
Coherent Phase Shift Keying (PSK) Modulation
Using Low-Power Micro-controllers for Underwater

Acoustic Communications
Alexis Soulias , Yukang Xue , Y. Rosa Zheng , Fellow, IEEE,

Dept. of Electrical & Computer Engineering, Lehigh University, Bethlehem, PA 18015

Abstract—Phase Shift Keying is a single-carrier coherent
modulation scheme that requires accurate phase and frequency
control. We evaluate two approaches to accurately control the
phase of the modulated signals for acoustic transmitters im-
plemented by a low-power microcontroller (MCU) with a low
system clock. One approach is to use one hardware timer for the
carrier frequency and one software counter for the symbol rate.
Another approach is to use two hardware timers: one for the
carrier frequency and one for the symbol rate. We provide the
detailed implementation on a Texas Instruments’ MSP430F5529
MCU and compare the two approaches for BPSK and QPSK.
Our testing results show that care has to be taken to ensure that
the symbol phase control is accurate within 0.01% of the carrier
frequency.

Index Terms—PSK, underwater acoustic communication, mi-
crocontroller

I. INTRODUCTION

Underwater sensors and data loggers are highly beneficial
for the future Underwater Internet of Things, which have im-
portant applications in various areas, such as civil engineering
studies in soil erosion, bridge scouring, and storm-water and
sediment management [1]. Currently, most data loggers are
placed underwater for data collection without transfer data in
real time. They are often removed from the water to connect
to a host computer via a cable, BlueTooth, or WiFi to transfer
data to the internet [2], [3]. In all cases, these sensors or
data loggers lack efficiency in real-time data collection. To
achieve this real-time data transfer while working underwater,
the sensors must be equipped with underwater wireless com-
munication means, such as acoustic communication, magneto-
inductive communication, or optical communications. How-
ever, most of the existing underwater wireless communication
systems are quite large and expensive, making them difficult
to integrate with small underwater sensors and data loggers.

In this project, we choose a high frequency acoustic trans-
ducer at 200 kHz to achieve short range underwater wireless
communication. The TI’s low-power MSP430F5529 micro-
controller (MCU) is selected to interface with sensors and
implement underwater acoustic communication with single-
carrier coherent modulation (SCCM). In contrast to the imple-
mentation on sophisticated Field Programmable Gate Arrays
(FPGA) [4] or Digital Signal Processors (DSP) [5], MCU
implementation presents unique challenges due to its low
system clocks and limited resources, especially when low-
power consumption is a constraint. When setting the MCU’s

system clock as low as 24 MHz, there is a timing discrepancy
in the high carrier frequency due to the intermediary time
it takes for the hardware timer to change modes and the
execution of its Interrupt Service Routine (ISR). This results
in a phase drift or non-coherence of the carrier frequency
in the modulated pass-band signal. This paper investigates
two implementations to combat this problem and evaluates
their performance; Additionally, it demonstrates each method’s
ability to show the same level of accuracy. Ultimately, it allows
a user the flexibility in choosing a solution based on the
resources available in a given microcontroller.

II. MODULATION

Modulation is the process of converting a digital bit stream
to an analog signal at a high frequency, allowing the signal to
transmit across physical mediums. Coherent phase shift keying
usually maps the bits to complex symbols with Gray coding,
as shown in Fig. 1. Binary phase shift key (BPSK) uses one
input bit to select one of two phases which have a 180 degree
difference. Similarly, the QPSK (or 8-PSK) modulation has
four (or eight) different phases of the carrier waveform that
are selected by the two (or three) input bits.

A. Implementing Binary Phase Shift Key

The TI MSP430 Microcontroller comes equipped with vari-
ous pulse width modulation (PWM) output modes that can be
used to implement the two different phase waveforms needed
for BPSK [6]. The Timer A module in the MCU generates
the carrier frequency and then sets and controls the PWM
outputs. As shown in fig. 2 the timer’s clock signal is sourced
by the SMCLK through a divider. The timer’s counter is then
compared to either the TAxCCR0 or TAxCCRn register, and
when equal, the output mode is specified and enabled.

The given PWM outputs produce a square wave that is used
for testing the carrier frequency and modulation. However,
on the front-end transmitter side, there is a LC resonance
circuit that produces a low-pass filter. This removes the high
frequencies from the square wave, resulting in a standard
sinusoidal wave for the carrier.

Table I shows all the different output modes in the MSP430
F5529 MCU. In this project, output modes three (set/reset) and
seven (reset/set) were used to create two different waveforms,
inherently representing the 0 and 1 bit.

978-1-6654-6809-1/22/$31.00 ©2022 IEEE

O
C

EA
N

S
20

22
, H

am
pt

on
 R

oa
ds

 |
97

8-
1-

66
54

-6
80

9-
1/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

O
C

EA
N

S4
71

91
.2

02
2.

99
77

24
4

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on July 10,2023 at 04:31:13 UTC from IEEE Xplore. Restrictions apply.

(a) BPSK constellation (b) QPSK constellation (c) 8-PSK constellation

Fig. 1: Ideal constellations for PSK bit-to-symbol mapping with Gray coding

Fig. 2: Box Diagram depicting set up of the timer creating the
carrier frequency and output modes.

TABLE I: Output modes of Timer A module

Mode Description

Mode 0 Output defined by OUT bit. Output updated immediately
as OUT changes.

Mode 1
Output set when timer counts to TAxCCRn value. Remains
set until timer is reset or until different
output mode is selected.

Mode 2
Output set when timer counts to TAxCCRn value. Remains
set until timer is reset or until different
output mode is selected.

Mode 3 Output set when timer counts to TAxCCRn value. Resets
when timer counts to TAxCCR0 value.

Mode 4 Output toggled when timer counts
to TAxCCRn value. Output period is double timer period.

Mode 5 Output is reset when timer counts to TAxCCRn value.
Remains reset until different output mode is selected.

Mode 6 Output is toggled when timer counts to TAxCCRn value.
Output is set when timer counts to TAxCCR0 value.

Mode 7 Output is reset when timer counts to TAxCCRn value.
Output is set when timer counts to TAxCCR0 value.

Fig. 3 shows the PWM output scheme, where register TAx-
CCR0 is set to create the carrier frequency fc and TAxCCRn is
set to control the duty cycle. Using the PWM ’UP’ mode, the
timer repeatedly counts from 0 up to the TAxCCR0 register
value and generates an interrupt. The output toggles once
when the timer equals the TAxCCRn register value and once
again when the TAxCCR0 value is reached, thus forming a
square waveform with fc = (TAxCCR0 + 1)/fTclk, where

fTclk denotes the frequency of the timer clock.
In our experiments, we use Timer A0 and set the TA0CCR0

register to 119 and the corresponding TA0CCR1 register to 59,
creating a duty cycle of 50% with a fc of 200kHz. Depending
on whether the transmitted bit is 0 or 1, we choose PWM
output mode 3 or 7 to generate the square waveforms that
are 180 degrees out of phase. With two square waves of
opposite phases we produce the two symbols needed in BPSK.
This process setups one hardware timer that is used in both
proposed solutions.

Fig. 3: PWM output scheme. The carrier frequency is de-
termined by one cycle of counting up with timer register
TAxCCR0.

B. Problems in the Initial Implementation

This paper will discuss the intricacies in implementing the
two different methods to achieve accurate signal transmission.
To precisely and consistently transmit bits, the cycles per
symbol (CPS), needs to be well-defined. The CPS defines how
many cycles of a particular phase must be counted in order to
officially determine the bit as a 0 or 1: CPS = fs/ fc, where fs
denotes the symbol rate. In our project, utilizing a CPS of 10
means that to transmit a ’0’ bit, 10 cycles of the high waveform
must be tracked and vice versa with the low waveform phase
as the ’1’ bit.

In both solutions, two timers are needed: one to create the
carrier frequency and one to count the CPS. When initially
implemented, we observed that after each flip from one output
mode to another, there were extra cycles being captured in each

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on July 10,2023 at 04:31:13 UTC from IEEE Xplore. Restrictions apply.

bit. This was determined to be caused by the first timer that
generates the 200kHz carrier frequency not stopping during the
small time it takes for the second timer to disable an interrupt.
The time it takes for the hardware processor to transition
between counting the CPS for one bit and then starting the
transmission over for the next bit in the signal leads to a
timing issue as the extra cycles create a phase offset. When
the phase offset becomes half a cycle, the waveforms invert,
thus making the output for a 0 bit look like the waveform
for a 1 bit and vice versa. When transmitting the same signal
over and over, this timing issue and resulting phase difference
make the output unreadable as the signal looks different each
time.

III. PROPOSED APPROACHES

The general implementation utilizes the PWM output modes
to create the standard square wave forms needed to represent
a low wave and a high wave. These output modes are assigned
respectively to the bits 0 and 1, and the mode changes corre-
spondingly when the counting finishes in the second timer.
This paper’s experiments take this general implementation
and look at different types of timers to use for calculating
the CPS. Each solution has a hardware timer to create the
carrier frequency, fc, at 200kHz; however, the first solution
uses a software timer to count the CPS while the second
implementation uses another hardware timer instead. The
focus will be on ensuring each method performs to the same
standard.

The symbol rate or bandwidth of either approach can be
written as:

Bandwidth =
fc
n

(1)

Fig. 4 shows the block diagram of the BPSK implemen-
tations with one hardware timer plus one software counter.
In Fig. 5, we illustrate the block diagram of the QPSK with
solution of two hardware timers.

Fig. 4: Block diagram for one hardware timer plus one
software counter in BPSK

Fig. 5: Block diagram for two hardware timers in QPSK

The Software Timer Approach: The first approach uses the
hardware Timer A0 setting TA0CCR0 register to 119 and the

comparator register, TA0CCRn, to 59, which generates the
200kHz carrier frequency. A software timer is then imple-
mented during the interrupt routine of this hardware timer to
record the CPS with a precise control. The interrupt is enabled
each time the counter in Timer A0 equals the TA0CCRn value.

In this interrupt routine, the software counter, n, gets
incremented by one, allowing the counter to track and record
the CPS of the current transmitted bit. When the counter n
reaches 10, we end the transmission of the current bit, clear
the counter, and start the transmission of the next bit. Notice
that when the above counter n reaches 10, that means the
software timer has counter to 59 (TA0CCRn) for the tenth
time, but there are still 60 clock cycles before the tenth count
to 119 (TA0CCR0). It is during the 60 clock cycles before this
next symbol that the program completes the reconfiguration of
the Timer A0 output mode.

Fig. 6 and Fig. 7 show the results of the software counter
scheme, capturing images of the 200 kHz BPSK modulated
output on an oscilloscope. The period between two adjacent
bits is still the expected 5 microseconds, and the deviation of
0.56 may come from the accuracy of the oscilloscope, which
is acceptable. The results shows the software counter scheme
does not have any timing problem between two adjacent bits,
proving to be an accurate method of implementation.

Fig. 6: Results of the software counter scheme.

The Two-hardware Timer Approach: This approach re-
moves the need for a software timer and instead uses two
hardware timers. The first hardware timer, A0, continues
to generate the 200 kHz BPSK carrier signal; the second
hardware counter has a count period that is an integer multiple
of the first counter and is used to record CPS. In the first
hardware counter, as shown in fig.2, the counter is sourced by
the SMCLK with a divider of 1 to provide a 24 MHz clock
source. Like in the previous solution, the count control mode
is set to ”up mode” and the register TA0CCR0 is set to 119
and TA0CCRn is set to 59 for the comparator. This creates
the standard square wave at 200kHz and when enabled, will
then configure the output modes 3 and 7 of the PWM to set
high and low wave forms for the 0 and 1 bit. The second
hardware timer, A1, is also driven by a 24MHz clock source
and configured in ”up mode.” Its TA1CCR0 register is set to
1199 which is 10 times the counting period of A0; therefore,
each complete cycle of timer A1 corresponds to 10 cycles

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on July 10,2023 at 04:31:13 UTC from IEEE Xplore. Restrictions apply.

(a) A normal square wave period = 5 us with 0.64% deviation

(b) Period at adjacent bits = 5 us with 0.56% deviation

Fig. 7: Timing Results of the software counter scheme

of timer A0. This is how we are able to track the CPS with
timer A2. Ideally, we would be able to start timers A0 and
A1 at the same time, keeping them in sync to avoid timing
discrepancies. If so, we know that in the process of counting
1199 from 0 in A1, A0 completes the process of counting from
0 to 119 10 times. After A0 has completed 9 counts from 0
to 119, we should be ready to switch to the next symbol to
be transmitted. Essentially, while A0 is transmitting the tenth
signal cycle, the program already knows that this is the last
cycle representing the current symbol. Therefore, we set timer
A1’s register TA1CCRn to 1150, a number that lies between
1140 and 1199. When timer A1 counts to 1150, the program
re configures the output mode of timer A0 based on the value
of the next transmitted symbol. Since enough clock cycles are
left between 1150 and 1199 to complete the reconfiguration
of timer A0, we solve the timing problem that exists for
switching between the two transmission symbols. Note that
the value of register TA1CCRn for timer A1, if chosen too
small, can cause distortion in the tenth cycle of the current
transmitted symbol. 1150 is the appropriate choice based on
measurements that leave enough clock cycles to complete the
reconfiguration of the timer from the current symbol to the
next symbol without causing severe distortion in the tenth
cycle of the current symbol. Fig 8 shows the periods of each
hardware timer, displaying how the two correlate.

In the process of actual programming, we found that the
MSP430F5529 does not provide a function to enable two hard-
ware timers at the same time. For this reason we had to start
the counting of two registers one after the other. Experimental

Fig. 8: Timer A0 is set with a period of 119 and a comparator
of 59 to achieve a 50% duty cycle to create a 200kHz fc.
Timer A1 is set with a period of 1199 and a comparator of
1150 to count a full 10 cycles of the fc while leaving enough
time for the processor to transition between bits.

tests showed this sequentially enabled operation resulted in
the timer that was enabled first counting a steady extra 17
clock cycles. After repeated tests, it was verified that these
17 clock cycles are always fixed, so we can still equivalently
assume that timer A0 and timer A1 are synchronized but with
a constant gap. The 17 clock cycle gap in timing can lead
to inaccurate transmission of the first symbol. We observed
that the initial bits were facing interference from this constant
phase shift that took more than one bit but less than two, to
fully correct. Fig.9 shows the interference in the initial bits.

Fig. 9: Expecting the first nine bits to be 101001011 but only
seeing 1001011 clearly as the first two bits get lost in the time
difference between the two timers starting.

We measured the discrepancy and calculated that this phase
interference was a constant 17 cycles each time. To combat
that, we added an extra two bits to the front of each signal to
act as parity bits. These two new starting bits buffer the initial
phase difference and allow us to mark where the real signal
starts, which enables a full, clean transmitted signal.

After adding the two extra bits at the start of each signal,
we were able to properly transmit the signal to the correct
CPS accuracy.

IV. FURTHER EXPERIMENTS: QPSK IMPLEMENTATION

After concluding that both solutions can be produced for
BPSK modulation, we wanted to expand the testing to Quadra-
ture Phase Shift Keying (QPSK). In QPSK there are four
carrier phases with two bits being modulated at once to

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on July 10,2023 at 04:31:13 UTC from IEEE Xplore. Restrictions apply.

Fig. 10: Initial dummy bits were added to the beginning of
each transmission and calculated to always find the distinct
start of the true signal. The real signal starts after the yellow
marker.

(a) A normal square wave period = 5 us with 0.64% deviation

(b) Period at adjacent bits = 5 us with 0.56% deviation

Fig. 11: Timing Results of the hardware counter scheme

determine the phase. This method of modulation allows for
a signal to carry twice as much information as BPSK. In the
following experiments, we aimed to prove that each method
previously designed to fix the timing discrepancy in the BPSK
modulation could be extended to use for more complicated
modes of modulation too.

The details of implementing QPSK modulation have been
provided in [7] however, the main idea is that the initial
starting phase is controlled by two duty cycles and two PWM
output modes. During the transmission of the signal, the
PWM output mode 4 is strictly used to create the different
phases. This general implementation was tailored to then use

a software timer for the CPS counter in the first experiment
and then a second hardware timer in the next. Both solutions
integrated the same as previously in the BPSK with the
software timer working as is and the second hardware timer
needing the extra initial bits to handle the interference. The
initial phase difference in the two hardware timer approach
was calculated to be the same amount of constant time as
before in the BPSK modulation. The following two figures,
Fig.12 and Fig.13, display the results of each implementation
properly transmitting the given signal.

In the software timer experiment we gave the signal
0231003. The yellow waveform is the actual signal, and the
blue is a comparison waveform of a standard phase to allow
easier detection of the four difference phases. For the two
hardware timer experiment, we gave a different signal, 011133,
and repeatedly sent it to ensure the timing discrepancy had
been properly handled.

Fig. 12: QPSK implemented using one hardware timer and
one software timer.

Fig. 13: QPSK implemented using two hardware timers.

V. CONCLUSION

Leveraging TI’s low-power MSP430F559 microcontroller,
we were able to implement BPSK modulation with a 200kHz
carrier frequency under two different schemes. Hardware timer
A0 was set in each solution to create fc while a second timer,
software or hardware was generated to count the CPS. Our
results proved that both proposed solutions can be produced

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on July 10,2023 at 04:31:13 UTC from IEEE Xplore. Restrictions apply.

within the necessary levels of accuracy to transmit an acous-
tic communication signal under BPSK modulation. We also
proved that these implementations can be used to generate
more complex modes of modulation, expanding both methods
to work under QPSK, four phase, modulation. While each
method does work, the software timer is an easier implementa-
tion as there is no extra timing discrepancy to worry about with
having to start two timers synchronously. However, with the
extra step of adding some parity bits before the real transmitted
signal, a user could use the two hardware timer solution to
the same affect, providing the intended flexibility in choosing
available resources on a microcontroller.

ACKNOWLEDGMENT

This work is supported in part by the I-DISC undergraduate
research program of Lehigh University and the NSF research
grant IIP-1853258.

REFERENCES

[1] Y. R. Zheng, X. Zhu, and M. Tan, “Miniature underwater animal tags
and smart sensors for civil engineering applications,” in Proceedings
of the International Conference on Underwater Networks Systems,
ser. WUWNET’19. New York, NY, USA: Association for Computing
Machinery, 2019. [Online]. Available: https://doi.org/10.1145/3366486.
3366543

[2] Y. Kao, D. Frank, D. Foster, K. Huang, C. Kao, and P. H. Chou, “An
in-situ motion measurement system for underwater sediments tracking,”
in 2014 IEEE International Conference on Internet of Things (iThings),
and IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom), Sep. 2014, pp. 360–
367.

[3] D. Frank, D. Foster, P. Chou, Y.-M. Kao, J. Calantoni, and I.-M.
Sou, “Direct measurements of sediment response to waves with ‘smart
sediment grains’,” 10 2013, pp. 1–5.

[4] J. Li and Y. R. Zheng, “Hardware and software co-design of an underwater
acoustic modem,” in MTS/IEEE Global Oceans 2021: San Diego – Porto,
2021, pp. 1–6.

[5] Y. R. Zheng, Z. Yang, J. Hao, and P. Han, “Hardware implementation of
underwater acoustic localization system for bridge scour monitoring,” in
Oceans-San Diego, 2013. IEEE, 2013, pp. 1–6.

[6] H. Qiu, “BPSK Modem Implementation With MSP432™
MCUs,” 2016. [Online]. Available: https://e2e.ti.com/cfs-file/ key/
communityserver-discussions-components-files/166/slaa681a.pdf

[7] Y. Xue and Y. R. Zheng, “ntation of high-order psk modulation for mimo
acoustic modem using microcontrollers,” in MTS/IEEE Global Oceans
2021: San Diego – Porto, 2021, pp. 1–6.

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on July 10,2023 at 04:31:13 UTC from IEEE Xplore. Restrictions apply.

