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Abstract

Inspired by the synthesis of XB3C3 (X= Sr, La) compounds in the bipartite sodalite
clathrate structure, density functional theory (DFT) calculations are performed on members
of this family containing up to two different metal atoms. A DFT-chemical pressure analy-
sis on systems with X= Mg, Ca, Sr, Ba reveals that the size of the metal cation, which can
be tuned to stabilize the B-C framework, is key for their ambient-pressure dynamic stabil-
ity. High-throughput density functional theory calculations on 105 Pm3 symmetry XY B¢Cg
binary-guest compounds (where X, Y are electropositive metal atoms) find 22 that are dynam-
ically stable at 1 atmosphere, expanding the number of potentially synthesizable phases by 19
(18 metals and 1 insulator). The density of states at the Fermi level and superconducting critical
temperature, 7, can be tuned by changing the average oxidation state of the metal atoms, with
T, being highest for an average valence of +1.5. KPbBCg, with an ambient-pressure Eliash-
berg T, of 88 K, is predicted to possess the highest-T, among the studied Pm3n XB3Cs or
Pm3 XYBgCg phases, and calculations suggest it may be synthesized using high-pressure

high-temperature techniques then quenched to ambient conditions.



Introduction

The advent of the high-pressure superconducting hydrides has renewed interest in conventional
superconductors, demonstrating that their critical temperatures (7.s) may approach room tem-
perature.! The discovery of many of these compounds was theory driven, highlighting that first
principles-based methods — consisting of crystal structure prediction (CSP) searches and electron-
phonon coupling calculations — can identify promising superconducting materials for future syn-
theses.>™ One of the structure types that has emerged to be conducive for superconductivity, ini-
tially pinpointed theoretically within hydrides containing an electropositive metal,>® is an Im3m
symmetry X Hg superhydride. This structure type is based on a bcc packing of face-sharing
X @H,, truncated octahedra with six square and eight hexagonal faces, in which the hydrogenic
lattice, isostructural with the sodalite-type clathrate, is stuffed with alkaline-earth or rare-earth
metal atoms. Theory has identified many stable compounds possessing this motif — and recently a
number of them have been synthesized under high pressure and their 7..s have been measured (e.g.,
CaHg [215 K at 172 GPa,” 210 K at 160 GPa®], YH [220 K at 183 GPa,® 224 K at 166 GPa!°],

and (La,Y)Hg, with a transition circa 237 K at 183 GPa tentatively attributed '!).

Achieving high-temperature superconductivity, even room-temperature superconductivity, is
therefore no longer the ‘holy grail’. But, because none of the predicted or synthesized high-T.
superhydrides are stable (or even metastably recoverable) at ambient pressure, the immediate chal-
lenge is to find light-element-based structural analogues or derivatives that could be metastable
at 1 atm. One class of materials that are actively being considered'*!° can be constructed from
the X Hg superhydride lattices by replacing the framework hydrogen atoms by carbon and boron
atoms (some examples are illustrated in Fig. 1). In these light-element hexahydride analogues the
clathrate lattice is held together by strong covalent B-C bonds, which are metallized via electron
transfer from an encapsulated metal atom with the appropriate valence. Vibrations of the covalently
bonded metallic lattice induces electron-phonon coupling, resulting in superconductivity. Indeed,

efficient electron-phonon coupling has been predicted and observed in various sp?/sp® covalent



materials, with the most famous example being MgB,. 204

1000 GPa
———

Figure 1: Chemical pressure (CP) schemes of simple B-C clathrates in the bipartite sodalite Pm3n
structure at ambient pressure: (a) MgB3Cs, (b) CaB3Cs, (¢) SrB3Cs and (d) BaB3Cs. Chemical
pressures are represented by atom-centered spherical harmonic functions in which the magnitude
of the CP in a particular direction is represented by the size of the lobes and their color (white =
positive and black = negative). A scalebar representing the magnitude of the CP lobes is included.
The large negative pressures on the Mg atom demonstrate a poor fit inside the surrounding boro-
carbide cage, which improves (with a concomitant decrease in the negative CPs) as the size of the
metal atoms increase from Ca to Sr to Ba. Metal atoms are denoted in purple, and B/C atoms
emanate green/yellow stick bonds.

Pure carbon clathrates have yet to be synthesized, and geometric constraints place strict limi-
tations on the atoms that could potentially be stuffed into their cages.?~>® However, calculations
have suggested that such materials can be stabilized by substituting some of the carbon atoms
with boron and inserting small cations into the borocarbide framework.?’ Boron and carbon are

the lightest elements that can form strong covalent bonds, and materials based on these elements



are known to be good candidates for phonon mediated superconductivity at atmospheric condi-
tions (e.g., MgB,, T. = 39 K,*" boron doped diamond 7, = 4 K for a doping level of 2.5%,?!
B-doped Q-carbon with a T, as high as 55 K3?). Pm3n SrB;Cs (Fig. 1(c)) is the first member
of the family of borocarbide analogues of the clathrate hexahydrides to be predicted computation-
ally via CSP techniques. '? This compound, in the bipartite sodalite (Type-VII clathrate) structure,
was computed to be thermodynamically stable between 50-200 GPa'? with a T, predicted to be
as high as 43 K at 1 atm.!® Subsequently, SrB5Cs was synthesized at 57 GPa and quenched to
ambient conditions in an inert atmosphere, and evidence for the superconducting transition was
recently observed.'>!® Not long after, an isotypic lanthanum phase, LaB3C3, was synthesized at
milder pressure and quenched to ambient conditions, where its HSE06 bandgap was computed to

be 1.3eV. 1

The synthesis of SrB3C3 and LaB3C; inspired numerous theoretical investigations of related
materials. The superconducting mechanism in the hole-conductor Pm3n SrB3;Cs was shown to
result from the strong coupling between the sp® o-bonding bands and boron-associated E, modes
with a T, of 40 K, as estimated via solution of the Eliashberg equations. ' In fact, the 7, calculated
for all of the Pm3n XBsCj alkaline earth analogues (X = Ca, Sr, Ba) ranged from 40-50 K. 31517
Pm3n ScB3;Cs was dynamically unstable, however following the imaginary eigenvectors resulted
in a non-centrosymmetric Ama?2 structure with a spontaneous polarization that was large compared
with other well known ferroelectric materials.'® The superconducting properties of a few borocar-
bide clathrates stuffed with two different metal atoms have also been studied theoretically.!'¢!8 In
the silicon analogues, Pm3n RbB3Siz was thermodynamically stable with respect to the elemental
phases between 7-35 GPa, and it remained metastable at 1 atm with an estimated 7, of 14 K.3?
CSP coupled with high-throughput calculations have uncovered analogous clathrate cages, but
with inequivalent C:B ratios, identifying /4/mmm CaB,C, and SrB,C, stoichiometry structures
as superconductors with 7..s of 2 and 19 K, respectively, while StB,C, and BaB,C, were predicted
to possess superior mechanical properties with Vickers Hardnesses, Hys, of 44 and 41 GPa, re-

spectively,>* though they were not on the convex hull.'? We note that metal-doped clathrates with



pure carbon frameworks are also predicted to exhibit high-T, superconductivity**?* (for example
sodalite-like NaCq with a predicted 7, above 100 K3°), however non-B-doped carbon clathrates
have not been produced to date. We also note theoretical studies of the superconducting and me-

36,37

chanical properties of sodalite-like BN frameworks®**” and carbon-based materials,®* as well as

metal hexaborides with a wide variety of measured properties including superconductivity. 8

In this article we employ the Density Functional Theory-Chemical Pressure (DFT-CP) method
to study the effect of the metal atom’s ionic size on the ambient-pressure dynamic stability of com-
pounds in the Pm3n XB3Cjs structure type (X =Mg, Ca, Sr, Ba). Moreover, we expand the metal
atoms that can be stuffed within the clathrate framework to include the lanthanides. Turning to
systems with two metal atoms on adjacent sites, we find 22 ordered alloy arrangements that are
metastable at atmospheric pressures. Our theoretical study suggests that a wide range of possible
elemental occupations and stoichiometries could be stabilized in this family of structures, poten-
tially as solid solutions. The valence of the metal atom is shown to be a key factor in determining
the superconducting critical temperature, 7., which we predict could surpass the boiling point of
liquid nitrogen at 1 atm, in particular for KPbB¢Cg. Finally, we illustrate that both configurational
and vibrational entropy contributions, typically not considered in first principles calculations, are
important in stabilizing these phases at pressure-temperature conditions accessible within diamond

anvil cells.

Computational Methods

Geometry optimizations of both the atomic positions and lattice parameters, molecular dynam-
ics simulations, and electronic structure calculations including band structures, densities of states
(DOS), and Bader charges were performed using density functional theory (DFT) as implemented
in the Vienna ab-initio Simulation Package (VASP) version 5.4.1,%+*0 with the gradient-corrected
exchange and correlation functional of Perdew-Burke-Ernzerhof (PBE),*! and the projector aug-

mented wave (PAW) method.*? The plane-wave basis set energy cutoff was 600 eV for the com-



pounds containing lanthanide atoms, and 900 eV otherwise. The k-point meshes were generated
using the I'-centered Monkhorst-Pack scheme and the number of divisions along each reciprocal
lattice vector was selected so that the product of this number with the real lattice constant was 50 A
in geometry optimizations and 70 A otherwise. Phonon calculations were carried out on 2x2x2
supercells containing 112 atoms*** using the VASP package coupled to the PHONOPY code.*
The electron-phonon coupling (EPC) calculations were carried out using the Quantum Espresso
(QE) program.*® The T.s were estimated using the Allen-Dynes modified McMillan equation,*’
along with numerical solution of the Eliashberg equations.*® In the main text we discuss 7.s
obtained for a renormalized Coulomb potential, 4* = 0.1, and results computed for values of
w* = 0.13,0.15 and 0.17 are provided in the Supplementary Information Tables S6-7. A DFT-
Chemical Pressure Analysis,* which visualizes the internal stresses inherent in a crystal structure
as a consequence of steric constraints, was performed on select phases using the CPpackage2.°

Further computational details provided in Section S1.

Results and Discussion

Density Functional Theory (DFT) calculations were carried out to investigate the borocarbide
clathrates containing one or two electropositive elements, over a wide range of hole doping con-
centrations. Among the studied structures with a single element occupying the metal site (simple
clathrates, with X = Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, Sn, Pb, Sc, Y, La) only Pm3n XB;Cs
(X = Sr, Ba, Y, and La) phases were found to be dynamically stable at ambient pressure, in-line
with the syntheses of the Sr and La analogues.'>!* Previous theoretical calculations concluded that

15,16 and a mere 1 GPa

Sr, Ba and La containing compounds were local minima at ambient pressure,
was sufficient to stabilize CaB3Cs.!® The stability pattern of these simple clathrates illustrates the
importance of a good size match between the borocarbide cage and the metal atom within. To

further explore this relationship, DFT-Chemical Pressure (DFT-CP) schemes,* which reveal the

internal tensions emerging in a crystalline lattice due to atomic size effects, were calculated for the



alkaline earth metal borocarbide series. In DFT-CP calculations, comparisons between systems
with component elements having similar pseudopotentials®! (in this case, metal atoms belonging
to the same group of the periodic table) are most appropriate. This further allows us to isolate
the role played by atomic size from other confounding factors, such as the oxidation state of the
metal atoms. The XB3Cs alkaline earth metal borocarbides (all nominally X2*) offer a series for
which, based on the emergence of dynamic stability when moving from Mg to Ba, atomic size is
expected to play the main differentiating role. Recently, we have employed the DFT-CP method to
elucidate the relationship between the metal atom size and the dynamic stability of related systems:
Pm3n XB3Si3 (X = Na, K, Rb, Cs)** and Im3m XHg.>? For those hydrides that did not cor-
respond to local minima, DFT-CP was used to understand the structural distortions and chemical

modifications that could be used to stabilize them.>2

In the CP-schemes, shown for XB3Cs in Fig. 1, negative pressures, which are indicative of an
atom too small for its coordination environment, are represented with black, and positive pressures
— in white — indicate an atom too large for the cavity within which it resides. For the alkaline
earth borocarbides, the metal atom is in all cases surrounded by negative CP, suggesting that the
borocarbide cages are plenty large enough — and in some cases, too large — to comfortably fit
the electropositive atoms. This feature is most prominent within MgB3;Cs, which is dynamically
unstable at ambient-pressure. The size of the CP lobe grows smaller as the size of the alkaline
earth metal increases, hinting at a progressively better fit going down the group, in-line with pre-
dictions of dynamic stability at 1 GPa for CaB3C3 and at ambient-pressure for both SrB3Cs and
BaB3Cs;.'>!® This mirrors our findings for the XBsSis family, whose ambient-pressure dynamic

stability was limited to the larger alkali metals Rb and Cs.*

The negative pressures on the metal atoms are balanced against positive pressures between the
boron and carbon atoms, as the bipartite sodalite framework is drawn tight around them. The mag-
nitudes of the positive pressures along the B-C contacts grow smaller when encapsulating larger
metal atoms, reducing cramping in the borocarbide cage. Unlike in the superhydride analogues,

the CP distributions around the boron and carbon atoms comprising the clathrate cage differ some-



what. The significant degree of electron transfer leads to the formation of anionic carbon and
cationic boron held together by polar covalent bonds, increasing the effective sizes of the carbon
atoms and decreasing those of boron. The differing CP distributions around boron and carbon
atoms manifest as well in their vibrational properties, as we will soon see. Of course, this analysis
accounts for only one factor contributing to dynamical stability in these compounds. As described
above, none of the alkali metal borocarbides were dynamically stable at ambient pressure, in con-
trast to our previous findings on their borosilicide cousins RbB3Si3 and CsB3Si3. With typical
oxidation states of +1, the alkali metal ions will be generally larger than the +2 alkaline earth
metal ions. The dynamical stability of Rb and Cs within a borosilicide framework rather than
a borocarbide one suggests a preference for the larger voids in the borosilicide network as C is
replaced by Si. On the other hand, exploratory calculations on a series of borocarbides stuffed
with lanthanide atoms — with similar ionic radii — demonstrated all considered were dynamically
stable (Fig. S5-6). Factors such as the role of magnetism, spin-orbit coupling, and strong electron
correlation are also expected to play a large role in the stability and electronic structure of these

lanthanide borocarbides, and detailed calculations exploring these are underway.

Let us now turn to the borocarbides encapsulating two inequivalent metal atoms in adjacent
cages (binary clathrates), with a focus on their stability patterns, electronic structure, and propen-
sity for superconductivity. Recently, Zhang and co-workers!” carried out cluster expansion calcu-
lations coupled with CSP to determine the lowest enthalpy geometries resulting from the reaction
of SrB;C3 and RbB5C3 to form Rb,Sr;_,B3sCs with different metal ratios (x = 0.125 — 0.5), and
considering different colorings (metal atom distributions?). Relevant for our study, they found
that a Pm3 RbSrBsCg compound, wherein the shortest metal-metal contacts were between Rb
and Sr, possessed the most negative enthalpies of formation (though for the CaYH;, analogues,
different colorings were preferred®*>%). Similarly, the most stable coloring for the Rbg 4Sry ¢B3Cs
stoichiometry corresponded to a homogeneous distribution of the two metal atoms.'® With this
in mind, we carried out high-throughput calculations on Pm3 symmetry XY B¢Cs borocarbides

where the central metal atom in the structures shown in Fig. 1 was of one type, and those on the



corners of another type. In total 105 compounds were relaxed at ambient pressure, and their dy-
namic stabilities were evaluated via phonon calculations. Of the considered phases, 22 different
combinations including XY = KCa, KSr, RbSr, CaBa, SrBa, KPb, SrPb, BaPb, Cay, SrY, Bay,
SnY, PbY, KLa, RbLa, CsLa, CalLa, SrLa, BalLa, SnLa, PbLa, and YLa were found to be dynam-
ically stable. Molecular dynamic simulations in the NPT ensemble suggested that all metallic
phases but CaBa, SrBa, BaPb, BaY, CsLa, and SnLLa would be thermally stable at 300 K and 1 atm
(Fig. S7-S11). Thus, it may be that these 6 phases are ‘fleeting’>® (decomposing quickly or per-
)56

sisting only at low temperatures), whereas the remaining 15 are likely to be closer to ‘viability

(with notable barriers to decomposition).

Zhang et al. recently performed high-throughput calculations on 24 compounds in this struc-
ture type finding RbSr, KCa and KSr to be dynamically stable at ambient pressures,'” and Di
Cataldo and co-workers considered all 12 combinations of an alkali metal and an alkaline-earth
metal, concluding that RbSr, KCa and NaSr were dynamically stable at ambient pressure, whereas
CsBa became dynamically stable above 10 GPa. '® Therefore, in addition to the compounds identi-
fied as local minima by Zhang'” and Di Cataldo (excluding NaSr)!® and those that have been syn-
thesized, '>!'* we predicted a number of hitherto unreported dynamically stable phases involving
Sn, Pb, Y, La as well as combinations of two alkaline earth metals at ambient pressure, expand-
ing the number of possibly synthesizable XY BsCs phases by 19 (18 metals, and 1 insulator), and

investigated their thermal stability.

As atomic and ionic radii are notoriously difficult to quantify in the setting of a compound, de-
pendent as they are on specific local chemical environments, we identified the B-C distances in the
borocarbide cages as easily extracted structural parameters to help rationalize our understanding
of the dynamic stability of the XY B¢Cy phases. These distances, informed by the ionic radii and
valence of the metal atoms within, turned out to be important descriptors, with all structures cor-
responding to local minima having B-C interatomic distances that fell between 1.68-1.81 A (Fig.
S12 and Tables S8-S11). In the XY BgCq phases, the differing sizes of the X and Y atoms leads

to two sets of B-C distances for each compound; for the dynamically stable phases the difference
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between these distances was smaller than 0.1 A. While some dynamically unstable systems have
B-C distances adhering to these guidelines, we find the B-C distances nevertheless highlight the
importance of a good size-match for the metal ions with one another, as well as for the borocarbide

cages encapsulating them.

The intercalant modifies the number of states that can participate in the superconducting mech-
anism and the B-C distances, which in turn influence the vibrational properties and the electron-
phonon coupling (EPC). Previous theoretical studies have shown that the superconductivity in this
class of materials arises from motions associated with the clathrate framework, with the density
of states (DOS) at the Fermi level (Er) being a key descriptor for T,.'"!® Assuming full electron
transfer from the trivalent rare earths yields a formula of X3*[B3C3]3~, where the borocarbide
cage is isoelectronic to diamond, resulting in an insulator. Stuffing these borocarbides with elec-
tropositive elements whose average valence is less than +3 results in hole-doped metals. The band
structure of this class of compounds exhibits rigid band behavior where the nature of the intercalant
has a minimal effect on the shape of the bands, but can be used to precisely tune the placement of
E'r. A maximal 7, can be achieved when E lies on one of the two peaks in the DOS plot below
the gap in these electron-precise compounds (highlighted by arrows in Fig. 2).'"!® Pinning E- at
the upper peak in the DOS, as in Sr 75Lag 25B3Cs, yields a calculated T, of 59 K, !® while pinning
it at the lower peak, as in Rbg 4Sry B35Cs, results in a 7, of 83 K.'® The 7T,s of ordered XY BgCg
alloys (XY = RbSr, KCa and KSr,'®!” and CsBa, NaSr'®), where E- lies close to the lower peak
in the DOS, were predicted to fall between 72-82 K at or near ambient pressures. Thus, the 7.
can be nearly doubled, for example, by replacing half of the alkaline earth atoms in SrB3C3 with

Rb. 16-18

We illustrate that the band structure is mostly invariant to the identity of the intercalant for
four representative compounds containing two metal atoms of different valences in Fig. 2. In all
of the borocarbides we considered, the states near £ were almost entirely due to the carbon-2p
and boron-2p levels, with the former having a slightly larger contribution than the latter because

of the enhanced electronegativity of carbon. The conduction bands, on the other hand, are mostly
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of boron-2p and metal character. Around 1.15 and 2.00 eV below the top of the valence band
in electron precise YLaBgCg (Fig. S13) lie two peaks that could be accessed by ~0.75 and 1.55
hole doping, respectively. The combination of a trivalent and a divalent metal atom (e.g. Sr** and
La®" with an average oxidation state of +2.5) moves Er down by about 1 eV, so it lies slightly
above the first peak in the DOS (Fig. 2(a)). While the most common oxidation states of lead are
+2 and +4, our calculations consistently show this toxic element adopts the former valence in the
binary clathrates. Thus, the average oxidation state on the metal atoms is +2 in SrPbBCg and
in KLaBgCg, so in both compounds Er lies near the same position, falling within the pseudogap
between the upper and lower DOS peaks (Fig. 2(b,c)). Finally, KPbBsCg, with an average metal
oxidation state of +1.5, possesses the highest DOS at E'r, which is pinned close to the top of the
lower peak (Fig. 2(d)). These maxima in the DOS result from the presence of two nearly parallel
flat bands exclusively of boron and carbon character that are found along the X — M — (%)F high
symmetry lines and are separated by an energy gap of 0.5-0.7 eV. By choosing an appropriate
combination of metal elements E can be tuned to coincide with one of these two bands, thereby
increasing the number of states that can participate in the superconducting mechanism and resulting
in a “flat-band / steep-band” scenario,’’ proposed to be key for superconductivity in MgB,, and
other compounds.>%>° The DOS at £ is about the same for Pm3 XY BgCg with XY = SrLa, SrPb
and KLa suggesting their predicted 7.s will fall close to that of SrB3C3, whereas for KPbB4Cy it

is nearly double, tantalizing with the potential of a higher 7..

How do the identities of the metal atoms, their valences and the resulting DOS at E influence
the superconducting properties of the binary clathrates? To answer this question we calculated the
Eliashberg spectral function, o> F'(w), electron phonon coupling (EPC) constant, )\, and the log-
arithmic average frequency, wio, (Tables S6-7), of the ambient-pressure dynamically stable com-
pounds. The 7T,s were estimated using the McMillan Allen-Dynes-modified (MAD) equation*’ as
well as via numerical solution of the (isotropic) Eliashberg equations,*® which is more accurate
for strongly coupled systems whose A > 1.5. The Eliashberg results are summarized in map form

in Figure 3, where dynamically unstable combinations are marked with a cross and dynamically
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Figure 2: Representative band structures and densities of states colored by their elemental charac-
ters for XY BsCgs phases containing two different metals with varying oxidation states. The XY
elements (average oxidation states of the metal atoms) are: (a) SrLa (+2.5), (b) SrPb (+2), (c) KLa
(+2), (d) KPb (+1.5). The Fermi energy is set to 0 eV, and arrows point to the peaks in the DOS
plots. Pinning Fr at these peaks would maximize the 7..

stable phases are colored according to their 7. The plot illustrates results obtained for p* = 0.1,
with those for p* = 0.13,0.15,0.17 provided in Table S7. The values we obtained for SrB;Cs
(39 K) and BaB;C5 (45 K) are comparable to previous estimates (40-45 K !315-17 and 43-50 K, !>16
respectively). Generally speaking, the phases with the lowest 7.s contained one divalent and one
trivalent or one monovalent and one trivalent metal atom (7. = 30-43 K), while superconductivity
was predicted to persist to somewhat higher temperatures in borocarbide cages filled with divalent

metal atoms (7. = 39-54 K), and combinations of a monovalent and a divalent atom remained su-
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perconducting until near the boiling point of liquid nitrogen (7. = 74-88 K), perfectly correlating

with the values of the DOS at E'y calculated for the various metal combinations (Fig. 2).
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Figure 3: A map of superconducting critical temperature, 7., calculated via the Eliashberg equation
for Pm3 XY B¢Cs phases at ambient pressure and assuming a Coulomb repulsion parameter,
w* = 0.1, where the identities of the metal atoms are given on the z- and y-axes. Phases that
are dynamically unstable from phonon calculations

are labelled with X’s, and insulating phases are colored yellow.

Delving into the trends more deeply, for SrB3sCs and BaB3C3 as well as most of the phases
where the average oxidation state of the metal atoms was +2 (XY = CaBa, SrBa, KLa, RbLa,
and CsLa), A was found to lie between 0.86-1.12 and w,, was between 501-588 K resulting in
T.s ranging from 36-48 K. The only exception consisted of two phases containing a Group 14
element, BaPb and SrPb, whose EPCs were 1.28 and 1.40, respectively. Though their wy,, was
smaller, 400 K and 417 K, they still possessed a slightly higher 7. (49 K for SrPb and 54 K for

BaPb). The binary-metal borocarbides containing a divalent and a trivalent metal atom with an
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average oxidation state of +2.5 have not been studied before, however they represented the largest
number of dynamically stable phases (Ca, Sr, Ba, Sn, and Pb in combination with La or Y). Their
EPC ranged from 0.76-1.18 with the SnY and PbY combinations having the strongest coupling.
Though some of these compounds possessed the highest wio, of any of the borocarbides considered
(Cala, SrLa and Bal.a with values of 625-653 K) this increase was overshadowed by the smaller
A resulting in a 7, that did not surpass the one calculated for BaB3;C3. Once again, the 7, was
higher for the four phases that contained a Group 14 element (SnY, PbY, SnlLa and PbLa). In-
line with their increased DOS at Er the EPC of the KCa, KSr and RbSr containing compounds,
whose average metal oxidation state is +1.5, were among the largest (A = 1.58, 1.61, 1.79). Their
calculated Eliashberg T,s (75, 74, 77 K) were similar to previous estimates of Zhang et. al.'” and
Di Cataldo and co-workers. !¢ However, KPbB¢Cg possessed the largest coupling of any of the
systems studied so far, A = 2.67, and concomitantly the highest 7, of 88 K. Notably, the EPC in
this phase was nearly the same as the value calculated for the first high pressure superhydride to
be predicted, Im3m CaHg, with A = 2.69 at 150 GPa resulting in a predicted Eliashberg T of
235K.°

To analyze the phonon modes that are key for superconductivity, we plotted the phonon band
structures, phonon (projected) densities of states, and Eliashberg spectral functions and EPC in-
tegrals, A(w), of all of the identified superconducting phases (Fig. S14-18). A subset of these
are plotted in Fig. 4: SrB3;C3 and BaB3C3 were the simplest compounds considered, containing a
single metal atom; XY = BaPb possessed the highest 7, for combinations of metals whose oxi-
dation state averaged +2; KSr and KPb (with an average oxidation of +1.5) were characterized by
T.s approaching the boiling point of liquid nitrogen, and SnY had the highest 7. for a +2.5 metal
atom combination. For all of the phases considered the phonon spectra can be separated into two
regions: the lower frequency modes (typically below 200 cm~! to 300 cm~!) are mostly associ-
ated with the heavier electropositive atoms while the higher frequency modes can be attributed
to boron and carbon atoms. The plots of A\(w) showed that the higher frequency modes typically

contributed to between ~75-90% of the total EPC (Table S6). One notable exception was the high-
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est 7. compound we found, KPbB4Cg, where the contribution of the lower and higher frequency

modes towards the overall EPC was about the same. This will be discussed in detail below.

In Im3m CaHg the EPC was derived primarily from the T5, and E, modes at the Zone center,
which corresponded to the in-plane breathing and rocking vibrations of the H, square faces.® To
determine which modes contributed to the EPC in the borocarbide analogues, red circles represent-
ing the size of the contribution to \ at a particular wavevector ( and frequency v were overlaid on
the phonon band spectra (Fig. S14-18, Fig. 4). For both SrB3C3 and BaB3C; (Fig. 4(a-b)) a mode
at I' in which the boron atoms in the BoCs square faces undergo a scissoring or B-C-B bending
motion (601 and 534 cm ™, respectively) exhibited the largest )\, of any of the modes, while the
analogous C-B-C bend (807 and 723 cm™!) barely contributed to the EPC. For the isotypic, but
dynamically unstable, MgB3;C3 and CaB3C5 phases the scissoring mode of the carbon atoms com-
prising the square faces also possessed a higher frequency than the boron scissoring motion. The
lower frequencies for the boron scissoring motions are reflected in the larger negative CP lobes
on the B atoms in Figure 1, compared to the smaller or absent negative CP lobes on the C atoms,
as negative CP features are often aligned with softer phonon modes.®® Wang and co-workers also
identified these doubly degenerate £/, modes, which couple with the C 2p states, as being the main
contributors to the total \ in StB3C3 and BaB3Cj;.!'> For most of the binary-metal borocarbides this
mode also possessed a large coupling strength, though in some cases, most notably KPbB¢Cg, its

contribution was negligible (Fig. 4(e) and Table S12).

In SrB3C3 Wang et al. also identified a softening, or local decrease in frequency along an
acoustic branch between I' and M as being important in the EPC mechanism. In this mode the
amplitude of the motion of the light elements was larger than that of the metal atoms despite the
mode’s low frequency. ' In our calculations on BaB;Cs, however, this mode did not soften nor did
it contribute to the EPC, in line with the results of Wang et al. In binary clathrates, the set of low-
lying optical phonons whose dispersion mimicked that of the acoustic modes could be associated
with motions attributed to the lighter metal atoms. This is exemplified in Figure 4c with the modes

below 100 cm™* corresponding to Pb-based and the modes between 100-180 cm™! corresponding
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to Ba-based motions for BaPb. Certain combinations of metal atoms led to two sets of softened
modes along the I' — M branch, one corresponding to each metal atom as in SrPb and KSr, while
in others only one of these modes displayed a local softening (BaPb), and yet in others, such as

RbSr (Fig. S15(d)), no local softening was observed in this portion of the phonon band structure.

In addition to these previously discussed atomic motions that are important for the 77, our cal-
culations identified a number of modes that have not yet been scrutinized. For the simple clathrates
this includes the low-frequency optical mode, which softens around the midpoint of the ' — X,
X—-—M,M~—-T,I"— Rand R — X path and, for BaB3C3, a mode that softens substantially at
the R-point where it is doubly degenerate. Curiously, at the R-point this vibration in BaB3Cj re-
sults in a Jahn-Teller like distortion of the near-perfect square faces into rectangular units with two
short, and two long B-C distances. For many (but not all) of the binary clathrates with average +2
oxidation states, as well as some with an average oxidation state of +1.5, this mode is found to be
highly softened at /2 and a strong contributor to the EPC. A softening of the acoustic mode along
some portion of the X — M — I' path was present in the KSr and KPb combinations, but not in
RbSr or BaPb. Finally, for the four compounds with the highest EPC - KSr, KPb, KCa, and RbSr,
softened acoustic modes along [' — R — X, on either side of the R-point, and multiple soft modes

at R were found to be key for their very superb 7.

The largest \q, in the highest 7. compound we found, KPbBsCs, was a softened mode at
95 cm ™! just off the R-point along the I' — X path, which could be described as a libration/wagging
of the two boron and two carbon atoms on opposite corners of the square faces leading to the
formation of a rectangle. Such motions are very similar to the aforementioned Jahn-Teller-like
distortions. Above it, near 121 cm™! lay a mode with a slightly smaller \q, whose main contribu-
tions could be attributed to similar libration and wagging motions in the B-C network, and along
the I' — R path the light elements afforded the main contributions to a mode with intermediate
Aqv- These three modes — at R, along I' — R, and R — X — were all associated with coupled
square-to-rectangle and square-to-tetrahedral motions of vertex-sharing four-membered faces on

perpendicular planes. Thus, even though the low-frequency modes below 300 cm ™! contributed to
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~48% of the total A, they could be primarily characterized by the motions of the boron and carbon

atoms, mirroring the findings for SrB;Cs. 31

(a) SrB,C, (b) BaB,C,
06 12
800 :
800 ——
700 N
700 {_, S X
~ 600 4 ~ %0
£ A S
S 500 5 500
> >
2 400 g 400
z 2 300
8 300 g
w w
200 200 20%FIw —
100 100 A=
. oL . )
r x M r R X PHDOS 0 01 02 r x M r R X PHDOS 0 01 02
(c) BaPbB,C, (d) KSrB,Cq
0 012 0240 075 15 0 01 020 06 12 18
800 - 800
700 - 700
600 - 600 -
E 500 E 500
a >
g 400 g 400
[} o
3 3
g 300 - § 300
w w
200 200 -
100 100
O 1 1 1 O 1 1 1
r x M r R X PHDOS 0 015 03 r x M r R X PHDOS 0 013 026
(e) KPbB,C, () SNYB,C,
0 01 020 1 2 3
800 T T T T T T T T T
— < — — 800
=
Ve e Wee < 700
600 SRS 2
< e ——— 2acFlen =600 -
E 500 { X S _ §
S R e 8- < 500
g a0 \‘,A“_;"///' \ ) P g 40
> 300 4\\:_‘,&1"“ \ /‘ Pb g
&—’ Av -' \\ L ,‘ otal — E 300
200 ,‘——v“\ ,\\r — 200 -
100 ’*¥ 100
O 1 1 ~\ /— 1 O 1 L 1
r x M r R X PHDOS 0 04 08 r x M r R X PHDOS 0 02 04

Figure 4: Phonon dispersion curves, projected phonon density of states (PHDOS), Eliashberg
spectral function scaled by the frequency (2o F'/w), and the EPC integral (A(w)) for a) SrB3Cs,
b) BaB3Cs, ¢) BaPbB4Cg, d) KSrBsCg, €) KPbBgCg, and f) SnYBzCy at ambient pressure. The
radius of the bubble on the phonon dispersion curve is proportional to the electron-phonon coupling
constant (\q,) for the mode v at wavevector q.

Let us further investigate the effect of the doubly degenerate soft mode at the R-point near

116 cm™! on the electronic structure of KPbBgCg. Closer examination of the structure resulting
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from displacing the atoms along the associated eigenvectors (Fig. S19 and Fig. 5) revealed it pos-
sessed some unperturbed square faces, others that were (nonplanar) distorted-squares, and some
that became rectangular. A plot of the charge density difference calculated by subtracting the elec-
tron density of the original structure from that of the perturbed geometry illustrated that no major
charge transfer occurs along the B-C bonds comprising the square and distorted-square faces. For
the B-C bonds along the rectangular faces, however, charge was transferred from the elongated to
the shortened bonds, as expected, mirroring the change in the electronic structure that accompa-
nies the Jahn-Teller distortion of C,H, to cyclobutadiene. The distortion results in a decrease in

the DOS at E'r.

Given that SrB3C;!? and LaB3C3 # have been synthesized under pressure we wondered if some
of the XY BgCg phases discussed above could be made using similar techniques and quenched
metastably to ambient conditions? At zero pressure and temperature, the formation of ordered
binary-metal borocarbides (from the elemental phases) is largely endothermic with computed
AH; >150 meV/atom.'®!7 However, high pressures and temperatures could be used to access
exergonic reaction pathways, for example the change in the free energy for the reaction Rb +
SrBg + 6C — RbSrBsCg is negative by 3500 K and 50 GPa.!” Actually, the enthalpic instability
of the binary-metal borocarbides could be expected: statistical analysis of the AFLOW data repos-
itory has shown that three or four component systems are typically only stabilized due to entropic
factors that favor the formation of disordered systems.®! One famous example is high entropy solid
solutions, which are synthesized at high-temperatures but do not phase segregate when the temper-
ature is decreased. Assuming a large (K,Pb)B3C;3 supercell where there is no site preference for
the two metal atoms, and using the Boltzmann formula (simplified via Stirling’s approximation)

we estimate the configurational entropy as S/kg = In ( = In(1/2).9 This provides an

N

N/2)/(N/2)!
upper bound to the stabilization that can be attained by randomly distributing the two metal atoms
within the borocarbide cage. In a real system with some site preference the configurational entropy

would be decreased; nonetheless we can use this value to estimate the conditions at which the con-

figurational entropy would overcome the enthalpic penalty for the formation of (K,Pb)B3C3 from
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Figure 5: (a) A 2 x 2 x 2 supercell showing the borocarbide framework of KPbB;Cg before (left
panel, top) and after (left panel, bottom) a distortion by the ~116 cm~! phonon mode at the R-
point, which is associated with a significant EPC. The distortion yields three types of quadrilateral
faces on the clathrate cage: square (not shown, perpendicular to the plane of the page), rectangular
(R; right panel, top) and distorted-squares (D; right panel, bottom). (b) A contour plot obtained by
subtracting the electron density of the distorted structure from that of Pm3 symmetry KPbB4Cg
where red denotes a gain of charge (in the short bonds) and blue a loss of charge (in the long
bonds). (c¢) The DOS near E of the original and the distorted structure.

the elements. As shown in Table S13, we find this transition to occur by 4000 K and 50 GPa, sug-
gesting that (K,Pb)B3;C5; could potentially be made from the elements using laser heating within a
diamond anvil cell (as could all of the metallic, dynamically stable binary clathrates we studied,

see Fig. S20-24 and Table S13), though other synthesis routes, not considered here, might also be

20



viable. For example, because it is difficult to prepare potassium for high-pressure experiments,
one could use binary compounds such as K,Cs or KBg. Including the vibrational contributions to
the free energy at 60 GPa within the harmonic approximation decreases the synthesis temperature

further to 2000 K (Fig. S22(c)).

Since sp® hybridized compounds containing boron and carbon, often in combination with a
metal atom, are known to possess superior mechanical properties we used our machine learning
approach,®® recently applied to predicted allotropes of boron and carbon,®% to obtain the bulk
and shear moduli, which, when combined with Teter’s formula, can be used to estimate H, of
the dynamically stable phases. As shown in Table S14, H, falls between 20-26 GPa, in-line with
previous results for SrB;C3 based on calculated elastic properties'? and comparable to measured
values for tungsten carbide,® and silicon carbide.%” As expected, both the moduli and the Vickers
hardnesses of the studied simple and binary borocarbides decrease with increasing metallicity. The
H, of the insulating compounds (Table S14, Fig. S25) were among the highest (24.6-28.5 GPa).
Generally speaking, systems with an average oxidation state of +2.5 possessed the second highest
H,s (22.7-26.1 GPa), those with an average oxidation state of +2 were predicted to be somewhat
less hard (H,=20.5-24.5 GPa) and the clathrates that had the highest DOS at Fr with average
oxidation states of +1.5 were the least likely to be hard (H,=19.7-20.9 GPa). Thus, the DOS at
E'r in the simple or binary-guest borocarbides can be used to tune both the superconducting and

mechanical properties of this family compounds, with an inverse correlation between the two.

Conclusion

In summary DFT-chemical pressure (DFT-CP) calculations have shown that the size of the elec-
tropositive alkaline earth metal atoms enclathrated within the bipartite sodalite borocarbide cages,
Pm3n XBsCs, is a key factor for their ambient-pressure dynamic stability. The CP exerted by the
larger metals on the cage within which they are confined elongates the B-C distances thereby min-

imizing the positive CP within the B-C network. Moving to borocarbide cages containing two dif-

21



ferent metals with the Pm3 XY B¢C structure, from the 105 combinations considered, 22 ordered
structures were found to be dynamically stable. From these, 19 are newly identified, 18 of which
are new superconductors. The enclathrated metal atoms donate electrons to the borocarbide lattice
and their average valence can be used to tune the number of occupied states at the Fermi level, Er,
so it falls on a peak in the density of states (DOS), thereby increasing the ambient-pressure 7. from
30 K in SrLaBgCg to 88 K in KPbB;Cg. Both the configurational and vibrational energy are shown
to stabilize KPbB4Cg, suggesting it could potentially be synthesized at high temperatures above
50 GPa. Modes that are associated with distortions of the square faces in the borocarbide cages
are important for the superconducting mechanism via electron-phonon coupling. Exploratory cal-
culations on borocarbide cages stuffed with a single lanthanide element have uncovered a number
of ambient-pressure metastable phases, suggesting that many more binary or even ternary metal
combinations — some whose 7.s may rival those of KPbBsCg — could potentially be made. The
compounds predicted here, in addition to the large number of possible elemental occupations and
stoichiometries not yet studied, provide a pathway towards warm superconductivity in covalent

materials stabilized at ambient pressure.

Supporting Information

The Supporting Information is available free of charge on the ACS Publication website. It includes
the computational details, electronic band structures and densities of states, thermodynamic and
thermal (molecular dynamics) stability analysis, Bader charges, structural parameters, Eliashberg
spectral functions, phonon dispersion curves, EPC calculations, and details of the chemical pres-
sure calculations. The structural parameters may also be obtained at Novel Materials Discovery ®
(10.17172/NOMAD/2022.11.16-1) and The Cambridge Crystallographic Data Centre® (deposi-
tion number: 2220055 — 2220080).
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