2. Hence d,: is a shift of d,& to the right by n — 1 positions.

Proposition 3.2.8. Assume [DS(L,,()\)) : L,—1(p)] # 0. Then d, satisfies the Initial
Segment Condition in Theorem 3.1.1(2).

Proof. By Corollary 3.2.4, d,, was obtained from d, by removing a single black bullet.
Assume that the statement of the proposition is false: that is, [D.S(L,(\)) : Ly—1(u)] #
0 and d,, was obtained from dy by removing a black bullet in position ¢, where 7 satisfies:
e There exists j > i+ 1 such that r)(j + 1,7+ 1) > 0. That is, the segment [i + 1, j]
contains more black bullets than it has empty positions.
Consider the minimal 7 > ¢+ 1 as above. In that case, we must have:

d f)\(]) - 17
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e 7\(j,i+ 1) = 0 (that is, the segment [i + 1, j — 1] contains equal amounts of black
bullets and empty positions).
o Vi < k< j, ra(k+1,i41)<0. That is, the segment [i + 1, k] contains no more
black bullets than it has empty positions.
From this, we conclude that in the diagram d), there is a solid arrow from j to ¢ + 1:
— T
dy = ° o .. °
i i+1 j
Since f\(7) = 1, we may conclude that this is not the longest solid arrow originating
at j in dy.
On the other hand, in d,, we have: f,(i) =0, fu.(s) = fi(s) for any s # .
Hence in d,, we also have a solid arrow from j to i + 1:
— T
d, = o
a 5 it ;
and it is the longest solid arrow originating at j in d.
We now construct A* and p®*. These are obtained by moving each black bullet through
the longest solid arrow originating at this position. Hence we have:

dyae = . 2 (J? and d,a = ° 2 ?
By the Lemma 3.2.6, we have:
i = i e and - dy- = i S
Hence fy«(—t—1)=0, fs(—t—1)=1.
Yet the DS functor commutes with the duality functor (up to isomorphism), so
[DS(Ln(X)) + Lnn—a ()] = [DS(Ln(A)) = L1 ()] =
= [DS(Ln(X))" : Ln—1()*] = [DS(Ln(A)) = L1 ()] # 0
Hence we may apply Proposition 3.2.2, and conclude that
Vk € Z, fr(k) > fu (k).
But this contradicts our previous conclusion that fy-(—i —1) =0, f(—i—1) = 1.
This completes the proof of the proposition. O

3.3. Proof of Theorem 3.1.1: auxiliary results, part 2. In this subsection we
distinguish between simple representations varying by a parity switch. We will also use
cap diagrams instead of arrow diagrams, since they suit our needs better in this instance.

Lemma 3.3.1. If d, is obtained from dy by removing the rightmost black bullet, then
[DS(Ln(A)) = Ln-a(p)] = 1.

Proof. The module L,,()) is a highest weight module with respect to the Borel subalgebra
b, = by ®p(n)_1 C p(n). The roots corresponding to p(n)_; are —¢; — ¢; for ¢; # ¢;.
Thus we have the following observation: any weight a in L, (\) can be written as

a=A+ Y syleite)+ Y tilsi—e)
1<ij<n 1<i<j<n
for some s;; € {0,1} and t;; > 0.

Now, we show that [DS(L,,()\)) : L,—1()] < 1. Indeed, given a weight v in L, (\) such
that a; = \; for all © < n, we necessarily have a = A by the observation above. The
weight A appears in L, (\) with multiplicity 1, hence [DS(L,(N)) : Lp—1(p)] < 1.

16



Finally, we show that [DS(L,(\)) : L,—1(u)] # 0: Let v # 0 be the (even) highest
weight vector in L,(\) with respect to the Borel subalgebra b, . Then x.v must have
weight A + 2¢,, which by the observation above is not a weight of L, (\). Hence x.v = 0.

Now, assume that v € Im(z). Let us write v = z.w for some w € L,()A). Then w
has weight A\ — 2¢,,, which by the reasoning above is impossible. Hence v ¢ Im(z). This
implies that v has non-zero (even) image v in DS(L,(\)) = Ker(x)/Im(z), and its image
has weight .

Now, the vector v is a primitive vector with respect to the Borel subalgebra b, , hence
the (even) vector ¢ is a primitive vector with respect to the Borel subalgebra b, of
p(n — 1), as required. This completes the proof of the lemma. O

Proposition 3.3.2. Let d, be obtained from dy by removing a black bullet whose cap is
mazximal. Then there exists a unique z € 7/27 such that [DS(L, (X)) : II°L,_; ()] = 1,
moreover z equals the parity of number of black bullets to the right of the removed black
bullet.

In order to prepare for the proof of Proposition 3.3.2, we begin by proving the following.

Lemma 3.3.3. Let n > 1. Suppose that dy and d,, have the leftmost black bullet in the
same position and dy d, are obtained from dy and d, by removing this black bullet. Then
we have

[DS(La(N) : T Ly ()] = [DS(Lur(N)) & T Ly ()]

where z as in Proposition 3.5.2.

Proof. Let hy,..., h, be the basis in the Cartan subalgebra of p(n); Cp(n) dual to
€1,...,6n. We have a decomposition

L,(A) = @ Ln</\)i
>
where L,(\)" is the eigenspace of h; with eigenvalue i. Every component L,(\)" is a
module over the centralizer [ of h;. Since z € [ we have

DS(La(N) = D DS(La(N)").
>\
Note that [ is the direct sum Ch; @ ' where I is another copy of p(n — 1) inside p(n).
Furthermore, L, (\)* is isomorphic L,,_;(\') since L, (\) is a quotient of the parabolically
induced module U(p(n)) @y - 41 L,(\)*. Now it is clear that if pu; = Ay then L, (1)
occurs in DS(L,,(\)) with the same multiplicity as L, _;(u)™ occurs in DS(L,(\)*). The
statement follows. O

Consider the “mixed triangular” Borel subalgebra bl = by, +p(n)1 of p(n). In terms
of the matrix description given in Remark 2.2.1, the elements of bl are given by matrices

(61 —it> in p(n) where A is lower-triangular. The corresponding simple roots are

21,69 — €1,...,6p — En_1, and the corresponding Borel subalgebra bihl of p(n — 1) has
simple roots 2e1, 69 — €1, ...,En_1 — €n_a. Let AT denote the highest weight of L,()\) with
respect to bl and similarly for weights of p(n — 1). We will denote by L () the simple
p(n)-module of highest weight v with respect to b! having an even highest weight vector,
and similarly for simple p(n — 1)-modules.

As in the proof of Lemma 3.3.1, one readily sees that AT = A+37, . sii(ei +¢;) for
some s;; € {0,1}, and

Ln(\) ~ Tz %u LF (A,
17



But 3,8 = 5 <Z?:1 A — )\i> so we obtain:

Looa(p) ~TLE_(uh),  L,(\) ~ LI (AT)

where

n—1 n
1 1
S E T = E T\
(4) 5—2<i1 1 uz>, t 2<i1 Al )\7,).

Let y € p(n) be a root vector of weight 2¢;. Then by the same argument as in the
proof Lemma 3.3.1, we have:

Lemma 3.3.4. Let d, be obtained from dy+ by removing the leftmost black bullet and
shifting all other black bullets one position left, then [DS, (L} (A1) : LI, (v)] =1.

Remark 3.3.5. The shift is necessary due to renumeration 2 — 1,... ., n+—n — 1.

A combinatorial algorithm of computing A’ in terms of weight diagrams is given in
[BaDE"16, Section 5.3]. Enumerate the black bullets from left to right. Let 1 < a<b < n.
Define the operation D, ; on the set of diagrams as follows: if the positions next right to
both a-th and b-th bullets in a diagram d are empty, then D, ;(d) is obtained by moving
both bullets one position right. Otherwise D, 4(d) = d. Then

d)\T = D1,2 cee Dl,nD2,3 e D2,n e Dn72,n71Dn72,nanl,n(d))-

Definition 3.3.6. We will say that a cap ¢ = (4,7),7 < j covers a black bullet in a given
weight diagram d) if the position & of the black bullet satisfies: i < k < j.
We also denote by m; the number of caps which cover the ¢-th black bullet in d).

Lemma 3.3.7. We have 5\1 — M =n—my — 1. In particular, if the cap ending at the
first black bullet is maximal then 5\1 — A =n—1.

Proof. One proves the statement by induction on n. Base: let n = 1. Then m; = 0 and
5\1 — A= 0 as required.

Step: Let n > 1 and assume the statement holds for n — 1.

Let a € A,, be the weight defined by

da = D273 e D2,n N anl,n<d)\)

and let ', o/ € A,,_; be the weights whose diagrams dy/,d, are obtained from d,,d,
respectively by removing the leftmost black bullet in each diagram. Then o/ = X, so by
the induction assumption, we have:

Oé’l—)\/1:d2—)\2:n—2—m2.

Now, consider first the case when m; > 0. Then Ay — A\ = my — mq + 2. Recall that we
have: @y — Ay =n — 2 — ms and hence ay — A\; = n — my.

Using dyi = Dia...D1,(ds) we get that we can move the first black bullet until it
stays next to the second black bullet of d,, namely exactly n — 1 — m; times. Hence
5\]; — 5\1 =n—mp—1L.

Now let m; = 0. Then Ay — A\; > mso+2. Recall that we have: @s — Ay = n—2—my and
SO @y — A1 > n. Thus we move the first black bullet n— 1 times and so 5\1 N\ =n—-1. 0

Now we are ready to prove Proposition 3.3.2:
18



Proof of Proposition 3.3.2. Note that the fact that a black bullet is the end of a maximal
cap depends only on positions of the black bullets to its right. Therefore Lemma 3.3.3
implies that it suffices to prove the statement of Proposition 3.3.2 in the case when the
removed black bullet is the leftmost black bullet in the diagram d.

Assume d,, is of this form: namely, d, is obtained from d) by removing the leftmost
black bullet (from position A;). Since A, p should satisfy the condition of Proposition
3.3.2, the cap ending in position A; is maximal, hence m; = 0 in the notation of Lemma
3.3.7.

Let d, be the diagram obtained from d,+ as in Lemma 3.3.4. Then we have v = u and

[DS,LL(A) : Li_y (v)] = [DS,LL(AT) = Ly (uh)] = 1.

Note that DS, and DS = DS, are isomorphic functors since y and x are conjugate by
the adjoint action of GL(n). Let ¢, s as in (4). We obtain:

[DSL,(A) ¢ Loy ()] = [ DS, LL(A) < T L] ().

Finally, we have: pu; = \j11 + 1, “;r = >‘3+1 for each 1 <7 < n —1, while )\I —A=n-—1
by Lemma 3.3.7. Thus

which gives us the required statement.
OJ

3.4. Action of the DS functor: corollaries. Let =, € p(n);, and DS = DS, as
before. The following are direct corollaries of Theorem 3.1.1:

Corollary 3.4.1. Let A € A,,. The number of composition factors of DS(L,(\)) is
precisely the number of mazximal arrows (or mazimal caps).

Corollary 3.4.2. Let A € A,. Then DS(L,(\)) is simple iff there exists exactly one
mazximal solid arrow (one mazimal cap) in dy.

4. COMPUTATION OF SUPERDIMENSIONS

In this section we compute the superdimension of the simple p(n)-modules in F,.

4.1. Forests. Let A € A,, be a dominant integral weight, and let d, be its weight diagram
with caps. Let (C(\), <) be the poset of caps in d) with partial order < described in
Definition 2.2.10.

We define an augmented poset

(C, 2), CO) =C)ufe}

where ¢, is a “virtual cap” which is defined to be the greatest element in C'(\): namely,
we have

e ¢ C(N), and Ve e C(N), c<e..
We define the successors of ¢, as in Definition 2.2.10. These are precisely the maximal
caps in C'(A).

Definition 4.1.1.
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e Given a cap ¢ € C()), let
int(c) =t{c € C(\) : c> '}

be the number of caps internal to ¢, including c itself.
If ¢ = (4, 4) is a non-virtual cap, then int(c) is the number of black bullets in d)
between positions i and j (including position j), and int(c,) = n + 1.
e Acapce€ 6()\) with int(c) =0 mod 2 is called an even cap; otherwise it is called
an odd cap.
o If every cap ¢ € a()\) has at most one odd successor, we call such a weight A
worthy.

Remark 4.1.2. The virtual cap ¢, is even iff n =1 mod 2.

Definition 4.1.3. Given a worthy weight A, we consider the subset C'(A)*e" ¢ C())
consisting of even caps only. One can think of it as corresponding to a reduced cap
diagram d5°?: this diagram is obtained by erasing the odd caps in dy, with an additional
maximal virtual cap ¢y if n ii odd. R

The inclusion C'(A\)¢**" C C'(\) induces a partial order on the set C'(\)¢**". The notion
of “successor” for caps in d;* is defined accordingly.

Example 4.1.4. Consider the weight A = &1 + €3 + 3e3 + bey + Hes + Seg for p(6) as in
Examples 2.2.6, 2.2.11. The cap diagram for A is:

— =)
—1 0 1 2 3 4 5 6 7 8 9 10

Here ¢, has two successors: (—1,2), (3,10) (both even caps), and we have:
int(cy) =7, int((0,1)) = int((4,5)) = int((7,8)) = 1,
int((—1,2)) =int((6,9)) = 2, int((3,10)) = 4.

The odd caps here are ¢, (the virtual cap) as well as (0,1), (4,5),(7,8); the rest of the

caps are even. In this case, each cap in C'(\) has at most one odd successor, so the weight
A is worthy:.
The reduced diagram d5¢¢ in this case is

-1 0 1 2 3 4 5 6 7 8 9 10

Example 4.1.5. Consider the weight A\ = &1 + 4ey + 6e3 + 624 for p(4). The cap diagram
for A is:



Here
int((0,1)) = int((4,5)) = int((7,8)) = 1, int((6,9)) = 2.
The odd caps here are (0,1),(4,5),(7,8), and the (6,9) is an even cap. The maximal
(non-virtual) caps in C'(\) are (0,1),(4,5),(6,9). Hence the virtual cap has two odd
successors, and the weight A is not worthy.

Example 4.1.6. Consider the weight
A= —781 —782—783—564—385—386—€7+€8+89+€10+811

for p(11). The cap diagram for \ is:

/!/\\\ //\/m\/f_\/m\\\
9 -8 -7 6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

—~10 -

In this case, each cap in C (A) has at most one odd successor, so the weight A is worthy.
The reduced diagram d5°? in this case is

p———— N
-9 —8 -7 —6 5 —1 0 1 2 5 6 7 8 9 10 11

—10 - -4 -3 =2 3 4

and we have a virtual cap ¢, in this diagram as well (not drawn).

Example 4.1.7. The zero weight A = 0 is always worthy (for any n > 1), since it gives
a linear order on the augmented set of its caps C'()).

Example 4.1.8. The weight A\ = —&; is not worthy for any n > 2. For example, for
n = 5, the cap diagram of \ is

((( o (ﬂ\\

The cap (—3,2) has two odd successors, hence A is not worthy.

The following lemma is straightforward:

Lemma 4.1.9. Given any weight A\ € A,,, any even cap c € a(A) has an odd number of
odd successors, and any odd cap ¢ € C(\) has an even number of odd successors.

This immediately leads to the following conclusion:

Corollary 4.1.10. Given a worthy weight X € A,,, we have:
(1) Given any odd cap ¢ € a()\), all its successors are even caps.

(2) Given any even cap ¢ € 6()\), it has exactly one odd successor.

Definition 4.1.11. Let A be a worthy weight. We construct a rooted forest F) as follows.
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e The nodes of Fy are caps ¢ € C/(A)*".

e There is an edge from a node ¢ to a node ¢ in F), if ¢ is a successor of ¢ in C'(\)*°".
The forest F) is called the rooted forest corresponding to .
Example 4.1.12.

(1) For A =0, F) is a linear rooted tree with | | nodes.
(2) For A as in Example 4.1.4, the rooted forest is

|

(3) For A as in Example 4.1.6, the rooted forest is
[ ]
[} / \ [ J
[ ] / \ [ ]

[ ]
We also recall the following definitions (cf. [HeW14]):

Definition 4.1.13. Let I’ be a rooted forest.

e We denote by |F'| the number of nodes in the forest.
e For any node v in F, we denote by F(®) the rooted subtree of F' whose root is v.
e For any root v in F' (that is, v has no parent), we denote by F'\ {v} the rooted

forest obtained from F' by removing v and all the edges originating in it.
e We define the forest factorial F! by

Fl=]]|F"]

v

in particular, for F' = @ the empty forest, we define F! = 1.
Remark 4.1.14. Given a worthy weight A € A,,, [Fy| = %],

Example 4.1.15.
(1) For A = 0, we have:
n+1
2

=] |!
(2) For A as in Example 4.1.4, we have
Rl=1-2-1=2 |F\|=3.
(3) For A as in Example 4.1.6, we have
Fl=6-1-4-1.2-1=48, |F\| = 6.

The following statements will be useful for Theorem 4.2.1:
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Lemma 4.1.16. The integer ‘?—l' counts the number of heap-orderings on the rooted forest

F. Here a heap-ordering on a rooted forest is a bijection
a:{ nodes of F} — {1,2,3,...,|F|}

such that a(v) < a(v') whenever v is an ancestor of v’ (equivalently, on any subtree, the
number corresponding to the root is less or equal to the numbers corresponding the rest of
the nodes in that subtree).

Proof. We prove the statement by (complete) induction on |F|.

Base: if |F| = 0 then the statement is clearly true.

Step: let F' be a rooted forest with at least 1 node, and assume the statement holds
for any rooted forest with fewer nodes.

Let vq,...,v,, be the roots of F, and let T; := F®) he the subtree whose root is v;.

Then
Pl F) T ( fal ) Ty
FI IS (T A T ) LT

_ ]! 1 1T\ {wi]!
N (|T1|7|T2|>-"7|Tm|> H(Ti\{vi})!

=1

The multinomial coefficient (m‘ |T|j |.!“ T |) counts the number of ways to partition the
set {1,2,3,...,|F|} into an ordered multiset of unordered subsets, whose sizes are
IT1],|Ts|,...,|Tm|- Each such subset will be the set of numbers corresponding under

the heap-ordering to the rooted tree T;, with the smallest number corresponding to the
root v; of Tj.

By the induction assumption, for each ¢ we have: the value %

heap-orderings on the rooted forest T;\{v; }, which implies the statement of the lemma. O

counts the number of

From Lemma 4.1.16 we immediately obtain:

Corollary 4.1.17. Given a rooted forest F', we have the following identity:

[El 3 [E7\ {v)]!

Bl (F\ {v})!

v a root of F

4.2. Computation of superdimensions.

Theorem 4.2.1. Let A € A,, and let L,(\) be the corresponding simple module in F,
(with an even highest weight vector, as before).

Consider the cap diagram dy, as described in Section 2.2.5.

If the weight X is not worthy (see Definition 4.1.1), then

sdimZ,(A) = 0.

If the weight X\ is worthy, let Fy be the corresponding rooted forest (as in Definition
4.1.11 above). Then
[FA!

sdimZ, (\) = i
A

Example 4.2.2.

(1) For A =0 and any n > 1, we have: sdimZL,(0) = % = 1.
(2) For A = —g; and n > 2, we have: sdimL,(—¢;) = —sdimV,, = 0.

(3) For A as in Example 4.1.4, we have: sdimLg(\) = % = 3.
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(4) For A as in Example 4.1.5, we have: sdimZ,(\) = 0.

(5) For A as in Example 4.1.6, we have: sdimL;(\) = Eil! = 15.

Proof of Theorem 4.2.1. We prove the required statement by induction on n > 1, done
separately for odd and even n.
Base: For n = 1, any (dominant) integral p(1)-weight A € A; has a cap diagram with
a single cap. So it is worthy, and its rooted forest (tree) F) consists of just one node. The
simple p(1)-module L;(\) has superdimension 1. Hence
|
% =1=sdimL;()\)

as required.
For n = 2, we have two types of (dominant) integral p(2)-weights A € A;:

(1) If Ay = g, then the cap diagram has exactly two caps, one internal to the other:

N
A1—1 A1

A1—2 A1+1

So A is worthy and 6(/\)6“6” has just one element (the cap (A\y —2,\; +1)). Its
rooted forest (tree) F\ consists of one node. The simple p(2)-module Ly(\) is a
tensor power of the determinant representation of p(2)y = gly, and has superdi-

mension 1. Hence
|Fy|!

Fy!

=1 = sdimLy())

as required.
(2) If Ay # Ao, then the cap diagram has exactly two disjoint caps:

A1—1 A o A2 Ao+1

The virtual cap in this case has two odd successors, hence A is not worthy. The
simple p(2)-module Ls(A) is typical and has superdimension 0, as required.

Step: Assume the statement of the theorem holds for n — 2,n — 1. We now prove it
for n.

Recall that the Duflo-Serganova functor DS, (for any x € p(n)i) preserves categorical
superdimensions, by Lemma 2.3.2.

For each k = n — 1,n, let z; € p(k)1,xr # 0 be the odd element corresponding to the
root 2ey. Let DS, ., DS,, be the corresponding Duflo-Serganova functors.

First we consider the case when n =1 mod 2.
Let A € A,,. Then

(5) sdimZ, (\) = sdimDS,, (L,()\)) = Z (—1)**sdim Ly, (1)

ceC(A) maximal

Here for each maximal (non-virtual) cap ¢ in C(\), we denote by p. the weight in
A,,—1 such that d,, is obtained from d, by removing the cap ¢ (see Corollary 3.1.4), and
z(A, ¢) = z is the parity of the composition factor L,_i(p.) in DS, (L, (N)).

Consider a maximal cap ¢ € C()) as above, and let p := p.. Then C(u) = 6()\) \ {c}

with induced partial order.
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We then have the following sublemma:

Sublemma 4.2.3. Assume n =1 mod 2. Then we have:

o If X\ is not worthy, then neither is p.
o If \ is worthy, and c is even, then p is not worthy.
o [f \ is worthy, and c is odd, then p is worthy.

Proof of Sublemma. e Assume ) is not worthy.
Let ¢ € C(A) be a cap with at least 2 odd successors. Then we have three cases:
(1) Case ¢ = c. In this case ¢, € C(u) will have at least 2 odd successors.
(2) Case ¢ = c¢,. Recall that since n = 1 mod 2, the virtual cap ¢, € C()) is
even, hence it has an odd number of odd successors, by Lemma 4.1.9. Thus
it has at least 3 odd successors in C (A), and ¢, € C (n) will have at least 2
odd successors in C ().
(3) Case ¢ # ¢, c,. In this case ¢ € C(u) will have at least 2 odd successors.
In all these cases p is not worthy.
e Assume \ is worthy, and c is even.

Since n = 1 mod 2, the virtual cap ¢, € 6()\) is even. So ¢, has one odd
successor in C (A\) which is not ¢, and will gain one more odd successor (a former
successor of ¢) after ¢ is removed. Thus ¢, € C(y) will still have at least 2 odd
successors, and p is not worthy:.

e Assume A is worthy, and ¢ is odd. Then by Corollary 4.1.10 the number of odd
successors of any given cap has not grown when passing from dy to d,,, and hence

1 is worthy.
The sublemma is proved. 0

Thus in case n = 1 mod 2, we have: if A is not worthy then sdimZL,(\) = 0; if A is
worthy then
sdimDS,, (L,(\)) = (—1)**sdimL,,_1 ()
where pu € A,,_ is the weight whose cap diagram d,, is obtained by removing the unique
non-virtual odd maximal cap ¢ in dy (recall that ¢, € C(\) has exactly one odd successor,
by Corollary 4.1.10, and it is precisely c).
This implies that the rooted forest F), is obtained from the rooted tree F\ by removing
its root, hence
Bl _ [
E! R
The parity z(\, ¢) appearing in Corollary 3.1.4 is 0: indeed, since ¢ is the only odd
cap in dy, there is an even number of caps whose right end is to the right of ¢, hence
z(A, ¢) = 0 by Remark 3.1.5.
Applying the induction assumption to L,_1(u), we obtain:
LY

sdim Ly (A) = sdim DS, (Ln(A)) = sdimLy, 1 (p) = 2 = =5
wr A

as required. This completes the proof of the theorem in case n is odd.

We now consider the case when n is even.
Again, let A € A,,.
We consider the functor

DS : F, = Fu_o, DS:=DS,, _, 0DS,,
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Then DS is a symmetric monoidal functor preserving superdimensions.
Computing the action of DS on L, (\) explicitly, we have:

(6) sdimL, (\) = sdimDS(L,(\)) = > (—=1)*Msdim Ly, _5 (12
c=(c1,c2), c1,c2€C(N)

Here the sum goes over all ordered pairs of caps ¢ = (¢1,c2) where ¢; is a maximal
(non-virtual) cap in C()\), while ¢ € C(AN)\{c1} is a successor of either ¢, or ¢;. The
weight p. € A,_5 is such that d,, is obtained from dy by removing c; and then c;. The
parity Z(A,¢) is computed using Corollary 3.1.4:

Z(\¢) = z(\, 1) + 2( Ay, 2)
where the notation is as in (5).

Let ¢ = (c1, ¢2) be a pair of caps as above, and let p := p.. Then C(p) = C(N) \ {c1, 2}
with the induced partial order.

We begin our study of the sum (6) above with the following observation:

Assume ¢y, ¢ are both successors of ¢,. Then both (¢1, ¢2) and (cg, ¢1) are ordered pairs
appearing as indices in the sum (6), and fi(c, c;) = fh(cs,e:)- By Remark 3.1.5, we have:

Z(\, (e1,¢2)) = 2(A, (e2,¢1)) +1  mod 2.

Hence the corresponding terms in the sum (6) cancel out, and from now on we will
consider the sum (6) so that the sum goes over the ordered pairs (c1,c2) where ¢y is a
successor of ¢;.

Let us consider the case when A is not worthy.

Let ¢ € C()\) be a cap (perhaps virtual) with at least 2 odd successors.

Sublemma 4.2.4. The weight i = p. € A,—2 is not worthy as well.

Proof. Assume the contrary: p is worthy.

Recall that since n =0 mod 2, the virtual cap c, € C (A) is odd, hence it has an even
number of odd successors, by Lemma 4.1.9. After the removal of ¢y, co it inherits their
odd successors, so we have a disjoint union:

{oddcflt;c%%?zrs of} _ {oddcflllilctecfsors of} \ {Cl} L] {oddcflli(;lceé?cj\lgs of} \ {02} L] {odd@sul(r:lcecssors of}'

Since ¢, € C () has at most one odd successor, the above union contains only one
element. Now Lemma 4.1.9 implies that c, € a()\) has no odd successors, and thus ¢;
is even. Applying Lemma 4.1.9 again we conclude that ¢; must have at least one odd
successor, and the same goes for ¢, if it is even. But since the set

{oddcfulilcecssors of} \ {62} L] {oddcsul;cecsvsors of}

contains only one element. we conclude that the following must hold in C(A): ¢, € C())
has no odd successors, ¢; is even and has precisely one odd successor: ¢y, which has no
odd successors itself. R

Hence we must have ¢ # ¢, ¢1,¢2. In this case ¢ € C(p) will have at least 2 odd
successors, and p is not worthy, contradicting our assumption. This proves the statement
of the sublemma. O

Applying the induction assumption to each ., we conclude that if A is not worthy,
then
sdimZ, (\) = sdimDS(L,(\)) = 0.
Now let us consider the case when A is worthy. Then ¢, is odd, and all the maximal

(non-virtual) caps in C'(\) are even. Hence ¢; is necessarily even.
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Assume ¢, is even. Then both ¢; and ¢y have odd successors, and after the removal of
these caps both odd successors are “inherited” by ¢, € C(u). Hence ¢, € C(u) will have
at least 2 odd successors in C (1), and p is not worthy.

Applying the induction assumption to u, we conclude: if A is worthy, the sum in (6)
becomes

(7) sdimL, (\) = sdimDS(L,(\)) = > (—=1)*Msdim Ly, _5(s2,)

c=(c1,c2), c1,c2€C(N)

over ordered pairs ¢ = (cy, ¢2) where ¢; is a maximal (non-virtual, even) cap in C'(\) and
Co is its unique odd successor.

In that case, the rooted forest F),, is obtained from F) by removing exactly one node,
corresponding to the even cap ¢;.

The parity Z(\,¢) is then necessarily 0: indeed, there is an even number of caps whose
right end is to the right of the cap ¢;, and after its removal, the same is true for the cap
co. By Remark 3.1.5, this implies:

Z(A\,c)=0+0=0.
Applying the induction assumption to all x4, and using Corollary 4.1.17, we obtain:
sdimL, (\) = sdimDS(L,(\)) = > sdimLy_o(p1e) =

c=(c1,c2) c1,c2€C(N),
c2 unique odd successor of ci,
c1 is maximal

3 P! 3 [Ex\{v}]! _ B!
| | |
c=(c1,c2) c1,2€C(N), F,ug' v a root of Fy (F/\ \ {U}) F)"
c2 unique odd successor of cj,
c1 is maximal
as required. This completes the proof of Theorem 4.2.1. O

As s special case of the statement of Theorem 4.2.1, we have:
Proposition 4.2.5. Let L € F* be a simple module, and k # 0,+1. Then sdimL = 0.

Proof. Recall from Theorem 4.2.1 that
sdimL,(\) # 0 <= X is worthy.

So let A € A, be a worthy weight. We will show that L,()\) € F¥ with k& = 0 if n is even
and k = £1 otherwise. In other words, we will prove that

u 3 0 ifn=0 mod?2
8 —1)N = :
(8) ;( ) {:I:l ifn=1 mod?2

where {\;}7_, are precisely the right ends of the caps in the cap diagram for \.

Let us prove this by complete induction on n > 1.

Base case: For n = 1, the category F; only has two blocks: Fi!, so there is nothing
to prove. For n = 2, the category F» has three blocks: FJ, F52. The worthy weights in
this case have the form A € Ay where A\, = Ay, hence 72, (—1)* = 0 as required.

Step: Let n > 3, and assume the statement holds up to rank n — 1. Let A € A,, be a
worthy weight.

If n is even, the cap diagram for A\ has at least one maximal (non-virtual) even cap
c. Let ¢ be its unique odd successor. Let j,j" be the indices of the right ends of ¢,

respectively. Then j#;' mod 2, hence (—1)7 4 (—=1)7" = 0. If we remove both caps ¢, ¢,
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we are left with a cap diagram for a worthy weight in A,,_5. By the induction assumption,
the statement of (8) holds for this weight, so

YoM =0 = > (-1 =0
i A5, i=1
as required.

If n is odd, the cap diagram for A has precisely one maximal (non-virtual) odd cap ec.

Let 7 be the index of its right end. If we remove this cap, we are left with a cap diagram
for a worthy weight in A,,_;. By the induction assumption, the statement of (8) holds for

this weight, so

(-1 =0 = Y (-1)* ==+1.
i N i=1

This completes the proof of the proposition.

Finally, we recover the Kac-Wakimoto conjecture for p(n) proved in [EnS19]:

Corollary 4.2.6. Let M € F* where k # 0,41. Then sdimM = 0.
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