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Abstract. Let Wn be the Lie algebra of polynomial vector fields. We classify sim-
ple weight Wn-modules M with finite weight multiplicities. We prove that every
such nontrivial module M is either a tensor module or the unique simple submodule
in a tensor module associated with the de Rham complex on Cn.
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1. Introduction

Lie algebras of vector fields have been studied since the fundamental works of S.
Lie and E. Cartan in the late 19th century and the early 20th century. A classical
example of such Lie algebra is the Lie algebra Wn consisting of the derivations of the
polynomial algebra C[x1, ..., xn], or, equivalently, the Lie algebra of polynomial vector
fields on Cn. The first classification results concerning representations of Wn and
other Cartan type Lie algebras were obtained by A. Rudakov in 1974-1975, [16], [17].
These results address the classification of a class of irreducible Wn-representations
that satisfy some natural topological conditions. The modules of Rudakov are a
particular class of the so-called tensor modules.
General tensor modules T (P, V ) are introduced by Shen and Larson, [18], [11],

and are defined for a Dn-module P and gl(n)-module V , where Dn is the algebra of
polynomial differential operators on Cn (see §2.8 for details). The modules T (P, V )
have nice geometric interpretations. If V is finite dimensional, then we have a natural
map from Wn to the algebra of differential operators in the section of a trivial vector
bundle on Cn with fiber V . This map is a specialization of a Lie algebra homomor-
phism Wn → Dn⊗U(gl(n)). The tensor module T (P, V ) is nothing but the pull back
of the Dn ⊗ U(gl(n))-module P ⊗ V .
Tensor W1-modules and their extensions were studied extensively in the 1970’s and

in the 1980’s by B. Feigin, D. Fuks, I. Gelfand, and others, see for example, [4], [6].
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Important results on general tensor modules T (P, V ) have been recently established
by G. Liu, R. Lu, Y. Xue, K. Zhao, and others, see [19] and the references therein.
In this paper we focus on the category of weight representations of Wn, namely

those that decompose as direct sums of weight spaces relative to the subalgebra h

of Wn spanned by the derivations x1∂1,...,xn∂n. The study of weight representations
of Lie algebras of vector fields is a subject of interest by both mathematicians and
theoretical physicists in the last 30 years. Two particular cases in this study have
attracted special attention - the cases of Wn and of the Witt algebra Wittn. Recall
that Wittn is the Lie algebra of the derivations of the Laurent polynomial algebra
C[x±

1 , ..., x
±1
n ], or, equivalently, the Lie algebra of polynomial vector fields on the n-

dimensional complex torus. In particular, Witt1 is the centerless Virasoro algebra.
The classification of all simple weight representations with finite weight multiplicities
of W1 and Witt1 (and hence of the Virasoro algebra) was obtained by O. Mathieu
in 1992, [13]. Following a sequence of works of S. Berman, Y. Billig, C. Conley, X.
Guo, C. Martin, O. Mathieu, V. Mazorchuk, V. Kac, G. Liu, R. Lu, A. Piard, S.
Eswara Rao, Y. Su, K. Zhao, recently, Y. Billig and V. Futorny managed to extend
Mathieu’s classification result to Wittn for arbitrary n ≥ 1 (see [1] and the references
therein).1

The classification of simple bounded (i.e. with a bounded set of weight multiplici-
ties) modules of Wn was completed in [19]. The result in [19] states that every simple
bounded module is a tensor module T (P, V ) or a submodule of a tensor module. In
order T (P, V ) to be bounded, P must be a weight Dn-module and V must be a
finite-dimensional module.

In this paper we classify all simple weight Wn-modules M with finite weight mul-
tiplicities. The main result is surprisingly easy to formulate - every such nontrivial
module M is either a tensor module T (P, V ) or the unique simple submodule of

T (P,
∧k

Cn) for k = 1, ..., n. The necessary and sufficient condition for P and V so
that T (P, V ) has finite weight multiplicities is given in Theorem 3.5. This condition
is expressed in terms of the subsets of roots Wn and gl(n) that act locally finitely or
injectively on P and V , respectively. For our classification result, we first use a the-
orem of [15] stating that M is parabolically induced from a bounded simple module
N over a subalgebra g = Wm ⋉ (k ⊗ Om) of Wn. This subalgebra g plays the role
of a Levi subalgebra of a parabolic subalgebra of Wn. The classification of simple
bounded g-modules is one of the most difficult parts of the proof. By introducing the
so called (g,Om)-modules, we prove that N is either the unique submodule of a ten-
sor module, or it is a special generalized tensor module F(T (P, V ), S), see Theorem
5.17. The essential tool for proving this theorem is the twisted localization functor
intrduced in [14]. For the main theorem we show that the parabolic induction functor
maps F(T (P, V ), S) to a tensor module.

1Note that the Witt algebra Wittn is denoted by Wn in [1].
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The content of the paper is as follows. In Section 2 we collect some important
definitions and preliminary results on weight modules, twisted localization, parabolic
induction, and tensor modules. In Section 3 we prove the necessary and sufficient
condition for the tensor module T (P, V ) to be a weight module with finite weight
multiplicities. We also show that T (P, V ) has a unique simple submodule and explain
how the restricted duality functor acts on the tensor modules. The main theorem of
this paper is also stated in Section 3. Section 4 is devoted to a few results concerning
the parabolic induction theorem. The study of bounded g-modules and the classifi-
cation of all possible g-modules N that appear in the parabolic induction theorem
are included in Section 5. In Section 6 we complete the proof of the main theorem
by showing that the application of the parabolic induction functor on all possible N
described in the previous section leads to modules M that are either tensor modules
or the unique simple submodules of T (P,

∧k
Cn) for k = 1, ..., n.

2. Preliminaries

2.1. Notation and convention. Throughout the paper the ground field is C. All
vector spaces, algebras, and tensor products are assumed to be over C unless otherwise
stated.

2.2. Weight modules in general setting. Let U be an associative unital algebra
and H ⊂ U be a commutative subalgebra. We assume in addition that H is a
polynomial algebra identified with the symmetric algebra of a vector space h, and
that we have a decomposition

U =
⊕

µ∈h∗

Uµ,

where

Uµ = {x ∈ U|[h, x] = µ(h)x, ∀h ∈ h}.

Let QU = Z∆U = ∆U ∪ (−∆U) be the Z-lattice in h∗ generated by ∆U = {µ ∈
h∗ | Uµ 6= 0}. We obviously have UµUν ⊂ Uµ+ν .
We call a U -module M a weight module, or a (U ,H)-module, if M =

⊕

λ∈h∗ M
λ,

where

Mλ = {m ∈ M | hm = λ(h)m for all h ∈ h}.

We call Mλ the weight space of M , dimMλ the λ-weight multiplicity of M , and
suppM = {λ ∈ h∗ | Mλ 6= 0} the support of M . Note that

UµMλ ⊂ Mµ+λ.

for every weight module M .
We will call a weight U -module bounded if its set of weight multiplicities is a

bounded set. For a bounded U -module M , the degree d(M) is the maximal weight
multiplicity of M . A weight U -module M with finite weight multiplicities is cuspidal
if all nonzero elements of Uµ act injectively on M . If ∆U = −∆U , then every cuspidal
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U -module is bounded. We use this notion in the case when U is the Weyl algebra or
the universal enveloping algebra of a reductive Lie algebra where the latter property
holds.

In the particular case when U = U(g) for a Lie algebra g and H = S(h) for a
Cartan subalgebra h of g, we have that a weight U -module is a weight g-module.

2.3. Twisted localization in general setting. In this subsection we collect some
facts about the twisted localization functor. This functor was originally introduced
in [14] and for proofs and more details we refer the reader to §7 of [10].
We retain the notation of the previous subsection. Let a be an ad-nilpotent element

of U . Then the set 〈a〉 = {an | n ≥ 0} is an Ore subset of U which allows us to
define the 〈a〉-localization D〈a〉U of U . For a U -module M by D〈a〉M = D〈a〉U ⊗U M
we denote the 〈a〉-localization of M . Note that if a is injective on M , then M is
isomorphic to a submodule of D〈a〉M . In the latter case we will identify M with that
submodule.
We next recall the definition of the generalized conjugation of D〈a〉U relative to

x ∈ C. This is the automorphism φx : D〈a〉U → D〈a〉U defined by the formula

φx(u) =
∑

i≥0

(

x

i

)

ad(a)i(u)a−i.

If x ∈ Z, then φx(u) = axua−x. With the aid of φx we define the twisted module
Φx(M) = Mφx of any D〈a〉U -module M . Finally, we set Dx

〈a〉M = ΦxD〈a〉M for any
U -module M and call it the twisted localization of M relative to a and x. We will
use the notation ax ·m (or simply axm) for the element in Dx

〈a〉M corresponding to
m ∈ D〈a〉M . In particular, the following formula holds in Dx

〈a〉M :

u(axm) = ax

(

∑

i≥0

(

−x

i

)

ad(a)i(u)a−im

)

for u ∈ U , m ∈ D〈a〉M .
If a1, ..., ak are commuting ad-nilpotent elements in U and c = (c1, ..., ck) is in Ck,

then we set D〈a1,...,ak〉M =
∏k

i=1 D〈ai〉M and Dc

〈a1,...,ak〉
M =

∏k

i=1 D
ci
〈ai〉

M . Note that

the products
∏k

i=1 D〈ai〉 and
∏k

i=1 D
ci
〈ai〉

are well defined because the functors involved
pairwise commute.

If a ∈ U is an ad-nilpotent weight element and M is a weight module then Dx
〈a〉M

is again a weight module.

Lemma 2.1. Let a ∈ U be an ad-nilpotent weight element in U , M be a simple
a-injective weight U -module, and z ∈ C. If N is a simple nontrivial U -submodule of
Dz

〈a〉M , then D〈a〉M ≃ D−z
〈a〉N . In particular, if a acts bijectively on M , M ≃ D−z

〈a〉N .

Proof. We use that since M is a simple a-injective weight U -module, then D〈a〉M and
Dz

〈a〉M are simple D〈a〉U -modules. Indeed, D〈a〉M is a simple D〈a〉U -module because
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θ(M) generates the D〈a〉U -module D〈a〉M , where θ : M → D〈a〉M is the localization
map. The simplicity of Dz

〈a〉M follows straightforward from the simplicity of D〈a〉M .
Since N is submodule of Dz

〈a〉M , D〈a〉N is a submodule of Dz
〈a〉M . The simplicity

of N implies D〈a〉N ≃ Dz
〈a〉M and D−z

〈a〉N ≃ D〈a〉M . If a acts bijectively, then
M ≃ D〈a〉M . �

We will also consider the following particular case of the twisted localization functor
for U = U(g), where g = Wm+k⊗Om where k is a reductive Lie algebra isomorphic to
gl(p)⊕gl(q). Let ai ∈ kαi , i = 1, ..., ℓ, and Γ = {α1, ..., αℓ} is a set of commuting roots

of k that is linearly independent in Z∆k. Let also λ ∈ h∗ be such that λ =
∑ℓ

i=1 ziαi.
We set Dλ

Γ = Dz1
〈a1〉

...Dzℓ
〈aℓ〉

. If M ≃ Dλ
ΓM̄ we will say that M is obtained by a twisted

localization from M̄ . If M̄ is bounded, then M is bounded, [14] Lemma 4.4.

2.4. The algebras On, Dn, and Wn. In what follows, On = C[x1, ..., xn] and Dn will
stand for the associative algebra of differential operators in On. In other words, Dn is
the n-th Weyl algebra. We will often use the fact that Dn ≃ D1⊗ ...⊗D1 (n copies).
Also, Wn will stand for the Lie algebra of vector fields on Cn, i.e. Wn = Der(On).
Henceforth, we fix h = Span{x1∂1, . . . , xn∂n}. Note that h is a Cartan subalgebra

of Wn and H = C[x1∂1, . . . , xn∂n] is a maximal commutative subalgebra of Dn. We
will use the setting of §2.2 and §2.3 both for U = U(Wn) and U = Dn, and in both
cases h is the one that we fixed above. The set of roots of Wn is:

∆ =

{

n
∑

j=1

mjεj,−εi +
∑

j 6=i

mjεj | mj ∈ Z≥0, i = 1, ..., n

}

,

where εi(xj∂j) = δij. Let ∆′ := ∆ ∩ −∆. One can see that ∆′ is a root system of
type An.

A Wn-module M is a (Wn,On)-module if M is an On-module satisfying

X(fv) = fX(v) +X(f)v, ∀v ∈ M, f ∈ On, X ∈ Wn.

If M is a weight Wn-module with finite weight multiplicities, then the restricted dual

M∗ of M is by definition the maximal semisimple h-submodule of M∗. The following
properties of the restricted dual functor are straightforward.

Lemma 2.2. Let M be a weight Wn-module with finite weight multiplicities. Then

(1) suppM∗ = − suppM ;
(2) dimMµ

∗ = dimM−µ;
(3) M is simple if and only if M∗ is simple.

Consider the embedding Cn → CP n. The Lie algebra of vector fields on CP n is
isomorphic to sl(n + 1) and is a Lie subalgebra of Wn. In other words we have a
canonical embedding sl(n+ 1) ⊂ Wn of Lie algebras.

Lemma 2.3. Let M be a bounded weight Wn-module such that suppM ⊂ λ+Z∆Wn

for some weight λ. Then M has finite length.
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Proof. The result holds for sl(n + 1)-modules, see Lemma 3.3 in [14], and hence it
holds for Wn by using the natural embedding of sl(n+ 1) in Wn. �

2.5. Simple weight Dn-modules. According to §2.2, a Dn-module M is a weight
module if

M =
⊕

λ∈Cn

Mλ,

where Mλ = {m ∈ M | xi∂im = λim, for i = 1, ..., n}. Below we recall the classifica-
tion of the simple weight Dn-modules.
We will use the automorphism σF : Dn → Dn defined by σF (xi) = ∂i, σF (∂i) = −xi

for all i. We call σF the (full) Fourier transform of Dn. If M is a Dn-module, by MF

we denote the module M twisted by σF .
The following gives the classification of all simple weight Dn-modules, see for ex-

ample Corollary 2.9 in [8]

Proposition 2.4. (i) Every simple weight module of D1 is isomorphic to one of
the following: O1 = C[x], OF

1 , x
λC[x±1], λ ∈ C \ Z.

(ii) Every simple weight module of Dn is isomorphic to P1 ⊗ ...⊗ Pn where Pi is
a simple weight D1-module.

We note also that every simple nontrivial weight Dn-module M has degree 1, i.e.
all its weight multiplicities equal 1. Moreover, for every i, xi (respectively, ∂i) acts
either injectively, or locally nilpotently on M . Let I+(M) denote the subset of indices
in {1, . . . , n} such that ∂i acts locally nilpotently on M and xi acts injectively on M ,
I−(M) the subset of indices such that xi acts locally nilpotently on M and ∂i acts
injectively on M , and I0(M) the subset of indices such that both xi and ∂i act
injectively on M . Note that {1, . . . , n} = I−(M) ⊔ I0(M) ⊔ I+(M). Furthermore,
there exists λ ∈ suppM such that

suppM = λ+
∑

i∈I+(M)

Z≥0εi +
∑

j∈I0(M)

Zεj +
∑

k∈I−(M)

Z≤0εk.

2.6. Parabolic induction in general. Let g be any Lie algebra with Cartan sub-
algebra h such that g = h⊕

⊕

α∈∆ gα. Let γ ∈ h∗. Then the subalgebra

p = h⊕
⊕

Re〈γ,α〉≥0

gα

is called the parabolic subalgebra of g corresponding to γ. The Levi subalgebra of p
is

l = h⊕
⊕

Re〈γ,α〉=0

gα,

and the nilradical of p is

n =
⊕

Re〈γ,α〉>0

gα.



SIMPLE WEIGHT MODULES OVER POLYNOMIAL VECTOR FIELDS 7

For a g-module M we set

Mn = {m ∈ M | nm = 0}.

It is easy to see that Mn is p-submodule of M .
We are going to use extensively the following standard result.

Proposition 2.5. (a) Let N be a simple l-module, considered also as simple p-
modules by letting n act trivially on N . Then the g-module U(g) ⊗U(p) N has a
unique simple quotient.

(b) If L is a simple g-module such that Ln 6= 0, then Ln is a simple l-module.
(c) If L and M are simple g-modules such that Mn and Ln are isomorphic simple

l-modules, then M ≃ L as g-modules.

Remark 2.6. If M is a simple weight g-module then Mn =
⊕

λ∈S M
λ where S is the

subset of suppM such that λ + α /∈ suppM for any α ∈ ∆(n). For an arbitrary
weight module M we call ⊕λ∈SM

λ the p-top of M and denote it by M top.

2.7. Parabolic induction for Wn. In this subsection we recall one of the main
results in [15]. Recall the definitions of ∆ and ∆′ from §2.4. Let γ = a1ε1+ · · ·+anεn
for some ai ∈ R. Set

∆0 = {α ∈ ∆ | (γ, α) = 0}, ∆± = {α ∈ ∆ | (γ, α) > (< 0)},

∆′
0 = ∆0 ∩∆′, ∆′

± = ∆± ∩∆′.

Let

p = h⊕
⊕

α∈∆0∪∆+

(Wn)α, g = h⊕
⊕

α∈∆0

(Wn)α.

Theorem 2.7. Let M be a simple weight Wn-module.
(a) There exists a weight λ ∈ suppM and γ such that

suppM ⊂ λ+ Z≥0(∆
′
− ∪∆′

0).

(b) One can choose γ in such a way that Z∆′
0 = Z∆0 and

λ+ Z∆0 ⊂ suppM.

(c) M is a unique simple quotient of the parabolically induced module U(Wn)⊗U(p)

M0 for some simple weight g-module M0 that is extended in the natural way to a
simple p-module.

2.8. Tensor modules over Wn. Let V be a gl(n)-module and Ṽ := On ⊗ V . One
can look at Ṽ as the space of sections of the gl(n)-bundle on Cn with fiber V . Thus,
Ṽ has the natural structure of a (Wn,On)-module.
For a Dn-module P and a gl(n)-module V , we define the tensor (Wn,On)-module

by

T (P, V ) := P ⊗On
Ṽ
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and call it the tensor Wn-module relative to P and V . If P is a weight Dn-module
and V is a weight gl(n)-module then P ⊗On

Ṽ is a weight module and

supp(P ⊗On
Ṽ ) = suppP + suppV.

Alternatively, we can define T (P, V ) as follows. Consider T (P, V ) as the vector
space T (P, V ) = P ⊗C V and define Wn-action and On-action by the formulas

xα∂j · (f ⊗ v) = xα∂jf ⊗ v +
n
∑

i=1

∂i(x
α)f ⊗ Eijv,

xα · (f ⊗ v) = xαf ⊗ v,

for f ∈ P , v ∈ V .
In what follows, the k-th exterior power

∧k
Cn of the natural representation of gl(n)

will be called the k-th fundamental representation. We have the following result from
[12] (Theorem 3.1 and Lemma 3.7):

Proposition 2.8. (i) Let P be a simple Dn-module and V be a simple gl(n)-
module that is not isomorphic to a fundamental representation. Then T (P, V )
is a simple Wn-module.

(ii) Let P1 and P2 be simpleDn-modules and let V1 and V2 be simple gl(n)-modules
such that neither of them is isomorphic to a fundamental representation. Then
T (P1, V1) ≃ T (P2, V2) if and only if P1 ≃ P2 and V1 ≃ V2.

We next consider tensor modules T (P, V ) for which V is a fundamental represen-
tation. For any Dn-module P , the differential map

d : T (P,
∧

Cn) → T (P,
∧

Cn),

is defined by d(f ⊗ v) =
∑n

i=1(∂if)⊗ (ei ∧ v), where (e1, ..., en) is the standard basis
of Cn associated to the coordinates x1, ..., xn of Cn. The map d is a homomorphsim
of Wn-modules but not On-modules. One readily sees that d2 = 0. As a result we
have the following generalized de Rham complex:

0
d
−→ T (P,

∧0
Cn)

d
−→ T (P,

∧1
Cn)

d
−→ · · ·

d
−→ T (P,

∧n

Cn)
d
−→ 0.

By Theorem 3.5 in [12] we have the following.

Proposition 2.9. Let P be a simple Dn-module.

(i) If k = 0, ..., n−1, then the module T (P,
∧k

Cn) has a simple quotient isomor-

phic to dT (P,
∧k

Cn).
(ii) The module T (P,

∧0
Cn) is simple if and only if P is not isomorphic to

On. If P ≃ On then T (P,
∧0

Cn) contains a trivial Wn-submodule C and
dT (P,

∧0
Cn) ≃ T (P,

∧0
Cn)/C.

(iii) The module T (P,
∧n

Cn) is simple if and only if
∑

i ∂iP = P .
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We finish this subsection by stating the main result from [19] concerning the clas-
sification of the simple bounded Wn-modules.

Theorem 2.10. Let M be a nontrivial simple bounded Wn-module. Then M is
isomorphic to one of the following:

(a) the module T (P, V ), where P is a simple weight Dn module and V is a sim-
ple finite-dimensional gl(n)-module that is not isomorphic to a fundamental
representation;

(b) a simple submodule of T (P,
∧k

Cn), where k ∈ {1, 2, ..., n}, and P is a simple
weight Dn module.

Remark 2.11. Proposition 3.7 implies that T (P,
∧k

Cn) has a unique simple submod-
ule.

3. Tensor modules with finite weight multiplicities

3.1. Tensor product of weight gl(n)-modules. Let M be a simple weight gl(n)-
module with finite weight multiplicities. Recall from [3] that M induces the following
the following shadow decomposition of the root system:

∆(gl(n)) = ∆F
M ⊔∆I

M ⊔∆+
M ⊔∆−

M ,

such that the α-root vectors Xα act locally nilpotently on M for all roots α ∈ ∆+
M ⊔

∆F
M and injectively for all roots α ∈ ∆−

M ⊔ ∆I
M . Moreover, ∆I

M ⊔ ∆F
M and ∆+

M

are the roots of the Levi subalgebra gI + gF and the nilradical g+, respectively,
of a parabolic subalgebra p ⊂ gl(n), and M is a quotient a parabolically induced

module Indgl(n)
p

(

MF ⊗M I
)

, for some cuspidal simple gI-module M I and some finite-

dimensional simple gF -module MF .

Lemma 3.1. Let l be the Levi subalgebra of some parabolic p in gl(n). Assume that
M ′ and N ′ are weight l-modules and that M ′ ⊗ N ′ has finite weight multiplicities.
Then (Indgl(n)

p M ′)⊗ (Indgl(n)
p N ′) has finite weight multiplicities.

Proof. Let m denote the nilradical of the opposite to p parabolic subalgebra p−, and
let U = U(m). Then U has a Z≥0-grading U =

⊕

p≥0 Up such that U0 = C and
each Up is a finite-dimensional l-module. This grading induces Z≥0-gradings on both

M = Indgl(n)
p M ′ and N = Indgl(n)

p N ′ so that Mp = M ′⊗Up and Np = N ′⊗Up. Then
M ⊗N is also graded and its mth graded component is

(M ⊗N)m =
⊕

p+q=m

M ′ ⊗N ′ ⊗ Up ⊗ Uq.

Hence, M ⊗N has finite weight multiplicities. �

Lemma 3.2. Let M and N be simple weight gl(n)-modules. Then M ⊗ N has
finite weight multiplicities if and only if (∆I

M ⊔∆−
M) ⊂ (∆F

N ⊔∆−
N) or, equivalently,

(∆I
M ⊔∆−

M) ∩ (∆I
N ⊔∆+

N) = ∅.
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Proof. First assume that the condition is not true. There exists a root α ∈ ∆I
M ⊔∆−

M

such that −α ∈ ∆I
N ⊔∆−

N . If µ ∈ suppM and ν ∈ suppN then µ+ Z≥0α ⊂ suppM
and ν − Z≥0α ∈ suppN . Hence µ+ ν has infinite multiplicity in M ⊗N .
Next assume that the condition holds. Then ∆I

M ⊂ ∆F
N , ∆

I
N ⊂ ∆F

M and ∆−
M ⊂

(∆F
N ⊔ ∆−

N). Choose γM ∈ Q∆ such that (γM , α) = 0 for all α ∈ ∆I
M ⊔ ∆F

M and
(γM , α) < 0 for all α ∈ ∆−

M . Similarly choose γN , and let γ = γM + γN . Then
(γ,∆I

M) = (γ,∆I
N) = 0 and (γ, α) < 0 for any α ∈ ∆−

M ∪ ∆−
N . Let p be the

parabolic defined by γ. Then both M and N are quotients of the parabolically
induced modules Indgl(n)

p M ′ and Indgl(n)
p N ′, respectively. The Levi subalgebra l of

p is isomorphic to gIM ⊕ gIN ⊕ (gFM ∩ gFN). Furthermore, M ′ = M i ⊗ M f where M i

is a simple cuspidal gIM -module and M f is some finite-dimensional gIN ⊕ (gFM ∩ gFN)-
module. Similarly, N ′ = N i⊗N f where N i is a simple cuspidal gIN -module and N f is
some finite-dimensional gIM ⊕ (gFM ∩gFN)-module. Therefore M ′⊗N ′ has finite weight
multiplicities and the statement follows from Lemma 3.1. �

3.2. Weight tensor modules.

Lemma 3.3. Let P be a simple weight Dn-module. Then P =
⊕

κ Pκ, where Pκ is
the eigenspace of

∑n

i=1 xi∂i with eigenvalue κ. Furthermore, every nonzero Pκ is a
simple gl(n)-module and all nonzero Pκ have the same shadow.

Proof. The first assertion is obvious. Since the adjoint action of gl(n) on Dn is locally
finite, every root vector Xα ∈ gl(n) either acts locally nilpotently or injectively on all
nonzero vectors of P . Therefore all Pκ have the same shadow. By the classification of
simple weight Dn-modules, every Pκ is multiplicity free and suppPκ ⊂ λ+Z∆(gl(n))
for any weight λ ∈ suppPκ. Using these and the fact that U(gl(n))P λ

κ = Pκ, we
obtain that Pκ is simple. �

Remark 3.4. Lemma 3.3 implies that every simple Dn-module P has a well-defined
gl(n)-shadow. Below we give an explicit description of this shadow in terms of the
subsets I±(P ), I0(P ) of {1, . . . , n} defined in §2.5:

∆I
P = {εi − εj | i, j ∈ I0(P )}, ∆F

P = {εi − εj | i, j ∈ I+(P ) or i, j ∈ I−(P )},

∆−
P = {εi − εj | i ∈ I+(P ), j /∈ I+(P ) or i /∈ I−(P ), j ∈ I−(P )}, ∆+

P = −∆−
P .

Theorem 3.5. Let P be a simple weight Dn-module and V be a simple weight gl(n)-
module. Then the Wn-module T (P, V ) has finite weight multiplicities if and only if
(∆I

P ⊔∆−
P ) ⊂ (∆F

V ⊔∆−
V ).

Proof. For every semisimple h-module X we denote by Xκ the eigenspace of
∑

xi∂i
with eigenvalue κ. By Lemma 3.3, P =

⊕

τ∈τ0+Z Pτ for some τ0 ∈ C. Then

T (P, V ) =
⊕

τ∈τ0+Z

Pτ ⊗ V,

and the statement follows from Lemma 3.2. �
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Example 3.6. Consider a simple highest weight module gl(4)-module V such that

∆+
V = {εi − εj | i = 1, 2; j = 3, 4} , ∆F

V = {±(ε1 − ε2),±(ε3 − ε4)} .

Let P be a simple weight D4-module P on which x1, x3, ∂2, ∂4 act injectively and
∂1, ∂3, x2, x4 act locally nilpotently. Then by Remark 3.4 and Theorem 3.5, T (P, V )
has infinite weight multiplicities as ε1 − ε4 ∈ ∆−

P ∩∆+
V . On the other hand, if P ′ is a

simple D4-module on which x1, ∂2, ∂3, ∂4 act locally nilpotently and ∂1, x2, x3, x4 act
injectively, then T (P ′, V ) has finite weight multiplicities.

Proposition 3.7. For any simple weight Dn-module P and any simple weight gl(n)-
module V , the Wn-module T (P, V ) has a unique simple submodule.

Proof. If V is not a fundamental representation the statement follows from Propo-
sition 2.8(i). Now let V =

∧k
Cn. It is shown in [9] that if P is cuspidal, i.e.,

I+(P ) = I−(P ) = ∅, then T (P,
∧k

Cn) is simple for k = 0, n and an indecomposable
sl(n+ 1)-module of length two for k = 1, . . . , n− 1. This implies the statement for a
cuspidal module P . For a general module P , consider

γ = s
∑

i∈I−(P )

εi −
∑

j∈I+(P )

εj

for some irrational s > 1. Let p be the corresponding parabolic subalgebra of Wn and
n be the nilradical of p. The Levi subalgebra g is isomorphic to gl(p) ⊕ gl(q) ⊕Wm

where p = |I−(P )|, q = |I+(P )|, and m = |I0(P )|. Note that

P ≃ OF
p ⊗Oq ⊗ Pm

for some cuspidal Dm-module Pm. Since V is finite dimensional and simple, V n∩gl(n) ≃
Vp⊗Vq⊗Vm is a simple module over gl(p)⊕gl(q)⊕gl(m). It is easy to compute that

T (P, V )n ≃ Vp ⊗ Vq ⊗ T (Pm, Vm).

Since Pm is cuspidal, T (Pm, Vm) has a unique simple Wm-submodule and hence
T (P, V )n has a unique simple g-submodule N . If M is a simple Wn submodule
of T (P, V ) then Mn 6= 0 and hence N ⊂ M . That implies the uniqueness of M . �

3.3. Duality for tensor modules. Recall that P F denotes the Fourier transform
of a Dn-module P .

Lemma 3.8. Let P be a simple weight Dn-module. Consider P as a Wn-module via
the natural homomorphism Wn → Dn. Then P∗ ≃ T (P F ,ΛnCn).

Proof. Recall the definition of I±(P ), I0(P ). As a vector space

P =
∏

i∈I0(P )

xλi

i ⊗ C[xj]j∈I+(P ) ⊗ C[∂k]k∈I−(P ) ⊗ C[x±1
ℓ ]ℓ∈I+(P ),
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where λi are nonintegral for all i ∈ I0(P ). We denote the monomial basis of P by
e(µ) where µi ∈ λi + Z for i ∈ I0(P ), µi ∈ Z≥0 for i ∈ I+(P ) ⊔ I−(P ). We have

xie(µ) =

{

e(µ+ εi) if i ∈ I0(P ) ∪ I+(P )

−µie(µ+ εi) if i ∈ I−(P )
,

∂ie(µ) =

{

µie(µ− εi) if i ∈ I0(P ) ∪ I+(P )

e(µ+ εi) if i ∈ I−(P )
.

Denote the corresponding basis of P F by f(µ) where µ runs over the same set as e(µ).
Using identification of P and P F as vector spaces, we have that if X(e(µ)) = ce(ν)
then σF (X)f(µ) = cf(ν). This observation allows us to write the action of generators
in the basis f(µ):

∂if(µ) =

{

−f(µ+ εi) if i ∈ I0(P ) ∪ I+(P ),

µif(µ− εi) if i ∈ I−(P ),

xif(µ) =

{

µif(µ− εi) if i ∈ I0(P ) ∪ I+(P ),

f(µ+ εi) if i ∈ I−(P ).

Let ϕ(µ) be a function satisfying

ϕ(µ+ εi) =

{

(µi + 1)ϕ(µ)if i ∈ I0(P ) ∪ I+(P ),

−(µi + 1)ϕ(µ) if i ∈ I−(P ).

Define a pairing P × P F → C by setting 〈e(µ), f(ν)〉 = ϕ(µ)δµ,ν . Then we have

〈∂ie(µ), f(ν)〉 = −〈e(µ), ∂if(ν)〉, 〈xie(µ), f(ν)〉 = 〈e(µ), xif(ν)〉.

Hence
〈g(x)∂ie(µ), f(ν)〉 = −〈e(µ), ∂ig(x)f(ν)〉.

Using that ∂ig(x) = g(x)∂i + ∂i(g(x)) and choosing nonzero ω ∈
∧n

Cn, we obtain

g(x)∂i(f(ν)⊗ ω) = (∂ig(x)f(ν))⊗ ω.

This leads to a nondegenerate Wn-invariant pairing P × T (P F ,
∧n

Cn) → C. �

Lemma 3.9. Let V and P be such that T (P, V ) has finite weight multiplicities, and
let V∗ be the restricted dual of V . Then T (P F , V∗⊗

∧n
Cn) and T (P, V ) are restricted

dual to each other in the category of weight Wn-modules.

Proof. We define a pairing

T (P F , V∗ ⊗
∧n

Cn)× T (P, V ) → C

by the formula

〈f ⊗ v, g ⊗ w〉 = 〈f, g〉〈v, w〉, v ∈ V, w ∈ V∗, f ∈ P, g ∈ T (P F ,
∧n

Cn).



SIMPLE WEIGHT MODULES OVER POLYNOMIAL VECTOR FIELDS 13

Then we have

〈xα∂j(f)⊗ v+
∑

i

∂i(x
α)f ⊗Eijv, g⊗w〉+ 〈f ⊗ v, xα∂j(g)⊗w+

∑

i

∂i(x
α)⊗Eijw〉 =

〈xα∂j(f), g〉〈v, w〉+ 〈f, xα∂j(g)〉〈v, w〉+
∑

j

〈∂j(x
α)f, g〉〈Eijv, w〉+ 〈f, ∂j(x

α)g〉〈v, Eijw〉 = 0,

because of

〈xα∂j(f), g〉+ 〈f, xα∂j(f)〉 = 0,

〈∂j(x
α)f, g〉 = 〈f, ∂j(x

α)g〉

and

〈Eijv, w〉+ 〈v, Eijw〉 = 0.

�

3.4. Statement of Main Result. In this subsection we state and prove the main
result in the paper. Some of the results used in the proof will be established in the
next three sections.

Theorem 3.10. Let M be a simple weight Wn-module with finite weight multiplic-
ities. Then M is the unique submodule of some tensor module T (P, V ) with finite
weight multiplicities. More precisely, exactly one of the following holds:

(i) M is isomorphic to T (P, V ) for a simple weight Dn-module P and a simple
weight gl(n)-module V with finite weight multiplicities, such that (∆I

P⊔∆
−
P ) ⊂

(∆F
V ⊔∆

−
V ) and such that V is not isomorphic to a fundamental representation.

(ii) M is isomorphic to dT (P,
∧k

Cn) for some k = 0, 1, ..., n − 1, and a simple
weight Dn-module P .

(iii) M ≃ C, which is the unique simple submodule of T (On,
∧0

Cn).

Proof. Let M be a simple weight Wn-module with finite weight multiplicities. By
Theorem 2.7 and Proposition 4.1, M is a quotient of the parabolically induced module
IndWn

p N where N is a simple bounded g-module over the Levi subalgebra g of p.
Moreover, by Corollary 4.4, N satisfies the additional conditions (5.1) and (5.2) of
Section 5. Theorem 5.17 provides a classification of such N . Finally, Lemma 6.2 and
Lemma 6.3 ensure that M is one of the modules listed in the statement. �

4. Applications of the parabolic induction

Recall that ∆ stands for the set of roots of Wn. We use the setting of §2.7.
In what follows we always assume that M is a simple weight Wn-module that has

finite weight multiplicities. We will use that M is the unique simple quotient of a
parabolically induced module U(Wn) ⊗U(p) M0, as stated in Theorem 2.7. Let p be
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the parabolic subalgebra associated with γ =
∑n

i=1 aiεi. We assume without loss of
generality that

a1 ≥ · · · ≥ ap > 0 = ap+1 = · · · = ap+m > ap+m+1 ≥ · · · ≥ an.

Henceforth we fix p and denote by g the Levi subalgebra of p. Then g ≃ Wm⋉(k⊗Om)
where k is a Levi subalgebra in gl(p) ⊕ gl(n − m − p). Under this assumptions we
have the following

Proposition 4.1. The simple g-module M0 is bounded.

Proof. First we prove three preliminary results.

Lemma 4.2. Let α = −εi or α ∈ ∆(k). Then

(1) dim gα = 1 and any nonzero Xα ∈ gα can be included in the sl2 triple;
(2) Either gα acts locally nilpotently on M0 or gα : M0 → M0 is injective.

Proof. The first assertion is obvious. The second follows from the fact that ad gα is
locally nilpotent in g. �

Lemma 4.3. Let α = −εi for p < i ≤ p +m or α ∈ ∆(k). Then gα acts injectively
on M0.

Proof. Suppose that gα is locally nilpotent on M0. Let h be the Cartan element in
the sl2-triple containing Xα ∈ gα \ {0}. In particular, α(h) = 2. Let µ ∈ suppM .
Then µ + Zα ⊂ suppM . Furthermore, for any n > 0 there exist k ≥ n and v ∈
Mµ+kα such that gαv = 0. Let Mk denote the sl(2)-submodule of M generated by
v. For all sufficiently large k we have µ ∈ suppMk. Therefore dimMµ = ∞. A
contradiction. �

Corollary 4.4. Let α = −εi or α ∈ ∆(k). For any λ ∈ suppM and X ∈ gα \ 0 the
map X : Mλ → Mλ+α is an isomorphism.

Proof. From the previous lemma we know that X : Mλ → Mλ+α is injective. Ap-
plying the same lemma to M∗ we obtain X : M−λ−α

∗ → M−λ
∗ is injective. Hence

X : Mλ → Mλ+α is surjective. �

We are now ready to complete the proof of Proposition 4.1. Corollary 4.4 implies
dimMµ = dimMµ+γ for any γ ∈ Z∆(Wm)+Z∆(k) and µ ∈ suppM . The statement
follows. �

5. Bounded simple g-modules

5.1. Generalization of tensor modules for the Levi subalgebra g of p. We
retain the notation of the previous section. In this section we assume that m > 0.
Recall that g = Wm ⋉ (k ⊗ Om). Without loss of generality we may assume Om =
C[x1, . . . , xm]. In this section we will classify simple bounded g-modules N satisfying
the additional properties:

(5.1) suppN = λ+ Z∆(g) for any λ ∈ suppN.
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(5.2) All weight spaces of N have the same dimension d.

First, we generalize the notion of a (Wm,Om)-module to that of a (g,Om)-module.

Definition 5.1. A g-module N is a (g,Om)-module if N is a Om-module satisfying

(5.3) X(fv) = fX(v) +X(f)v ∀v ∈ N, f ∈ Om, X ∈ Wm,

(5.4) (h⊗ Y )(fv) = (hf)Y v ∀v ∈ N, f, h ∈ Om, Y ∈ k.

From now all (Wm,Om)-modules and all (g,Om)-modules we consider are weight
modules.

Lemma 5.2. Let N be a g-module satisfying (5.1) and (5.2).
(a) If α = −εi or α ∈ ∆(k) then gα acts injectively on N .
(b) If in addition N is equipped with Om-module structure satisfying (5.3) then xi

acts injectively on N for all i = 1, . . . ,m.

Proof. The proof of (a) is exactly the same as the proof of Lemma 4.3. To prove
(b) we consider the subalgebra W1 generated by xn

i ∂i for all n. Then condition (5.3)
implies that N is a (W1,O1)-module and the statement follows from [13]. �

Remark 5.3. Consider the associative algebra A(m) generated by Wm⊗1 and 1⊗Om

with relations
(x⊗ 1)(y ⊗ 1)− (y ⊗ 1)(x⊗ 1) = [x, y]⊗ 1,

(1⊗ f)(1⊗ g) = 1⊗ fg,

(x⊗ 1)(1⊗ f)− (1⊗ f)(x⊗ 1) = 1⊗ x(f)

for x, y ∈ Wm and f, g ∈ Om. Any (Wm,Om) is an A(m)-module, and conversely, any
A(m)-module is a (Wm,Om)-module. Furthermore, A(m) is isomorphic to U(Wm)⊗
Om as a vector space by the correspondence (X⊗1)(1⊗f) 7→ X⊗f for allX ∈ U(Wm)
and f ∈ Om. Let B := A(m)⊗ U(k). Then any (g,Om)-module is a B-module.

Example 5.4. Let S be a k-module. We define a (g,Om)-module structure on the
vector space Om ⊗ S by setting

f(h⊗ s) = fh⊗ s, (f ⊗ Y )(h⊗ s) = fh⊗ Y s, X(h⊗ s) = X(h)⊗ s

for all f, h ∈ Om, Y ∈ k, X ∈ Wm and s ∈ S. One can easily verify that S̃ := Om⊗S
is a (g,Om)-module. Moreover, if R is a (Wm,Om)-module then F(R, S) := R⊗Om

S̃
is a (g,Om)-module.

Remark 5.5. A simple weight (Wm,Om)-module R with finite weight multiplicities
is a tensor module T (P, V ) for some simple weight Dm-module P and some simple
weight gl(m)-module V , see Theorem 3.7 in [19].

Lemma 5.6. If R is a simple (Wm,Om)-module and S is a simple weight k-module
then F(R, S) is a simple (g,Om)-module, in the sense that it does not contain proper
nontrivial (g,Om)-submodules.
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Proof. Observe that F(R, S) is isomorphic to R ⊗ S as a B-module. Hence it is a
simple B-module. This implies the statement. �

Lemma 5.7. If N = F(R, S) satisfies conditions (5.1) and (5.2), then S is a simple
cuspidal k-module, and R = T (P, V ) for some simple cuspidal Dm-module P a simple
finite-dimensional gl(m)-module V . For any λ ∈ suppN we have that dimNλ =
(dimV )d(S), where d(S) is the degree of the cuspidal module S.

Proof. The lemma follows from the isomorphism of h-modules F(R, S) ≃ R⊗S. �

Lemma 5.8. Let S be a simple nontrivial weight k-module, P be a simple weight
Dm-module, and V be a simple finite-dimensional gl(m)-module. Then F(T (P, V ), S)
is a simple g-module.

Proof. Choose a regular u ∈ k ∩ h that acts nontrivially on S, and denote by
F(T (P, V ), S)a the eigenspace of u with eigenvalue a. Let M be a proper nonzero
submodule of F(T (P, V ), S). Then Ma = M ∩ F(T (P, V ), S)a is Om-invariant for
any a 6= 0. Using the action of the root elements of k, we obtain that Ma is Om-
invariant for a = 0 as well. Hence M is a (g,Om)-submodule of F(T (P, V ), S) and
we reach a contradiction. �

Lemma 5.9. Let N be a simple (g,Om)-module satisfying (5.1) and (5.2). Then
N is isomorphic to F(R, S) for some (Wm,Om)-module R and some simple cuspidal
k-module S.

Proof. Recall the definition of B from Remark 5.3. Consider N as a B-module. By
definition, for any vector v ∈ N we have Bv = U(g)v (this follows from the relation
(f ⊗ Y )v = f(Y v)). Hence, N is a simple B-module. For a simple k-module S ′,
the subspace Homk(S

′, N) ⊗ S ′ of N is B-stable. Hence, there is a unique up to
isomorphism S ′, such that Homk(S

′, N) 6= 0. The existence of such S ′ follows from
condition on the support of N . Let S be such module. We have that R = Homk(S,N)
is a simple A(m)-module. Therefore, N ≃ R⊗S as a B-module. The condition (5.4)
ensures that N ≃ F(R, S). �

Recall that Ṽ stands for (Wm,Om)-module Om ⊗ V .

Lemma 5.10. Let N be a simple weight g-module, such that ∂i acts locally nilpo-
tently for all i = 1, . . . ,m. Then N is isomorphic to a simple submodule of F(Ṽ , S)
for some simple k-module S and a simple gl(m)-module V .

Proof. Let N0 be the space of invariants of ∂1, . . . , ∂m. If q is the parabolic subalgebra
associated to γ = −(ε1+ · · ·+εm), then N is the unique simple quotient of U(g)⊗U(q)

N0. Thus, N0 is a simple gl(m)⊕ k-module, so N0 = V ⊗ S for some simple modules
V and S. Then we have a natural homomorphism ϕ : N0 → F(Ṽ , S) of gl(m) ⊕ k-
modules, hence, also of q-modules. The homomorphism ϕ induces a homomorphism
Φ : U(g)⊗U(q) N0 → F(Ṽ , S) of g-modules. The image of Φ is isomorphic to N . �
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Lemma 5.11. Let N be a simple g-module satisfying (5.1) and (5.2). Assume that
one can define an Om-module structure on N in such a way that it satisfies (5.3) and

f(g ⊗ Y )v = (g ⊗ Y )fv, ∀v ∈ N, f, g ∈ Om, Y ∈ k.

Then N is a (g,Om)-module.

Proof. We need to verify (5.4). First, we claim that verifying (5.4) is equivalent to
checking

(5.5) x1(1⊗ Y ) = (x1 ⊗ Y ), ∀Y ∈ k.

Indeed, let f ∈ Om and X = f∂1. Then

[X, x1](1⊗ Y ) = f(1⊗ Y ) = [X, x1 ⊗ Y ] = f ⊗ Y.

For f, g ∈ Om we have

f(g ⊗ Y ) = fg(1⊗ Y ).

By Lemma 5.2, ∂i and xi act injectively on N . Therefore we can localize N with
respect to xi and define a (Wm, Õm)-module structure on N , where

Õm = C[x±1
1 , x±1

2 , . . . , x±1
m ].

Consider the twisted localization Dc

〈x1,...,xn〉
N of N with U = B, and some c ∈ Cm.

Next we observe that that there is c such that Dc

〈x1,...,xn〉
N has a nonzero weight

vector annihilated by all ∂i. Indeed, it is enough to find such c in the case n = 1. In
this case we first fix an eigenvalue α of the endomorphism (x1)(∂1)|Nλ where λ is any
weight of N .2 Then if v is nonzero vector such that (x1)(∂1)v = αv, (∂1)(x

−α
1 )v = 0.

Among all vectors in Dc

〈x1,...,xn〉
N annihilated by all ∂i choose a vector u of weight

µ with maximal possible |µ|r := Re
∑m

i=1 µi. Let N
′ be a g-submodule of Dc

〈x1,...,xn〉
N

generated by u. Note that for any ν ∈ suppN ′ we have |µ|r ≥ |ν|r. Let v ∈ N ′ have
weight ν with |ν|r = |µ|r. Then ∂iv = 0 and for any Y ∈ k

∂i(x1(1⊗ Y )− x1 ⊗ Y )v = 0.

Hence u′ = (x1(1 ⊗ Y ) − x1 ⊗ Y )v is annihilated by all ∂i. On the other hand, the
weight η of u′ satisfies |η|r = |µ|r + 1 hence u′ = 0. Let w ∈ N ′ be a weight vector of
weight λ with minimal |λ|r such that for some Y ∈ k

(x1(1⊗ Y )− x1 ⊗ Y )w 6= 0.

We have

∂i(x1(1⊗ Y )− x1 ⊗ Y )w = (x1(1⊗ Y )− x1 ⊗ Y )∂iw = 0,

which leads to a contradiction. Next we note that Dc

〈x1,...,xn〉
N = Õm · N ′. Since

x1(1⊗ Y )− x1 ⊗ Y commutes with Õm we have (x1(1⊗ Y )− x1 ⊗ Y )N (c) = 0. Then
(x1(1⊗ Y )− x1 ⊗ Y )N = 0. This completes the proof. �

2Warning: here x1 ∈ Om, ∂1 ∈ Wm and (x1)(∂1) should not be confused with x1∂1 ∈ Wm.
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Lemma 5.12. Assume that N is a simple g-module satisfying (5.1) and (5.2). Sup-
pose that there exists a central element z ∈ k which does not act trivially on N . Then
N is a (g,Om)-module and hence is isomorphic to a module F(R, S).

Proof. Without loss of generality we may assume that z acts as identity on N . Define
an Om-module structure on N by setting xiv := (xi ⊗ z)v. Then N satisfies the
assumptions of Lemma 5.11. The statement follows. �

Lemma 5.13. Let k be abelian and N be a simple g-module satisfying (5.1) and
(5.2). If kN = 0, then (Om ⊗ k)N = 0.

Proof. We will show that (f ⊗ h)N = 0 for any f ∈ Om, h ∈ k. Note that

[∂1, x1 ⊗ h]N = hN = 0.

Therefore we have the following identites on N :

[∂1(x1 ⊗ h), ∂2
1(x

2
1 ⊗ h)] = 2∂2

1(x1 ⊗ h)2 = 2(∂1(x1 ⊗ h))2,

[(∂1(x1 ⊗ h))k, ∂2
1(x

2
1 ⊗ h)] = 2k(∂1(x1 ⊗ h))k+1.

This implis that, on each weight space Nλ of N , trNλ(∂1(x1 ⊗ h))k = 0 for all k > 2.
Since N is bounded this implies nilpotency of ∂1(x1 ⊗ h) on N . Since ∂1 is invertible
on N we obtain that x1 ⊗ h is nilpotent on N . Let p be the nilpotency degree of
x1 ⊗ h. There exists v ∈ N such that w := (x1 ⊗ h)p−1v 6= 0. Then for f ∈ Om we
have

0 = f∂1(x1 ⊗ h)pv = p(f ⊗ h)(x1 ⊗ h)p−1v.

In other words, w is annihilated by Om⊗h. The subspace N ′ of all vectors annihilated
by Om ⊗ h is g-invariant, but we just proved that N ′ 6= 0. By the irreducibility of
N , we have N = N ′. Thus (Om ⊗ h)N = 0. �

Proposition 5.14. Let N be a g-module satisfying (5.1) and (5.2). Then for any
Borel subalgebra b ⊂ k there exists a simple bounded g-module N̄ satisfying the
following two conditions:

(i) There exists a weight λ ∈ h∗ such that supp N̄ ⊂ λ +
∑m

i=1 Zεi − Z≥0∆(b)
and λ(h ∩ k) 6= 0.

(ii) The module N is obtained from N̄ by a twisted localization with respect to
some set of commuting roots Γ ⊂ −∆(b).

Proof. Let k̂ = k + h, n = [b, b]. Then N is a bounded weight k̂-module, hence, any

cyclic k̂-submodule of N has finite length (see Lemma 3.3 in [14]). Let N0 be a simple

k̂-submodule of N . Note that N0 is a cuspidal k̂-module. By Proposition 4.8 in [14],
there exist µ ∈ (h ∩ k)∗ and Γ ⊂ −∆(b) such that N0 ≃ Dµ

ΓM0 for some simple

bounded b-highest weight k̂-module M0. Since Dµ
Γ is well defined for g-modules and

commutes with the restriction functor Resg
k̂
, M := D−µ

Γ N contains an n-primitive
weight vector v ∈ M0, while ∂i act injectively on M for all i = 1, . . . ,m. Since
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U(k̂)v is bounded it has finite k̂-length and hence there is λ′ ∈ suppU(k̂)v such that

λ′ + α /∈ suppU(k̂)v for all α ∈ ∆(b). The injectivity of the action of ∂i implies that

(λ′ + α +
m
∑

i=1

Z≥0εi) ∩ suppU(g)v = ∅.

If w is a nonzero vector of weight λ′ then

suppU(g)w ⊂ λ′ +
m
∑

i=1

Zεi − Z≥0∆(b).

This implies dim(U(Om ⊗ n))u < ∞ for any u ∈ U(g)w. By Lemma 2.3, the bound-
edness of U(g)w implies that U(g)w has finite length. Let N̄ be a simple submodule
of U(g)w. Then there is a nonzero weight vector u ∈ N̄ annihilated by Om⊗n. Then
N̄ satisfies (i) with λ being the weight of u, while (ii) follows from the simplicity of
N .

It remains to show that λ(h ∩ k) 6= 0. For the sake of contradiction, assume that
the opposite holds. Take a simple root α ∈ ∆(b). Then a simple computation shows
that g−αu is annihilated by Om⊗n. The simplicity of N̄ hence implies that g−αu = 0
for all simple roots α and thus M contains a trivial k-submodule. But the roots of Γ
act injectively on N and hence on M . This leads to a contradiction. �

For a weight µ ∈ (h ∩ k)∗ and a Borel subalgebra b of k, by Lb(µ) (or simply by
L(µ) ) we denote the simple b-highest weight k-module of highest weight µ.

Lemma 5.15. The module N̄ constructed in Proposition 5.14 is isomorphic to
F(T (P, V ), L(λ̄)) for a cuspidal simple Dm-module P , a simple finite-dimensional
gl(m)-module V , and a simple highest weight k-module L(λ̄), where λ̄ is the restric-
tion of λ to h ∩ k.

Proof. Consider γ ∈ (k ∩ h)∗ which determines the Borel subalgebra b. Then γ
determines also a parabolic subalgebra q in g. The q-top of the module N̄ is a
simple (Wm ⊕ h)-module. Since λ̄ 6= 0, this module is isomorphic to T (P, V ) ⊗ Cλ̄

by Lemma 5.12. A simple computation shows that it is also isomorphic to the top of
F(T (P, V ), L(λ̄)). Hence the statement follows from Proposition 2.5(c). �

Corollary 5.16. If k is not abelian then N is isomorphic to F(T (P, V ), S) for some
cuspidal simple Dm-module P , a simple finite-dimensional gl(m)-module V , and a
simple cuspidal k-module S.

Proof. The result follows immediately from Proposition 5.14, Lemma 5.15, and the
isomorphism of g-modules

D−µ
Γ F(T (P, V ), L(λ̄)) ≃ F(T (P, V ), D−µ

Γ L(λ̄)).

�
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Theorem 5.17. Let N be a simple bounded g-module satisfying (5.1) and (5.2).
Then we have one of the following two mutually exclusive statements.

(a) Om ⊗ k acts trivially on N and N is a unique simple submodule of T (P, V ) for
some simple cuspidal Dm-module P and a simple finite-dimensional gl(m)-module V .
In this case k must be abelian.

(b) N is isomorphic to F(T (P, V ), S) for some cuspidal simple Dm-module P , a
simple finite-dimensional gl(m)-module V and a simple nontrivial cuspidal k-module
S.

Proof. If k is not abelian the statement follows from Corollary 5.16. If k is abelian and
k acts nontrivially on N , the statement follows from Lemma 5.12. If k acts trivially on
N , then by Lemma 5.13, (Om ⊗ k)N = 0. Then N is a simple bounded Wm-module
and the statement is a consequence of Theorem 1.1 in [19]. �

6. Back to tensor modules via parabolic induction

6.1. The case of infinite-dimensional g. We retain the notation of Section 4 and
assume again that M is a simple weight Wn-module that is also the unique simple
quotient of the parabolically induced module U(Wn) ⊗U(p) N , where N is a simple
bounded g-module satisfying (5.1) and (5.2). We will use the properties of N listed
in Theorem 5.17.

Recall that p and m are fixed and defined in §4. Let p′ = p ∩ gl(n). The Levi
subalgebra of p′ is isomorphic to k⊕gl(m). Consider a g-module F(T (P, V ), S) where
V is a finite-dimensional gl(m)-module, P is a simple cuspidal Dm-module and S be
a simple cuspidal k-module. Note that S might be a trivial k-module in the case
when k is abelian. Let U be the one-dimensional k-module of weight

∑p

i=1 εi and

SU = S⊗U . Finally, let Ŝ be the unique simple quotient of U(gl(n))⊗U(p′) (S
U ⊗V ).

Using the isomorphism
Dn ≃ Dp ⊗Dm ⊗Dn−p−m,

define a Dn-module P̃ by

P̃ = C[x1, . . . , xp]
F ⊗ P ⊗ C[xp+m+1, . . . , xn],

(recall that XF is the full Fourier transform of X).

Lemma 6.1. The p-top of T (P̃ , Ŝ) is isomorphic to F(T (P, V ), S).

Proof. The statement follows by comparing the supports of the two modules. Let
p = g⊕ n.

supp P̃ =

p
∑

i=1

Z<0εi + suppP +
n
∑

i=p+m+1

Z≥0εi,

supp Ŝ ⊂ suppS +

p
∑

i=1

εi + suppV − suppU(n′),
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where n′ = n ∩ gl(n). Then we have that

suppF(T (P, V ), S) ⊂ suppT (P̃ , Ŝ) ⊂ suppF(T (P, V ), S) + suppU(n−),

where n− is the nilradical of the opposite parabolic. Moreover, the multiplicity of
any µ ∈ suppF(T (P, V ), S) is the same as its multiplicity in T (P̃ , Ŝ). �

Lemma 6.2. Let N = F(T (P, V ), S) be a simple g-module. Then the unique simple

quotient M of U(Wn)⊗U(p) N is isomorphic to unique simple submodule of T (P̃ , Ŝ).

Proof. The isomorphism of p-modules N → T (P̃ , V̂ )top induces a nonzero homomor-

phism of Wm-modules U(Wn)⊗U(p)N → T (P̃ , V̂ ). The image of this homomorphism

is simple since T (P̃ , V̂ ) has a unique simple submodule. Thus, this submodule is
isomorphic to M . �

Now assume that F(T (P, V ), S) is not simple. This is only possible if k is abelian,

S is trivial, and V =
∧k

Cm.

Lemma 6.3. Assume that N is the simple submodule T (P,
∧k

Cm) for some k =
0, . . . ,m− 1. Then the unique simple quotient M of U(Wn)⊗U(p)N is isomorphic to

the unique simple submodule of T (P̃ ,
∧p+k

Cn).

Proof. We consider the monomorphism of p-modules N → T (P̃ ,
∧p+k

Cn)top, and the
induced map

U(Wn)⊗U(p) N → T (P̃ ,
∧p+k

Cn).

To complete the proof, we use the same reasoning as the one in the proof of the
previous lemma. �

6.2. The case of finite-dimensional g. In this case we have m = 0 and g is a Lie
subalgebra of gl(n). Using arguments similar to the ones used in the previous subsec-
tion, one can show that the unique simple quotient of U(Wn) ⊗U(p) S is isomorphic

to the unique simple submodule of T (P̃ , Ŝ).

6.3. The case g = Wm. This case follows from Theorem 2.10.
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