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The impact of a liquid drop on a solid surface involves many intertwined physical
effects, and is influenced by drop velocity, surface tension, ambient pressure
and liquid viscosity, among others. Experiments by Kolinski et al. (2014b) show
that the liquid–air interface begins to deviate away from the solid surface even
before contact. They found that the lift-off of the interface starts at a critical
time that scales with the square root of the kinematic viscosity of the liquid. To
understand this, we study the approach of a liquid drop towards a solid surface in
the presence of an intervening gas layer. We take a numerical approach to solve
the Navier–Stokes equations for the liquid, coupled to the compressible lubrication
equations for the gas, in two dimensions. With this approach, we recover the
experimentally captured early time effect of liquid viscosity on the drop impact,
but our results show that lift-off time and liquid kinematic viscosity have a more
complex dependence than the square root scaling relationship. We also predict
the effect of interfacial tension at the liquid–gas interface on the drop impact,
showing that it mediates the lift-off behavior.
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1. Introduction

The dynamics of a falling liquid drop as it impacts on a substrate depend on the
initial conditions and physical properties of the liquid, the surrounding media
and the substrate. Depending on the relevant physical parameters, the liquid
drop may splash, spread or bounce upon impact with a solid substrate. The
diversity of patterns produced by liquid drops impacting on a solid substrate in
the presence of ambient air were first captured by Worthington (1877), even before
the invention of flash photography, through observations of patterns under the
light of a spark produced by a break in an electric circuit when the drop hits the
substrate. Worthington’s drawings of these patterns sparked many investigations
into the physical phenomena associated with drop impact, many of which are
summarized in review articles (Rein 1993; Yarin 2006; Josserand & Thoroddsen
2016).
Many physical parameters are known to affect the dynamics of a drop upon

impact with a substrate (Rioboo et al. 2002). These include the initial size and
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velocity of the drop (Pasandideh-Fard et al. 1996; Riboux & Gordillo 2014),
viscosity of the liquid (Pasandideh-Fard et al. 1996; Stevens et al. 2014), pressure
and viscosity of the surrounding medium (Xu et al. 2005; Sprittles 2015), interfacial
tension between the liquid and its surrounding medium (Rioboo et al. 2003;
Pasandideh-Fard et al. 1996), and the physical properties of the substrate (Range &
Feuillebois 1998; Rein 1993; Yarin 2006; Latka et al. 2012; Josserand & Thoroddsen
2016). Experiments by Xu et al. (2005) show that in the impact of a liquid drop
on a solid substrate, ambient air pressure determines whether the drop eventually
splashes, characterized by the ejection of a number of small drops into the air,
or forms a thin film and spreads smoothly onto the surface (Driscoll et al. 2010).
This suggests a role of the surrounding gaseous medium in determining the impact
dynamics even before the drop makes contact with the solid substrate, motivating
investigation into the role of an intervening gaseous layer in determining dynamics
of a liquid drop as it approaches a solid substrate, prior to contact of the drop
with the substrate.
Theoretical work on the role of an intervening layer of gas in the approach

of a liquid drop towards a solid surface has been carried out in simplified two-
dimensional (Mandre et al. 2009; Mani et al. 2010; Mandre & Brenner 2012;
Moore et al. 2013) and axisymmetric (Hicks & Purvis 2010) geometries. Some
of these theoretical investigations (Mandre et al. 2009; Mani et al. 2010; Hicks
& Purvis 2010; Mandre & Brenner 2012) consider an inviscid liquid drop falling
towards a solid surface in the presence of an ideal gas, and predict that the drop
deforms due to a buildup of pressure in the gas trapped underneath the drop,
prior to its contact with the solid substrate. Since these studies assume the fluid
flow in the drop is inviscid, the velocity field is given by a potential flow. This
substantially simplifies the analysis, allowing the dynamics to be modeled using
values of relevant field variables exclusively at the liquid–gas interface using a
lubrication approximation, without explicitly computing the fluid flow in the bulk
of the drop. A schematic of the deformation of the drop is shown in Figures 1(a)
and 1(b).
The theoretical predictions of drops deforming on a layer of air between the liquid

drop and solid substrate, prior to contact between the drop and the substrate,
are consistent with previous experimental observations (Thoroddsen et al. 2005).
Measurements of the air layer thickness underneath the impacting drop have been
performed (Driscoll & Nagel 2011; Kolinski et al. 2012; van der Veen et al. 2012;
de Ruiter et al. 2012). Subsequent experimental work by Kolinski et al. (2014b)
shows the effect of liquid viscosity on the evolution of the liquid–air interface
even before contact with the substrate, which is not captured by the potential
flow description of the evolution of liquid dynamics in previous theoretical work
(Mandre et al. 2009; Mani et al. 2010; Mandre & Brenner 2012).

In this work, we are concerned with the dynamics of a liquid drop as it approaches
a rigid, non-porous, solid surface, in the presence of an ambient gas. We modify the
physical model of Mandre, Mani and Brenner by incorporating the viscosity of the
liquid. Due to the additional viscous term in the governing equations for the liquid,
the coupled interaction of the liquid and gas becomes theoretically intractable, and
it is necessary to solve numerically for the fluid flow in the bulk of the drop. There
are a variety of previous computational studies of drop impact, such as looking at
the dynamics of spreading (Eggers et al. 2010), splashing (Josserand & Zaleski
2003; Boelens & de Pablo 2018), or rebound from superhydrophobic surfaces
(Renardy et al. 2003). Duchemin & Josserand (2011) generalized the potential flow
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model of Mandre et al. (2009) to work in axisymmetric coordinates, where the
liquid–gas interface is represented as an arbitrary curve, allowing a full spherical
drop to be represented. With this model, they were able to predict the emergence
of a thin jet skating above the gas layer, and they found that without surface
tension a finite-time singularity forms where the liquid–gas interface touches the
substrate. More recently, Duchemin & Josserand (2020) solved the lubrication
equations in the thin gas layer; this work describes the drainage of the gas during
impact of a drop onto a solid substrate or a liquid film.
Philippi et al. (2016) and Jian et al. (2018) examined the early stages of drop

impact, making use of the Gerris/Basilisk flow solvers (Popinet 2003, 2009; Lagrée
et al. 2011; Popinet 2015) for tracking the liquid–gas interface. This simulation
framework provides greater flexibility allowing the dynamics to be tracked over a
longer time. In comparison, our reduced description uses a simpler description
of the initial dynamics, and is well-suited to handle the disparate length scales
between the gas layer and the drop. We solve the incompressible Navier–Stokes
equations in the drop, using a modern implementation of Chorin’s projection
method (Chorin 1967, 1968) that incorporates improvements from Almgren, Bell,
Collela and coworkers (Bell et al. 1989; Colella 1990; Almgren et al. 1996). Our
numerical model allows us to resolve the flow field and pressure in the drop, and
examine the effects of many different physical parameters in ways (e.g., viscosity,
surface tension) that would be difficult to do in an experiment. We validate our
model using theoretical results (Mandre et al. 2009; Mani et al. 2010; Mandre
& Brenner 2012). Using our model, we are able to recapitulate the square-root
scaling with liquid viscosity of the lift-off time observed by Kolinski et al. (2014b).
However, our results show that the precise relationship between lift-off time and
liquid viscosity is more complicated. We explore the dependence of lift-off time
on surface tension, initial drop velocity, and drop radius.
In the following sections, we describe the physical model and parameter regime,

followed by approximations made in the simulation domain. We then describe the
results from our simulations, along with comparisons with previous theoretical
and experimental studies. Our numerical results are consistent with theoretical
calculations (Mandre et al. 2009) as well as experimental results (Kolinski et al.
2014b). Our results predict the effect of viscosity and interfacial tension on the
dynamics of drop impact.

2. Model

In this section, we first explain the physical set-up and specify the parameter
regime considered in the rest of this work. Based on the physical set-up and
parameter regime, we then describe the mathematical model. The mathematical
model largely derives from the previous theoretical work of Mandre et al. (Mandre
et al. 2009; Mani et al. 2010; Mandre & Brenner 2012). We specify the predictions
made by this model, experimentally-observed deviations from these predictions,
and then the mathematical model used in our work. We then use this mathematical
model to derive appropriate boundary conditions for the flow in the drop.

2.1. Physical problem and parameter regime

The physical set-up is a drop of liquid falling towards a flat, solid surface in the
presence of a surrounding gas. As the liquid drop falls towards the solid surface, it
interacts with the surrounding gas. We are interested in modeling and simulating
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Figure 1: Schematic of the physical and computational model. (a) Relative locations of the falling
drop, intervening gas layer and solid substrate. (b) A schematic zoomed into the region of interest,
showing an exaggerated view of a deformed liquid–gas interface (green), and a schematic of the
region where viscous effects are important (yellow). (c) Control volume and grid for discretization
constructed in the fluid domain.

the coupled dynamics of the liquid and the gas before the liquid makes contact
with the solid surface.
Figure 1(a) shows a schematic of the physical problem, indicating the relative

locations of the liquid drop, the surrounding gas and the solid surface. The drop
is initially spherical, with radius R, falling towards a horizontal solid surface at
uniform vertical velocity V0. The gas is initially at uniform pressure P0. We specify
the values of initial conditions and physical properties considered for the liquid
and air in Table 1. We use the subscripts l and g to denote the liquid drop and
the gas, respectively, and 0 to denote the initial conditions.
In the parameter regime specified in Table 1 potential flow theory argues that

the relevant Reynolds number, based on the initial velocity V0 and drop radius
R, is O (102), allowing for an inviscid consideration of the liquid. We refer to the
mathematical model as the potential flow model, and the theoretical predictions
arising from this mathematical model as the potential flow theory.
The potential flow theory predicts that, as the drop falls towards the solid

surface, a buildup of air pressure underneath the drop causes the drop to deform
in the middle, developing a dimple. The drop then spreads over a thin layer of gas
that separates it from the substrate. The potential flow theory predicts scaling
laws for the height of the gas layer. Subsequent experimental observations of the
gas underneath the drop (Kolinski et al. 2012; van der Veen et al. 2012; de Ruiter
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Symbol Quantity Order of magnitude Units

P0 Initial gas pressure O(105) Pa
R Initial drop radius O(10−3) m
V0 Initial drop velocity O(10−1–100) m/s

γ Heat capacity ratio, gas O(1) –
ρg Density of gas O(100) kg/m3

ρl Density of liquid O(103) kg/m3

νg Kinematic viscosity of gas O(10−5) m2/s
νl Kinematic viscosity of liquid O(10−6–10−4) m2/s

Table 1: Relevant initial conditions and physical parameters, and their approximate values, which
informs the mathematical model. The subscripts l and g denote the liquid drop and the gas,
respectively, and 0 denotes initial conditions.

et al. 2012) show the existence of this dimple and the shape of the drop profile,
similar to the predictions of the potential flow theory.
Experimental observations made by Kolinski et al. (2014b) in part of this

parameter regime show that the falling drop first develops a dimple in the middle
of the drop, as schematized by the liquid–gas interface shown in green in Figure 1(b).
This is consistent with the potential flow theory (Mandre et al. 2009; Mani et al.
2010; Mandre & Brenner 2012). Subsequently in time, and prior to contact of the
liquid–gas interface with the solid substrate, the shape of the interface depends
on the kinematic viscosity of the liquid. Specifically, there is a critical time τc at
which the minimum height of the drop from the substrate stops decreasing, and
the leading edge of the drop begins to move away from the surface. The time τc
is measured relative to the time when the drop would have made contact with
the substrate if it were not deforming due to interactions with an intervening gas.
Kolinski et al. (2014b) observe that τc ∝ νl

1/2.
As a consequence of the discrepancy between the observations of Kolinski et al.

(2014b), who definitively show the effect of liquid viscosity on the shape of the
liquid–gas interface well before contact between the liquid and the substrate, and
the potential flow theory, we are specifically interested in capturing the role of
liquid viscosity, on these coupled dynamics. Based on the observations of Kolinski
et al. (2014b), we modify the potential flow model to consider a liquid described
by the full Navier–Stokes equations, rather than an inviscid approximation.

2.2. Mathematical model

The dynamics of an initially spherical drop are naturally described in terms of
three-dimensional spherical polar co-ordinates, and those of the gas layer in terms
of three-dimensional cylindrical polar co-ordinates. In this co-ordinate system,
based on experimental observations of air layer profiles under an impacting drop
(Kolinski et al. 2012; de Ruiter et al. 2012; van der Veen et al. 2012; Kolinski et al.
2014b,a, 2019), we first use the simplifying approximation of axisymmetric flow
in the drop and the gas, with the axis of symmetry being perpendicular to the
substrate, through the centre of the undeformed drop.
As in the potential flow model (Mandre et al. 2009; Mani et al. 2010; Mandre

& Brenner 2012), we further simplify our consideration by approximating the
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drop as initially being an infinite cylinder, with the long axis perpendicular to the
substrate, rather than spherical. With these assumptions and approximations, we
can describe the dynamics of the liquid and gas using two-dimensional Cartesian
co-ordinates (x, y). The initial height h(x, t = T0) of the liquid–gas interface is
described by a parabolic profile as

h(x, t = T0) = H0 +
x2

2R
, (2.1)

where H0 is the initial height of the centre of the interface, i.e., at x = 0.
We model the flow in the liquid using the incompressible Navier–Stokes equations.

The continuity equation for the liquid is

∇ · ul = 0, (2.2)

and the momentum equation for the liquid is

ul,t + ul · ∇ul = −∇pl
ρl

+ νl∇2ul, (2.3)

where ul = (ux, uy), pl and ρl are the velocity, pressure, and density of the liquid,
respectively.
Based on the potential flow theory (Mandre et al. 2009; Mani et al. 2010; Mandre

& Brenner 2012) and subsequent experimental observations (de Ruiter et al. 2012;
van der Veen et al. 2012; Kolinski et al. 2014b), the gas layer is slender, with
the horizontal length scale Lx being much greater than the vertical length scale
Ly, allowing for an approximation of one-dimensional flow in the gas. The height
h = h(x, t) of the gas layer is thus described by the compressible lubrication
equation (Taylor & Saffman 1957),

12µg (ρgh)t =
(︁
ρgh

3pg,x
)︁
x
, (2.4)

and the equation of state is described by an adiabatic assumption,

pg
P0

=

(︃
ρg
ρ0

)︃γ

. (2.5)

The coupling of flows in the liquid and gas at their interface is done using the
Laplace condition for pressure,

pl = pg + σhxx, (2.6)

and equality of shear stress in the liquid and gas at the liquid–gas interface is

τl(x, h) = τg(x, h). (2.7)

Far enough away from the deforming effects of the intervening gas layer on the
liquid drop, the pressure in the gas is the ambient pressure, limx→±∞ pg(x, t) = P0.
Given that the initial and boundary conditions are symmetric about x = 0, we

modify our mathematical model to incorporate symmetry boundary conditions
about x = 0. We do so by applying the boundary conditions (u, vx) = (0, 0) in
the liquid domain and pg,x = 0 and hx = 0 in the gas layer.

2.3. Liquid domain and boundary conditions

Having specified the physical problem in Section 2.1 and the mathematical model,
with initial and boundary conditions, in Section 2.2, we now turn to a description
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of the domain and boundary conditions that specify the flow in the liquid in
a computationally tractable manner. The assumptions that lead to numerical
approximations in this section are specified in Sections 2.1 and 2.2. We detail
them here as appropriate.

2.3.1. Rectangular domain with mass flux

Following from the previous section, the liquid drop is described by a two-
dimensional flow field. As the drop interacts with the gas layer, its shape changes.
The drop begins to deform close to the middle of the interface, at x = 0. With
this observation, we choose a region of interest, as shown in Figure 1(b), that
stretches outwards from x = 0 and upwards from y = h(x, t).
We make an additional approximation that the flow in the liquid at y = h(x, t)

can be approximated by the flow at y = 0. We can remove the spatial dependence
because the liquid–gas interface is slender. We simulate the control volume with
and without a temporal dependence y = h(t), and do not observe a significant
change in results. With these approximations, we are able to choose a rectangular,
inertial control volume, stretching outwards from x = 0 and upwards from y = 0,
whose size is chosen based on the relevant physical scales (Section 2.4). With the
use of symmetry in the domain, as described in Section 2.2, we need to model
only half of the control volume. We choose to model the right half, leading to the
computational domain shown in Figure 1(c). In subsequent sections, we describe
the boundary conditions at each of the boundaries in the computational domain.

2.3.2. Treatment of the viscous term and bottom boundary condition

Initially, the drop is moving at uniform vertical velocity, meaning that all spatial
velocity gradients are zero, and ∇2ul = 0. Deformation of the drop begins at
x = 0. Our model consequently assumes that the shear stresses are small away
from this region where the drop has deformed. In a two-dimensional flow, vorticity
is introduced only through shear stresses at the boundary. The vorticity therefore
spreads into the interior of the drop from the deformed interface. We thus model
the drop as having a region close to (x, y) = (0, 0), where viscosity is important,
while far away from this region, νl∇2ul makes a negligible contribution to equation
(2.3). A schematic of the region where viscosity is important in the deformed drop
is shown by yellow in Figure 1(b) and (c). Consequently, we model the domain as
having one boundary where viscous effects are important, which is the bottom
boundary.
At the bottom boundary, we apply the boundary conditions specified in equations

(2.6) and (2.7). Equation (2.7) is enforced through a condition on the gradient of
the horizontal velocity,

ul,y(x, 0) =
µg

µl

ug,y(x, 0). (2.8)

2.3.3. Boundaries in the interior of the drop: top and right boundary conditions

According to our approximation of a rectangular domain, the bottom boundary
of the liquid interacts with the gas layer. The other boundaries are chosen to
be in the interior of the drop, away from the effect of vorticity from the bottom
boundary, and can be treated as inviscid. With this approximation, at these
boundaries, denoted as interior boundaries, we simplify the momentum equation
for the liquid, equation (2.3), by noting that the viscous term, νl∇2ul, is relatively
small.
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Additionally, the velocity gradients in the liquid are initially zero. Away from the
effects of the gas layer, the nonlinear advective term in the momentum equation,
ul ·∇ul in equation (2.3), will also be small. With these approximations, we obtain
a simplified momentum equation for the liquid at these boundaries,

ul,t = −∇pl
ρl

. (2.9)

We use this simplified momentum equation to obtain velocity boundary conditions
at the interior boundaries. Taking the divergence of equation (2.9) and noting that
the flow in the liquid is incompressible, we obtain ∇2pl = 0. Knowing the pressure
at the bottom boundary, and approximating the liquid as a semi-infinite domain,
we get an analytical expression for the pressure at the interior boundaries,

pl(x, y) =
1

π

∫︂ ∞

−∞
pl(s, 0)

y

(x− s)2 + y2
ds. (2.10)

Assuming that the domain is larger than the region where the pressure from
the gas is non-zero, we numerically integrate over a finite length of the domain
boundary to get the pressure at a particular (x, y) location along the interior
boundaries. Given the pressure at the boundary, we integrate equation (2.9) in
time to obtain velocity boundary conditions at the interior boundaries. The size
of the region where vorticity is significant determines the size of the domain, and
the locations of the interior boundaries, which are calibrated in simulation.

2.4. Choice of domain

We simulate the coupled dynamics of the liquid and gas over the time interval
0 ⩽ t ⩽ tend, for a simulation domain of 0 ⩽ x ⩽ L and 0 ⩽ y ⩽ βL, where β is
the aspect ratio, for the liquid, and a domain of 0 ⩽ x ⩽ L for the gas. To set
the size of the domain and duration of the simulation, we consider the initial
dynamics as the drop falls toward the surface, and compare to the theoretical
results of the potential flow theory (Mandre et al. 2009). We use the scaling results
of the potential flow theory for the centre of the gas layer, h(x = 0, t). The scaling
analyses predict the height H∗ at which the pressure buildup in the gas layer
causes the drop to undergo significant deformation and develop a stagnation point
at x = 0, forming a dimple.
According to potential flow theory, the compressibility of the flow in the gas is

determined by the parameter

ϵ ≡ P0RSt4/3

µgV
, (2.11)

which is the ratio of the initial gas pressure to the pressure that would have built
up if the gas were treated as incompressible, where St ≡ µg/ρlV R (Mandre et al.
2009; Mani et al. 2010; Mandre & Brenner 2012; Langley et al. 2017).
The results of Kolinski et al. (2014b), showing the relationship between νl

and the drop profile, correspond to ϵ−1 < 1, meaning that the flow in the gas
can be considered to be incompressible. While our simulations model the full
incompressible flow in the gas, we use this approximation to set the initial
conditions. In this regime, we have the estimate

H∗ = RSt2/3. (2.12)
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This scaling result is strictly valid for inviscid flow, νl = 0, Re → ∞, and no
surface tension at the liquid–air interface, σ = 0, We → ∞. While our simulations
incorporate liquid viscosity and surface tension, equation (2.12) still provides a
good estimate for the height at which the stagnation point forms, and is a useful
measure of the physical scales of interest. We therefore set the initial height to be
a multiple of H∗, so that

H0 = H̃0H
∗ = H̃0RSt2/3, (2.13)

for a dimensionless constant H̃0. Similarly, we set tend = t̃endRSt2/3/V , and based
on the parabolic shape of the initial profile we choose L = L̃RSt1/3, where L̃ and
t̃end are dimensionless constants.

3. Numerical implementation

In this section, we describe the numerical implementation of the mathematical
model described in Section 2.2. Throughout the liquid domain, we compute and
record the liquid velocity ul and pressure pl. In the gas layer, we compute and
track the height h and pressure pg. A reader may skip the remainder of this section
without loss of continuity.
The flow-field variables ϕ are computed at discretized time steps, with simulation

time t = n∆t, where ∆t is the time step discretization used in the simulation, and
n is an integer counter. Given values of field variables ϕ(n) = ϕ(t = n∆t), the goal
of the simulation is to compute the field variables ϕ(n+1). This section describes
the numerical method for doing so, for the liquid flow-field variables, ul and pl,
and gas flow-field variables, h and pg.

3.1. Projection method

The core of the algorithm is based on Chorin’s projection method (Chorin 1967,
1968), with further developments in the computational techniques behind the fluid
simulation method (Bell et al. 1989; Almgren et al. 1998). In particular, the work of
Almgren et al. (Almgren et al. 1996) introduces the approximate projection method
discretized using the finite-element method (FEM). The numerical methods are
described in detail by Sussman et al. (1999), Yu et al. (2003, 2007), and Rycroft
et al. (2020). Here, we sketch the main features of these methods.

We solve for ul and pressure pl in the liquid domain by solving the momentum
equation for the liquid, equation (2.3), subject to incompressibility of the liquid,
as specified in equation (2.2). In describing the method for the solution of the
field variables in the liquid domain, for the remainder of this section, we drop the
subscript l.
The field variables are defined on a two-dimensional grid, discretized into

rectangular cells of size ∆x by ∆y, as shown in Figure 2. The velocities un are
located in the cell-centers, and the pressures pn are located at the cell corners.
To advance from step n to n+ 1, we first compute an intermediate velocity u∗

according to

u∗ − un

∆t
= − [u · ∇u]

n+1/2
+

ν

2

(︁
∇2un +∇2u∗)︁ . (3.1)

Here, the viscous stress terms ν∇2u and ν∇2u∗ are evaluated using a standard
five-point finite-difference stencil. Due to the presence of the u∗ on the right hand
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side of equation (3.1), it must be solved implicitly. We use a multigrid method to
solve the resulting linear system.
The advective term [u · ∇u]n+1/2 is evaluated at the half-timestep n + 1/2

using the second-order Godunov upwinding scheme of Colella (1990). This is
performed by extrapolating the velocity in each cell to midpoints of the four edges
using a first-order Taylor expansion. Doing this requires that the gradient of the
velocity is first evaluated at each cell center, which is done using the fourth-order
monotonicity-limited scheme of Colella (1985). This scheme uses a five-point
stencil in each coordinate, therefore requiring information from two grid points in
each orthogonal direction.
After this procedure, each edge has two velocities from the two adjacent cells.

A Godunov upwinding procedure is then used to select one based on the direction
of the velocity. An intermediate marker-and-cell (MAC) projection is then used to
adjust the velocities to satisfy a discrete zero divergence criterion, so that the net
mass flow out of each cell is zero (Bell et al. 1991; Sussman et al. 1999). After this,
the advective term can be accurately evaluated using centered finite differences of
the upwinded edge-based velocities (Sussman et al. 1999; Yu et al. 2003, 2007;
Rycroft et al. 2020).
The velocity at step n+ 1 can be calculated from the intermediate velocity by

evaluating the pressure gradient term,

un+1 − u∗

∆t
= −1

ρ
∇pn+1, (3.2)

but this requires knowledge of the pressure field pn+1, and there is no explicit
update equation for this field in the incompressible limit. To proceed, we take
divergence of equation (3.2) and enforce that ∇ · un+1 = 0, according to equation
(2.2). Hence,

∇ ·
[︃
∆t

{︃
1

ρ
∇pn+1

}︃]︃
= ∇ · u∗, (3.3)

which is a Poisson equation for the pressure that can be solved. Once pn+1 is
known, equation (3.2) can be used to evaluate un+1 and complete the timestep
from n to n+1. We solve equation (3.3) using the FEM discretization of Almgren
et al. (Almgren et al. 1996). Here, each pressure value at a cell corner has a
corresponding bilinear hat function over the four neighboring grid cells (Yu et al.
2003, 2007; Rycroft et al. 2020). Once the pressure is computed, the gradient in
equation (3.2) is evaluated using centered finite differences of the pressure field
values.

3.2. Implementation of boundary conditions: ghost layers

The boundary conditions are implemented by means of ghost layers. Around
the boundaries of the two-dimensional liquid domain, there are two layers of
additional grid points. Two layers are required in order to evaluate the fourth-order
monotonicity-limited derivatives arising from the advective term. The boundary
conditions are specified in these layers of grid points. These conditions are then
used to compute the necessary gradients in equation (3.1).
The velocity boundary conditions at the top and right boundaries of the liquid

domain, corresponding to the interior of the drop, and described in Section 2.3.3,
are obtained through substituting the expression for pressure given by equation
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A.   discretization of flow in the liquid

B.   discretization of flow in the gas 

Figure 2: Discretization of the field variables. A: The two-dimensional computational grid
for the liquid. B: The one-dimensional computational grid for the gas.

(2.10) in the expression for velocity at these boundaries, equation (2.9), and then
using Simpson’s rule to numerically integrate the pressure along these boundaries.

3.3. Solution of the gas layer equations

The field variables h and pg for the gas layer are discretized in accordance with
the discretization for the field variables for the liquid. Specifically, the pressure
field pg is stored at grid points in the same locations along the horizontal axis as
the pressure field in the liquid, as shown in Figure 2. The height h is stored at
grid points in the same locations along the horizontal axis as the velocity field u
in the liquid.
As shown in Appendix A.1, substituting the equation of state (2.5) into the

lubrication equation (2.4) yields

12
µ

γ
hpt + 12µhtp =

1

γ
h3pxpx + 3h2hxppx + h3ppxx, (3.4)

where the g subscript on the pressure has been dropped. We solve for this equation
as follows:

(i) p is known at the time step t(n) = n ∆t
(ii) h, ht, and therefore hx are known at time step t(n) = n ∆t
(iii) solve for p at time step t(n+1) = (n+ 1) ∆t
(iv) use p as a boundary condition for the flow in the liquid, to obtain v = ht at

time step t(n+1)

To numerically solve equation (3.4) we discretize the spatial derivatives using
second-order centered finite differences. To avoid a timestep restriction, we make
use of the backward Euler method for discretizing the temporal derivative. Hence
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we obtain the discretized form

12
µ

γ
h̄

(︃
pn+1
i − pni
∆t

)︃
+ 12µh̄tp

n+1
i =

1

γ
h̄
3
(︃
pn+1
i+1 − pn+1

i−1

2∆x

)︃2

+ 3h̄
2
h̄xp

n+1
i

(︃
pn+1
i+1 − pn+1

i−1

2∆x

)︃
+ h̄

3
pn+1
i

(︃
pn+1
i+1 − 2pn+1

i + pn+1
i−1

∆x2

)︃
, (3.5)

that can be solved for the gas pressure pn+1
i . In equation (3.5), the terms h̄, h̄t, and

h̄x must be evaluated at the location of pn+1
i . Since the height field is staggered

with respect to the pressure field, this is done via linear interpolation and centered
differencing, so that

h̄ =
hi + hi+1

2
, h̄t =

ht,i + ht,i+1

2
, h̄x =

hi+1 − hi

∆x
. (3.6)

Due to the products of pressure terms on the right hand side of equation (3.5),
it is a nonlinear system of equations. We solve this using the Newton–Raphson
method as described in Appendix A.2.

3.4. Code implementation and parameter choices

The simulations are performed using a custom code written in C++, using
the OpenMP library for multithreading. The code makes use of the templated
geometric multigrid (TGMG) library for solving the linear systems that arise
when solving for the fluid. Each timestep requires four linear system solves: (1)
to apply the MAC projection, (2) to apply the approximate FEM projection,
and (3,4) to solve for the x and y velocity components when treating the viscous
stress term implicitly. The code accepts a text configuration file as input, which
sets all of the physical parameters, and describes the computational domain. The
code and sample text configuration files are available on GitHub—see the data
availability statement. The simulations are performed on a M ×N grid for the
liquid domain, and grid of length M for the gas layer. We choose the grid spacings
to be equal, so that ∆x = ∆y. This implies that the aspect ratio β is equal to
N/M .
Since the second derivative terms in both the liquid domain and the gas layer

are handled implicitly, and the surface tension term in equation (2.6) is small,
there is no timestep restriction in the simulation that scales like ∆x2 (Heath 2002).
We therefore choose a candidate timestep to satisfy ∆t = ζ∆x for a dimensionless
constant ζ, based on satisfying Courant–Friedrichs–Lewy conditions (Courant
et al. 1967) for the advective terms in the liquid domain and gas layer.

The simulation outputs Nf frames over the duration of the simulation. Thus the
time between frames is tf = tend/Nf . In general, an integer multiple of candidate
timesteps will not exactly match tf , so that c∆t < tf < (c+1)∆t. Because of this,
the actual timestep is slightly adjusted to ∆t′ = tf/(c+ 1) and c+ 1 timesteps
are taken between frames. Several examples demonstrating the performance of
the code are provided in Appendix B.

4. Results and discussion

4.1. Initial dynamics and comparison with potential flow theory

To validate our approach, we first simulate the initial dynamics and we compare
with the scaling results of potential flow theory that were introduced in Section 2.4
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Quantity Value Units

P0 Initial gas pressure 105 Pa
R Initial drop radius 1.5× 10−3 m
V Initial drop velocity 0.45 m/s

γ Heat capacity ratio, gas 1.4 –
σ Interfacial surface tension 0.072 N/m
ρg Density, gas 1.2754 kg/m3

ρl Density, liquid 997.96 kg/m3

νg Kinematic viscosity, gas 1.506× 10−5 m2/s

Table 2: Baseline choices for the physical parameters used in the simulations. These parameters
are used throughout the paper, with modifications to them noted in the text.

Quantity
Initial dynamics,
all values of νl

Lift-off,

νl ⩽ 20mm2/s

Lift-off,

νl > 20mm2/s

(M,N) Grid dimensions (2048, 256) (5120, 960) (5120, 960)
β Aspect ratio 1/8 16/3 16/3
ζ Timestep multiplier 8× 10−3 8× 10−3 8× 10−3

L̃ Domain width 30 30 45

H̃0 Initial drop height 15 15 15
t̃end Duration 50 50 100
Nf Number of frames 250 250 250

Table 3: Baseline choices for the simulation parameters, which are all non-dimensional. The first
set of parameters are for computing the initial dynamics and value of H∗ in Section 4.1. The
second two sets are for the lift-off calculations in all other sections. The procedure for connecting
the non-dimensional variables L̃, H̃0, and t̃end to physical values is described in Section 2.4.

for the height of the stagnation point H∗ (Mandre et al. 2009; Mani et al. 2010;
Mandre & Brenner 2012). We use the baseline physical parameters given in Table 2.
Since we only want to resolve the initial deceleration of the drop, and not the
formation of the thin gas layer, we use the computational parameters in the
third column of Table 3, which feature a relatively coarse numerical grid of size
2048× 256. To compute H∗, we examine the sequence of height profiles from the
simulation and find the time t∗ when ht(0, t

∗) = 0, from which H∗ = h(0, t∗).
As described in Section 2.4, at low initial velocities the flow in the gas layer can

be treated as incompressible, and the scaling result H∗ = RSt2/3 can be derived.
Mani et al. (2010) extend this analysis to look at higher initial velocities, where
compressibility of the gas becomes important. This happens at a height of

H∗ = R(µgV/RP0)
1/2, (4.1)

where the subscript ‘∗’ is used to distinguish from the stagnation height. By
modeling the subsequent drop deceleration below H∗ assuming gas compressibility,
Mani et al. (2010) derive the result

H∗
comp = RSt2/3ϵ(2−γ)/(2γ−1) (4.2)
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for the stagnation height.
We first performed sequences of simulations using low initial velocites over the

range from V = 0.15m/s to V = 1.35m/s, using four different liquid viscosities
from νl = 10mm2/s to νl = 300mm2/s. We also ran two sets of simulations with
the surface tension set to half and zero its baseline value. Figure 3(a) shows a plot
of H∗/(RSt2/3) as a function of ϵ−1, with these six sets of data points in the left
half of the domain where ϵ−1 < 1 and gas compressibility is not important. We see
that H∗/(RSt2/3) is approximately constant and is in agreement with equation
(2.12). To examine the trends more clearly, Figure 3(b) shows a zoomed-in plot
of the same data. As expected, the best agreement is achieved for the smallest
value of νl and for zero surface tension. For ϵ−1 < 1, the values of H∗/(RSt2/3)
are slightly lower for the cases of larger νl and σ. The decrease in height of the
stagnation point as νl increases is qualitatively consistent with the experimental
observations of Langley et al. (2017), and hints at the limits of the potential flow
theory (Mandre et al. 2009; Mani et al. 2010). By performing experiments with
viscosities of up to 2× 106 mm2/s, Langley et al. (2017) are able to demonstrate
that the centerline air thickness (closely related in definition to H∗) scales like
µ
−1/9
l . However, since we use inviscid boundary conditions on the top and sides of

the fluid domain, we are unable to simulate large viscosities to compare to this
result. Modifying our boundary conditions to work with large viscosities remains
a subject for future work.
We also performed two sequences of simulations with higher initial velocities from

V = 1m/s to V = 18m/s using νl = 10mm2/s, to examine the compressible regime.
However, we note from equation (2.13) that our usual choice for initial height scales
according to V −2/3, whereas from equation (4.1), the height where compressibility
is important scales according to V 1/2. To fully capture the compressible effects,
the drop must start higher than H∗, and thus the usual initialization procedure
is problematic for large V . For these simulations we therefore set H0 at a fixed
value based on using V = 2m/s in equation (2.13). We ran two sequences of
simulations using the usual choice of γ = 1.4, and another with γ = 1; as shown
in Figure 3, these results are in very good agreement with the scalings of ϵ1/3 and
ϵ, respectively, that are expected from equation (4.2).

4.2. Evolution of dynamics and effect of liquid viscosity

With the initial dynamics validated, we now turn attention to simulating the
continued spreading of the liquid drop on a layer of gas, and the effect of viscosity
on the evolution of the liquid–gas interface. We use the same baseline physical
parameters given in Table 2, but since we must now accurately resolve the gas
layer as it becomes very thin, we increase the simulation resolution as shown
in the fourth and fifth columns of Table 3. Furthermore, since the deviation of
the interface from the solid surface happens later for high viscosities (Kolinski
et al. 2014b), we use a larger domain and longer duration when νl > 20mm2/s, as
indicated in the fifth column of Table 3. We begin by using the baseline initial
drop velocity of V = 0.45m/s to match the experiments of Kolinski et al. (2014b).
Figure 4 shows the height profiles for three different simulations using liquid

viscosities of νl = 10mm2/s, νl = 32mm2/s, and νl = 100mm2/s. Panels (a), (b),
and (c) show a large-scale view, where the initial parabolic profile approaches
the surface, begins to decelerate and deforms to create the dimple. After the
drop continues to fall, a thin layer of gas from x ⪆ 200 µm is created and spreads
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Figure 3: (a) Plot of rescaled initial stagnation height H∗/(RSt2/3) as a function of the inverse

of the dimensionless compressibility parameter ϵ = P0RSt4/3/µgV , for a range of different
liquid viscosities νl, surface tensions σ, and gas parameters γ. Unless otherwise stated, baseline
parameters from Table 2 and Table 3 are used. By default, the drop starts from a height H0

scaled according to equation (2.13). For νl = 10mm2/s, to account for compressibility effects,
data from two simulation sequences that use a fixed initial height (FIH) based on substituting
V = 2m/s into equation (2.13) are shown. (b) Zoomed-in plot of the same data, showing the
region bounded by the dotted gray rectangle in panel (a).

outward. In all three simulations, the height profiles have a front that sweeps
outward as more liquid approaches the surface.
Figure 5 shows snapshots of the pressure and vorticity in the liquid domain

for the simulation with with νl = 10mm2/s. At t = 24.02 µs, the drop is still
approaching the surface. The pressure builds up close to x = 0. Since the liquid
near x = 0 is decelerated faster, this creates a region of negative vorticity over
0 ⪅ x ⪅ 250 µm. By t = 72.05 µs, the thin layer of gas has formed, and the position
of the front from Figure 4(a) is marked with a small triangle. There is a region
of large positive pressure behind the front, a small region of negative pressure
ahead of it. The contour of zero vorticity follows the front as it moves outward to
t = 96.07 µs. The pressure fields are similar to those reported by Philippi et al.
(2016), who also compute the pressure in the interior of the drop, using a different
simulation framework (Popinet 2003, 2009; Lagrée et al. 2011).
Figure 4(d–f) shows zoomed-in plots of the height profiles in the thin layer

for the three simulations. Behind the front, the height profiles align on top of
each other, and trace out relatively stable envelopes, appearing as thick blue
lines in Figure 4(d–f). In all three cases the envelopes initially slope downward
before curving upward, indicating the deviation of the liquid–gas interface away
from the solid surface, prior to contact between the solid and the liquid. This is
the lift-off phenomenon (Kolinski et al. 2014b). Lift-off occurs more quickly for
lower viscosities, and the envelope slopes upward faster. These results are in close
agreement with the experimental results of Kolinski et al. (2014b).
We now quantify the lift-off time and position. While the envelopes in Figure 4(d–

f) are relatively well defined, the height profiles shift slightly in over time, making
it difficult to precisely define the moment of lift-off. However, close inspection of
Figure 4(d–f) shows that in all cases, the height profiles have a leading tip that
dips slightly below the envelope that forms. We found this to be a well-defined
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Figure 4: Profiles of the height h(x, t) of the gas layer at intervals spaced 6.004µs apart,
corresponding to an integer multiple of the frame output interval tf described in Section 3.4,
for liquid viscosities of (a) νl = 10mm2/s, (b) νl = 32mm2/s, and (c) νl = 100mm2/s. All other
simulation parameters follow the baseline values in Table 2 and Table 3. Panels (d), (e), and (f)
show the same data as (a), (b), and (c), respectively, but with a smaller range of h to highlight
the lift-off behavior. For each profile, the global minimum, which follows the leading tip, is also
plotted on the curves; once the global minimum is no longer at the leading tip, it is no longer
plotted. The dashed box in panel (d) marks a further zoomed-in region shown in Figure 6.

feature that occurs universally across all of our simulations. The tip position can
be determined as the global minimum of the height profile at each time, and
provides a way to precisely define when lift-off occurs, at the moment when the
leading tip starts to rise.
Figure 6(a) shows a further zoomed-in plot of the height profiles during lift-off

for the case of νl = 10mm2/s. Once the leading tip has risen sufficiently, then it is
no longer the global minimum. However, since lift-off has always occurred by the
time the leading tip is rising, this does not cause any difficulty in identifying the
lift-off time. It is natural to consider whether the leading tip is a real feature or a
numerical artifact that emerges from discretization error and limited resolution. To
address this, Figure 6(b) shows a further zoomed-in region, depicting the leading
tip in detail. Here, the blue circles show individual simulation grid points. The grid
spacing is substantially smaller than the width of the leading tip, indicating that
it is a real feature. Further numerical tests of accuracy are provided in Appendix
C.
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Figure 5: Snapshots of pressure, p, (left) and vorticity, ω = [∇× u]3, for a portion of the liquid
domain for a simulation with liquid viscosity νl = 10mm2/s, where all other parameters follow
the baseline values in Table 2 and Table 3. The field values exhibit large variations in scale and
also switch sign, so a nonlinear mapping f(α) = 1

log 10
sinh−1 α

2
is used to create the color maps.

The thick black lines indicate the zero contour. The thin black lines show contours for ±10n/2 Pa
for pressure and ±10n s−1 for vorticity, where n ∈ N0. For t = 72.05µs and t = 96.07 µs the
position of the front (given by the local minimum of the profiles in Figure 4(a,d)) is marked with
a triangle.
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Figure 6: Zoomed-in plots of the height of the gas layer at intervals spaced 1.2009µs apart for
liquid viscosity νl = 10mm2/s, where all other parameters follow the baseline values in Table 2
and Table 3. Panel (a) shows the region marked by the dashed box in Figure 4(d). For each
profile, the global minimum, which follows the leading tip, is also plotted on the curves; once
the global minimum is no longer at the leading tip, it is no longer plotted. Panel (b) shows the
region marked by the dashed box in panel (a). In panel (b), the small blue circles indicate the
computational grid. The gray dashed lines show the profiles with Gaussian smoothing applied,
and the gray circles show the global minima of the smoothed lines.

The width of the tip is governed by surface tension. While many of our
simulations use the baseline value of σ = 0.072N/m from Table 2, we also
consider reduced surface tension where the tip becomes sharper. In this case, there
can be numerical difficulties in identifying the minimum due to per-gridpoint
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Figure 7: Trajectories of the global minimum of the drop profile in (a) the (x, h) plane, and (b)
the (t, h) plane for the baseline parameters with initial drop velocity V = 0.45m/s, for a range of
different liquid viscosities. All other parameters follow the baseline values in Table 2 and Table 3.
For each trajectory, the filled circle indicates where the global minimum reaches its lowest point,
which we define as when lift-off occurs. Each cross indicates when the global minimum no longer
marks the leading tip. Trajectories for selected νl are labeled.

variations in the height profile. To create a scheme for identifying the minimum
across all simulations, we therefore smooth the height profile using a Gaussian
kernel with length scale 1.2 µm. This results in a minimal alteration in the leading
tip position (Figure 6(b)), but improves robustness when analyzing the simulations.
Numerically, the global minimum is found by identifying the local minima of the
cubic interpolant of the smoothed profile, and selecting the smallest one.
Figures 7 and 8 show trajectories of the leading tip for a range of viscosities,

from νl = 2.5mm2/s to νl = 160mm2/s, for drop impact velocities of V = 0.45m/s
and V = 0.9m/s, respectively. The distance x that characterises the horizontal
extent of the dimple, as shown in Figures 7(a) and 8(a), is closely matches
the experimental results of Kolinski et al. (2014b) and Langley et al. (2017),
respectively. The height of the gas layer, h ∼ O (100) nm, is also in a similar
regime as the experimental observations of Kolinski et al. (2014b) and Langley
et al. (2017), though larger in value than the h observed by Kolinski et al. (2014b).
In Figure 7, two regimes are visible. For νl ⪅ 20mm2/s, increasing viscosity

results in the trajectory reaching a lower value of h, and the lift-off position moving
slightly outward. For νl ⪆ 20mm2/s, increasing viscosity results in the trajectory
reaching a higher value of h, and the lift-off position moves outward substantially.
Small undulations in the trajectories are visible for νl ⪆ 20mm2/s, which arise
due to capillary waves in the height profile. This can have a substantial effect on
the measured lift-off time, depending on which undulation achieves the global
minimum. For example, there is a large difference between νl = 20mm2/s and
νl = 25mm2/s. In Figure 8, for V = 0.9m/s, the scale of h is smaller. The observed
reduction in film thickness with increasing V is consistent with the experimental
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Figure 8: Trajectories of the global minimum of the drop profile in (a) the (x, h) plane, and (b)
the (t, h) plane for the baseline parameters with initial drop velocity V = 0.9m/s, for a range of
different liquid viscosities. All other parameters follow the baseline values in Table 2 and Table 3.
For each trajectory, the filled circle indicates where the global minimum reaches its lowest point,
which we define as when lift-off occurs. Each cross indicates when the global minimum no longer
marks the leading tip. Trajectories for selected νl are labeled.

observations of Kolinski et al. (2014b). Considering the case of liquid–substrate
contact being mediated by a reduced thickness of the air layer, our observations
are also consistent with the transition from gliding over an air layer to contact
with increasing V , as reported by Langley et al. (2017). Figure 8 also shows a
larger relative amplitude of the capillary waves as compared to the smaller impact
velocity of Figure 7. As a result, the capillary waves have a noticeable effect on
lift-off times at lower viscosities, with a large difference in lift-off time between
νl = 10mm2/s and νl = 13mm2/s.
We now compare to the experimental finding of Kolinski et al. (2014b) that

the lift-off time is proportional to ν
1/2
l . The lift-off time τ in this previous work

is defined relative to a time origin of when the drop would reach h = 0 in the
absence of the surface. Here, since the initial height h0 and velocity V are known,
we compute the time origin as t0 = h0/V . By contrast, Kolinski et al. (2014b) were
not able to directly view h0, since the drop can only be observed once it enters an
evanescent field of height hev = 1 µm. Instead, they measured the first position
and time (h′, r′, t′) when the drop enters the evanescent field, and assume that the
drop is undeformed at this position, so that h′ = h0 − V t′ + r′2/(2R2). Hence h0

can be calculated, and therefore the time origin is texp0 = h0/V − t′ + r′2/(2R2V ).
Figure 9 shows the lift-off times τ as a function of viscosity for seven different

values of initial velocity V . The data points from Kolinski et al. (2014b) are also
plotted. Even though the experiments of Kolinski et al. are performed in a three-
dimensional axisymmetric configuration, there is good quantitative agreement
with the two-dimensional simulation results.
Overall, the results are consistent with the ν

1/2
l scaling result, but the additional
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Figure 9: Liftoff time τ as a function of liquid viscosity νl, for a range of initial drop velocities
V . All other parameters follow the baseline values in Table 2 and Table 3. The experimental
data is taken from Figure 4(a) of the paper by Kolinski et al. (2014b), which used V = 0.45 m/s.
Three data points are omitted from the plot for low V and low νl due to physical difficulties
with running the simulation—see Section 4.3.

precision provided by the simulations reveals a more complicated relationship
between νl and τ . For each value of V , the data points exhibit some fluctuations,
which are due to the undulations visible in Figure 7 where the global minimum
defining the lift-off time may abruptly change. While a ν

1/2
l scaling appears

consistent with the high impact velocities where V ⪆ 0.75m/s, the data for low
impact velocities looks better fit to νη

l , where there are two different values of
η with a change at νl ≈ 20mm2/s. This is also consistent with the two different
types of behavior observed in Figure 7.
The slope of data points for small values of νl in Figure 9 is strongly affected

by the choice of time origin, and may affect the conclusions about the relevant
exponents. To investigate this further, we replotted the data using texp0 as the
time origin; this resulted in small shift upwards of the data (since texp0 < t0
in all cases), but did not affect the overall patterns. As a third approach, we
defined a time origin tdat0 directly from the data, by finding the best fit to the
model τdat = t− tdat0 = γ(νl/νsc)

α for the three free parameters (tdat0 , γ, α). Here
νsc = 20mm2/s is chosen as an arbitrary viscosity scale. Specifically, for the data
points (νl,k, tk), we minimized the residual

S(tdat0 , γ, α) =
1

2

∑︂
k

(︃
log γ + α log

νl,k
νsc

− log(tk − tdat0 )

)︃2

. (4.3)

We used the L-BFGS-B algorithm for bound-constrained nonlinear optimiza-
tion (Byrd et al. 1995), and enforced tdat0 < 0.999tmin and α > 0, where
tmin = mink{tk}. We started the minimization using multiple initial guesses
with tdat0 ∈ [0.7tmin, 0.9tmin] and α ∈ [0.4, 1.2]. For each pair (tdat0 , α) the value
of γ is set so that the bracketed expression in equation (4.3) is zero for the
νl = 20mm2/s data point, so that the initial guess should be close to the minimum
of S.
Figure 10 shows a replotting of the data relative to this time origin. The data for
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Figure 10: (a) Liftoff time τdat as a function of liquid viscosity νl, for a range of initial drop
velocities V , using the alternative time origin definition based on minimizing the three-parameter
residual function in equation (4.3). All other parameters follow the baseline values in Table 2 and
Table 3. (b–d) best fits of the parameters tdat0 − t0, γ, and α for different initial drop velocities.

V = 0.15m/s is omitted from this plot since the lift-off times are non-monotonic
for the smallest values of νl. For each other value of V , the minimization procedure
converges to a single unique solution for all initial guesses. With this definition of
time origin, all of the data is more consistent with a linear scaling relationship as
opposed to the square root relationship in Figure 9. Panels (b), (c), and (d) show
the values of the fitted parameters, and demonstrate that α ∈ [1.02, 1.28] in all
cases. The average residual over the six different values of V is S̄ = 0.2536. If the
exponent is constrained to α = 1

2
to match the exponent of Kolinski et al. (2014b)

then the average residual increases to S̄ = 0.3855 and the data points exhibit an
upward curve in a log–log plot that systematically deviates from a power law.
Constraining the exponent to α = 1 results in S̄ = 0.2805 and a better fit to
the model that is similar to the three-parameter fit shown in Figure 10. See the
Supplementary Information for additional discussion and parameter fits. These
results highlight that any theoretical analysis of the relationship between τ and
νl would need to take into account the sensitivity of defining the time origin.
Figure 11(a) shows lift-off times (relative to t0) for for three different drop

radii: the original value of R = 1.5mm, and as well as half and double this value.
Increasing the radius increases the lift-off time, similar to the effect of lowering
velocity in Figure 9.

4.3. The role of surface tension

The simulations allow us to change the surface tension in ways that would be
difficult to do experimentally, to investigate the importance of this physical effect.
Changing the surface tension allows us to suppress or accentuate the capillary
waves in the liquid–gas interface, as shown in Figure 7, to investigate the effect of
surface tension on the phenomenon of lift-off. Following the same procedure as in
Section 4.2, we calculated the lift-off times for σ = 0.0072N/m, σ = 0.036N/m
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Figure 11: Lift-off time as a function of liquid viscosity, for a range of (a) different drop radii, and
(b) different surface tension values. All other parameters follow the baseline values in Table 2
and Table 3. The data point for (νl, R) = (2.5mm2/s, 0.75mm) is omitted due to physical
difficulties with running the simulation (Section 4.3). The data points for σ = 0.0072N/m and
νl ⩾ 100mm2/s are omitted because lift-off does not occur over the simulation duration.

and the σ = 0.144N/m, corresponding to a tenth, half, and double the usual
surface tension values, respectively. Figure 11(b) shows that as surface tension
is reduced, the lift-off times increase markedly. For the case of σ = 0.0072N/m
lift-off is eliminated for large values of νl, with the leading tip continuing to
decrease over the course of the simulation.
Figure 11(b) strongly suggests that surface tension is important in creating

lift-off. Reducing from σ = 0.036N/m to σ = 0.0072N/m almost doubles the
lift-off times in most cases, and one can ask whether lift-off will be completely
eliminated in the limit as surface tension vanishes. To examine this, we ran a
sequence of simulations with σ = 0, with several representative examples for
νl = 10mm2/s, νl = 32mm2/s, and νl = 100mm2/s shown in Figure 12. This is a
difficult limit to probe in our simulations, since as discussed for Figure 6, surface
tension regularizes the leading tip. Figure 13 shows close-ups of the profiles for
νl = 10mm2/s, indicating that the leading tip becomes as sharp as a single grid
point, and the minima of the profiles can fluctuate non-monotonically depending
on exactly how the tip aligns with the computational grid. However, in this case
the profile smoothing procedure introduced in Section 4.2 is sufficient to extract
smooth leading tip trajectories.
The very sharp leading tip causes another difficulty in the simulations: as the

tip is advected across the computational grid, there will be an effective numerical
diffusion, which will act as though a small surface tension has been imposed.
This is an important issue since Figure 11(b) already confirms that small surface
tensions can considerably alter the behavior. To test this, we compared simulations
with the baseline parameters to those on a finer grids (Appendix C). Unlike the
case for finite surface tension, the simulations on a finer grids are noticeably
different, with the profiles reaching lower heights and the leading tip not curving
up as rapidly. Since liquid viscosity also regularizes the evolution of the height
profile, these discrepancies are more significant when νl is small.
We calculated the trajectories of the leading tip for a range of values for liquid

viscosity, νl. For 13mm2/s < νl ⩽ 40mm2/s we switched to a larger computational
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Figure 12: Profiles of the height of the gas layer at intervals spaced 6.004µs apart for liquid
viscosities of (a) νl = 10mm2/s, (b) νl = 32mm2/s, and (c) νl = 100mm2/s using zero surface
tension. All other parameters follow the baseline values in Table 2 and Table 3. Panels (d), (e),
and (f) show the same data as (a), (b), and (c), respectively, but with a smaller range of h to
highlight that no lift-off occurs in this case. For each profile, the global minimum, which follows
the leading tip, is also plotted on the curves. The dashed box in panel (d) marks a further
zoomed-in region shown in Figure 13.

grid of size 8192× 1536, and for νl ⩽ 13mm2/s we switched to a very large grid
of size 12288× 2304. For νl ⩽ 44mm2/s we were not able to simulate on a large
enough grid to adequately resolve the numerical diffusion, and hence results in
this range are omitted. Figure 14 shows the trajectories in both the (x, h) and
(t, h) planes. In all cases, the leading tips continue to decrease. While our results
only examine one particular set of physical parameters (from Table 2) our results
strongly suggest that surface tension is required for lift-off to occur. Moreover, we
observe that the thickness of the gas layer increases with νl. This is consistent with
the experimental findings of Langley et al. (2017), who observe a transition from
drop–substrate contact to gliding of the drop over a thin air film as νl increases.
We also found a regime where the effect of surface tension can qualitatively

affect the lift-off behavior. Figure 15(a) shows the height profiles for a simulation
with the baseline value of surface tension of σ = 0.072N/m in the regime of low
initial velocity, V = 0.3m/s and low viscosity, νl = 6.5mm2/s. In this regime,
prominent capillary waves are generated outside the thin gas layer, which grow
larger as time progresses. Figure 15(b) shows a zoomed-in plot of the profiles
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Figure 14: Trajectories of the global minimum of the drop profile in (a) the (x, h) plane, and
(b) the (t, h) plane for a range of different liquid viscosities, using the baseline parameters in
Table 2 and Table 3 and zero surface tension. Simulations with 13mm2/s < νl ⩽ 40mm2/s use
a grid of size 8192× 1536, and simulations with νl ⩽ 13mm2/s use a grid of size 12288× 2304.
Trajectories for selected νl are labeled.

in the thin gas layer. Lift-off appears to occur at x ≈ 280 µm and the leading
tip starts to rise. However the influence of the capillary wave causes the tip to
move downward again, ultimately dipping below the previous minimum height.
It is possible that the tip may move upward again at a later point, but we were
unable to track the behavior further. The sharp features visible in Figure 15(a)
(e.g., at (x, h) ≈ (700 µm, 100 µm)) cause the simulation to terminate early, since



25

0

50

100

150

200

250

0 200 400 600 800 1000

(a)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

200 250 300 350 400 450 500 550 600 650

(b)

h
(µ

m
)

x (µm)

Initial profile Height profiles Minimum height

h
(µ

m
)

x (µm)

Figure 15: (a) Profiles of the height of the gas layer at intervals spaced 11.80 µs apart for a liquid
viscosity of νl = 6.5mm2/s and initial drop velocity of V = 0.3m/s, showing the development
of capillary waves. All other parameters use the baseline values in Table 2 and Table 3. (b)
Zoomed-in plot of the same data. The global minima of the curves are plotted when they indicate
the leading tip.

the Newton–Raphson iterations can no longer be solved to an acceptable level of
accuracy.

4.4. Effect of compressibility in the gas

We performed simulations to examine the lift-off behavior in the regime of high
initial drop velocity when compressibility in the gas becomes important. We chose
V = 2m/s, which is substantially into the compressible regime of Figure 3. We
focused on νl = 32mm2/s, and due to the faster dynamics in the regime, we halved
the timestep multiplier from its baseline value, to ζ = 4 × 10−3. Figure 16(a)
shows that the behavior is qualitatively different in this case, with the central
dimple noticeably rebounding while the drop profile spreads outward. Figure 16(b)
shows a zoomed-in region of the thin gas layer. Other than V , all physical
simulation parameters are identical to those used in Figure 4(e), yet the results
are considerably different with a much thinner gas layer, and visually, they are a
closer match to the simulations without surface tension. For these simulations, we
were therefore not able to identify the lift-off time. Figure 16(c) shows plots of the
centerline height h(0, t) for four different values of V indicating that the relative
rebound of the central dimple is much larger for higher drop impact velocities.

5. Conclusion

In this paper we investigated the viscous effects in the early stages of drop impact
on a surface. We coupled a Navier–Stokes solver to model flow in the interior of
the drop with a partial differential equation to model the pressure and height in
the thin gas layer between the drop and the surface. We demonstrated that our
simulations are consistent with previous work using potential flow theory where
flow in the liquid is assumed incompressible (Mandre et al. 2009; Mani et al. 2010;
Mandre & Brenner 2012). However, our simulations allow us to go beyond this
previous work and investigate viscous effects. We showed that at low initial drop
velocities, viscosity plays a weak role in the deceleration of the drop, and the
height H∗ at which it reaches a stagnation point.
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Using our simulations, we are able to recreate the lift-off phenomenon that was
experimentally reported by Kolinski et al. (2014b). We have therefore demonstrated
that with the reduced model described in Section 2, our simulations are able
to capture lift-off. Our numerical results for the lift-off time τ are consistent
with the ν

1/2
l scaling relationship found by Kolinski et al. (2014b). However,

the additional precision afforded by the simulations indicates that the precise
relationship between τ and νl is more complex, due to the effects of capillary waves
and the sensitivity of the results to the definition of the time origin. The simulation
allows us to probe conditions that would be difficult to observe experimentally.
Using this capability, our results provide strong evidence that surface tension
is necessary for lift-off to occur. This is consistent with the numerical study of
Duchemin & Josserand (2011), who found that surface tension was required for
the formation of a thin jet skating above the surface. In their study, the absence
of surface tension led to a finite-time singularity where the liquid–gas interface
touches the substrate, whereas in our case the interface asympotically approaches
the substrate. However, there are several differences between their simulations
and ours, such as the usage of axisymmetric coordinates, and a different way to
represent the liquid–gas interface and solve for the relevant physical variables. It
is therefore difficult to make an exact comparison.
There are a number of possible next steps. The simulations provide a detailed

view of the lift-off phenomenon, and all aspects (e.g., stress, velocity, vorticity)



27

can be calculated. The results may therefore guide theoretical analyses of lift-off,
and may allow scaling relationships similar to those presented by Mandre et al.
(2009); Mandre & Brenner (2012) and Mani et al. (2010) to be derived. As part of
our study, we have released a complete high-performance open source code that
can examine lift-off across a wide range of configurations.

We opted to use a fixed-grid simulation for simplicity in coupling the liquid
domain and gas layer together, and as described in Appendices B and C we are
able to obtain accurate simulation results in a reasonable timeframe. However, it is
likely that the behavior at the bottom of the liquid domain, close to the liquid–gas
interface and near the leading tip, dominates. Because of this, the simulation is a
good candidate for use with adaptive mesh refinement (AMR) (Berger & Oliger
1984; Guittet et al. 2015), where the liquid–gas interface and the region around
the leading tip could use a finer mesh. AMR has already been used for full-scale
simulations of droplet impact, such as those using the Gerris/Basilisk software
(Philippi et al. 2016; Popinet 2003, 2009; Lagrée et al. 2011; Popinet 2015), but it
could also be a useful avenue to explore for our reduced model. It would result
in substantial computational savings, although the liquid–gas coupling would
become more complicated and numerical errors would be harder to quantify.

The simulation could also be generalized to use cylindrical axisymmetric
coordinates. The overall numerical approach would stay the same, but additional
radial factors would have to be incorporated throughout the simulation. The
Navier–Stokes solver that we employ has already been demonstrated to work in
axisymmetric coordinates (Yu et al. 2003, 2007), but the routines that involve
the gas layer would require modifications. For example, the kernel in equation
(2.10) would need to be modified. While the current simulation is already in
good agreement with the experimental results of Kolinski et al. (2014b), an
axisymmetric solver would allow for a near-perfect comparison. This would, for
example, help elucidate further the precise relationship between lift-off time τ
and liquid viscosity νl.

Experiments by Thoroddsen and coworkers have used interferometry to examine
the evolution of the gas layer across a full two-dimensional surface (Langley et al.
2017). Their results show a number of interesting effects beyond the scope of
our current model, such as a breakage of rotational symmetry and the formation
of ruptures in the air film (Langley et al. 2017; Li et al. 2017). They have also
examined the case of nano-rough surfaces (Langley et al. 2018). To connect with
this work, our model could be generalized to a full three-dimensional simulation
of the liquid and two-dimensional simulation of the gas layer. This would be
substantially more computationally challenging, and would be a good candidate
for using parallel computing and adaptive mesh refinement (Zhang et al. 2019).
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Appendix A. Calculations for the governing equation in the gas layer

A.1. Derivation of the gas layer pressure update equation

Substituting for ρg from the equation of state, equation (2.5), into the lubrication
equation for the pressure in the gas layer, equation (2.4), we get

12µg

(︄(︄
ρ0

p
1/γ
0

p1/γg

)︄
h

)︄
t
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Using the product rule to expand the brackets,
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Dropping the subscript g for gas yields

12µ
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γ
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=
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γ
pxh

3px + p3h2hxpx + ph3pxx, (A 5)

which can be rearranged to give equation (3.4).

A.2. Numerical solution of the gas layer pressure

We now describe how to solve equation (3.5) in the main text for updating the gas
layer pressure using the Newton–Raphson method. Let P k be a vector containing
the pressure estimates at the kth Newton–Raphson iteration. As an initial estimate,
we set P 0 to be the pressure values from the nth timestep. We then write (3.5)
as a nonlinear system F (P ) = 0, where the ith component of F is given by the
(L.H.S.−R.H.S.) of equation (3.5) evaluated at the ith gridpoint. An improved
estimate P k+1 for the pressure is given in terms of P k by

JF (P
k)
(︁
P k+1 − P k

)︁
= −F (P k), (A 6)

where JF (P
k) is the Jacobian of F , which has components

Jk+1
F,ij =

∂Fi

∂P k+1
j

. (A 7)
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Since the finite-difference stencils in equation (3.5) only involve adjacent grid
points, JF is a tridiagonal system. It can be written as

JF =

⎛⎜⎜⎝
b0 c0
a1 b1 c1

a2 b2 c2
. . .

. . .
. . .

⎞⎟⎟⎠ , (A 8)

where the terms are given by
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ci =
∂F

∂pn+1
i+1

= −1

γ

h̄
3

∆x

(︃
pn+1
i+1 − pn+1

i−1

2∆x

)︃
− 3h̄

2
h̄x

2∆x
pn+1
i − h̄

3

∆x2
pn+1
i . (A 11)

Solving equation (A 6) can be done efficiently using LAPACK’s tridiagonal solver
dgtsv (Anderson et al. 1999). In most cases, since the pressure does not change
by a large amount per timestep, fewer than five iterations are required in order to
achieve numerical convergence.

Appendix B. Tests of the simulation performance

Table 4 contains statistics about the performance of the code for several simulations
that were referenced in the main text. All tests were run using ten threads on an
Ubuntu Linux computer with a ten-core 2.8GHz Intel Core i9-10900 CPU, and
the code was compiled with GCC version 10.3.
The initial dynamics simulations only need to capture the large-scale deformation

of the drop, and can therefore be run on relatively coarse computational grids.
Consequently, a typical simulation takes approximately 40min of wall clock time
to run. A large portion of the computation time is spent on solving the linear
systems with the multigrid method. This should be expected since the multigrid
V-cycles involve repeated scans over the entire grid. Collectively, the four multigrid
solves take up 44% of the total computation time. The MAC and FEM linear
systems take slightly more time and V-cycles, since apart from where Dirichlet
boundary conditions are applied, these linear systems are only weakly diagonally
dominant. By contrast, the linear systems for the implicit viscous term are strictly
diagonally dominant. We note that the linear systems for the u and v velocity
components are slightly different, since at x = 0 we apply different boundary
conditions, (u, vx) = (0, 0). Hence it is not possible to vectorize this system, and
there is no substantial computational advantage over solving for the updates to u
and v separately.
Calculating the boundary conditions according to equation (2.10) requires

applying Simpson’s rule along the M gridpoints on the bottom edge. This must
be done for the top edge of length M , and the right edge of length N , requiring
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Initial dynamics,

νl = 10mm2/s

Lift-off,

νl = 10mm2/s

Lift-off,

νl = 100mm2/s

Grid size 2048× 256 5120× 960 5120× 960
Total WC time 0.641 h 20.6 h 29.8 h
Total timesteps 28500 71250 95000
WC time / timestep 81 ms 1041 ms 1130 ms

WC fraction on gas layer 0.25% 0.047% 0.045%
WC fraction on BCs 3.39% 1.61% 1.49%
WC fraction on MAC solve 11.21% 13.05% 12.09%
WC fraction on FEM solve 12.77% 14.31% 14.36%
WC fraction on viscous solve 20.11% 26.67% 31.12%

Mean MAC V-cycles 5 4.4 4.5
Mean FEM V-cycles 5.6 4.9 5.3
Mean viscosity V-cycles 3.7 4.3 5.5

Table 4: Performance statistics for several different simulations, compiled using GCC 10.3 on an
Ubuntu Linux computer with an 2.8GHz Intel Core i9-10900 CPU. Ten threads were used, and
all simulations use the baseline parameter choices in Table 2 & 3 unless otherwise noted. The
wall clock (WC) time is reported for each test, and the fraction of time on major components,
such as the computation of boundary conditions (BCs), solving the marker-and-cell (MAC) linear
system, and solving finite-element method (FEM) linear system, are reported.

O(M(M +N)) work in total. This is sizable amount of work and takes 3.4% of
the total computation time. Even though the gas layer involves several Newton
steps and tridiagonal matrix solves, it only needs O(M) work and therefore takes
up a minimal amount of the total computation time.
Table 4 also contains performance information for two lift-off simulations, which

are run on larger computational grids to obtain high accuracy in the height of
the gas layer. The wall clock time per timestep increases from 81 ms to 1.041 s.
Based on a linear scaling with gridpoints, we would expect 81 ms to increase to
(81 ms) 5120×960

2048×256
= 760 ms. Thus the performance is comparable, but slightly worse

than, linear scaling, which may be due to reduced cache efficiency for a larger
grid. Overall, the percentages spent on the different parts of the simulation are
comparable, although the fraction spent on multigrid V-cycles increases slightly,
and the fraction spent on the gas layer (which scales like O(M)) decreases. In
particular, more V-cycles are required to handle the implicit viscosity linear system
when νl is larger.

Appendix C. Tests of the simulation accuracy

The simulation domain size, which is set via the non-dimensional parameter L̃ in
Table 3 and the domain aspect ratio β, may have an effect on the results. Since
the boundary conditions on the top and right boundaries are based on an inviscid
assumption, the domain size affects the extent to which viscosity is resolved. In
addition, when solving for the pressure in the gas layer, the boundary condition of
p = P0 is imposed at x = L, and thus extending the domain affects the influence
of this boundary condition on the simulation.
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Figure 17: Plots of the height profiles at t = 102.07µs for simulations with (a) liquid viscosity
νl = 10mm2/s and (b) liquid viscosity νl = 100mm2/s. Baseline parameters from Table 2 &

Table 3 are used although the original domain size for both values of νl uses L̃ = 30 and β = 16/3.
Results are also shown where the simulation domain is extended by a factor of 1.5 in either or
both dimensions. In the extended simulations, the number of grid points is increased to keep the
grid spacings ∆x = ∆y the same.
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Figure 18: Plots of the height profiles spaced 6.004 µs apart for three different resolutions using
the baseline parameters from Table 2 & Table 3, and liquid viscosity νl = 10mm2/s, with (a)
surface tension σ = 0.072N/m, and (b) zero surface tension.

To test the sensitivity of the simulation results to the domain size, we performed
simulations where either the horizontal dimension, vertical dimension, or both
dimensions were extended by a factor of 1.5. In each of these simulations the
grid spacings ∆x = ∆y were kept the same, so that the horizontal extension
increases the grid points from 5120 to 7680, and the vertical extension increases
the grid points from 960 to 1440. Figure 17 shows the height profiles in the thin
gas layer for the four simulations, for (a) νl = 10mm2/s and (b) νl = 100mm2/s.
The vertical extensions give visually indistinguishable curves, indicating that
the vertical dimension is sufficiently large to resolve the viscous effects even for
the larger value of νl. The horizontal extensions create minor vertical shifts in
the curves, suggesting that the pressure boundary condition has an effect on the
results. However, these shifts are still acceptably small, and result in no substantial
change to the position and time at which lift-off occurs.
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We also examined the sensitivity of the results to the numerical grid size.
Figure 18(a) shows height profiles for a simulation using the baseline parameters
with liquid viscosity νl = 10mm2/s and surface tension σ = 0.072N/m. Simulations
with higher resolutions of 8192× 1536 and 12288× 2304 are also plotted, resulting
in visually indistinguishable results. Figure 18(b) shows height profiles when the
surface tension is set to zero and all other parameters are kept the same. In this
case, as discussed in Section 4.3, the leading tip becomes very sharp since the
regularizing effect of surface tension is removed. As the tip moves across the
grid, there will be a resolution-dependent numerical diffusion that will act as an
effective small surface tension. Thus in this case there is a small shift in the height
profiles. While this remains small, it makes the precise behavior of the leading tip
difficult to resolve for small values of νl, requiring larger grid sizes as presented in
Section 4.3.
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Stéphane 2018 Two mechanisms of droplet splashing on a solid substrate. Journal
of Fluid Mechanics 835, 1065–1086.

Josserand, Christophe & Thoroddsen, Sigurdur T. 2016 Drop impact on a solid surface.
Annual Review of Fluid Mechanics 48, 365–391.
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