
DBAC: Directory-Based Access Control for
Geographically Distributed IoT Systems

Luoyao Hao, Vibhas Naik, Henning Schulzrinne

Department of Computer Science, Columbia University, New York, NY, USA
Email: {lyhao, hgs}@cs.columbia.edu, vn2302@columbia.edu

Abstract—We propose and implement Directory-Based Access
Control (DBAC), a flexible and systematic access control ap-
proach for geographically distributed multi-administration IoT
systems. DBAC designs and relies on a particular module, IoT
directory, to store device metadata, manage federated identities,
and assist with cross-domain authorization. The directory service
decouples IoT access into two phases: discover device information
from directories and operate devices through discovered inter-
faces. DBAC extends attribute-based authorization and retrieves
diverse attributes of users, devices, and environments from
multi-faceted sources via standard methods, while user privacy
is protected. To support resource-constrained devices, DBAC
assigns a capability token to each authorized user, and devices
only validate tokens to process a request.

I. INTRODUCTION

With the goal of scaling IoT systems beyond a single home
or enterprise, large-scale infrastructures incorporating hetero-
geneous IoT devices are proposed to bridge IoT platforms and
facilitate cross-domain services [1]–[3]. With such systems,
applications are able to run on top of a variety of devices
from different manufacturers and platforms.

Indeed, heterogeneous scenarios in smart cities require ever-
increasing interactions across multiple administrations [4], [5].
Owing to edge computing, operating systems and comput-
ing resources are geographically distributed near end users,
through which applications can communicate, retrieve and
aggregate data from multiple distributed sources [6]–[8]. As
an example, a Building Automation System (BAS) should be
operated both locally and remotely by various users (residents,
superintendents, maintenance staff, visitors, etc.) and interact
with multiple external systems. Home assistant devices can be
connected to the BAS by the residents, sensor data are visible
to the superintendents through local monitoring system, and
each type of sensors should be monitored by the maintenance
personnel of corresponding service providers through their
platforms.

Despite the tremendous convenience and efficiency for data
access, such systems still rely on centralized identity-based ac-
cess control, which lacks efficiency and neglects the semantic-
rich nature of IoT devices. For access control in large-scale
IoT systems, identities may not matter all that much, as
low-level identities are usually not interpreted in interactive
rules. IoT access policy will mainly rely on subject roles and
multi-faceted descriptors, e.g., custodians in charge can access
the video surveillance in the warehouse during their shifts.

(a) Traditional architecture. (b) DBAC architecture.

Fig. 1. DBAC attaches and federates distributed directories for access control,
unlike traditional solutions that divide systems and heavily rely on the cloud.

Besides, the centralized access control likely becomes the
bottleneck, as cloud-based authorization sacrifices the system
responsiveness and user experience [9].

Commercial access control solutions for IoT are mostly at
the per-device granularity, and users are granted all-or-nothing
access through identity-based authorization [10]. As devices
often provide more than one function, the coarse-grained
strategies are ill-suited in many multi-user scenarios. Cloud-
supported solutions (e.g., AWS IoT [11], Apple HomeKit [12],
Samsung SmartThings [13]) allow role-based or tag-based
policies. Attribute-Based Access Control (ABAC) [14]–[17]
and Capability-Based Access Control (CapBAC) [9], [18],
[19] are favored by the research community for their higher
flexibility and finer granularity. However, most mechanisms
either assume an omnipotent centralized cloud, or conversely,
make the system completely decentralized and hard to track
permissions. Major challenges such as where and how to
retrieve diverse attributes and how to accommodate resource-
constrained devices, are not properly addressed in distributed
scenarios, given that existing solutions focus on a single
administration. Thus, generalizing existing mechanisms to
distributed IoT systems is still an open problem.

Rather than treating access control as a standalone function,
we explore a fundamental question: what can IoT systems pro-
vide for access control? Our answer is therefore a systematic
approach called DBAC (for Directory-Based Access Control,
or an interesting recursive acronym “DBAC Beyond ABAC
or CapBAC”). In DBAC, we attach a well-designed directory
module to each autonomous system and federate directories
to support attribute-based authorization, as shown in Fig. 1.
Access control mechanisms are no longer the servants for the
systems. Instead, they build on and benefit each other.

Directory services are widely adopted by many large-
scale systems to identify and look up digital resources effi-

978-1-6654-5822-1/22/$31.00 ©2022 IEEE 360

IE
EE

 IN
FO

C
O

M
 2

02
2

- I
EE

E
C

on
fe

re
nc

e
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 |
97

8-
1-

66
54

-5
82

2-
1/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

IN
FO

C
O

M
48

88
0.

20
22

.9
79

68
04

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 10,2023 at 02:50:13 UTC from IEEE Xplore. Restrictions apply.

ciently [20], [21]. Naturally, directories are brought to IoT
systems to facilitate device management, service discovery,
and data sharing [3], [22]–[24]. Unlike traditional directories
that are entirely accessible or protected behind a single en-
terprise, IoT directories require more complicated visibility
restrictions [3], [24]. DBAC also fills up this gap.

DBAC follows four fundamental design principles: (1) users
do not have to trust or provide credentials to all of the
systems; (2) user privacy should be well-protected, and pri-
vate information should not be disclosed without permission;
(3) the mechanism should be fine-grained and flexible, yet
privileges should remain traceable; (4) subjects and objects
can be centrally managed, and attribute provision should be
in a distributed way.

To achieve these goals, DBAC applies a hybrid approach in-
tegrating both ABAC and CapBAC. Inspired by the rules of the
physical world, access policies can be specified by a variety of
attributes at the per-capability granularity. Attributes are cate-
gorized and retrieved from multiple sources including subjects,
objects, third parties, contexts, and history records. Federated
identity management and retrieval of subject attributes are
supported by OpenID Connect [25], and third-party attribute
providers are incorporated through OAuth2 [26]. Metadata
(e.g., location, properties, functions) of devices are managed
and discovered through distributed directories. Therefore, the
overall access control is decoupled to two phases: access to
device information stored in directories and further access
to interfaces of devices, and both are subject to attribute-
based policies. The authorization process burdening resource-
constraint devices can be delegated to DBAC servers, and then
a capability token will be assigned to authorized users for
further interacting with devices. We prototype DBAC, deploy
it on AWS EC2 servers, and demonstrate the feasibility by
evaluating it with common attribute-based policies.

We make the following contributions:

• We identify the access control needs for large-scale
distributed IoT systems and propose a solution from a
systematic perspective.

• We design and implement DBAC to address two inter-
related problems: access control for IoT directories and
directory-base access control for IoT devices.

• We integrate flexible solutions, ABAC and CapBAC, with
guaranteed granularity and manageability. Distributed at-
tribute retrieval and federated identity management are
addressed using standardized approaches.

The rest of this paper is organized as follows. Section II
introduces the background and identifies some open issues.
Section III overviews the design and structure of the system.
Section IV describes the topology and functionalities of the
federated directory systems. Section V presents the details
of the two-phase approach. Section VI evaluates and demon-
strates the efficiency of our prototype. Section VII discusses
potential concerns. Finally, Section VIII concludes the paper.

II. BACKGROUND

This section reviews access control mechanisms and direc-
tory services for IoT.

A. Access Control Mechanisms

Traditional computer systems maintain an Access Control
List (ACL) that associates user identities with privileges. With
more entities joining the system, the size of ACL explodes,
which takes up resources and makes the systems less efficient.
To cope with it, Role-Based Access Control (RBAC) is widely
adopted in today’s cloud systems. RBAC groups user identities
into a manageable number of roles and enforces policies per
role instead of per user. However, to meet the flexible access
control needs of IoT scenarios, a plethora of roles have to be
created, making RBAC face the same issue as ACL [27].

For large-scale IoT systems, however, the identity of indi-
vidual device may not matter, and the role of users may not
be sufficient. Access control can be based on other criteria,
such as location, proximity, date and time. To implement even
a simple access policy resembling the physical world, e.g., a
light switch can be turned on or off when a subject is in close
proximity, we need a more generic and flexible access control
solution. Two fine-grained access control methods, Attribute-
Based Access Control (ABAC) [14]–[17] and Capability-
Based Access Control (CapBAC) [9], [18], [19] have the
potentials to create flexible access rules for IoT.

ABAC takes multi-dimensional characteristics into consid-
eration. It collects attributes to determine an access request.
In principle, the attributes can be user information, any types
of records, location, device information, environment infor-
mation, logs, etc. The attributes can be provided by users and
internal or external systems. ABAC is considered a superset
of RBAC, as RBAC creates roles taking attributes of subjects.

data

img

usr

Access
Control List

(a) ACL

data

img

usr

Role
List

data

img

usr

(b) RBAC

Capability
List

data

img

usr

data

img

usr

(c) CapBAC

Fig. 2. Comparison of ACL, RBAC, and CapBAC. Traditional ACL resides
on the administration, which maps privileges to each user. RBAC groups users
to a limited number of roles and bundles policies to different roles. CapBAC
assigns capability tokens that demonstrate the ownership of privileges to users,
who then present correct tokens to access resources.

Fig. 2 summarizes how ACL, RBAC, and CapBAC work
in a multi-user example. In CapBAC, a capability is referred
as a communicable, unforgeable token assigned by an au-
thority [18], which points to an object along with a set of
associated access rights, e.g., a key is a capability to enter
a house. For digital services, a capability is a token that
contains resource identifiers and the access rights. Unlike
ACL, capabilities are possessed by users. The system only
validates the capability and decides to accept or deny a request.

361Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 10,2023 at 02:50:13 UTC from IEEE Xplore. Restrictions apply.

B. IoT Discovery and Directory
Unfortunately, unlike web pages, the so-called “Internet of

Things” is difficult to discover through the Internet. IoT de-
vices usually reside in closed application-specific ecosystems
provided by their manufacturers.

Network resources on the Internet are reachable through
content-based searching, and the metadata on an HTTP server
can be requested through a set of “/.well-known” URLs. This
mechanism does not work for IoT discovery for a host of
reasons, including but not limited to visibility scope, protocol
support, and resource constraints of devices [22]–[24], [28].
To enable efficient discovery for heterogeneous IoT devices, a
promising method is to host a resource directory on a reliable
server, capable of maintaining information and processing
requests for a very large number of devices.

Unlike conventional network resources that are mostly
reached by domain names or IP addresses, IoT devices are
better described by semantic-rich and multi-dimensional char-
acteristics [29]. IoT applications should not rely on hard-
coded names to gather data from sensors and actuators,
e.g., an application tracking assets in an enterprise targets
devices frequently joining or leaving, so devices should be
identified semantically by properties. For this purpose, global
metadata directories store device properties, such as device
type, capabilities, location, and enable resource discovery
by these elements. Meanwhile, such directories offer better
programmability and understandability for IoT systems, de-
coupling applications from network changes. As an example,
controlling programs may lose the connection to the device
(or worse, point to a wrong device) due to device replacement
or a restart of the DHCP server, if devices are specified by
addresses rather than properties.

Traditional network directories based on the X.500 standard
and LDAP [30], [31] are ill-suited for IoT due to the lack
of support for frequent updates, location-based features, and
fine-grained access control. For IoT, directories are designed
to facilitate discovery and data sharing, while the directories
themselves are reachable through the Internet or a third-
party service [3], [23], [32]. There are application-specific
directories [3] providing fast look-up for mobile services,
and protocol-specific directories [22], [23] assisting resource
discovery in resource-constraint or low-power environments
where devices might have sleep cycles or limited network
protocol support and multicast-based or HTTP-based service
discovery is infeasible. Metadata directories [24], [33], [34]
store properties, capabilities, and logs of IoT devices to
promote intelligent and automated services for smart cities.

C. Open Issues
Existing access control solutions for IoT pursue finer gran-

ularity as the major goal. However, extending them to dis-
tributed IoT systems faces significant challenges.

ABAC: In principle, an access policy can specify at-
tributes from subjects, objects, external environments, and
runtime status. Current studies assume attributes are either
centrally stored in the cloud or completely provided by the

users [14]–[16], [27] for a single autonomous system, and
therefore do not achieve the maximum comprehensiveness as
the concept promise. However, geo-distributed systems have
multi-faceted and multi-sourced attributes, which makes the
retrieval of attributes from various sources across administra-
tions a thorny issue.

CapBAC: CapBAC achieves the theoretically finest-
grained granularity by delegating capabilities [18], but its
drawbacks are also evident. The capabilities assigned to users
are hard to track down or take back. Existing designs [9],
[18] validate whether a capability has been revoked against
permanent revocation records, which incurs additional storage
overhead. Furthermore, it’s hard to reliably walk through a
long delegation chain to locate and remove capabilities of a
laid-off person or a malicious user.

IoT Directory: Flexible access control is not needed for
traditional directory services, and solutions are generally based
on ACL [35]. Restrictions on data access to a directory are
largely done by hiding the server, e.g., from queries beyond
the enterprise network [24], while the directory itself is widely
used for identity management [15], [36], [37]. Thus, even if
directories are proposed to store information of IoT devices,
their access control mechanisms falls short, which prevents the
safe functioning of IoT directories [3], [24].

We investigate how distributed directories can offer access
control for IoT. We address two interrelated problems: access
control for directories and directory-based access control for
IoT. To the best of our knowledge, it is the first work that
jointly studies access control and IoT directories.

III. OVERVIEW OF DBAC

A. System Architecture

We use the following terms and concepts:
Thing Profile (TP): A Thing Profile describes an IoT device

using metadata including properties, functionalities, rela-
tionship with other devices.

Distributed Autonomous System (DAS): A DAS is a geo-
graphically distributed autonomous system operated by an
organization, an enterprise, or any single administrative
entity. A DAS owns and manages a number of IoT
devices and their TPs.

Administrator: An administrator is able to manage one or
more devices (and the TPs) in a DAS. The administrators
can be designated by the DAS or the owners of devices.

Local directory: Each DAS operates at least one local direc-
tory, a minimum functional unit to store TPs and respond
to requests from users or applications.

Global directory: A global directory is a logical union of all
the local directories of the target geographical distributed
systems.

We assume each device is associated with a TP describing
its properties and functionalities. A device can be either a
single physical entity (i.e., a sensor or actuator) or a grouped
entity (e.g., an assembly line or a smart home). As the
boundary between metadata and data is not clear, and making

362Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 10,2023 at 02:50:13 UTC from IEEE Xplore. Restrictions apply.

this distinction is not of our interest, any descriptive data that
can be stored in a short profile is viewed as metadata in this
paper, including potential measurements. As an example, a
temperature sensor may update current reading value to the
TP, while time-series measurements are stored in a different
external database. Therefore, administrators maintain descrip-
tive data and lists of potentially accessible interfaces in the
TPs and specify access control rules.

Note that DASes may not be independent of each other. A
DAS may be divided to multiple DASes or overlaps with other
DASes, e.g., an enterprise can have multiple departments, and
local directories therefore may connect with each other as
the same administrative hierarchy. Local directories inside the
same DAS are organized as a directory information tree [20]
and can appear as a single endpoint to outside users.

B. Design Principles
We aim for an approach that can be generalized to a variety

of IoT scenarios. While we focus on geographically distributed
systems, our design principles listed below do incorporate
those goals in [9], [10].

1) Fine-Grained Access Support: We do not intend to
achieve finer granularity than existing ABAC and CapBAC
frameworks, but provide sufficient system-wide supports to
ensure that the access control remains fine-grained in practice.
The system should provide detailed descriptions specifying the
attributes and capabilities of each device for access control.

2) Least-Attribute Principle: The commonly referred
“least-privilege principle” requires each privileged entity of the
system to use the least set of privileges necessary to complete
the job [38]. With this principle, the affected elements are
minimal when accidents occur, and the interactions among
entities are also reduced. In many systems, this principle is
interpreted as granting least privileges to users. However, for
ABAC across domains, the system should retrieve the least set
of attributes needed when validating access requests. We call
this requirement as “least-attribute principle”.

3) Privacy Preserving: Private attributes should not be
abused or transferred between systems without constraints.
Many attributes are considered private or sensitive to users,
which are stored in the trusted servers. Users must explicitly
control when and what private attributes (e.g., location, medi-
cal records) are used for authorization, while public attributes
can be retrieved automatically.

4) Local Maintenance: Profiles of devices and credentials
of users should be managed by each local system, rather than
being disseminated or replicated everywhere. The maintenance
of subject and object information or access control policies is
still in the hands of administrators of each local system. It
does not introduce new burden or changes to each system and
guarantees that device information and identity management
are secure and scalable.

5) Resource-constrained Device Support: The system
should accommodate devices with limited capabilities or re-
sources. Flexible access control policies usually require sig-
nificant efforts to validate and process requests, and it seems

DBAC
Server

User

discover&request TP
attribute retrieve

External
Attribute
Providers

return TP

OIDC

log

External
Stores

request&assign
capability token

store data

phase two

access device API

ac
ce

ss

d
at

as
to

re

Fig. 3. Overview of the two-phase DBAC.

challenging to enforce such mechanisms to many resource-
constrained devices. Access control solutions should be gen-
eralized to such devices, rather than only for particular devices.

C. System Workflow
DBAC applies a two-phase approach, as shown in Fig. 3.

The DBAC server in the diagram includes the TP directory
and the authorization server of the DAS1. In the first phase,
the user2 discovers and requests TPs stored in the directory
through available query interfaces. The request is then pro-
cessed with attribute-based policies. According to the corre-
sponding policies, the DBAC server retrieves attributes from
multiple sources including the user, stored objects, federated
directories, external attribute providers, history logs.

Once a user is authorized, the requested TPs are returned
to the user. The second phase is to access device interfaces or
external data stores described in the TPs. This phase is optional
as devices may have exclusive platform-specific access rules.
Given the complexity of attribute retrieval and validation,
devices or external data stores could delegate the authorization
process to the DBAC server. The DBAC server assigns a
capability token to each authorized user, indicating that the
required attributes have been verified. The device only needs
to check the token validity to process the request. In other
words, DBAC servers are under the obligation to conduct the
complicated authorization for resource-constrained devices.

IV. IOT DIRECTORY IN DBAC

Directories are commonly used for storing metadata of
network objects. In DBAC, we attach a directory module
to each DAS, while each DAS is able to establish its own
directory and merge it into the whole structure for a global
perspective. As the implementation details and evaluations
of major directory functionalities, excluding access control
solutions, have been mostly present in our previous work [24],
we review the necessary components and functionalities of the
directory system, and introduce some updates.

A. Global and Local Directory
IoT directories decouple access to TPs from access to

real devices and enable resource discovery by properties and
functionalities rather than fixed identities. The global directory

1For convenience, we use “DBAC server” and “directory” interchangeably.
2The user is likely accessing the data mediated by an individualized or

shared application.

363Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 10,2023 at 02:50:13 UTC from IEEE Xplore. Restrictions apply.

DAS Local Directory

sync

TP
store

re
g
is

tr
y

, r
es

o
lv

er

discovery
service

notification
service

ID
store

auth

register,
update

Fig. 4. Global directory architecture. The global system consists of multiple
DASes, and each DAS can have multiple local directories.

is distributed and federated, and provides standard interfaces
for both administrators and clients.

As each DAS may or may not trust others in data or service
provision, we do not restrict the relationships among DASes.
Each DAS volunteers to participate in the overall system by
constructing a local directory with simple configurations to
specify which DASes it trusts. Furthermore, since a DAS
might govern multiple affiliated DASes according to the ad-
ministrative relationships, a local directory can be therefore
associated with subordinate local directories. In this way, each
DAS might own a set of local directories, and DASes are
loosely federated as a global directory consisting of all the
local directories.

This generic topology is representative and flexible, al-
lowing each DAS to structure its own directories, design
access rules, manage devices, and volunteer to participate in
DBAC with simple configurations. As each local directory
usually serves for a specific geographic area according to
the administrative hierarchy, this structure also facilitates data
aggregation based on service area of directories.

Fig. 4 depicts the topological architecture. The metadata of
devices are collected by directories or updated by devices,
and are then indexed and stored as TPs in the database.
Information in a directory might need to be synchronized
with other directories, in terms of the trust and administrative
relationships. A local directory can be physically deployed
on an edge computing node or a cloud server, depending on
the scale of the system. A set of local directories within the
same DAS may or may not be deployed together on the same
physical server. They then expose data collaboratively or inde-
pendently as different directories to outside applications, users,
and directories. In practice, local directories are preferably
hosted by different physical servers to avoid a single point
of failure and improve the availability.

B. Directory Implementation and Functionalities

We implement RESTful APIs of directory systems using the
Python Flask framework, and each local directory is able to run
independently as a web application. We use MongoDB to store
TPs for each directory, and we index the device type by B-Tree
and geographical coordinates by 2dsphere. The TPs are spec-
ified and validated according to W3C Thing Description [39],
an on-going standardization work that manages metadata of
devices as JSON objects.

outside

inside

outside

insideservice
region

Fig. 5. Query multiple directories.

User

MQTT

Subscriber

Directory

MQTT

Publisher

Subscription

Database
Thing

Database

MQTT

Broker

Database

Observer

sub
(query)

n
o

tify

pub

su
b

w
atchT

P

u
se

r
id

,
to

p
ic

Fig. 6. Subscription model.

In addition to basic Create, Read, Update, and Delete
(CRUD) operations, we implement two types of IoT-oriented
queries to make the system suitable for IoT management. Ag-
gregation query refers to requesting data from multiple objects
or directories, e.g., the mean value of thermometers placed in a
vegetable greenhouse. Location-based query requests data by a
geographic region represented as a polygon with longitude and
latitude coordinates, or the administrative hierarchy of DASes,
or both. Furthermore, we allow users to customize JSON
scripts to request data through any combination of device
properties and supported queries as a single query. To avoid
troubling users to create credentials for each single directory,
federated identity management is configured through OpenID
Connect [25].

Depending on its position in the network, a directory can
have superior or subordinate directories within the same DAS,
trusted directories from different DASes, and unacquainted
directories potentially reachable through the Internet. To effi-
ciently reach out to connected directories, while not traversing
the entire structure of directories, each local directory main-
tains distributed knowledge of the network and aggregated
information from connected directories. Specifically, each lo-
cal directory keeps the up-to-date information of certain types
of devices owned by the neighbor directories, further reach-
able directories of neighbor directories for efficient search,
addresses of neighbor directories and the logical root. This
information is automatically propagated to affected directories
when a TP is registered or deleted. Thus, a local directory
only has a general vision of which connected directories to
consult, without knowing any details about the stored objects.
This design preserves privacy, as the direct connection between
two directories implies some sense of trust, but the trust may
not be transferable to further connected directories.

To enable queries across a large geographic area covering
multiple DASes, we assume each directory has a service
region, a bounding box covering the geographic coordinates
of the registered devices, as shown in Fig. 5. When processing
a query searching for a geographic polygon, it first finds the
directories with covered or intersected bounding boxes and
then extracts TPs from those directories. Note that whether a
TP in an intersected bounding box is requested or not needs
to be further determined by a geographic query, as the device
might be inside or outside the searching area.

Another IoT-oriented function that makes our directory
stand out from existing ones is the subscription feature. We in-
tegrate MQTT [40], a light-weight publish/subscribe protocol,

364Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 10,2023 at 02:50:13 UTC from IEEE Xplore. Restrictions apply.

into directory query functions to enable interest-based sub-
scription. The MQTT broker is implemented both locally using
Eclipse Mosquitto [41] and remotely using HiveMQ [42]. The
reasons for integrating MQTT come from its prevalence of
IoT and the need for a notification system, while other IoT
protocols might also be supported in the future. The workflow
is depicted in Fig. 6. Users are able to subscribe the changes of
TPs along with their queries sent to the IoT directory. Knowing
when these changes occur enables users to keep track of
pertinent devices or aggregated data without sending duplicate
requests. When a TP is inserted or deleted, a database observer
checks the properties in the TP against installed subscriptions,
and notifications are then sent accordingly to the users who
created the matching subscriptions.

V. TWO-PHASE ACCESS CONTROL

We design and implement our prototype including the di-
rectory system and the two-phase DBAC. In phase one, clients
discover and access TPs in the directories, and the authoriza-
tion is based on multi-faceted and multi-sourced attributes. In
phase two, clients access to further resources, which extends
the attribute-based policies and allows capability-based access.

A. Reasons for Decoupling

DBAC explicitly decouples the access to metadata from the
access to device interfaces or data stores, with the help of
directories. The reasons are twofold: first, directories provide
metadata and aggregated information, and users may not need
or have permissions to further operate devices or access
detailed data; second, unifying the specific access control
solutions for heterogeneous devices is a long-term process that
is impractical at the current stage.

It is natural for cross-domain applications or users to
discover available devices before accessing to them, especially
when devices are frequently offline due to sleep cycles or
mobility. The global directory is an intermediary between
devices and clients, and it offers an efficient and reliable
discovery approach by exposing diverse query interfaces.
Besides, obtaining information in TPs is sufficient for many
applications, rather than operating devices that might be tightly
controlled by administrators or controlling programs.

Unlike an enterprise-scale or a smaller-size network that is
relatively easier to apply uniform access control mechanism
for all devices, incorporating the heterogeneity of IoT devices
across multiple administrations has a long way to go, or nearly
unrealistic for access control given that many devices may not
support complicated authorization mechanism. A directory can
be a plug-in service to realize access control mechanisms for
stored objects, which does not conflict with existing access
rules to real devices. For example, a smart lock taking correct
fingerprints to unlock can also display its status as metadata
visible to specific staff through the directory. Therefore, it
provides an additional layer to enhance the interactivity of the
IoT ecosystem and the programmability of IoT applications.

TP Directory

OIDC

Handler

Login

Interfaces

Attribute Provider

Thing

Database

1. log in

authenticate with OIDC

8. attributes (for accessing TP)

4. id token (basic user info)
3. auth request {scope: profile, openid}

grant subject
attributes

Attribute

Database

OIDC
Provider

Identity

Server
2. consent

Fig. 7. Subject attribute retrieval with OIDC. The attribute provider and the
TP directory belong to different DASes.

B. Phase One: Access to TPs

In large-scale IoT scenarios, the completion of a function
usually requires the cooperation of a set of devices, and
designing access policies for each device can be cumbersome,
needless to say identity-based policies cannot represent com-
plicated access rules. In this case, a single policy should be
able to control the assembly of devices, rather than being
replicated for each individual identity.

Although ABAC conceptually incorporates all kinds of
attributes into the access control policy, a major problem
that has not been well-addressed is how to retrieve attributes
from these sources, which did not gain enough attention by
current systems where the attributes are centrally managed
and provided. In distributed settings, however, we cannot
assume users to provide a complete credential of attributes
or a single system to store all needed attributes. To cope with
this problem, we classify attributes into four types according
to the sources of attributes: subject attribute, object attribute,
environment attribute, and runtime status attribute. A DBAC
server actively retrieves attributes from these sources. Among
them object attributes are mostly self-included in the requested
TPs maintained by the same DAS and therefore certainly re-
trievable. Subject attributes and environment attributes can be
stored by other DASes or third-party servers, so we integrate
two standard protocols, namely OpenID Connect (OIDC) [25]
and OAuth2 [26] to retrieve such attributes.

When a user requests the TPs in a directory, the subject
attributes (i.e., user’s information) are stored in the identity
server that belongs to either the same DAS or a different
but federated DAS. In the former case, the user’s information
can be easily retrieved. In the latter case, subject attributes
need to be retrieved across domains, since the user logged
into a different DAS with OIDC. As using OIDC means that
the user has less trust on the directory or does not want to
create duplicate credentials, for either factor, the system should
try to retrieve attributes in a federated manner. To keep the
system pithy, we extend OIDC to support federated retrieval of
subject attributes, instead of introducing a brand new service
that makes users perplexed. The procedure is illustrated in
Fig. 7. When a user initially logins to the TP directory with
the credential from a different DAS through OIDC, only the
least attributes necessary for login should be provided, rather
than all the attributes the OIDC server maintains. Then, every
time the user attempts to access a TP that requires additional
subject attributes for authorization, the directory asks the user’s

365Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 10,2023 at 02:50:13 UTC from IEEE Xplore. Restrictions apply.

User Directory

policy checking

“(a and b) or c”

authorize?
OIDC

OAuth

authorize?

Fig. 8. Iterative attribute retrieval.

location

location:ĀgeoInsideā

TP

access

frequency:Ātwice per minuteā
+1

+1

+1ĂĂ
access

o
ne m

in
ute

+1

directory

directory

Fig. 9. Frequency and location.

consent once again to retrieve them from the federated identity
server. This subtle change compared to pure OIDC is that we
explicitly require the consent when needed for accessing to
TPs, which prevents the unconscious leak of subject attributes.
Meanwhile, this additional consent process can be combined
with environment attribute retrieval, as described below.

Environment attributes refer to the attributes describing
natural environment or sensed by surrounding services. They
are either locally managed or provided by third-party services,
and some of them can be considered private. For example,
today’s rainfall might be publicly retrievable, while the body
temperature detected by a thermal imaging system might be
sensitive and private. We implement the OAuth2 interfaces to
retrieve those sensitive attributes under the user’s permission.
In other words, private attributes should be well-protected from
being exposed without permission from the owner.

An access policy can be complicated, requiring both subject
attributes and environment attributes from different servers.
In this case, it needs the user’s consents through both OIDC
and OAuth2. To improve user experience, we combine the
consent process, and the underlying process is parallel and
unknown to users. Furthermore, given that there might be
multiple combinations of needed attributes that are enough
to get approved for an authorization request, we make the
consent process iterative, allowing a user to grant a subset of
needed attributes at a time, which provides an additional layer
of privacy protection. An example is shown in Fig. 8. Note
that this procedure is based on the assumption that a directory
asks the user for the permission of retrieving attributes without
disclosing any detail of access policies.

Most attributes are stateless, but some runtime status can be
stateful, which requires the directory to maintain some history
records to process an upcoming authorization request. As a
most common need, we implement the extension to support
access frequency as a runtime attribute, in the form of a
threshold and a time duration (e.g., 5 times per minute). The
relevant information including thing id, user id, and access
time is captured in the database at the time of every resource
access request, and outdated records are removed meanwhile.
As shown in Fig. 9, the authorization decision is based on
whether the current attempt does not exceed the access limit
within the time duration specified in the policy.

DBAC supports location-based attributes in three ways: the
directory name represents the service region, location descrip-
tors (e.g., porch, garage) as regular attributes, and geographic

TP
DB

request token
attribute

cache
user

device

d
ev

ic
e

in
fo

policy
decision

retrieve additional attributes

access token
refresh token

tr
u
st

p
u

b
lic

key

request

response

update accesstoken

verify
TP

directory

Fig. 10. Phase two of DBAC. Devices delegate authorization to directories.

coordinates referenced by longitude and latitude. Handling the
first two types is not beyond trivial attribute matching. For the
location represented by geographic coordinates, we implement
a “geoInside” rule to check whether a particular location is
contained by a geographic polygon. It resembles the physical
world where the access control rule is based on proximity (e.g.,
anybody inside a room can toggle the light switch). While the
current system obtains the user’s GPS location through the
browser, the interface of providing coordinates remains open
for other trustworthy approaches [43].

C. Phase Two: Access to Device Interfaces or Databases

In this phase, we manage the access to the linked objects
provided in the TPs, including device APIs and external
databases storing produced data. As they may have distinct
authorization mechanisms and TPs have been accessed in the
first phase, participating in this phase is optional for both the
users and devices.

Upon receiving the TPs, a user may want to access the
resources (APIs, external databases) specified in the TPs. The
user can then be redirected to the related endpoints and go
through their authorization processes. However, as the direc-
tory has already validated some needed attributes, there is no
reason to go through this process all over again, as long as the
directory is trusted by those resources. Besides, many devices
are resource-constraint, cannot afford to enforce complicated
policies and retrieve or maintain all-faceted attributes.

DBAC shifts such burden from resources to directories, with
the help of CapBAC. The workflow is shown in Fig. 10. Once
a user requests further access to the resource specified in the
TP, the directory retrieves and examines needed attributes on
behalf of the resource. In other words, the resource delegates
the attribute-based authorization process to the directory. Some
of these attributes have already been obtained and cached for
accessing to the TP in the first phase, and other attributes
are freshly retrieved for the current access. If the attributes
match those required conditions in the access policy, the
directory issues a capability token (i.e., a signed ticket) to
the user. The token encapsulates necessary information of
the authorization, including identities of subjects and objects,
approved privileges, an optional attribute list, the token validity
period. Afterwards, the user can present this token along with
an access request to the resource. With the verified signature
in the token, the resource trusts that the directory has checked
the attribute-based policy and the access request can be safely
approved.

366Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 10,2023 at 02:50:13 UTC from IEEE Xplore. Restrictions apply.

ti
m

e
(s

)
measurement AVG

10.05

0.075

0.1

0.125

0.15

0.175

100sequence number

(a) all can access

measurement AVG

1 100sequence number
0.05

0.075

0.1

0.125

0.15

ti
m

e
(s

)

(b) date time comparison

measurement AVG

ti
m

e
(s

)

0.05

0.075

0.1

0.125

0.15

0.175

1 100sequence number

(c) email matching

0.05

0.075

0.1

0.125

0.15

measurement AVG

ti
m

e
(s

)

1 100sequence number

(d) device type matching

measurement AVG

1 100sequence number

ti
m

e
(s

)

0.05

0.075

0.1

0.125

0.15

0.175

(e) inside polygon

Fig. 11. Authorization time for five common access control rules.

To revoke a capability token, many systems require devices
to maintain a revocation list [9], [18], and the token must be
verified against the revocation list for every access. We suggest
to use two kinds of tokens: a short-period access token and a
long-period refresh token. The refresh token can be a proof of
satisfying the policies at an earlier time and is used to request
a new access token when a previous one is expired. By tuning
the validity periods of the tokens, the DBAC server controls
the life cycles of tokens and updates attributes flexibly when
needed, and devices do not maintain the revocation list.

Therefore, as long as an entity is able to verify the signature
in the token, it can enjoy the great profit brought by the
DBAC system. This significantly lowers the bar of enforcing
complicated access control rules.

D. Access Control Dilemma
Discover first or access first: The last thing we want

to see is that users provide a large number of sensitive
attributes but do not get the expected results. However, it
is also disastrous to disclose results before validating needed
attributes. This leads to a dilemma, namely providing attributes
before discovery or discovery before providing attributes.
DBAC returns tailored results to users before asking for private
attributes. The tailored response conveys a rough idea to the
users, informing them what and about how many TPs they will
see once authorized. Afterwards, if it is deemed worthwhile,
the users can consent to providing private attributes to obtain
detailed information. This design improves both efficiency of
discovery and accuracy of service.

Policy conflicts in DBAC: Potential policy conflicts may
pose another problem. It may happen more often compared
with traditional identity-based access control frameworks.
Even in a well-managed system, the administrators might
unintentionally inject different policies that yield contradictory
decisions on an access request, or intentionally overwrite a
previous policy. To solve this problem, we associate each
policy with a priority level. When a conflict occurs, the
policy with higher priority is adopted. Ties should be avoided,
otherwise reported instead of being randomly broken.

VI. PERFORMANCE EVALUATION

This section evaluates the performance of our prototype
system, with a focus on access control mechanisms.

A. Evaluation Setup
To setup a testbed and evaluate DBAC, we host each

directory system as a Flask web application in an Amazon
AWS EC2 t2.micro instance. The access control language

is implemented following the XACML standard [27]. Mon-
goDB [44] is set up to store TPs and access policies in
a separate amazon t2.micro instance. Each web application
instance is configured to point to an individual MongoDB
database in the database server. Python unit test framework
is used as the entry point to run our measurements. Tab. I
summarizes the configurations of utilized hardwares.

TABLE I
CONFIGURATIONS OF THE SERVER AND THE CLIENT

Category Specification
CPU (server) Intel(R) Xeon(R) E5-2676 v3 @ 2.40GHz, 1 core
CPU (client) Intel(R) Core(TM) i7-7700HQ, 4 cores, 2.80GHz

System Ubuntu 20.04.2 LTS (server), Windows 10 (client)
Storage 1GiB RAM (server), 16GB RAM (client)

Database (server) MongoDB 4.4.6 [44]

B. Evaluation Results
We begin our evaluation by comparing the authorization

time affected by processing different attribute-based policies.
Five most common policies with different data types are
selected. The first policy is a simple one that allows access to
everything. The other policies match attributes based on the
numeric, string, and geographic polygon. Based on the results
shown in Fig. 11 and Fig. 12, we can infer that all the data
types take a similar time to perform authorization. From our
experiments, we observe that all the internal policy decisions
against different data types take negligible part of the overall
runtime. The policy retrieval from the database dominates
the processing time, and the propagation delay (the one-way
latency is around 37 ms in our measurement) dominates the
network latency. Hence, all the requests take roughly the same
time. The CPU usage also follows a similar trend as that
of runtime. The geographic attribute-based authorization uses
slightly more CPU to perform the more complex operation
of determining whether the location is inside the geographic
polygon.

&
38
�X
WLO
L]
DW
LR
Q�
��
� P

HDQ�WLP
H��P

V�

PHDQ�WLPH

���� �D�

�

���

���

��� ����

����

����

���

��

&38�XWLOL]DWLRQ

�E� �G���������H��F�
type of access rules

Fig. 12. Mean time and CPU utiliza-
tion for the five common policies.

&
38
�X
WLO
L]
DW
LR
Q�
��
�

P
HDQ�WLP

H��V�

�� �� �� �� ����

��

��

��

��

�

���

���

���

���PHDQ�WLPH&38�XWLOL]DWLRQ

number of policies

Fig. 13. Mean time and CPU usage
for varying number of policies.

We proceed to test how the system scales by enforcing
the system to validate multiple policies for a single request.
We create a large number of mock policies varying from 20
to 100. Each policy contains a unique attribute-based rule.

367Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 10,2023 at 02:50:13 UTC from IEEE Xplore. Restrictions apply.

The request is set up such that the authorization criteria fail
in all the policies. This is to ensure that all the policies
are evaluated and mitigate early return on the successful
authorization. From Fig. 13, it is evident that the authorization
time increases linearly as the validated number of policies
increase. These results match our expectations because the
policies are evaluated one after another. The CPU usage also
increases but tapers off after a certain point.

Then, we evaluate our system by performing tests on
basic operations of the creation and deletion of a policy.
Fig. 14 and Fig. 15 measure the runtime of registering and
deleting 100 mock policies each for the five common attribute-
based categories. As expected, both operations have a very
acceptable mean runtime close to 0.1 second (i.e., 30 ms if
the propagation delay is deducted).

WLP
H�
�V
�

����

���� PHDVXUHPHQW $9*

1 ���SROLF\�LGHQWLW\

Fig. 14. Policy registration time.

1 ���SROLF\�LGHQWLW\

WLP
H�
�V
�

����

���� $9*PHDVXUHPHQW

Fig. 15. Policy deletion time.

The second phase of DBAC is mainly loaded by the creation
of capability tokens. Token creation is a cryptographic process
including encoding and hashing. This is yet another integral
operation in our application, as it is the first step to get access
to external resources and objects. We apply JSON Web Token
(JWT) [45] as the implementation of capability tokens. As
shown in Fig. 16, the capability creation takes more than 200
ms on average which is higher than the other operations we
have seen so far. We omit the client-side processing time, as
all it needs is to validate the signed capability token, without
any actions on attributes or policies.

measurement AVG

0

0.5

1 100sequence number

ti
m

e
(s

)

Fig. 16. Capability creation time.

0

0.35

1 VHTXHQFH�QXPEHU 100

with cache without cache

ti
m

e
(s

)

Fig. 17. Cache evaluation.

Among all of the directory functionalities, aggregation
query over a large geographical region might be the most fas-
cinating but time-consuming function. We perform a test that
leverages the distributed caches with our system. Totally seven
directories are hosted and an aggregation query is conducted to
get all the TPs within a geographical region. A request is sent
to all the directories whose bounding boxes are configured to
intersect with the input polygon. This operation is optimized
by implementing a simple in-process cache mechanism, for
the evaluation purpose. The bounding box for each directory
is retrieved and stored in the cache of the requested directory,
so it does not need to traverse all over other directories to get
their service region. Based on the intersection of the polygon

with the bounding box, the directories are filtered locally,
and the query is sent to all the filtered directories to obtain
the TPs. As shown in Fig. 17, by incorporating the simple
cache mechanism, the runtime of geographic aggregate query
decreases 26% compared to that without caches.

VII. DISCUSSION

Scalability: We would like to point out that DBAC
unlikely raises new scalability issues. Scalability concerns are
mostly for the distributed directories, rather than the access
control mechanisms. The distributed directories are associated
with the IoT systems, logically centralized with multiple global
endpoints. Directories only maintain distributed knowledge
and either directly respond to the queries or simply forward
messages. Intensive aggregation and authorization work is
all done locally. Thus, no new scalability challenges are
introduced beyond those in existing systems [3], [9], [23], [46].

Encryption: There are multiple ways to encrypt messages
in ABAC and CapBAC systems [47]–[49] with guaranteed
confidentiality, robustness, and scalability. DBAC is a system-
level approach to addresses challenges of typical access control
mechanisms for IoT, which is largely orthogonal to particular
encryption techniques. Enforcing specific encryption schemes
is an interesting topic but beyond the scope of this paper.

Location Representation: In DBAC, geographic locations
are primarily represented by geographic points or polygons
with vertices of longitude and latitude. Other common location
descriptors can be a civic address (e.g., “90 Cohoes Ave, Green
Island, NY”) or a location property (e.g., “hallway” or “back-
yard”). Translating these descriptors to geographic vertices can
be done through standard protocols or available APIs [32],
[50], and we indeed configure an extension of the DBAC
system to support geographic objects of OpenStreetMap [50].

VIII. CONCLUSION

In this paper, we present DBAC, a systematic access control
mechanism for IoT directories and devices. DBAC is a two-
phase mechanism that decouples access to metadata from
access to device APIs or data stores. It combines fine-grained
solutions, ABAC and CapBAC, to describe access policies
resembling the attribute-based rules of the physical world, as
well as supports resource-constraint devices. Standard solu-
tions, including W3C TD, OIDC, and OAuth2, are integrated
or modified to achieve federation, retrieve attributes from a
variety of sources, and preserve privacy. The authors have
provided public access to their code at https://github.com/
Halleloya/DBAC.

ACKNOWLEDGEMENT

This work is supported by the National Science Foundation
under grant CNS 19-32418. The authors would like to thank
Andrea Huang, Ryan Liang, and Hongfei Chen for their help
in developing the prototype.

368Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 10,2023 at 02:50:13 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. Pintus, D. Carboni, and A. Piras, “Paraimpu: a platform for a social
Web of Things,” in ACM International Conference on World Wide Web
(WWW), 2012, pp. 401–404.

[2] Z. Wen, T. Lin, R. Yang, S. Ji, R. Ranjan, A. Romanovsky, C. Lin, and
J. Xu, “GA-Par: Dependable microservice orchestration framework for
geo-distributed clouds,” IEEE Transactions on Parallel and Distributed
Systems (TPDS), vol. 31, no. 1, pp. 129–143, 2019.

[3] V. P. Kafle, Y. Fukushima, P. Martinez-Julia, and H. Harai, “Directory
service for mobile IoT applications,” in IEEE Conference on Computer
Communications Workshops, 2017, pp. 24–29.

[4] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the fog: To-
wards a comprehensive definition of fog computing,” ACM SIGCOMM
Computer Communication Review (SIGCOMM CCR), vol. 44, no. 5, pp.
27–32, 2014.

[5] P. De Vaere and A. Perrig, “Liam: An architectural framework for
decentralized IoT networks,” in IEEE International Conference on
Mobile Ad Hoc and Sensor Systems (MASS), 2019, pp. 416–427.

[6] C. Dixon, R. Mahajan, S. Agarwal, A. Brush, B. Lee, S. Saroiu, and
P. Bahl, “An operating system for the home,” in USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2012, pp.
337–352.

[7] J. Cao, L. Xu, R. Abdallah, and W. Shi, “EdgeOS H: a home operating
system for internet of everything,” in IEEE International Conference on
Distributed Computing Systems (ICDCS), 2017, pp. 1756–1764.

[8] V. Issarny, B. Billet, G. Bouloukakis, D. Florescu, and C. Toma,
“LATTICE: A framework for optimizing IoT system configurations at
the edge,” in IEEE International Conference on Distributed Computing
Systems (ICDCS), 2019, pp. 1797–1805.

[9] Q. Zhou, M. Elbadry, F. Ye, and Y. Yang, “Heracles: Scalable, fine-
grained access control for Internet-of-Things in enterprise environ-
ments,” in IEEE International Conference on Computer Communications
(INFOCOM), 2018, pp. 1772–1780.

[10] W. He, M. Golla, R. Padhi, J. Ofek, M. Dürmuth, E. Fernandes, and
B. Ur, “Rethinking access control and authentication for the home
Internet of Things (IoT),” in USENIX Security Symposium (USENIX
Security), 2018, pp. 255–272.

[11] “AWS IoT,” https://aws.amazon.com/iot/.
[12] “Apple HomeKit,” https://developer.apple.com/homekit/.
[13] “Samsung SmartThings,” https://www.smartthings.com/.
[14] M. A. Al-Kahtani and R. Sandhu, “A model for attribute-based user-

role assignment,” in IEEE Annual Computer Security Applications
Conference (ACSAC), 2002, pp. 353–362.

[15] E. Yuan and J. Tong, “Attributed based access control (ABAC) for web
services,” in IEEE International Conference on Web Services (ICWS),
2005.

[16] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable,
and fine-grained data access control in cloud computing,” in IEEE
International Conference on Computer Communications (INFOCOM),
2010.

[17] S. Bhatt and R. Sandhu, “ABAC-CC: Attribute-based access control and
communication control for Internet of Things,” in ACM Symposium on
Access Control Models and Technologies (SACMAT), 2020, pp. 203–212.

[18] S. Gusmeroli, S. Piccione, and D. Rotondi, “A capability-based security
approach to manage access control in the Internet of Things,” Elsevier
Mathematical and Computer Modelling, vol. 58, no. 5-6, pp. 1189–1205,
2013.

[19] Q. Zhou, M. Elbadry, F. Ye, and Y. Yang, “Towards fine-grained access
control in enterprise-scale Internet-of-Things,” IEEE Transactions on
Mobile Computing (TMC), vol. 20, no. 8, pp. 2701–2714, 2020.

[20] D. Comer and R. E. Droms, “Uniform access to internet directory ser-
vices,” ACM SIGCOMM Computer Communication Review (SIGCOMM
CCR), vol. 20, no. 4, pp. 50–59, 1990.

[21] R. E. Droms, “Access to heterogeneous directory services,” in IEEE
International Conference on Computer Communications (INFOCOM),
1990.

[22] M. Stolikj, R. Verhoeven, P. J. Cuijpers, and J. J. Lukkien, “Proxy
support for service discovery using mDNS/DNS-SD in low power
networks,” in IEEE international symposium on a world of wireless,
mobile and multimedia networks (WoWMoM), 2014.

[23] Z. Shelby, M. Koster, C. Bormann, and P. van der Stok, “Core resource
directory,” IETF, Internet-Draft 6749, 2020. [Online]. Available:
https://www.ietf.org/id/draft-ietf-core-resource-directory-24.html

[24] L. Hao and H. Schulzrinne, “Goldie: Harmonization and orchestration
towards a global directory for IoT,” in IEEE International Conference
on Computer Communications (INFOCOM), 2021.

[25] D. N. Sakimura, J. Bradley, and M. Jones, “Openid connect standard
1.0-draft 21,” 2012.

[26] D. Hardt, “The OAuth 2.0 Authorization Framework,” IETF, RFC
6749, 2012. [Online]. Available: http://tools.ietf.org/rfc/rfc6749.txt

[27] V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, and K. Scarfone, “Guide
to Attribute Based Access Control (ABAC) definition and considera-
tions,” NIST Special Publication, vol. 800, no. 162, pp. 1–54, 2014.

[28] H. Cai and T. Wolf, “Self-adapting quorum-based neighbor discovery
in wireless sensor networks,” in IEEE International Conference on
Computer Communications (INFOCOM), 2018, pp. 324–332.

[29] Y. Fathy, P. Barnaghi, and R. Tafazolli, “Large-scale indexing, discovery,
and ranking for the Internet of Things (IoT),” ACM Computing Surveys
(CSUR), vol. 51, no. 2, p. 29, 2018.

[30] W. Yeong, T. Howes, and S. Kille, “X.500 Lightweight Directory
Access Protocol,” IETF, RFC 1487, 1993. [Online]. Available:
http://tools.ietf.org/rfc/rfc1487.txt

[31] P. Barker, “Providing the X.500 directory user with QoS information,”
ACM SIGCOMM Computer Communication Review (SIGCOMM CCR),
vol. 24, no. 3, pp. 28–37, 1994.

[32] T. Hardie, A. Newton, H. Schulzrinne, and H. Tschofenig, “LoST:
A Location-to-Service Translation Protocol,” IETF, RFC 5222, Aug.
2008. [Online]. Available: http://tools.ietf.org/rfc/rfc5222.txt

[33] M. Alkalbani, B. Hamdaoui, N. Zorba, and A. Rayes, “A blockchain-
based IoT networks-on-demand protocol for responsive smart city appli-
cations,” in IEEE Global Communications Conference (GLOBECOM),
2019.

[34] L. Hao and H. Schulzrinne, “When directory design meets data ex-
plosion: Rethinking query performance for IoT,” in IEEE International
Symposium on Networks, Computers and Communications (ISNCC),
2020.

[35] Y. Yagi, N. Kitsunezaki, H. Saito, and Y. Tobe, “Rwfs: Design and
implementation of file system executing access control based on user’s
location,” in IEEE International Conference on Parallel and Distributed
Systems (ICPADS), 2014, pp. 805–810.

[36] Y.-S. Yeh, W.-S. Lai, and C.-J. Cheng, “Applying lightweight directory
access protocol service on session certification authority,” Computer
Networks (CN), vol. 38, no. 5, pp. 675–692, 2002.

[37] “Microsoft Azure active directory,” https://azure.microsoft.com/en-us/
services/active-directory/.

[38] J. H. Saltzer and M. Schroeder, “The protection of information in
computer systems,” Proceedings of the IEEE, vol. 63, no. 9, pp. 1278–
1308, 1975.

[39] “W3C Web of Things (WoT) Thing Description,” https://www.w3.org/
TR/wot-thing-description/, 2020.

[40] “OASIS MQTT Version 5.0 Standard,” https://docs.oasis-open.org/mqtt/
mqtt/v5.0/mqtt-v5.0.html.

[41] “Eclipse Mosquitto,” https://mosquitto.org/.
[42] “HiveMQ,” https://www.hivemq.com/.
[43] Y. Wang, D. Burgener, M. Flores, A. Kuzmanovic, and C. Huang,

“Towards street-level client-independent IP geolocation.” in USENIX
Symposium on Network System Design and Implementation (NSDI),
vol. 11, 2011, pp. 27–27.

[44] “MongoDB,” https://www.mongodb.com/.
[45] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Token

(JWT),” IETF, RFC 7519, May 2015. [Online]. Available: http:
//tools.ietf.org/rfc/rfc7519.txt

[46] A. Nußbaum, J. Schütte, L. Hao, H. Schulzrinne, and F. Alt, “Tremble:
Transparent emission monitoring with blockchain endorsement,” in IEEE
International Conference on Internet of Things (iThings), 2021.

[47] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based en-
cryption for fine-grained access control of encrypted data,” in ACM
Conference on Computer and Communications Security (CCS), 2006,
pp. 89–98.

[48] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in IEEE Symposium on Security and Privacy (S&P),
2007, pp. 321–334.

[49] B. Wang, W. Song, W. Lou, and Y. T. Hou, “Inverted index based multi-
keyword public-key searchable encryption with strong privacy guaran-
tee,” in IEEE International Conference on Computer Communications
(INFOCOM), 2015, pp. 2092–2100.

[50] “OpenStreetMap,” https://www.openstreetmap.org/.

369Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 10,2023 at 02:50:13 UTC from IEEE Xplore. Restrictions apply.

