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ABSTRACT

A comprehensive understanding of the interfacial behaviors of biomolecules holds great significance in the development of biomaterials and
biosensing technologies. In this work, we used discontinuous molecular dynamics (DMD) simulations and graphic contrastive learning
analysis to study the adsorption of ubiquitin protein on a graphene surface. Our high-throughput DMD simulations can explore the whole
protein adsorption process including the protein structural evolution with sufficient accuracy. Contrastive learning was employed to train a
protein contact map feature extractor aiming at generating contact map feature vectors. Subsequently, these features were grouped using the
k-means clustering algorithm to identify the protein structural transition stages throughout the adsorption process. The machine learning
analysis can illustrate the dynamics of protein structural changes, including the pathway and the rate-limiting step. Our study indicated that
the protein–graphene surface hydrophobic interactions and the p–p stacking were crucial to the seven-stage adsorption process. Upon
adsorption, the secondary structure and tertiary structure of ubiquitin disintegrated. The unfolding stages obtained by contrastive learning-
based algorithm were not only consistent with the detailed analyses of protein structures but also provided more hidden information about
the transition states and pathway of protein adsorption process and structural dynamics. Our combination of efficient DMD simulations and
machine learning analysis could be a valuable approach to studying the interfacial behaviors of biomolecules.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0157933

Protein interfacial behavior, including conformational changes
and orientation, is critical in various applications, such as biomateri-
als,1 antibacterial/antifouling coatings,2–4 industrial catalysts,5 biosen-
sors,6–9 biofuel cells,10 polymer membrane,11 and bioremediation.12,13

Protein adsorption occurs at the water–surface interface over a wide
time range, spanning from nanoseconds to seconds.8,14–16 It is difficult
to probe the dynamic process from the atomistic and molecular scales
by experiments alone, particularly the initial stage of adsorption.17

Molecular dynamics (MD) simulations at both atomistic3,4,6,11,18–21

and coarse-grained (CG) scales8,9,22 have been widely used to study
protein interfacial behaviors. However, MD simulations with explicit
solvent are computationally expensive, making it impractical to pre-
sent the entire process.

To accurately model protein adsorption and maintain computa-
tional efficiency, we incorporated a G!o-like model23–25 for protein–
surface interactions into discontinuous molecular dynamics (DMD)
simulations,26,27 which can efficiently operate at both the atomistic
and CG scales. DMD, originally proposed by Alder andWainwright,28

has been further developed to study biomolecular systems.29–33 Unlike
MD simulations driven by time,34,35 DMD simulations are event-
driven, allowing for adaptive and larger time steps and up to 100 times
greater computational efficiency.36 We employed DMD to study the
folding, aggregation, and adsorption of peptides and proteins.32,37–39

The structure transition processes of protein molecules observed
in DMD simulations can be represented by a sequence of contact
maps.40,41 To elucidate the pathway of the protein unfolding/folding
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on surfaces, we applied unsupervised autoencoders and clustering
algorithms to identify stages of protein structure transitions by gener-
ating low-dimensional feature vectors of a contact map and clustering
them.33,42 Contrastive learning43 is a state-of-the-art self-supervised
learning model that has proven effective in extracting deep representa-
tions from images for downstream tasks, such as clustering and classi-
fication.44–47 It is independent of the dataset and has been successfully
applied to study protein structures.48,49 In this study, we utilized con-
trastive learning to train a contact map feature extractor for protein
structural changes upon adsorption on a graphene surface. The feature
vectors were then grouped by the k-means clustering algorithm to
identify the protein transition stages during these processes.

Ubiquitin, a small protein composed of 76 amino acids, is present
in all eukaryotic cells and performs its functions by conjugating with a
wide range of target proteins.50–59 Ubiquitin can be implicated in neu-
rodegenerative diseases associated with proteostasis dysfunction, such
as Alzheimer’s disease, motor neuron disease, Huntington’s disease,
and Parkinson’s disease.60,61 Atomistic-level conformational changes
of ubiquitin adsorbed on different surfaces remain unrevealed despite
various experimental studies.62–64 This study aims to investigate the
structural changes of ubiquitin adsorbed on a graphene surface using
DMD simulations and graph clustering analyses.

In this study, we used our in-house developed program package,
sDMD.26,27 Our DMD simulations present protein intramolecular and
intermolecular interactions at the atomistic scale, while using a coarse-
grained scale to describe protein–surface interactions. This allows for
an accurate representation of protein folding/unfolding dynamics and
the impact of surface on protein structure simultaneously. In the simu-
lation, the interaction between the protein and the surface is modeled
using a G!o-like model.23–25,27,33 This model effectively captures the
major effects of the graphene surface on protein adsorption, including
hydrophobic interactions and p–p stacking. More details about the
model and simulation parameters are illustrated in the supplementary
material (Figs. S1 and S2 and Table S1). In this study, we adopted the

small protein ubiquitin as a model system. Our method of the com-
bined contrastive learning analysis and DMD simulations can be also
applied to study the adsorption behaviors of other types of proteins.

In the DMD simulations, the solvent was treated implicitly using
the Lazaridis–Karplus solvation model.65 It is noteworthy that due to
the event-driven nature of DMD and the implicit solvent treatment, it
is challenging to correlate simulation time and temperature with their
physical counterparts.66,67 Therefore, we used reduced units, including
the time step t! and temperature T! ¼ T=Ts, where Ts was deter-
mined by setting NkBTs ¼ E, where N is the Avogadro’s constant, kB
is the Boltzmann’s constant, and E is a unit of energy equal to 1 kcal/
mol. For simplicity, the superscript “!” will be omitted, as all the future
temperatures are dimensionless. The value of Ts was found to be
503.2K, and we set T ¼ 0:57, which was about 286.8K lower than the
folding temperature of ubiquitin.68 At T ¼ 0:57, our simulation
showed that the ubiquitin would not undergo structural denaturation
in the bulk water without a substrate surface.

An ubiquitin protein molecule (PDB code: 2MOR) was initially
placed 2.0 nm from an implicit graphene surface to study adsorption.
Simulation systems were enclosed in a 10# 10# 10nm3 box with the
periodic boundary conditions (PBCs) in the X, Y, and Z directions
(Fig. S4 in the supplementary material). The simulation protocol
included an energy minimization procedure, followed by multiple
short runs of 20 000 timesteps each, progressively increasing the sys-
tem’s temperature from 0.4 to 0.57. The production simulations were
performed in the NVT ensemble at T¼ 0.57 until the system reached
equilibrium, which occurred after approximately 3.0# 106 timesteps.

As illustrated in Fig. 1, the center of the algorithm is to use con-
trastive learning to train a contact map feature extractor by maximiz-
ing the agreement of positive pairs ð~xi; ~xjÞ in which ~xi and ~xj are
augmented contact maps obtained from the same contact map x. The
augmentation functions that generate the augmented contact maps
belong to a set of candidate augmentations U. In this work, U consists
of random resized cropping, Sobel filtering, and random horizontal

FIG. 1. The overall structure of contrastive
learning-based protein structure transition
stage identification. ð~x i ;~x jÞ are in a positive
pair if ~x i and ~x j are augmented contact
maps from the same contact map x, gener-
ated by randomly applied augmentations
u & U and u0 & U, in which U is the set
of candidate augmentation functions.
f •ð Þ ¼ ResNet50 is the feature extractor,
and g •ð Þ is a multilayer perceptron (MLP)
with one hidden layer that projects the con-
tact map representations for the loss func-
tion application.
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flipping. These operations are applied in the aforementioned sequen-
tial order stochastically with a probability of 0.5 each. The backbone
contact map feature extractor (ResNet50) and the project head [multi-
layer perceptron (MLP) with one hidden layer] are trained to maxi-
mize the agreement between augmented contact maps belonging to
positive pairs. The loss function used in the training is defined as

lossi;j ¼ 'log
expðsim xi; xjð Þ=s

P2N
k¼1 1 k6¼i½ )exp sim xi; xjð Þ

! " ;

where simðxi; xjÞ is the cosine similarity between a pair of augmented
contact maps ðxi and xjÞ. s is a temperature parameter, which is deter-
mined empirically. After the training in contrastive learning is done,
the sequence of contact maps obtained from the MD simulations is
fed into the backbone feature extractor. Features of contact maps are
vectors of size (2048# 1). These feature vectors are then grouped into
clusters by the k-means clustering algorithm to form stages of protein
molecular structure transitions.

In this work, we first simulated the entire adsorption process
using our high-throughput sDMD program.26,27 We carried out five
independent runs with different initial configurations of the ubiquitin
on the graphene surface. Upon visual inspection using VMD,69 the
simulation trajectories showed that ubiquitin protein adsorbed
onto the graphene surface and its structure collapsed, regardless of the
initial landing sites or orientations. Our simulations encompassed
3:0# 106 timesteps and involved approximately 25# 109 bond events
and 7.2 # 109 collision events. Based on Marchut and Hall’s estima-
tion,70 the timescale of our simulations was approximately 250 ls. To
conduct the contrastive learning analyses, we selected one representa-
tive simulation trajectory. Since the ubiquitin protein’s structure

disintegrated into random coils after 1.0# 106 timesteps, providing no
useful information on transition states, our contrastive learning analy-
sis focused only on the data from the first 1.0# 106 timesteps.

Figure 2 shows that the adsorbed ubiquitin protein underwent
significant structural transformations. At t ¼ 0:086# 106, the residue
Leu50 reached the graphene surface due to the hydrophobic interac-
tion, followed shortly by Leu56 and Ile61. Then, these three hydropho-
bic residues acted as anchors on the graphene surface. The protein
oscillated around the anchor sites and finally landed on the surface
with the hydrophobic residues of Ile23-Val26 in an a-helix and Leu15-
Val17 in a b-sheet at t ¼ 0:307# 106. In this state, the b-sheet was
perpendicular to the surface due to the strong residue–surface hydro-
phobic interactions, but it gradually collapsed and became a random
coil at t ¼ 0:800# 106 [Figs. 2(a) and 2(c)]. The further structural
collapse caused the attachment of hydrophobic residues (Ile3-Val5,
Leu8, Ile13, Leu15, Val17, Leu43-Phe45, Ile61, Leu67, Leu69-Leu71,
and Leu73). Residues (Tyr59 and His68) were also on the graphene
surface due to their p–p interactions with the surface. The protein’s
tertiary structure also collapsed, causing a significant increase in
the root-mean-squared deviation (RMSD) [Fig. 2(b)]. After
t ¼ 2:602# 106, b-strands reformed within Gln2-Gly11, Thr14-
Glu18, and Glu41-Leu50 residues, but they were parallel to the gra-
phene surface instead of perpendicular (see the full time evolution of
the secondary structure in Fig. S4 in the supplementary material).
Additionally, the a-helix (Ile23-Glu34) started to randomize at t ¼
1:600# 106 and did not recover until the end of the simulation. Our
results agree with previous experimental measurements,63 which
found significant changes in ubiquitin’s secondary structure on gra-
phene quantum dots. However, these changes cannot be observed in
MD simulations,63 due to the limited simulation time.

FIG. 2. (a) Zoom-in snapshots of the key events during the adsorption process. (b) RMSD of ubiquitin’s tertiary structure during the adsorption process. (c) Time evolutions of
the secondary structures. For the snapshots of ubiquitin, the hydrophobic residues were colored blue and the hydrophilic residues are red.
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Next, to identify the pathway of protein structure unfolding upon
adsorption, we analyzed the DMD simulation data in the first 1:0
#106 timesteps, using the contrastive learning-based analysis and the
simulated protein conformations. A ResNet50 contact map feature
extractor is trained by contrastive learning. The last fully connected
layer in ResNet50 is replaced by an identity layer with 2048 output
dimensions. The mini-batch size is 500, and the optimizer used in
training is stochastic gradient descent. The temperate parameter
s¼ 0.2. The base learning rate of a linear warmup cosine annealing
scheduler is set to 1.0# 10'6. The learning rate follows a linear
warmup schedule between 0.0 and the base learning rate followed by a
cosine annealing schedule. The maximum number of epochs is 550.
To prevent overfitting, training is stopped when there is no improve-
ment of epoch loss for 50 validation checks. The k-means clustering
algorithm is used to group the sequence of contact map features into
clusters. To determine the optimal number of clusters, we varied the
cluster number (k) from 2 to 16 and calculated the corresponding sil-
houette scores71 for each of them [Fig. 3(a)]. It was found that k ¼ 2

yields the highest silhouette score. The two stages represent the protein
in bulk and on the surface, respectively. Obviously, grouping the con-
tact maps into two clusters does not reveal enough details about the
adsorption process of ubiquitin protein on a graphene surface. k ¼ 7
yields the second-highest silhouette score; thus, seven is chosen as the
number of clusters for the k-means clustering algorithm [Fig. 3(b)].

The contact map in which the feature vector is the closest to the
centroid of the cluster is used as a representative of the stage [see the
red squares in Fig. 3(b)]. The representative contact maps for the seven
stages are at timesteps of 0:056# 106, 0:195# 106, 0:540# 106,
0:725# 106, 0:804# 106, 0:870# 106, and 0:953# 106 [Fig. 3(c)].
They correspond well to key events during the adsorption process,
including the protein’s native state (stage 1), residue anchoring (stage
2), protein rollover and bending to achieve a full landing (stages 3 and
4), b-sheet collapsing (stages 5 and 6), and random coil formation
(stage 7). From the time span of each stage as shown in Fig. 3(b), it
was observed that the protein’s full landing on the surface (i.e., rolling
and bending in stages 3 and 4) was the most time-limiting step in the

FIG. 3. (a) The Silhouette scores with a different number of stages, ranging from 1 to 16. Number 7 had the best score except for number 2. (b) Seven stages of the ubiquitin
adsorption process identified from the contrastive learning analyses. The stage IDs were rearranged to form seven stages in a chronological sequence. The red dots represent
the positions that were in closest proximity to their respective stage centers. (c) The representative contact maps of ubiquitin corresponding to each of the stage centers. The
distance unit of the color bar of contact maps is Å. Note: For the purpose of visualization effect, the contact maps here are presented with colormaps.

Applied Physics Letters ARTICLE pubs.aip.org/aip/apl

Appl. Phys. Lett. 122, 253701 (2023); doi: 10.1063/5.0157933 122, 253701-4

Published under an exclusive license by AIP Publishing

 10 July 2023 02:15:28

pubs.aip.org/aip/apl


process of protein adsorption (i.e., 1:0# 106 steps). In our DMD sim-
ulations, the dehydration of the surface and protein was taken into
account (see the method of DMD in the supplementary material).
This observation was consistent with our previous studies8,9,18,72–74 of
atomistic and CG MD simulations with explicit water, which showed
that, in order to achieve maximum contact with the surface at the
equilibrium state, the interfacial water molecules needed to be
depleted, and the protein rotated on the surface accompanied by slow
structural changes. Once the protein fully contacted the surface (in
stage 5 and after), a significant portion of the secondary structures
quickly and continuously randomized [Fig. 2(c)].

It is worth noting that the contact map feature extractor is cru-
cial for obtaining lower-dimensional characteristic representations
of contact maps, which ensures the success of k-means clustering
analysis. The length of the ubiquitin protein amino acid sequence is
76; thus, the dimension of a contact map of it is 76# 76 ¼ 5776;
storing the pair-wise distance of the amino acids. The freedom of
contact maps is reduced to 2048 by the feature extractor. When the
sequence of contact maps becomes longer, it is helpful to reduce the
representation dimension further to ensure that the k-means cluster-
ing results are stable. As shown in the supplementary material, to
analyze simulation data in 3:0# 106 timesteps, the representation
feature vector dimension is reduced to 512 by replacing the last fully
connected layer of the ResNet50 with a linear layer of 2048 input and
512 output dimensions, respectively. By comparing the molecular
structure transition stages in Figs. 3(b) and S4 in the supplementary
material, both results align well with each other within the first
1:0# 106 timesteps. However, once the protein structure eventually
transformed into random coils, the resulting contact maps provided
only arbitrary and insignificant structural details, leading to the
detection of rapid flipping movement by the contrastive-learning-
based analysis [see Fig. S4(b) in the supplementary material]. This
also demonstrates the reliability of the contrastive learning method
in analyzing protein structural transitions.

In this work, we employed graphic contrastive learning to ana-
lyze the DMD simulation trajectory of the ubiquitin adsorption on
the graphene surface. Our DMD simulations with a G!o-like CG
model can simulate protein–surface adsorption with large temporal
scale and structural changes. Upon adsorption, ubiquitin’s structure
randomized due to strong hydrophobic and p–p interactions.
Contrastive learning analysis can detect protein folding/unfolding
and elucidates the entire pathway of structural changes and the rate-
limit step. Our study revealed a seven-stage unfolding pathway of
ubiquitin on graphene. Combining this machine learning approach
with efficient DMD simulations could be an essential tool for accel-
erating materials discovery and phenomena for biomolecular
systems.

See the supplementary material for the all-atom protein model
and implicit solvation model (Figs. S1 and S2), G!o-like model for the
protein–surface interaction (Table S1), initial simulation system (Fig.
S3), and comprehensive analysis results for the entire simulation of
3:0# 106 timesteps (Fig. S4).
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