
Distributed MQTT Brokers at Network Edges: A
Study on Message Dissemination

Luoyao Hao, Xiao Yu, Tingrui Zhang, Henning Schulzrinne

Department of Computer Science, Columbia University, New York, NY, USA
Email: {lyhao, hgs}@cs.columbia.edu, {xy2437, tz2477}@columbia.edu

Abstract—Edge computing attempts to deliver low-latency
services by offloading data storage and processing from remote
data centers to distributed edge servers near end users, whereas
network protocols, designed for centralized management, do not
internally scale to distributed edge scenarios. In this paper,
we establish the message dissemination support of MQTT, a
de facto protocol for Internet of Things, for fully distributed
edge networks. We summarize and formulate existing mecha-
nisms, namely publication flooding and subscription flooding,
and propose a topic-centric solution called selective subscription
forwarding, which forwards subscriptions only when necessary
by leveraging the topic containment of MQTT messages and
therefore reduces inter-broker traffics. Evaluation results demon-
strate that compared with existing solutions, more than 40%
subscription traffic can be reduced with the proposed mechanism.

I. INTRODUCTION

As we step into the era of edge computing, computing
resources are no longer solely located on centralized clouds.
Instead, a great deal of computation and processing for Internet
of Things (IoT) are being offloaded to distributed nodes [1],
[2]. Meanwhile, edge computing brings additional service
infrastructures, storage resources, and reduced latency [3].

Although network resources and data processing are rel-
atively plausible to be restructured or migrated from clouds
to edges, network protocols were not designed with edge
computing in mind. For IoT, widely adopted application-
level protocols, such as Message Queuing Telemetry Transport
(MQTT) [4] and Constrained Application Protocol (CoAP) [5],
have been standardized earlier than the concepts of edge
computing became popular. MQTT works in the publish/sub-
scribe pattern by applying a broker as an intermediate between
publishers and subscribers. The broker forwards published
messages to interested subscribers by matching the topics
associated with publications and subscriptions. As IoT data
are mostly generated and consumed at network edges [6],
scaling out MQTT network by deploying brokers on edge
computational nodes is a favorable solution to facilitate large-
scale IoT systems, reduce propagation delay, and save network
bandwidth [3], [7].

For large-scale publish/subscribe systems, one of the fun-
damental problems is the reliable and efficient message dis-
semination over distributed brokers. Messages must always
be accurately delivered to all interested clients, regardless of
which brokers the publishers or subscribers connect to. For

example, in the Internet of Vehicle (IoV) network, each vehicle
might need to receive alerts on road safety information no
matter which roadside infrastructure it is able to communicate
with [8]–[10]. In contrast to rich resources for centralized
clouds, the bottleneck of scalability is caused by the limited
link capacity and computation capability at the edges of the
network. However, we are at a very early stage of investigating
the distributed MQTT model. Existing message dissemination
solutions rely on unconditional flooding and inevitably lose
some efficiency [6], [11], since they process messages inde-
pendently, while the topics of messages, as a matter of fact,
are probably mutually contained with each other.

Recent efforts explore the opportunities of scaling MQTT
protocol to distributed scenarios by seeking the inspiration
from traditional models. Longo et al. [11] present a spanning
tree protocol to create a loop-free architecture of distributed
brokers. Banno et al. [6], [12] design two message dissemina-
tion algorithms and construct an interworking layer to incor-
porate heterogeneous brokers. Hasenburg et al. [9] introduce
a similar flooding-based approach to broadcast messages with
geo-distributed brokers. To reduce inter-broker traffic, Detti et
al. [13] apply a greedy strategy for load balancing. However,
all of them neglect the topic-centric nature of MQTT and pay
little attention to the topic hierarchy of messages.

Our goal is to figure out an efficient message dissemination
mechanism for distributed MQTT scenarios. We analyze and
compare the existing solutions, namely Publication Flooding
(PF) and Subscription Flooding (SF). In order to further
alleviate traffic congestion caused by unconditional flood-
ing of PF or SF, we leverage the hierarchy of topic-based
subscriptions and propose Selective Subscription Forwarding
(SSF) that only floods subscriptions when necessary. The key
enabler behind this improvement is the quick determination
of topic containment relations between incoming and existing
subscriptions, which ties to the MQTT specification of topic
hierarchy and wildcards. Thus, SSF is a light-weight and
topic-centric approach that efficiently forwards messages while
saving valuable bandwidth at network edges. Through an
experiment involving seven MQTT brokers and simulations of
a thousand brokers, we show the characteristics of the three
mechanisms in various conditions and demonstrate that SSF
can reduce more than 40% subscription traffic and 20% service
latency, compared with SF.

We make the following contributions:

17

2022 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications
(GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress

978-1-6654-5417-9/22/$31.00 ©2022 IEEE
DOI 10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics55523.2022.00044

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
es

 o
n

In
te

rn
et

 o
f T

hi
ng

s (
iT

hi
ng

s)
 a

nd
 IE

EE
 G

re
en

 C
om

pu
tin

g
&

 C
om

m
un

ic
at

io
ns

 (G
re

en
C

om
) a

nd
 IE

EE
 C

yb
er

, P
hy

si
ca

l &
 S

oc
ia

l C
om

pu
tin

g
(C

PS
C

om
) a

nd
 IE

EE
 S

m
ar

t D
at

a
(S

m
ar

tD
at

a)
 a

nd
 IE

EE
 C

on
gr

es
s o

n
C

yb
er

m
at

ic
s (

C
yb

er
m

at
ic

s)
 |

97
8-

1-
66

54
-5

41
7-

9/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
iT

hi
ng

s-
G

re
en

C
om

-C
PS

C
om

-S
m

ar
tD

at
a-

C
yb

er
m

at
ic

s5
55

23
.2

02
2.

00
04

4

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 10,2023 at 02:45:45 UTC from IEEE Xplore. Restrictions apply.

• We formulate the message dissemination problem for dis-
tributed MQTT networks and review existing approaches.

• We draw on topic containment problem and propose an
efficient approach to reduce inter-broker traffics.

• We evaluate the three approaches through emulations and
simulations, under a range of network conditions and
performance metrics.

The rest of this paper is organized as follows. Section II in-
troduces MQTT protocol and the distributed model. Section III
proposes the message dissemination problem and the topic
containment problem. Section IV presents existing solutions
and proposes our solution based on the topic containment
problem. Section V analyzes and evaluates the mechanisms
through emulations and simulations for large-scale setups.
Section VI discusses relevant concerns.

II. BACKGROUND AND SYSTEM MODEL

We overview MQTT protocol and introduce the distributed
network model formed by MQTT brokers.

A. MQTT Protocol and System
Message Queuing Telemetry Transport (MQTT) [4] works

in a topic-based and event-driven publish/subscribe pattern
that provides both temporal and spatial decoupling. MQTT
is designed as a light-weight application-layer protocol that
utilizes a small but variable size of message header. The light-
weight and flexible designs entail MQTT a feasible protocol
fitting for many resource-constraint scenarios. Fig. 1 shows a
typical MQTT system consisting of a broker between multiple
publishers and subscribers. The terminologies widely adopted
in such systems are listed below.
Client can be either a publisher who publishes messages or

a subscriber who subscribes to and receives messages.
Publication is associated with a specific topic and contains a

payload under the topic.
Subscription expresses a subscriber’s interests. Each sub-

scription is also associated with a specific topic.
Broker receives publications and forwards them to the sub-

scribers who previously subscribed to the same topics.

Publisher Broker Subscriber

speed of car

all home info

topic: car/speed

topic: home/#

Fig. 1. Topic-based MQTT publish/subscribe system.

MQTT matches interests between publishers and sub-
scribers based on hierarchical topics included in the messages.
It uses the forward slash (i.e., “/”) as the topic level separator.
Each publication and subscription must be associated with an
explicit topic. Each broker dynamically maintains a single
topic tree, a data structure to store hierarchical topics and
corresponding interests by clients. Fig. 2 depicts an example
topic tree, where we omit the root of the tree, which is a
logical node connected with all first-level nodes globally.

home

kitchenliving
room

oven fridge

status

c1 c2

c1 c2

c3

c3

c4

c4

Fig. 2. Example topic tree.

C
lo

u
d

L
a

y
er

E
d

g
e

L
a

y
er

D
ev

ic
e

L
a
y
er

MQTT Broker

Cloud-Based

Edge-Based

Fig. 3. Three-layer MQTT system architecture.

A client can subscribe to multiple topics in a single request,
using single-level wildcard “+” (e.g., “home/kitchen/+/status”
indicates status of any kitchen appliance) or multi-level wild-
card “#” (e.g., “home/kitchen/oven/#” indicates any informa-
tion of the oven).

B. Edge MQTT Brokers
Deploying MQTT brokers to distributed edges is a natural

and promising idea, since many subscription interests for
IoT are not across an extremely large physical distance and
workloads for brokers are moderate enough to be processed
at edges [3], [6], [11], [12]. For this purpose, an edge layer
encompassing intermediate brokers is introduced between the
cloud broker and MQTT clients, as shown in Fig. 3. The
major processing and forwarding are managed at the edge
layer, and the obligation of the cloud broker is nothing more
than basic coordination and forwarding, unless there is a need
for centralized performance monitoring or data aggregation.
Thus, the MQTT functionalities of the edge layer can be
decoupled from the cloud layer [3], [9]. For the rest of this
paper, we only focus on the edge layer, where edge brokers
are distributed and supposed to work functionally without the
cloud. Applications and systems benefited from such deploy-
ment appear in road safety [8]–[10], where road infrastructures
or Internet of Vehicles are supposed to pass on safety-critical
information even the remote server is down, UAV-enabled
network consisting of one or more UAVs communicating with
a number of mobile sensors and actuators (e.g., for geological
prospecting or disaster recovery) [14], messaging applications
or geographical applications on edges [3], [15], [16].

Existing implementations on scaling out MQTT, such as
Mosquitto Bridge [17] and HiveMQ Cluster [18], are designed
for synchronization and replication between multiple brokers
on the cloud. Those brokers appear as a single cloud broker
to outside clients. Compared with their work, we consider
fully distributed edge brokers, and our focus is on message
dissemination instead of data replication.

C. Performance Metrics
Network traffic. There are two indicators of network traffic,

namely total traffic and maximum traffic of all the links.
Involving more brokers for message dissemination introduces
more inter-broker traffic. As bandwidth at network edges is
usually valuable and limited, reducing network traffic is critical
for efficient message dissemination.

Broker overhead. The workload of a broker comes from
the number of connected brokers and clients, as well as
the number of messages in processing. It can be indirectly

18

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 10,2023 at 02:45:45 UTC from IEEE Xplore. Restrictions apply.

���

OD
WH
QF
\�
�V
HF
�

� � �����PHVVDJH�LG

AVG = 0.272

(a) no packet loss

�

�

� �����PHVVDJH�LG

OD
WH
QF
\�
�V
HF
�

AVG = 3.037

(b) 5% packet loss

10

� � �����PHVVDJH�LG

OD
WH
QF
\�
�V
HF
�

AVG = 4.628

(c) 10% packet loss

15

� � �����PHVVDJH�LG

OD
WH
QF
\�
�V
HF
�

AVG = 6.461

(d) 15% packet loss

� � �� ���
�
��
��
��
��
��
��

OD
WH
QF
\�
�V
HF
�

estimation
H[SHULPHQW

����
SDFNHW�ORVV�UDWH����

(e) non-linear growth
Fig. 4. End-to-end delay of MQTT message dissemination with possible packet loss and re-transmission on the overloaded links.

measured by the volume of messages under processing, its
CPU utilization or power consumption.

Service latency. Unlike a request/response model where the
delay is clearly perceivable by users, when a publication is
generated is usually unknown to subscribers. However, service
latency is significantly important for time-critical applications.
We define service latency as the time span from a publisher
sending a message to a subscriber receiving the message.

Note that these metrics are correlated. Fig. 4 shows the
service latency of message flooding in an experiment of
seven MQTT brokers connected one after another. A hundred
publishers are connected to one of the end brokers, and each
publisher generates one publication per second. As the network
congestion increases, more packets need to be re-transmitted,
and the service latency increases non-linearly, which fails the
prediction of an exponential increase. We observe that a lot of
packets do not reach intended recipients over a large duration
of time. This result also implies that a flooding process might
crash the system when the network traffic is too heavy or any
network element is overloaded, which motivates us to design
a more efficient approach.

III. PROBLEM FORMULATION

We introduce and formulate the message dissemination
problem as well as the topic containment problem.

A. Message Dissemination

To collaborate distributed brokers and deliver services at
network edges, the primary need is to correctly disseminate
messages. In other words, each publication should be correctly
delivered to interested subscribers, no matter which brokers the
subscribers are connected with. This is also in accord with the
loose coupling and the flexibility features of MQTT protocol,
as a client does not need to be aware of where contents come
from, neither should they bother to actively choose brokers
based on contents.

We assume that the network is loop-free in this paper, as
constructing a loop-free topology from a distributed broker
network can be addressed using in-band MQTT messages [11].

B. Subscription Containment Problem

Containment problems, in the complicated forms, can be
NP-Complete or co-NP-Complete [19]. For MQTT protocol,
fortunately, the complexity is reduced to polynomial time,
benefited from the restrictions on the topic hierarchy and
conventions. This lays us an opportunity to design an efficient
mechanism. More details are given in Section IV-B.

As there is no clear formulation we can directly take,
we define the topic containment relation in Definition 1
where the expression is consistent with [19]. Then, we extend
Definition 1 and define the MQTT Subscription Containment
Problem (MSCP), as formulated in Definition 2, which is to
determine whether one subscription contains the other.

Definition 1 (Topic Containment Relation). Given two hier-
archical MQTT topics x and y (each topic is partitioned by
“/”, and wildcards are allowed), x ! y denotes the relation
that any possible semantic expressed by x is included in y.

Definition 2 (MQTT Subscription Containment Problem
(MSCP)). Given two MQTT subscriptions s1 and s2 that are
associated with the topic t1 and t2, respectively, the objective
is to figure out whether or not t1 ! t2, or in reverse, t2 ! t1.

As an example shown in Fig. 5, any topic with the same
hierarchy containing specific routes to the destination or
road information to be alerted is contained in both of the
example topics, and additionally, any topic beginning with
“NY/World Trade Center” is contained in the lower topic.
Topic containment relations yield subscription containment
relations associated with those topics.

NY / World Trade Center / + / + / now

fastest, no toll, ... icy road, obstacle, accident, ...

(route)(alert)(destination)

NY / World Trade Center / #

fastest, no toll, ...icy road, obstacle, accident, …, now, history,...

(all)(destination)

Fig. 5. Example of MQTT topic containment with wildcards.

IV. MESSAGE DISSEMINATION MECHANISM

We review existing message dissemination mechanisms for
edge MQTT brokers and propose a topic-centric approach.

A. Publication Flooding and Subscription Flooding
To disseminate messages precisely, existing solutions flood

either publications or subscriptions [6], [9], [11], [13], we
call them Publication Flooding (PF) and Subscription Flooding
(SF), respectively.

Publication flooding is the most straightforward approach.
As the name suggests, it floods published messages over the
network to make sure that all of the brokers receive every
single publication. Subscriptions are processed as usual, as
they do not go beyond the responding broker that subscribers
directly connect to. As a result, no matter which broker a
subscriber connects to, the interested publication will reach
the broker anyway and then be forwarded to the subscriber.
Fig. 6 shows the basic message flow in a simple topology.

19

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 10,2023 at 02:45:45 UTC from IEEE Xplore. Restrictions apply.

①

Subscriber

Publisher

Broker 1 Broker 3

Broker 2 ②

④

③ ③

Broker 4

③

subscription

publication

Fig. 6. PF example.

①

② ②

④ ④

⑤
Subscriber Broker 1 Broker 3

Broker 2

Broker 4

②

subscription

publication
Publisher

③

Fig. 7. SF example.

Subscription flooding, in contrast with publication flooding,
floods every subscription. A subscription carries interested top-
ics of a subscriber. By flooding the subscription, each broker
actually relays the interests to its neighbor brokers, informing
them to send messages back when they receive publications
associated with the same topics. Each broker now needs to
maintain a mapping from those topics to interested neighbors
including both clients and connected brokers. Afterwards, if
any broker receives a publication, it has a clear understanding
on which neighbors need the publication, so the publication is
eventually sent along the precise paths to the interested clients.
Fig. 7 shows the basic message flow in the same topology.

For subscription flooding, one apparent optimization can be
made by not flooding repeated subscriptions which is also
implied in [6]. As such optimization can be considered as
a special case of topic containment, we use SF in its plain
version for the rest of this paper.

Handling unsubscription is a bit tricky. The state of the
broker cannot simply remain the same upon receiving an
unsubscription, as long as there is a neighbor still subscribes
to the topic. As an example in Fig. 8, in fact, when there is
a client or at least two neighbor brokers still subscribe to the
topic being unsubscribed, the subscription relations between
the broker and its neighbor brokers remain unchanged. Other-
wise, if no client but only one neighbor broker b′ still needs
the topic, the subscription from the original broker b to b′ can
be left out if it exists, since the subscription relation between
b and b′ becomes unidirectional (i.e., b no longer needs the
messages from b′ under the topic).

C2

C1

B1

B2

B3

s
s

s

(a) one client

C2

C1

B1

B2

B3

s
s

s
s

(b) two clients

C2

C1

B1

B2

B3

s
s

s s

(c) one broker

C1

B1

B2

B3

s
s

s s
B4

s

s

(d) two brokers
Fig. 8. Four different unsubscription situations.

B. Selective Subscription Forwarding

MQTT systems are topic-centric in nature, while exist-
ing mechanisms focus on pure publication-based flooding
or subscription-based flooding, which turn out to be more
generalized but less specialized or efficient for MQTT.

The problem of PF or SF is that they do not pay at-
tention to MQTT hierarchical topics. As a result, a huge
number of redundant subscriptions are likely flooded over
the entire network, introducing unnecessary traffic congestion
and overheads of brokers. However, such deficiency can be
avoided by keeping the records of subscriptions and avoiding

useless flooded messages, if MSCP is properly addressed.
We thereby propose Selective Subscription Forwarding (SSF)
where subscribed topics between brokers are never repeated or
overlapped. SSF gets rid of useless subscriptions by examining
the containment relations of subscriptions before flooding.

In SSF, when receiving a subscription, the broker traces
back to existing subscriptions, and only if the new subscription
is not contained in existing ones will the broker floods this
subscription. Similarly, when receiving an unsubscription, the
broker also checks if it is currently subscribed. If not, it can
be simply removed from the records. Otherwise, there might
be some subscriptions contained by this one that were not
flooded before. Those subscriptions should now substitute for
the unsubscription, while taking good care of their contain-
ment relations, to make sure interests among brokers are still
correctly communicated. Algorithm 1 presents the underlying
mechanism of SSF, from the perspective of a broker b, where
tx denotes the topic of the message x (publication, subscrip-
tion, or unsubscription), and b maintains three mappings: TIb
maps each topic to a set of interested neighbor brokers or
clients, HTb maps each of b’s next-hop brokers to a set of
topics interested by b, and HSb maps each of b’s next-hop
brokers to a set of topics subscribed by b. HSb ⊆ HTb.

Algorithm 1: Selective Subscription Forwarding (SSF)
1 if receive subscription s from broker bi or client cj then
2 store {ts : bi or cj} to TIb;
3 foreach neighbor broker b′ except bi do
4 store {b′ : ts} to HTb if not exists;
5 if ∃ts′ ∈ HSb(b

′) s.t. ts # ts′ then pass;
6 foreach ts′ ∈ HSb(b

′) do
7 if ts′ # ts then unsubscribe s′;
8 add b′ to a flooding group F , update HSb(b

′);
9 flood s to brokers in F ; /* selective flood */

10 if receive publication p from broker bi or client cj then
11 if TIb(tp) = B′ ∪ C′ and B′ ∪ C′ %= ∅ then
12 forward p to the brokers in B′ and the clients in C′;

13 if receive unsubscription us from broker bi or client cj then
14 remove bi or cj from TIb(tus);
15 if TIb(tus) = ∅ then
16 foreach neighbor broker b′ except bi do
17 if tus ∈ HSb(b

′) then
18 find minimum set T = {tk} and tk # tus

from HTb(b
′), s.t. ∀tm ∈ HTb(b

′) &&
tm # tus, either tm ∈ T or
∃tn ∈ T, tm # tn;

19 subscribe topics in T , update HSb(b
′);

20 add b′ to a flooding group F ;
21 remove tus from HTb(b

′);
22 flood us to brokers in F ;

An example with five brokers is shown in Fig. 9. In
sequence, B1 subscribes s1, B3 subscribes s2, B3 subscribes
s3, and finally B3 unsubscribes s3. In Fig. 9(b), as B5 has
flooded the subscription s1 that contains s2, B5 only needs
to send s2 to B1, instead of flooding s2 to all neighbors.
In Fig. 9(c) and Fig. 9(d), as s2 ! s1 ! s3, when s3 is

20

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 10,2023 at 02:45:45 UTC from IEEE Xplore. Restrictions apply.

subscribed or unsubscribed, s1 or s2 has to be unsubscribed or
subscribed in order to make sure that there is neither redundant
nor missing subscriptions between brokers1.

B5

B3

B4

B2

B1

s1

s1

s1

s1

sub flood

(a) simple flood

B5

B3

B4

B2

B1

s2

s2
sub

no change
to B2 B4
s2 s1

(b) B3 sub s2

B5

B3

B4

B2

B1

s3

s3
sub

s1 s3

s3

s3

unsub
s2

s1s2

s1

(c) B3 sub s3

B5

B3

B4

B2

B1

s2

s3
unsub

s2 s1 s3

s1

s1

sub
s2

s3s3

s3

(d) B3 unsub s3

Fig. 9. Example of SSF for a case of five brokers. An arrow with solid line
represents the initiative action, and an arrow with dashed line represents the
affiliated actions that have to be done to maintain correct subscriptions.

MQTT protocol enforces two constrains on the use of
wildcards: (1) only the single-level wildcard “+” and the
multi-level wildcard “#” are allowed; (2) the multi-level
wildcard “#” must be the last character of a topic, if present.
Taking advantages of this simplification, we can solve MSCP
in linear time using dynamic programming. In Algorithm 2, we
denote four kinds of relations between two topics t1 and t2 as:
(1) exactly the same (t1 = t2); (2) t1 contains t2 (t2 ! t1); (3)
t2 contains t1 (t1 ! t2); (4) no containment relation (t1 #= t2).
Obviously, the process runs in O(min{|l1|, |l2|}), linear time.
This result justifies that addressing MSCP would not burden
the system, given that we do not usually have a large number of
hierarchical levels for the topics. Indeed, it is the efficiency of
determining the subscription containment relation that makes
SSF a feasible solution.
Algorithm 2: MQTT Topic Containment

Input : Two topics t1 and t2 with wildcards allowed
Output: Integer r indicating the relation between t1 and t2

(r = 0 ∼ 3 indicates the four relations respectively)
1 split t1 and t2 to lists l1 and l2 by “/”, set r = 0;
2 while i ≤ min{|l1|, |l2|} do
3 if l1[i] = l2[i] then i++;
4 else if l1[i] =“#” then if r = 2, return 3; else r = 1;
5 else if l2[i] =“#” then if r = 1, return 3; else r = 2;
6 else if l1[i] =“+” then if r = 2, return 3; else r = 1;
7 else if l2[i] =“+” then if r = 1, return 3; else r = 2;
8 else return 3 /* omit i++ above */;

V. PERFORMANCE EVALUATION

To evaluate SSF and existing solutions, PF [9], [11] and
SF [6], we first analyze the situation where no topic contain-
ment relation exists. Then, we set up a small-scale testbed
consisting of seven MQTT brokers and multiple clients to
conduct emulations for small-scale scenarios. Furthermore, we
run extensive simulations to evaluate the large-scale network
with a thousand brokers.

A. Disparate Subscription Topics

If no subscription is contained by one another, the behaviors
of SF and SSF are the same2. To model the client and broker

1we use ! between two subscriptions or two topics interchangeably in this
example for easier expression.

2Therefore, SF also represents SSF, in this subsection.

behaviors, we consider two parameters: Interested Broker
Ratio (IBR) and Subscription Publication Ratio (SPR). IBR
denotes the percentage of brokers in the system which share
the same interest. In other words, IBR represents the ratio of
brokers that need messages of certain topics. SPR represents
the ratio of total size of subscriptions over total size of
publications generated by clients. We deduce these two factors
stage by stage along with following analysis.

For PF, as brokers only forward publications, the total
network traffic over the distributed brokers is:

TPF = (m− 1)
∑

i

(PBi × hi) = (m− 1)
∑

i

Pi (1)

where m is the number of brokers, hi is the number of
published messages under a topic i, PBi is the total size of
packets to deliver a published message between two brokers
(e.g., for QoS=1, this means the total size of a Publish, a
Pubback, and the ACK packets) under the topic i.

∑
i Pi

represents the total size of transferring all published messages
between any two connected brokers in the network.

For SF, brokers first flood subscriptions and then forward
publications along the specific paths to the interested sub-
scribers. Similarly, we can get the total network traffic:

TSF =
m∑

k=1

∑

i

Pik + (m− 1)
∑

j

(SBj × hj) (2)

where hj is the number of subscriptions under a topic j, SBj

is the total size of packets to deliver a subscription between
two brokers (e.g., for QoS=1, this means the total size of
a Subscribe, a Subback, and the ACK packets) under the
topic j. Pik denotes the total size of transferring all published
messages under a topic i through the k-th edge in the topology.∑m

k=1

∑
i Pik adds up published traffics for all possible edges.

Derived from Equation 2, we have:
TSF = NP ′ + (m− 1)

∑

j

Sj (3)

where each element ni in matrix N = [n0, n1, n2, ...] indicates
the total number of edges in the network that forward publica-
tion under the topic i, and P = [P0, P1, P2, ...]. (m−1)

∑
j Sj

indicates the total traffic for flooding subscriptions. This
equation can be considered topology independent, as all it
needs is to count the number of edges.

To conduct a fair evaluation, we adopt the uniform distri-
bution for all publications and all subscriptions, so that ∀i,
P = Pi and ∀j, S = Sj , which ensures that the data volume
for all messages under any published topic is the same, as
well as for subscriptions. In addition, we simplify the case by
connecting all subscribers to an end broker, and denote the
number of distinct published and subscribed topics as pt and
st respectively. Then,
TSF = (IBR×m− 1)(pt × P) + (m− 1)(st × S) (4)

TSF

TPF
=

IBR×m− 1

m− 1
+

S

P

st
pt

=
IBR×m− 1

m− 1
+ SPR (5)

By far, we get IBR and SPR. IBR ∈ [0, 1], and usually
SPR ∈ [0, 1], since a subscriber likely receives a series of
publications under a single subscribed topic.

21

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 10,2023 at 02:45:45 UTC from IEEE Xplore. Restrictions apply.

���� ���� ���� ����

���� ���� ���� ����

���� ���� ���� ����

���� ���� ���� ����
��� ��� ��� ����

635

���
���
���
���
���
���
���1/7

3/7

5/7

7/7

IB
R

(a). experimental result

���� ���� ���� ����

���� ���� ���� ����

���� ���� ���� ����

���� ���� ���� ����
���

���

���

���

���

��� 4/6 2/6 1/60
SPR

1/7

3/7

5/7

7/7

IB
R

(b). theoretical result

0.2

0.4

0.6

0.8

1.0

1.2

1.41/7

3/7

5/7

7/7

IB
R

��� 4/6 2/6 1/60
SPR

(c). corrected prediction

Fig. 10. Comparison of total network traffic between SF and PF (TSF /TPF).

To validate our analysis, we set up a testbed consisting of
seven MQTT brokers, hosted in Docker contrainers, to emulate
a small-scale network. The broker is implemented based on
Eclipse Mosquitto [17]. Two more containers are created as
publishers and subscribers to deploy client-side programs. We
analyze the network packets captured by Wireshark [20].

The experimental result with different settings of IBR
and SPR is shown in Fig. 10(a), which exhibits a similar
trend as the theoretical estimation generated in Fig. 10(b) by
Equation 5. On the top right of Fig. 10(a), SF saves superfluous
network traffic, since the total traffic of flooded subscriptions
is much less compared to that of publications and only a small
fraction of brokers are interested in the messages. On the other
hand, PF is advantageous if the total size of subscriptions
is large and the publications are interested by a majority of
brokers. Note that many scenarios actually fall in relatively
low SPR in the long run, as it is rare for a client to subscribe
to a topic without receiving further publications.

The theoretical and experimental results slightly differ,
because of the message grouping feature of the Mosquitto im-
plementation. Mosquitto brokers opportunistically merge some
subscriptions arrived in a short interval into a single packet and
forward them altogether. This optimization shifts the dividing
line from the diagonal in Fig. 10(a) towards bottom left in
Fig. 10(b). Fig. 10(c) is a semi-corrected predicted result
considering 50% possibility of message grouping.

Furthermore, we explore the network behaviour in three
basic topologies: linear, binary tree, and star, as depicted in
Fig. 11, and the cumulative traffic of each mechanism is shown
in Fig. 12. As expected, SF generates much excessive flooding
in the liner topology but reduces traffic for the publication
period. Theses results actually present the worst case for SF,
as we set SPR = 1, which is inclined to PF. This result
indicates that when publications are more concentrated and
intensive, SF can be a wise choice as it offloads the peak
traffic during the publication process, and vice versa.

b1 b2 b3 b4

b5b6b7
pub
sub
(a). Linear topology

b2 b1 b3

b7b6
pub

sub

b5b4

(b). Tree topology

b4 b1 b7
b6pubsubb5

b2b3

(c). Star topology
Fig. 11. Three basic topologies for small-scale tests.

B. Overlapped Subscription Topics
To test the performance in larger-scale networks, we con-

duct extensive simulations using SimPy [21] framework. We
suspect hundreds of brokers should be a fairly large size,
therefore to test the scalability in the extreme case, we generate
1000 brokers randomly connected as an acyclic graph, attached
by 8000 subscribers and 2000 publishers. Each publisher or

0

50

100

150

0 120

to
ta

l
tr

af
fi

c
(K

B
) b1 b2 b3 b4

b5 b6 b7

time sequence
(a). Linear PF.

�

��

���

���

���

0 120

b1 b2 b3 b4

b5 b6 b7

to
ta

l
tr

af
fi

c
(K

B
)

time sequence
(b). Linear SF and SSF.

�

��

��

��

���
b1� b2� b3� b4� b5� b6� b7

� ���time sequence

WR
WD
O W

ra
ff

ic
 (

K
B

)

(c). Tree PF.
0

50

100

150

� ���time sequence

b1� b2� b3� b4� b5� b6� b7

WR
WD
O W

ra
ff

ic
 (

K
B

)

(d). Tree SF and SSF.

0

25

50

75

100

125

0 120

b1 b2 b3 b4 b5 b6 b7

to
ta

l
tr

af
fi

c
(K

B
)

time sequence

(e). Star PF.
0

50

100

150

� ���

b1 b2 b3 b4 b5 b6 b7

to
ta

l
tr

af
fi

c
(K

B
)

time sequence

(f). Star SF and SSF.
Fig. 12. Cumulative traffic of seven brokers connected as different structures.
For PF, the publication process is from the beginning. For SF, the publication
process starts at time 15, shortly after the subscription process is completed.

tr
af

fi
c

(K
B

)

0

1

2

3

4
PF SF SSF

0 60time sequence (s)

Fig. 13. Output traffic, α = 0.3.

0 0.1 0.3 0.5 0.7 0.90

1500

ZLOGFDUG�UDWH

PF SF SSF

tr
af

fi
c

(K
B

)

Fig. 14. Total traffic per broker.

subscriber generates a message per second and specifies one
of 100 topics randomly selected from a pool of hierarchical
topics. Each topic has up to 5 hierarchical levels with 5 unique
expressions per level (i.e., 55 = 3125 different topics).

Given that a multi-level wildcard would have more impact
on the containment relations, we assume that it appears less
frequently than the single-level wildcard. To quantify the
probability, we denote the probabilities that a single-level
wildcard (“+”) and a multi-level wildcard (“#”) exist in a topic
as α and β, respectively, varying from no wildcards to high
wildcards probabilities, and β = 1/10α for testing purpose.
Due to space constraints in the graphs, we may only mention α
in most of the following figures. The wildcard rates have little
impact on PF, as publications are flooded anyway regardless
of what topics are. For SF, when wildcards are more likely to
appear, more publications are delivered, since subscribers have
broader interests indicated by wildcards. For SSF, increasing
wildcard rates is expected to have evident effects, since more
wildcards should introduce more overlapped topics.

In Fig. 13, we show the average output traffic of brokers.
The output traffic for SF and SSF decreases over time, since
they have less traffic to flood and subscriptions are more likely
contained by previous ones with time elapsing. As the same
trend applies to other combinations of α and β, we only take
α = 0.3 and β = 0.03 as an example here. In Fig. 14, we
show the mean traffic per broker during the entire message
dissemination, where the clients actively send messages during
the first 30 seconds and wait until all messages are delivered.
As we expected, PF remains constant, while the total traffic

22

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 10,2023 at 02:45:45 UTC from IEEE Xplore. Restrictions apply.

1

1.5

2

2.5

3

0 time sequence (s) 30

WUD
IIL
F��
.
%�

Į� �� Į� ���� Į� ����
Į� ���� Į� ���� Į� ����

(a). SF average throughput.

0.5

1

1.5

2

2.5

3

0 time sequence (s) 30

WUD
IIL
F��
.
%�

Į� �� Į� ���� Į� ����
Į� ���� Į� ���� Į� ����

(b). SSF average throughput.

5

7.5

10

12.5

15

17.5

0 time sequence (s) 30

WUD
IIL
F��
.
%�

Į� �� Į� ���� Į� ����
Į� ���� Į� ���� Į� ����

(c). SF highest throughput.

0

5

10

15

20

0 time sequence (s) 30

WUD
IIL
F��
.
%�

Į� �� Į� ���� Į� ����
Į� ���� Į� ���� Į� ����

(d). SSF highest throughput.
Fig. 15. Average and highest throughput of all brokers.

av
er

ag
e

tr
af

fi
c

(K
B

)

0

100

200

300

400

0 0.1 0.3 0.5 0.7 0.9

SF SSF

0

wildcard rate

Fig. 16. Subscription per broker.

su
b

sc
ri

p
ti

o
n

 r
at

io

SF SSF

0 0.1 0.3 0.5 0.7 0.90

0.25

0.5

0.75

1

wildcard rate

Fig. 17. Proportion of subscriptions.

for both SF and SSF increase due to the broader interests
from subscribers indicated by wildcards. Thus, the increasing
number of publications needed to be delivered dominates the
increase in network traffic. For the worst case, where α = 0.9
and β = 0.09, SF yields a 60% network traffic reduction, and
SSF yields a 81% traffic reduction, compared with PF.

Fig. 15 shows the average and highest throughput in the
network. We leave out the results for PF, as PF constantly
consumes network bandwidth same as that in Fig. 13. The
results for both SF and SSF first drop and then tend to flatten
out. This is because some brokers in the network are congested
at the very beginning, which become the bottlenecks of the
network. For both SF and SSF, plenty of publications should
be dropped by brokers during the first period of time, since
no client has subscribed to them. With the increase of the
wildcard rates, more publications need to be delivered and
make the bottlenecks congested earlier, but eventually those
publications will be delivered to the subscribers. Compared
with SF, SSF converges faster and utilizes lower bandwidth.

To eliminate the impact of excessive publications brought by
the growth of wildcards, we monitor the output subscriptions
in the network to compare SF and SSF. Fig. 16 shows that
only 12% to 18% subscriptions are necessary to be flooded
by SSF. Note that the subscription traffic for SF is constant
regardless of the wildcard rate. Fig. 17 presents the ratio of
subscription traffic over the total traffic in the network. The
ratio decreases as more publications are involved. Compared
with SF, SSF achieves 42% to 73% reduction as the wildcard
rate increases from 0 to 0.9.

Fig. 18 shows the changes of the queue length. We configure
an infinite queue for each broker. The real-time data volume
that a broker is processing indicates the broker workload.

0 0.1 0.3 0.5 0.7 0.90

0.5

1

1.5

2

q
u
eu

e
si

ze
 (

K
B

)

3) 6) 66)

ZLOGFDUG�UDWH
(a). Average queue length.

q
u
eu

e
si

ze
 (

K
B

)

0

50

100

150

200

� WLPH�VHTXHQFH��V� 45�

α = 0 α = 0.1 α = 0.3
α = 0.5 α = 0.7 α = 0.9

(b). PF maximum queue length.

� WLPH�VHTXHQFH��V� 40�

q
u
eu

e
si

ze
 (

K
B

)

0

50

100

150

200 α = 0
α = 0.1
α = 0.3
α = 0.5
α = 0.7
α = 0.9

(c). SF maximum queue length.
� WLPH�VHTXHQFH��V� 40�

q
u
eu

e
si

ze
 (

K
B

)

50

100

150

200

0

α = 0 α = 0.1
α = 0.3 α = 0.5
α = 0.7 α = 0.9

(d). SSF maximum queue length.
Fig. 18. Average and maximum queue length of brokers.

Į� �� Į� ���� Į� ����
Į� ���� Į� ���� Į� ����

� WLPH�VHTXHQFH��V� ���0

0.6

TX
HX
H�V
L]
H��
.
%�

(a). SF queue size.
3��� WLPH�VHTXHQFH��V�

Į� �� Į� ���� Į� ����
Į� ���� Į� ���� Į� ����

0

0.3

TX
HX
H�V
L]
H��
.
%�

(b). SSF queue size.
Fig. 19. Average subscriptions inside the broker queues.

Fig. 18(a) shows the average queue size when clients actively
send messages. As expected, the queue size for PF is not
affected by the wildcard rates. In Fig. 18(c) and Fig. 18(d), the
queue sizes become larger as the wildcard rate increases. For
α = 0.7 and α = 0.9, the lines are closer to each other, since
it is more likely that new subscriptions have been processed
in the past, as the wildcard rate increases.

Similarly, to eliminate the impact of excessive publications,
we take subscriptions in the queues and show the results in
Fig. 19. It turns out that SSF not only reaches lower peak
values, but also drops much faster, while SF drops slowly
and linearly from the peak values. This is because when
a subscription is propagated broker by broker, it cumulates
the chance that a broker has already flooded a subscription
containing the current one and would not forward further in
SSF. Thus, addressing the topic containment problem brings
cumulative benefits as the network grows larger.

Although most results favor SF and SSF, we try to explore
the potential vulnerability of them during the simulations. We
construct the situations where subscribers are located more
concentrated, making flooded subscriptions congest part of the
network in SF or SSF, even severer than the congestion caused
by flooding publications in PF. To better display this situation,
we reduce the network to one-tenth of the original scale, so
the results in Fig. 20 only reflect the problem but are not
numerically comparable with previous values. We find that SF
and SSF might cause hotspots exceeding the peak values of
PF. These hotspots depend on the distribution of subscriptions
in time and space and therefore appear largely at random.

In addition, we mark down the timestamps of sending and
receiving each publication, to show the service latency in
Fig. 21. We notice that the service latency for each single

23

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 10,2023 at 02:45:45 UTC from IEEE Xplore. Restrictions apply.

0

8
3) 6) 66)

� 6�

TX
HX
H�V
L]
H��
.
%�

WLPH�VHTXHQFH��V�
(a). α = 0.3, β = 0.03.

3) 6) 66)

� 6�0

10

TX
HX
H�V
L]
H��
.
%�

WLPH�VHTXHQFH��V�
(b). α = 0.5, β = 0.05.

Fig. 20. Network hotspots indicated by the maximum queue size.

case is highly concentrated around the median, while the
highest and lowest values vary. 51% and 20% reductions in
service latency are achievable by SSF, compared with PF and
SF, respectively. Such reductions benefit from the efficient
determination of topic containment relations and also because
the network is relatively crowded making many messages
queued. If the network is much idle and the processing delay
dominates, PF would achieve lower latency.

� ��� ��� ��� ��� ���
AVG: 204.4

���

��
ZLOGFDUG�UDWH

�OD
WH
QF
\�
�s

lo
t�

(a). PF service latency.

$9*������

� ��� ��� ��� ��� ���

40�

�
ZLOGFDUG�UDWH

�OD
WH
QF
\�
�s

lo
t�

(b). SF service latency.

$9*������

� ��� ��� ��� ��� ���

�0�

�
ZLOGFDUG�UDWH

�OD
WH
QF
\�
�s

lo
t�

(c). SSF service latency.
Fig. 21. Service latency of PF, SF, and SSF for different wildcard rates.

VI. DISCUSSION

Message dissemination: Message dissemination for tra-
ditional large-scale publish/subscribe networks were mostly
on efficient routing and multicast schemes [22], [23]. These
efforts mainly focus on the subscriber side only or different
architectures that can be hardly generalized to distributed
edge MQTT networks [11]. With the increasing interests in
IoT protocols, interconnecting and collaborating distributed
MQTT brokers becomes an emerging focus [3], [6], [11], [13].
In addition to flooding-based mechanisms, alternative efforts
attempt to build UDP extensions or using SDN to support
multicast for MQTT [24]–[26].

Co-existence and unanimous switching: An interesting
idea that deserves further investigation is to enable PF, SF, and
SSF at the same time and switch among them. In this case, to
deliver end-to-end messages reliably, all of the brokers along
the path should behave in the same mode for each topic. Thus,
switching between flooding mechanisms might be a gradual
process rather than an instantaneous transit. It is possible that
some of the brokers have to work in a hybrid mode for a
period of time, e.g., run PF for some topics and SF for others.
There is no standard way to establish consensus for MQTT
scenarios yet, but existing solutions for other scenarios are
likely generalized [11].

VII. CONCLUSION

To scale MQTT to distributed edges, we study a fundamen-
tal problem, message dissemination. We review PF and SF,
and propose SSF to selectively forward subscriptions that are
not contained by previous ones, enabled by the quick deter-
mination of MQTT topic containment problem, which makes
SSF feasible to reduce network traffic without introducing

much computational overhead. We conduct emulations and
simulations to explore the characteristics of those mechanisms
under small and large networks. We demonstrate that SSF can
achieve more than 40% reduction on subscription traffic and
20% reduction on service latency at the same time.

ACKNOWLEDGEMENT

This work is supported by the National Science Foundation
under grant CNS 19-32418.

REFERENCES

[1] A. Nußbaum, J. Schütte, L. Hao, H. Schulzrinne, and F. Alt, “Tremble:
Transparent emission monitoring with blockchain endorsement,” in IEEE
iThings, 2021, pp. 59–64.

[2] L. Hao and H. Schulzrinne, “Goldie: Harmonization and orchestration
towards a global directory for IoT,” in IEEE INFOCOM, 2021.

[3] M. Veeramanikandan and S. Sankaranarayanan, “Publish/subscribe
based multi-tier edge computational model in Internet of Things for
latency reduction,” Elsevier JPDC, vol. 127, pp. 18–27, 2019.

[4] 2019. [Online]. Available: https://docs.oasis-open.org/mqtt/mqtt/v5.0/
mqtt-v5.0.html

[5] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application
Protocol (CoAP),” IETF, RFC 7252, Jun. 2014. [Online]. Available:
http://tools.ietf.org/rfc/rfc7252.txt

[6] R. Banno, J. Sun, M. Fujita, S. Takeuchi, and K. Shudo, “Dissemination
of edge-heavy data on heterogeneous MQTT brokers,” in IEEE Cloud-
Net, 2017.

[7] A. E. Redondi, A. Arcia-Moret, and P. Manzoni, “Towards a scaled
IoT pub/sub architecture for 5G networks: the case of multiaccess edge
computing,” in IEEE WF-IoT, 2019, pp. 436–441.

[8] https://5gsafeplus.fmi.fi/, 2020.
[9] J. Hasenburg, F. Stanek, F. Tschorsch, and D. Bermbach, “Managing

latency and excess data dissemination in fog-based publish/subscribe
systems,” in IEEE ICFC, 2020, pp. 9–16.

[10] T. Limbasiya, D. Das, and S. K. Das, “MComIoV: Secure and energy-
efficient message communication protocols for Internet of vehicles,”
IEEE/ACM TON, vol. 29, no. 3, pp. 1349–1361, 2021.

[11] E. Longo, A. E. Redondi, M. Cesana, A. Arcia-Moret, and P. Manzoni,
“MQTT-ST: A spanning tree protocol for distributed MQTT brokers,”
in IEEE ICC, 2020.

[12] R. Banno and K. Shudo, “Adaptive topology for scalability and imme-
diacy in distributed publish/subscribe messaging,” in IEEE COMPSAC,
2020, pp. 575–583.

[13] A. Detti, L. Funari, and N. Blefari-Melazzi, “Sub-linear scalability of
MQTT clusters in topic-based publish-subscribe applications,” IEEE
TNSM, vol. 17, no. 3, pp. 1954–1968, 2020.

[14] M. Chen, W. Liang, and S. K. Das, “Data collection utility maximization
in wireless sensor networks via efficient determination of UAV hovering
locations,” in IEEE PerCom, 2021.

[15] R. Kawaguchi and M. Bandai, “Edge based MQTT broker architecture
for geographical IoT applications,” in IEEE ICOIN, 2020, pp. 232–235.

[16] L. Hao, V. Naik, and H. Schulzrinne, “Dbac: Directory-based access
control for geographically distributed iot systems,” in IEEE INFOCOM,
2022, pp. 360–369.

[17] https://mosquitto.org/.
[18] https://www.hivemq.com/.
[19] P. Ramanan, “Efficient algorithms for minimizing tree pattern queries,”

in ACM SIGMOD, 2002, pp. 299–309.
[20] https://www.wireshark.org/.
[21] https://simpy.readthedocs.io/en/latest/, 2020.
[22] F. Cao and J. P. Singh, “Efficient event routing in content-based publish-

subscribe service networks,” in IEEE INFOCOM, 2004, pp. 929–940.
[23] A. Majumder, N. Shrivastava, R. Rastogi, and A. Srinivasan, “Scalable

content-based routing in pub/sub systems,” in IEEE INFOCOM, 2009,
pp. 567–575.

[24] J.-H. Park, H.-S. Kim, and W.-T. Kim, “DM-MQTT: An efficient MQTT
based on SDN multicast for massive IoT communications,” Sensors,
vol. 18, no. 9, p. 3071, 2018.

[25] https://www.oasis-open.org/committees/download.php/66091/
MQTT-SN spec v1.2.pdf, 2013.

[26] https://mqtt-udp.readthedocs.io/, 2019.

24

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 10,2023 at 02:45:45 UTC from IEEE Xplore. Restrictions apply.

