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Abstract

From optimal transport to robust dimensionality reduction, a plethora of machine learning ap-
plications can be cast into the min-max optimization problems over Riemannian manifolds. Though
many min-max algorithms have been analyzed in the Euclidean setting, it has proved elusive to
translate these results to the Riemannian case. Zhang et al. [2022] have recently shown that geodesic
convex concave Riemannian problems always admit saddle-point solutions. Inspired by this result, we
study whether a performance gap between Riemannian and optimal Euclidean space convex-concave
algorithms is necessary. We answer this question in the negative—we prove that the Riemannian
corrected extragradient (RCEG) method achieves last-iterate convergence at a linear rate in the
geodesically strongly-convex-concave case, matching the Euclidean result. Our results also extend
to the stochastic or non-smooth case where RCEG and Riemanian gradient ascent descent (RGDA)
achieve near-optimal convergence rates up to factors depending on curvature of the manifold.

1 Introduction

Constrained optimization problems arise throughout machine learning, in classical settings such as
dimension reduction [Boumal and Absil, 2011], dictionary learning [Sun et al., 2016a,b], and deep neural
networks [Huang et al., 2018], but also in emerging problems involving decision-making and multi-agent
interactions. While simple convex constraints (such as norm constraints) can be easily incorporated
in standard optimization formulations, notably (proximal) gradient descent [Raskutti and Mukherjee,
2015, Giannou et al., 2021b,a, Antonakopoulos et al., 2020, Vlatakis-Gkaragkounis et al., 2020], in a
range of other applications such as matrix recovery [Fornasier et al., 2011, Candes et al., 2008], low-
rank matrix factorization [Han et al., 2021] and generative adversarial nets [Goodfellow et al., 2014],
the constraints are fundamentally nonconvex and are often treated via special heuristics.

Thus, a general goal is to design algorithms that systematically take account of special geometric
structure of the feasible set [Mei et al., 2021, Lojasiewicz, 1963, Polyak, 1963]. A long line of work
in the machine learning (ML) community has focused on understanding the geometric properties of
commonly used constraints and how they affect optimization; [see, e.g., Ge et al., 2015, Anandkumar
and Ge, 2016, Sra and Hosseini, 2016, Jin et al., 2017, Ge et al., 2017, Du et al., 2017, Reddi et al.,
2018, Criscitiello and Boumal, 2019, Jin et al., 2021]. A prominent aspect of this agenda has been the
re-expression of these constraints through the lens of Riemannian manifolds. This has given rise to
new algorithms [Sra and Hosseini, 2015, Hosseini and Sra, 2015] with a wide range of ML applications,
inclduing online principal component analysis (PCA), the computation of Mahalanobis distance from
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noisy measurements [Bonnabel, 2013], consensus distributed algorithms for aggregation in ad-hoc wire-
less networks [Tron et al., 2012] and maximum likelihood estimation for certain non-Gaussian (heavy-
or light-tailed) distributions [Wiesel, 2012].

Going beyond simple minimization problems, the robustification of many ML tasks can be formulated
as min-max optimization problems. Well-known examples in this domain include adversarial machine
learning [Kumar et al., 2017, Chen et al., 2018], optimal transport [Lin et al., 2020a], and online
learning [Mertikopoulos and Sandholm, 2018, Bomze et al., 2019, Antonakopoulos et al., 2020]. Similar
to their minimization counterparts, non-convex constraints have been widely applicable to the min-
max optimization as well [Heusel et al., 2017, Daskalakis and Panageas, 2018, Balduzzi et al., 2018,
Mertikopoulos et al., 2019, Jin et al., 2020]. Recently there has been significant effort in proving tighter
results either under more structured assumptions [Thekumprampil et al., 2019, Nouiehed et al., 2019,
Lu et al., 2020, Azizian et al., 2020, Diakonikolas, 2020, Golowich et al., 2020, Lin et al., 2020c,b, Liu
et al., 2021, Ostrovskii et al., 2021, Kong and Monteiro, 2021], and/or obtaining last-iterate convergence
guarantees [Daskalakis and Panageas, 2018, 2019, Mertikopoulos et al., 2019, Adolphs et al., 2019, Liang
and Stokes, 2019, Gidel et al., 2019, Mazumdar et al., 2020, Liu et al., 2020, Mokhtari et al., 2020, Lin
et al., 2020c, Hamedani and Aybat, 2021, Abernethy et al., 2021, Cai et al., 2022] for computing
min-max solutions in convex-concave settings. Nonetheless, the analysis of the iteration complexity in
the general non-convex non-concave setting is still in its infancy [Vlatakis-Gkaragkounis et al., 2019,
2021]. In response, the optimization community has recently studied how to extend standard min-
max optimization algorithms such as gradient descent ascent (GDA) and extragradient (EG) to the
Riemannian setting. In mathematical terms, given two Riemannian manifolds M,N and a function
f :M×N → R, the Riemannian min-max optimization (RMMO) problem becomes

min
x∈M

max
y∈N

f(x, y).

The change of geometry from Euclidean to Riemannian poses several difficulties. Indeed, a fundamen-
tal stumbling block has been that this problem may not even have theoretically meaningful solutions.
In contrast with minimization where an optimal solution in a bounded domain is always guaranteed
[Fearnley et al., 2021], existence of such saddle points necessitates typically the application of topo-
logical fixed point theorems [Brouwer, 1911, Kakutani, 1941], KKM Theory [Knaster et al., 1929]).
For the case of convex-concave f with compact sets X and Y, Sion [1958] generalized the celebrated
theorem [Neumann, 1928] and guaranteed that a solution (x?, y?) with the following property exists

min
x∈X

f(x, y?) = f(x?, y?) = max
y∈Y

f(x?, y).

However, at the core of the proof of this result is an ingenuous application of Helly’s lemma [Helly, 1923]
for the sublevel sets of f , and, until the work of Ivanov [2014], it has been unclear how to formulate
an analogous lemma for the Riemannian geometry. As a result, until recently have extensions of the
min-max theorem been established, and only for restricted manifold families [Komiya, 1988, Kristály,
2014, Park, 2019].

Zhang et al. [2022] was the first to establish a min-max theorem for a flurry of Riemannian manifolds
equipped with unique geodesics. Notice that this family is not a mathematical artifact since it encom-
passes many practical applications of RMMO, including Hadamard and Stiefel ones used in PCA [Lee
et al., 2022]. Intuitively, the unique geodesic between two points of a manifold is the analogue of the
a linear segment between two points in convex set: For any two points x1, x2 ∈ X , their connecting
geodesic is the unique shortest path contained in X that connects them.
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Even when the RMMO is well defined, transferring the guarantees of traditional min-max optimiza-
tion algorithms like Gradient Ascent Descent (GDA) and Extra-Gradient (EG) to the Riemannian case
is non-trivial. Intuitively speaking, in the Euclidean realm the main leitmotif of the last-iterate analyses
the aforementioned algorithms is a proof that δt = ‖xt − x∗‖2 is decreasing over time. To achieve this,
typically the proof correlates δt and δt−1 via a “square expansion,” namely:

‖xt−1 − x∗‖2︸ ︷︷ ︸
α2

= ‖xt − x∗‖2︸ ︷︷ ︸
β2

+ ‖xt−1 − xt‖2︸ ︷︷ ︸
γ2

− 2〈xt − x∗, xt−1 − xt〉︸ ︷︷ ︸
2βγ cos(Â)

. (1.1)

Notice, however that the above expression relies strongly on properties of Euclidean geometry (and the
flatness of the corresponding line), namely that the the lines connecting the three points xt, xt−1 and
x∗ form a triangle; indeed, it is the generalization of the Pythagorean theorem, known also as the law
of cosines, for the induced triangle (ABC) := {(xt, xt−1, x

∗)}. In a uniquely geodesic manifold such
triangle may not belong to the manifold as discussed above. As a result, the difference of distances to
the equilibrium using the geodesic paths d2

M(xt, x
∗)−d2

M(xt−1, x
∗) generally cannot be given in a closed

form. The manifold’s curvature controls how close these paths are to forming a Euclidean triangle. In
fact, the phenomenon of distance distortion, as it is typically called, was hypothesised by Zhang et al.
[2022, Section 4.2] to be the cause of exponential slowdowns when applying EG to RMMO problems
when compared to their Euclidean counterparts.

Multiple attempts have been made to bypass this hurdle. Huang et al. [2020] analyzed the Rie-
mannian GDA (RGDA) for the non-convex non-concave setting. However, they do not present any
last-iterate convergence results and, even in the average/best iterate setting, they only derive sub-
optimal rates for the geodesic convex-concave setting due to the lack of the machinery that convex
analysis and optimization offers they derive sub-optimal rates for the geodesic convex-concave case,
which is the problem of our interest. The analysis of Han et al. [2022] for Riemannian Hamiltonian
Method (RHM), matches the rate of second-order methods in the Euclidean case. Although theoreti-
cally faster in terms of iterations, second-order methods are not preferred in practice since evaluating
second order derivatives for optimization problems of thousands to millions of parameters quickly be-
comes prohibitive. Finally, Zhang et al. [2022] leveraged the standard averaging output trick in EG to
derive a sublinear convergence rate of O(1/ε) for the general geodesically convex-concave Riemannian
framework. In addition, they conjectured that the use of a different method could close the exponential
gap for the geodesically strongly-convex-strongly-convex scenario and its Euclidean counterpart.

Given this background, a crucial question underlying the potential for successful application of
first-order algorithms to Riemannian settings is the following:

Is a performance gap necessary between Riemannian and Euclidean optimal convex-concave algorithms
in terms of accuracy and the condition number?

1.1 Our Contributions

Our aim in this paper is to provide an extensive analysis of the Riemannian counterparts of Euclidean
optimal first-order methods adapted to the manifold-constrained setting. For the case of the smooth
objectives, we consider the Riemannian corrected extragradient (RCEG) method while for non-smooth
cases, we analyze the textbook Riemannian gradient descent ascent (RGDA) method. Our main results
are summarized in the following table.
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Alg: RCEG. Smooth setting with `-Lipschitz Gradient (cf. Assumption 2.1, 3.1 and 3.2)

Perf. Measure Setting Complexity Theorem

Last-Iterate Det. GSCSC O
(
κ(
√
τ0 + 1

ξ
0

) log( 1
ε )
)

Thm. 3.1

Last-Iterate Stoc. GSCSC O
(
κ(
√
τ0 + 1

ξ
0

) log( 1
ε ) + σ2ξ0

µ2ε log( 1
ε )
)

Thm. 3.2

Avg-Iterate Det. GCC O
(
`
√
τ0
ε

)
[Zhang et al., 2022, Thm.1]

Avg-Iterate Stoc. GCC O
(
`
√
τ0
ε + σ2ξ0

ε2

)
Thm. 3.3

Alg: RGDA. Nonsmooth setting with L-Lipschitz Function (cf. Assumption D.1 and D.2)

Last-Iterate Det. GSCSC O
(
L2ξ0
µ2ε

)
Thm. D.1

Last-Iterate Stoc. GSCSC O
(

(L2+σ2)ξ0
µ2ε

)
Thm. D.3

Avg-Iterate Det. GCC O
(
L2ξ0
ε2

)
Thm. D.2

Avg-Iterate Stoc. GCC O
(

(L2+σ2)ξ0
ε2

)
Thm. D.4

For the definition of the acronyms, Det and Stoc stand for deterministic and stochastic, respectively.
GSCSC and GCC stand for geodesically strongly-convex-strongly-concave (cf. Assumption 3.1 or As-
sumption D.1) and geodesically convex-concave (cf. Assumption 3.2 or Assumption D.2). Here ε ∈ (0, 1)
is the accuracy, L, ` the Lipschitzness of the objective and its gradient, κ = `/µ is the condition number
of the function, where µ is the strong convexity parameter, (τ0, ξ0

, ξ0) are curvature parameters (cf.

Assumption 2.1), and σ2 is the variance of a Riemannian gradient estimator.
Our first main contribution is the derivation of a linear convergence rate for RCEG, answering

the open conjecture of Zhang et al. [2022] about the performance gap of single-loop extragradient
methods. Indeed, while a direct comparison between d2

M(xt, x
∗) and d2

M(xt−1, x
∗) is infeasible, we are

able to establish a relationship between the iterates via appeal to the duality gap function and obtain
a contraction in terms of d2

M(xt, x
∗). In other words, the effect of Riemannian distance distortion is

quantitative (the contraction ratio will depend on it) rather than qualitative (the geometric contraction
still remains under a proper choice of constant stepsize). More specifically, we use d2

M(xt, x
?)+d2

N (yt, y
?)

and d2
M(xt+1, x

?) + d2
N (yt+1, y

?) to bound a gap function defined by f(x̂t, y
?) − f(x?, ŷt). Since the

objective function is geodesically strongly-convex-strongly-concave, we have f(x̂t, y
?)−f(x?, ŷt) is lower

bounded by µ
2 (dM(x̂t, x

?)2 + dN (ŷt, y
?)2). Then, using the relationship between (xt, yt) and (x̂t, ŷt), we

conclude the desired results in Theorem 3.1. Notably, our approach is not affected by the nonlinear
geometry of the manifold.

Secondly, we endeavor to give a systematic analysis of aspects of the objective function, including
its smoothness, its convexity and oracle access. As we shall see, similar to the Euclidean case, better
finite-time convergence guarantees are connected with a geodesic smoothness condition. For the sake of
completeness, in the paper’s supplement we present the performance of Riemannian GDA for the full
spectrum of stochasticity for the non-smooth case. More specifically, for the stochastic setting, the key
ingredient to get the optimal convergence rate is to carefully select the step size such that the noise
of the gradient estimator will not affect the final convergence rate significantly. As a highlight, such
technique has been used for analyzing stochastic RCEG in the Euclidean setting [Kotsalis et al., 2022]
and our analysis can be seen as the extension to the Riemannian setting. For the nonsmooth setting,
the analysis is relatively simpler compared to smooth settings but we still need to deal with the issue
caused by the nonlinear geometry of manifolds and the interplay between the distortion of Riemannian
metrics, the gap function and the bounds of Lipschitzness of our bi-objective. Interestingly, the rates
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we derive are near optimal in terms of accuracy and condition number of the objective, and analogous
to their Euclidean counterparts.

2 Preliminaries and Technical Background

We present the basic setup and optimality conditions for Riemannian min-max optimization. Indeed, we
focus on some of key concepts that we need from Riemannian geometry, deferring a fuller presentation,
including motivating examples and further discussion of related work, to Appendix A-C.

Riemannian geometry. An n-dimensional manifold M is a topological space where any point has
a neighborhood that is homeomorphic to the n-dimensional Euclidean space. For each x ∈ M, each
tangent vector is tangent to all parametrized curves passing through x and the tangent space TxM of
a manifold M at this point is defined as the set of all tangent vectors. A Riemannian manifold M is
a smooth manifold that is endowed with a smooth (“Riemannian”) metric 〈·, ·〉x on the tangent space
TxM for each point x ∈M. The inner metric induces a norm ‖ · ‖x on the tangent spaces.

A geodesic can be seen as the generalization of an Euclidean linear segment and is modeled as a
smooth curve (map), γ : [0, 1] 7→ M, which is locally a distance minimizer. Additionally, because of the
non-flatness of a manifold a different relation between the angles and the lengths of an arbitrary geodesic
triangle is induced. This distortion can be quantified via the sectional curvature parameter κM thanks
to Toponogov’s theorem [Cheeger and Ebin, 1975, Burago et al., 1992]. A constructive consequence of

this definition are the trigonometric comparison inequalities (TCIs) that will be essential in our proofs;
see Alimisis et al. [2020, Corollary 2.1] and Zhang and Sra [2016, Lemma 5] for detailed derivations.
Assuming bounded sectional curvature, TCIs provide a tool for bounding Riemannian “inner products”
that are more troublesome than classical Euclidean inner products.

The following proposition summarizes the TCIs that we will need; note that if κmin = κmax = 0
(i.e., Euclidean spaces), then the proposition reduces to the law of cosines.

Proposition 2.1 Suppose that M is a Riemannian manifold and let ∆ be a geodesic triangle in M
with the side length a, b, c and let A be the angle between b and c. Then, we have

1. If κM that is upper bounded by κmax > 0 and the diameter of M is bounded by π√
κmax

, then

a2 ≥ ξ(κmax, c) · b2 + c2 − 2bc cos(A),

where ξ(κ, c) := 1 for κ ≤ 0 and ξ(κ, c) := c
√
κ cot(c

√
κ) < 1 for κ > 0.

2. If κM is lower bounded by κmin, then

a2 ≤ ξ(κmin, c) · b2 + c2 − 2bc cos(A),

where ξ(κ, c) := c
√
−κ coth(c

√
−κ) > 1 if κ < 0 and ξ(κ, c) := 1 if κ ≥ 0.
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Also, in contrast to the Euclidean case, x and v = gradxf(x) do not lie in the same space, since M and
TxM respectively are distinct entities. The interplay between these dual spaces typically is carried out
via the exponential maps. An exponential map at a point x ∈ M is a mapping from the tangent space
TxM toM. In particular, y := Expx(v) ∈M is defined such that there exists a geodesic γ : [0, 1] 7→ M
satisfying γ(0) = x, γ(1) = y and γ′(0) = v. The inverse map exists since the manifold has a unique
geodesic between any two points, which we denote as Exp−1

x : M 7→ TxM. Accordingly, we have
dM(x, y) = ‖Exp−1

x (y)‖x is the Riemannian distance induced by the exponential map.
Finally, in contrast again to Euclidean spaces, we cannot compare the

tangent vectors at different points x, y ∈ M since these vectors lie in dif-
ferent tangent spaces. To resolve this issue, it suffices to define a transport
mapping that moves a tangent vector along the geodesics and also preserves
the length and Riemannian metric 〈·, ·〉x; indeed, we can define a paral-
lel transport Γyx : TxM 7→ TyM such that the inner product between any
u, v ∈ TxM is preserved; i.e., 〈u, v〉x = 〈Γyx(u),Γyx(v)〉y.

Riemannian min-max optimization and function classes. We let
M and N be Riemannian manifolds with unique geodesic and bounded
sectional curvature and assume that the function f : M×N 7→ R is defined on the product of these
manifolds. The regularity conditions that we impose on the function f are as follows.

Definition 2.1 A function f :M×N 7→ R is geodesically L-Lipschitz if for ∀x, x′ ∈M and ∀y, y′ ∈ N ,
the following statement holds true: |f(x, y) − f(x′, y′)| ≤ L(dM(x, x′) + dN (y, y′)). Additionally, if
function f is also differentiable, it is called geodesically `-smooth if for ∀x, x′ ∈M and ∀y, y′ ∈ N , the
following statement holds true,

‖gradxf(x, y)− Γxx′gradxf(x′, y′)‖ ≤ `(dM(x, x′) + dN (y, y′)),
‖gradyf(x, y)− Γyy′gradyf(x′, y′)‖ ≤ `(dM(x, x′) + dN (y, y′)),

where (gradxf(x′, y′), gradyf(x′, y′)) ∈ Tx′M× Ty′N is the Riemannian gradient of f at (x′, y′), Γxx′ is
the parallel transport of M from x′ to x, and Γyy′ is the parallel transport of N from y′ to y.

Definition 2.2 A function f :M×N → R is geodesically strongly-convex-strongly-concave with the
modulus µ > 0 if the following statement holds true,

f(x′, y) ≥ f(x, y) + 〈subgradxf(x, y),Exp−1
x (x′)〉x + µ

2 (dM(x, x′))2, for each y ∈ N ,
f(x, y′) ≤ f(x, y) + 〈subgradyf(x, y),Exp−1

y (y′)〉y − µ
2 (dN (y, y′))2, for each x ∈M.

where (subgradxf(x′, y′), subgradyf(x′, y′)) ∈ Tx′M×Ty′N is a Riemannian subgradient of f at a point
(x′, y′). A function f is geodesically convex-concave if the above holds true with µ = 0.

Following standard conventions in Riemannian optimization [Zhang and Sra, 2016, Alimisis et al., 2020,
Zhang et al., 2022], we make the following assumptions on the manifolds and objective functions:1

Assumption 2.1 The objective function f :M×N 7→ R and manifolds M and N satisfy

1. The diameter of the domain {(x, y) ∈M×N : −∞ < f(x, y) < +∞} is bounded by D > 0.

1In particular, our assumed upper and lower bounds κmin, κmax guarantee that TCIs in Proposition 2.1 can be used in
our analysis for proving finite-time convergence.
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2. M,N admit unique geodesic paths for any (x, y), (x′, y′) ∈M×N .

3. The sectional curvatures of M and N are both bounded in the range [κmin, κmax] with κmin ≤ 0.
If κmax > 0, we assume that the diameter of manifolds is bounded by π√

κmax
.

Under these conditions, Zhang et al. [2022] proved an analog of Sion’s minimax theorem [Sion, 1958] in
geodesic metric spaces. Formally, we have

max
y∈N

min
x∈M

f(x, y) = min
x∈M

max
y∈N

f(x, y),

which guarantees that there exists at least one global saddle point (x?, y?) ∈ M × N such that
minx∈M f(x, y?) = f(x?, y?) = maxy∈Y f(x?, y). Note that the unicity of geodesics assumption is
algorithm-independent and is imposed for guaranteeing that a saddle-point solution always exist. Even
though this rules out many manifolds of interest, there are still many manifolds that satisfy such con-
ditions. More specifically, the Hadamard manifold (manifolds with non-positive curvature, κmax = 0)
has a unique geodesic between any two points. This also becomes a common regularity condition in
Riemannian optimization [Zhang and Sra, 2016, Alimisis et al., 2020]. For any point (x̂, ŷ) ∈ M×N ,
the duality gap f(x̂, y?)− f(x?, ŷ) thus gives an optimality criterion.

Definition 2.3 A point (x̂, ŷ) ∈M×N is an ε-saddle point of a geodesically convex-concave function
f(·, ·) if f(x̂, y?)− f(x?, ŷ) ≤ ε where (x?, y?) ∈M×N is a global saddle point.

In the setting where f is geodesically strongly-convex-strongly-concave with µ > 0, it is not difficult to
verify the uniqueness of a global saddle point (x?, y?) ∈ M×N . Then, we can consider the distance
gap (d(x̂, x?))2 + (d(ŷ, y?))2 as an optimality criterion for any point (x̂, ŷ) ∈M×N .

Definition 2.4 A point (x̂, ŷ) ∈M×N is an ε-saddle point of a geodesically strongly-convex-strongly-
concave function f(·, ·) if (d(x̂, x?))2 + (d(ŷ, y?))2 ≤ ε, where (x?, y?) ∈M×N is a global saddle point.
If f is also geodesically `-smooth, we denote κ = `

µ as the condition number.

Given the above definitions, we can ask whether it is possible to find an ε-saddle point efficiently or
not. In this context, Zhang et al. [2022] have answered this question in the affirmative for the setting
where f is geodesically `-smooth and geodesically convex-concave; indeed, they derive the convergence
rate of Riemannian corrected extragradient (RCEG) method in terms of time-average iterates and also
conjecture that RCEG does not guarantee convergence at a linear rate in terms of last iterates when
f is geodesically `-smooth and geodesically strongly-convex-strongly-concave, due to the existence of
distance distortion ; see Zhang et al. [2022, Section 4.2]. Surprisingly, we show in Section 3 that RCEG
with constant stepsize can achieve last-iterate convergence at a linear rate. Moreover, we establish
the optimal convergence rates of stochastic RCEG for certain choices of stepsize for both geodesically
convex-concave and geodesically strongly-convex-strongly-concave settings.

3 Riemannian Corrected Extragradient Method

In this section, we revisit the scheme of Riemannian corrected extragradient (RCEG) method proposed
by Zhang et al. [2022] and extend it to a stochastic algorithm that we refer to as stochastic RCEG. We
present our main results on an optimal last-iterate convergence guarantee for the geodesically strongly-
convex-strongly-concave setting (both deterministic and stochastic) and a time-average convergence
guarantee for the geodesically convex-concave setting (stochastic). This complements the time-average
convergence guarantee for geodesically convex-concave setting (deterministic) [Zhang et al., 2022, The-
orem 4.1] and resolves an open problem posted in Zhang et al. [2022, Section 4.2].
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Algorithm 1 RCEG

Input: initial points (x0, y0) and stepsizes η > 0.
for t = 0, 1, 2, . . . , T − 1 do

Query (gtx, g
t
y) ← (gradxf(xt, yt), gradyf(xt, yt)), the

Riemannian gradient of f at a point (xt, yt)
x̂t ← Expxt

(−η · gtx).
ŷt ← Expyt(η · g

t
y).

Query (ĝtx, ĝ
t
y) ← (gradxf(x̂t, ŷt), gradyf(x̂t, ŷt)), the

Riemannian gradient of f at a point (x̂t, ŷt)
xt+1 ← Expx̂t

(−η · ĝtx + Exp−1x̂t
(xt)).

yt+1 ← Expŷt(η · ĝ
t
y + Exp−1ŷt (yt)).

end for

Algorithm 2 SRCEG

Input: initial points (x0, y0) and stepsizes η > 0.
for t = 0, 1, 2, . . . , T − 1 do

Query (gtx, g
t
y) as a noisy estimator of Rieman-

nian gradient of f at a point (xt, yt).
x̂t ← Expxt

(−η · gtx).
ŷt ← Expyt(η · g

t
y).

Query (ĝtx, ĝ
t
y) as a noisy estimator of Rieman-

nian gradient of f at a point (x̂t, ŷt).
xt+1 ← Expx̂t

(−η · ĝtx + Exp−1x̂t
(xt)).

yt+1 ← Expŷt(η · ĝ
t
y + Exp−1ŷt (yt)).

end for

3.1 Algorithmic scheme

The recently proposed Riemannian corrected extragradient (RCEG) method [Zhang et al., 2022] is a
natural extension of the celebrated extragradient (EG) method to the Riemannian setting. Its scheme
resembles that of EG in Euclidean spaces but employs a simple modification in the extrapolation step
to accommodate the nonlinear geometry of Riemannian manifolds. Let us provide some intuition how
such modifications work.

We start with a basic version of EG as follows, where M and N are classically restricted to be
convex constraint sets in Euclidean spaces:

x̂t ← projM(xt − η · ∇xf(xt, yt)), ŷt ← projN (yt + η · ∇yf(xt, yt)),
xt+1 ← projM(xt − η · ∇xf(x̂t, ŷt)), yt+1 ← projN (yt + η · ∇yf(x̂t, ŷt)).

(3.1)

M

xt
−η gradf(xt, yt)

Exp−1
x̂t

(xt)

xt+1

−η gradf (x̂t, ŷt
)

x̂t

Turning to the setting where M and N are
Riemannian manifolds, the rather straight-
forward way to do the generalization is to
replace the projection operator by the corre-
sponding exponential map and the gradient
by the corresponding Riemannian gradient.
For the first line of Eq. (3.1), this approach
works and leads to the following updates:

x̂t ← Expxt(−η·gradxf(xt, yt)), ŷt ← Expyt(η·gradyf(xt, yt)).

However, we encounter some issues for the second line of Eq. (3.1): The aforementioned approach leads
to some problematic updates, xt+1 ← Expxt(−η · gradxf(x̂t, ŷt)) and yt+1 ← Expyt(η · gradyf(x̂t, ŷt));
indeed, the exponential maps Expxt(·) and Expyt(·) are defined from TxtM toM and from TytN to N
respectively. However, we have −gradxf(x̂t, ŷt) ∈ Tx̂tM and gradyf(x̂t, ŷt) ∈ TŷtN . This motivates us
to reformulate the second line of Eq. (3.1) as follows:

xt+1 ← projM(x̂t − η · ∇xf(x̂t, ŷt) + (xt − x̂t)), yt+1 ← projN (ŷt + η · ∇yf(x̂t, ŷt) + (yt − ŷt)).

In the general setting of Riemannian manifolds, the terms xt− x̂t and yt− ŷt become Exp−1
x̂t

(xt) ∈ Tx̂tM
and Exp−1

ŷt
(yt) ∈ TŷtN . This observation yields the following updates:

xt+1 ← Expx̂t(−η · gradxf(x̂t, ŷt) + Exp−1
x̂t

(xt)), ŷt ← Expŷt(η · gradyf(x̂t, ŷt) + Exp−1
ŷt

(yt)).
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We summarize the resulting RCEG method in Algorithm 1 and present the stochastic extension with
noisy estimators of Riemannian gradients of f in Algorithm 2.

3.2 Main results

We present our main results on global convergence for Algorithms 1 and 2. To simplify the presentation,
we treat separately the following two cases:

Assumption 3.1 The objective function f is geodesically `-smooth and geodesically strongly-convex-
strongly-concave with µ > 0.

Assumption 3.2 The objective function f is geodesically `-smooth and geodesically convex-concave.

Letting (x?, y?) ∈ M × N be a global saddle point of f (which exists under either Assumption 3.1
or 3.2), we let D0 = (dM(x0, x

?))2 + (dN (y0, y
?))2 > 0 and κ = `/µ for geodesically strongly-convex-

strongly-concave setting. For simplicity of presentation, we also define a ratio τ(·, ·) that measures how

non-flatness changes in the spaces: τ([κmin, κmax], c) = ξ(κmin,c)
ξ(κmax,c)

≥ 1. We summarize our results for

Algorithm 1 in the following theorem.

Theorem 3.1 Given Assumptions 2.1 and 3.1, and letting η = min{1/(2`√τ0), ξ
0
/(2µ)}, there exists

some T > 0 such that the output of Algorithm 1 satisfies that (d(xT , x
?))2 + (d(yT , y

?))2 ≤ ε (i.e.,
an ε-saddle point of f in Definition 2.4) and the total number of Riemannian gradient evaluations is
bounded by

O

((
κ
√
τ0 +

1

ξ
0

)
log

(
D0

ε

))
,

where τ0 = τ([κmin, κmax], D) ≥ 1 measures how non-flatness changes inM and N and ξ
0

= ξ(κmax, D) ≤
1 is properly defined in Proposition 2.1.

Remark 3.1 Theorem 3.1 illustrates the last-iterate convergence of Algorithm 1 for solving geodesically
strongly-convex-strongly-concave problems, thereby resolving an open problem delineated by Zhang et al.
[2022]. Further, the dependence on κ and 1/ε cannot be improved since it matches the lower bound
established for min-max optimization problems in Euclidean spaces [Zhang et al., 2021]. However, we
believe that the dependence on τ0 and ξ

0
is not tight, and it is of interest to either improve the rate or

establish a lower bound for general Riemannian min-max optimization.

Remark 3.2 The current theoretical analysis covers local geodesic strong-convex-strong-concave set-
tings. The key ingredient is how to define the local region; indeed, if we say the set of {(x, y) :
dM(x, x?) ≤ δ, dN (yt, y

?) ≤ δ} is a local region where the function is geodesic strong-convex-strong-
concave. Then, the set of {(x, y) : (dM(x, x?)2 + dN (yt, y

?)2) ≤ δ2} must be contained in the above local
region and the objective function is also geodesic strong-convex-strong-concave. If (x0, y0) ∈ {(x, y) :
(dM(x, x?)2 + dN (yt, y

?)2) ≤ δ2}, our theoretical analysis guarantees the last-iterate linear convergence
rate. Such argument and definition of local region were standard for min-max optimization in the Eu-
clidean setting; see Liang and Stokes [2019, Assumption 2.1]. For an important optimization problem
that is globally geodesically strongly-convex-strongly-concave, we refer to Appendix B where Robust ma-
trix Karcher mean problem is indeed the desired one.
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In the scheme of SRECG, we highlight that (gtx, g
t
y) and (ĝtx, ĝ

t
y) are noisy estimators of Riemannian

gradients of f at (xt, yt) and (x̂t, ŷt). It is necessary to impose the conditions such that these estimators
are unbiased and has bounded variance. By abuse of notation, we assume that

gtx = gradxf(xt, yt) + ξtx, gty = gradyf(xt, yt) + ξty,

ĝtx = gradxf(x̂t, ŷt) + ξ̂tx, ĝty = gradyf(x̂t, ŷt) + ξ̂ty.
(3.2)

where the noises (ξtx, ξ
t
y) and (ξ̂tx, ξ̂

t
y) are independent and satisfy that

E[ξtx] = 0, E[ξty] = 0, E[‖ξtx‖2 + ‖ξty‖2] ≤ σ2,

E[ξ̂tx] = 0, E[ξ̂ty] = 0, E[‖ξ̂tx‖2 + ‖ξ̂ty‖2] ≤ σ2.
(3.3)

We are ready to summarize our results for Algorithm 2 in the following theorems.

Theorem 3.2 Given Assumptions 2.1 and 3.1, letting Eq. (3.2) and Eq. (3.3) hold with σ > 0 and

letting η > 0 satisfy η = min{ 1
24`
√
τ0
,
ξ
0

2µ ,
2(log(T )+log(µ2D0σ−2))

µT }, there exists some T > 0 such that the

output of Algorithm 2 satisfies that E[(d(xT , x
?))2 + (d(yT , y

?))2] ≤ ε and the total number of noisy
Riemannian gradient evaluations is bounded by

O

((
κ
√
τ0 +

1

ξ
0

)
log

(
D0

ε

)
+
σ2ξ0

µ2ε
log

(
1

ε

))
,

where τ0 = τ([κmin, κmax], D) ≥ 1 measures how non-flatness changes inM and N and ξ
0

= ξ(κmax, D) ≤
1 is properly defined in Proposition 2.1.

Theorem 3.3 Given Assumptions 2.1 and 3.2 and assume that Eq. (3.2) and Eq. (3.3) hold with σ > 0

and let η > 0 satisfies that η = min{ 1
4`
√
τ0
, 1
σ

√
D0

ξ0T
}, there exists some T > 0 such that the output

of Algorithm 2 satisfies that E[f(x̄T , y
?) − f(x?, ȳT )] ≤ ε and the total number of noisy Riemannian

gradient evaluations is bounded by

O

(
`D0
√
τ0

ε
+
σ2ξ0

ε2

)
,

where τ0 = τ([κmin, κmax], D) measures how non-flatness changes in M and N and ξ0 = ξ(κmin, D) ≥ 1
is properly defined in Proposition 2.1. The time-average iterates (x̄T , ȳT ) ∈ M × N can be computed
by (x̄0, ȳ0) = (0, 0) and the inductive formula: x̄t+1 = Expx̄t(

1
t+1 · Exp−1

x̄t (x̂t)) and ȳt+1 = Expȳt(
1
t+1 ·

Exp−1
ȳt (ŷt)) for all t = 0, 1, . . . , T − 1.

Remark 3.3 Theorem 3.2 presents the last-iterate convergence rate of Algorithm 2 for solving geodesi-
cally strongly-convex-strongly-concave problems while Theorem 3.3 gives the time-average convergence
rate when the function f is only assumed to be geodesically convex-concave. Note that we carefully
choose the stepsizes such that our upper bounds match the lower bounds established for stochastic min-
max optimization problems in Euclidean spaces [Juditsky et al., 2011, Fallah et al., 2020, Kotsalis et al.,
2022], in terms of the dependence on κ, 1/ε and σ2, up to log factors.
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Discussions: The last-iterate linear convergence rate in terms of Riemannian metrics is only limited
to geodesically strongly convex-concave cases but other results, e.g., the average-iterate sublinear con-
vergence rate, are derived under more mild conditions. This is consistent with classical results in the
Euclidean setting where geodesic convexity reduces to convexity; indeed, the last-iterate linear conver-
gence rate in terms of squared Euclidean norm is only obtained for strongly convex-concave cases. As
such, our setting is not restrictive. Moreover, Zhang et al. [2022] showed that the existence of a global
saddle point is only guaranteed under the geodesically convex-concave assumption. For geodesically
nonconvex-concave or geodesically nonconvex-nonconcave cases, a global saddle point might not exist
and new optimality notions are required before algorithmic design. This question remains open in the
Euclidean setting and is beyond the scope of this paper. However, we remark that an interesting class
of robustification problems are nonconvex-nonconcave min-max problems in the Euclidean setting can
be geodesically convex-concave in the Riemannian setting; see Appendix B.

4 Experiments

We present numerical experiments on the task of robust principal component analysis (RPCA) for
symmetric positive definite (SPD) matrices. In particular, we compare the performance of Algorithm 1
and 2 with different outputs, i.e., the last iterate (xT , yT ) versus the time-average iterate (x̄T , ȳT ) (see
the precise definition in Theorem 3.3). Note that our implementations of both algorithms are based on
the manopt package [Boumal et al., 2014]. All the experiments were implemented in MATLAB R2021b
on a workstation with a 2.6 GHz Intel Core i7 and 16GB of memory. Due to space limitations, some
additional experimental results are deferred to Appendix G.

Experimental setup. The problem of RPCA [Candès et al., 2011, Harandi et al., 2017] can be
formulated as the Riemannian min-max optimization problem with an SPD manifold and a sphere
manifold. Formally, we have

max
M∈Md

PSD

min
x∈Sd

{
−x>Mx− α

n

n∑
i=1

d(M,Mi)

}
. (4.1)

In this formulation, α > 0 denotes the penalty parameter, {Mi}i∈[n] is a sequence of given data SPD

matrices,Md
PSD = {M ∈ Rd×d : M � 0,M = M>} denotes the SPD manifold, Sd = {x ∈ Rd : ‖x‖ = 1}

denotes the sphere manifold and d(·, ·) :Md
PSD×Md

PSD 7→ R is the Riemannian distance induced by the
exponential map on the SPD manifold Md

PSD. As demonstrated by Zhang et al. [2022], the problem of
RPCA is nonconvex-nonconcave from a Euclidean perspective but is locally geodesically strongly-convex-
strongly-concave and satisfies most of the assumptions that we make in this paper. In particular, the
SPD manifold is complete with sectional curvature in [−1

2 , 1] [Criscitiello and Boumal, 2022] and the
sphere manifold is complete with sectional curvature of 1. Other reasons why we use such example are:
(i) it is a classical one in ML; (ii) Zhang et al. [2022] also uses this example and observes the linear
convergence behavior; (iii) the numerical results show that the unicity of geodesics assumption may not
be necessary in practice; and (iv) this is an application where both min and max sides are done on
Riemannian manifolds.

Following the previous works of Zhang et al. [2022] and Han et al. [2022], we generate a sequence
of data matrices Mi satisfying that their eigenvalues are in the range of [0.2, 4.5]. In our experiment,
we fix α = 1.0 and also vary the problem dimension d ∈ {25, 50, 100}. The evaluation metric is set as

11



0 100 200 300 400 500 600
Data Pass

10 7

10 5

10 3

10 1

101

Gr
ad

No
rm

Dimension=25

RCEG-last
RCEG-avg

0 200 400 600 800 1000
Data Pass

10 5

10 4

10 3

10 2

10 1

100

101

Gr
ad

No
rm

Dimension=50

RCEG-last
RCEG-avg

0 200 400 600 800 1000
Data Pass

10 7

10 5

10 3

10 1

101

Gr
ad

No
rm

Dimension=100

RCEG-last
RCEG-avg

Figure 1: Comparison of last iterate (RCEG-last) and time-average iterate (RCEG-avg) for solving the RPCA problem
in Eq. (4.1) with different problem dimensions d ∈ {25, 50, 100}. The horizontal axis represents the number of data passes
and the vertical axis represents gradient norm.
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Figure 2: Comparison of RCEG and SRCEG for solving the RPCA problem in Eq. (4.1) with different problem dimensions
d ∈ {25, 50}. The horizontal axis is the number of data passes and the vertical axis is gradient norm.

gradient norm. We set n = 40 and n = 200 in Figure 1 and 2. For RCEG, we set η = 1
2` where ` > 0 is

selected via grid search. For SRCEG, we set ηt = min{ 1
2` ,

a
t } where `, a > 0 are selected via grid search.

Additional results on the effect of stepsize are summarized in Appendix G.

Experimental results. Figure 1 summarizes the effects of different outputs for RCEG; indeed,
RCEG-last and RCEG-avg refer to Algorithm 1 with last iterate and time-average iterate respectively.
It is clear that the last iterate of RCEG consistently exhibits linear convergence to an optimal solution
in all the settings, verifying our theoretical results in Theorem 3.1. In contrast, the average iterate of
RCEG converges much slower than the last iterate of RCEG. The possible reason is that the problem
of RPCA is only locally geodesically strongly-convex-strongly-concave and averaging with the iterates
generated during early stage will significantly slow down the convergence of RCEG.

Figure 2 presents the comparison between SRCEG (with either last iterate or time-average iterate)
and RCEG with last-iterate; here, SRCEG-last and SRCEG-avg refer to Algorithm 2 with last iterate
and time-average iterate respectively. We observe that SRCEG with either last iterate or average
iterate converge faster than RCEG at the early stage and all of them finally converge to an optimal
solution. This demonstrates the effectiveness and efficiency of SRCEG in practice. It is also worth
mentioning that the difference between last-iterate convergence and time-average-iterate convergence is
not as significant as in the deterministic setting. This is possibly because the technique of averaging
help cancels the negative effect of imperfect information [Kingma and Ba, 2015, Yazıcı et al., 2019].
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5 Conclusions

Inspired broadly by the structure of the complex competition that arises in many applications of robust
optimization in ML, we focus on the problem of min-max optimization in the pure Riemannian setting
(where both min and max player are constrained in a smooth manifold). Answering the open question of
Zhang et al. [2022] for the geodesically (strongly) convex-concave case, we showed that the Riemannian
correction technique for EG matches the linear last-iterate complexity of their Euclidean counterparts in
terms of accuracy and conditional number of objective for both deterministic and stochastic case. Ad-
ditionally, we provide near-optimal guarantees for both smooth and non-smooth min-max optimization
via Riemannian EG and GDA for the simple convex-concave case.

As a consequence of this work numerous open problems emerge; one immediate open question for
future work is to explore whether the dependence on the curvature constant is also tight. Additionally,
another generalization of interest would be to consider the performance of RCEG in the case of Rieman-
nian Monotone Variational inequalities (RMVI) and examine the generalization of Zhang et al. [2022]
existence proof. Finally, there has been recent work in proving last-iterate convergence in the convex-
concave setting via Sum-Of-Squares techniques [Cai et al., 2022]. It would be interesting to examine
how one could leverage this machinery in a non-Euclidean but geodesic-metric-friendly framework.

Acknowledgments

This work was supported in part by the Mathematical Data Science program of the Office of Naval
Research under grant number N00014-18-1-2764 and by the Vannevar Bush Faculty Fellowship program
under grant number N00014-21-1-2941. The work of Michael I. Jordan is also partially supported by
NSF Grant IIS-1901252. Emmanouil V. Vlatakis-Gkaragkounis is grateful for financial support by the
Google-Simons Fellowship, Pancretan Association of America and Simons Collaboration on Algorithms
and Geometry. This project was completed while he was a visiting research fellow at the Simons
Institute for the Theory of Computing. Additionally, he would like to acknowledge the following series
of NSF-CCF grants under the numbers 1763970/2107187/1563155/1814873.

References

J. Abernethy, K. A. Lai, and A. Wibisono. Last-iterate convergence rates for min-max optimization:
Convergence of Hamiltonian gradient descent and consensus optimization. In ALT, pages 3–47.
PMLR, 2021. (Cited on page 2.)

P-A. Absil and S. Hosseini. A collection of nonsmooth Riemannian optimization problems. In Nonsmooth
Optimization and Its Applications, pages 1–15. Springer, 2019. (Cited on page 23.)

P-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix Manifolds. Princeton
University Press, 2009. (Cited on pages 22 and 24.)

L. Adolphs, H. Daneshmand, A. Lucchi, and T. Hofmann. Local saddle point optimization: A curvature
exploitation approach. In AISTATS, pages 486–495. PMLR, 2019. (Cited on page 2.)

F. Alimisis, A. Orvieto, G. Bécigneul, and A. Lucchi. A continuous-time perspective for modeling

13



acceleration in Riemannian optimization. In AISTATS, pages 1297–1307. PMLR, 2020. (Cited on

pages 5, 6, 7, and 27.)

A. Anandkumar and R. Ge. Efficient approaches for escaping higher order saddle points in non-convex
optimization. In COLT, pages 81–102. PMLR, 2016. (Cited on page 1.)

K. Antonakopoulos, E. V. Belmega, and P. Mertikopoulos. Online and stochastic optimization beyond
Lipschitz continuity: A Riemannian approach. In ICLR, 2020. URL https://openreview.net/

forum?id=rkxZyaNtwB. (Cited on pages 1 and 2.)

W. Azizian, I. Mitliagkas, S. Lacoste-Julien, and G. Gidel. A tight and unified analysis of gradient-based
methods for a whole spectrum of differentiable games. In AISTATS, pages 2863–2873. PMLR, 2020.
(Cited on page 2.)

M. Bacak. Convex Analysis and Optimization in Hadamard Spaces, volume 22. Walter de Gruyter
GmbH & Co KG, 2014. (Cited on page 26.)

D. Balduzzi, S. Racaniere, J. Martens, J. Foerster, K. Tuyls, and T. Graepel. The mechanics of N-player
differentiable games. In ICML, pages 354–363. PMLR, 2018. (Cited on page 2.)

H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory in Hilbert
Spaces, volume 408. Springer, 2011. (Cited on page 23.)

G. Becigneul and O-E. Ganea. Riemannian adaptive optimization methods. In ICLR, 2019. URL
https://openreview.net/forum?id=r1eiqi09K7. (Cited on page 23.)

A. Ben-Tal, L. EL Ghaoui, and A. Nemirovski. Robust Optimization, volume 28. Princeton University
Press, 2009. (Cited on page 24.)

G. C. Bento, O. P. Ferreira, and J. G. Melo. Iteration-complexity of gradient, subgradient and proximal
point methods on Riemannian manifolds. Journal of Optimization Theory and Applications, 173(2):
548–562, 2017. (Cited on pages 23 and 24.)

R. Bergmann and R. Herzog. Intrinsic formulation of KKT conditions and constraint qualifications on
smooth manifolds. SIAM Journal on Optimization, 29(4):2423–2444, 2019. (Cited on page 24.)

I. M. Bomze, P. Mertikopoulos, W. Schachinger, and M. Staudigl. Hessian barrier algorithms for linearly
constrained optimization problems. SIAM Journal on Optimization, 29(3):2100–2127, 2019. (Cited on

page 2.)

S. Bonnabel. Stochastic gradient descent on Riemannian manifolds. IEEE Transactions on Automatic
Control, 58(9):2217–2229, 2013. (Cited on pages 2 and 23.)

N. Boumal and P-A. Absil. RTRMC: A Riemannian trust-region method for low-rank matrix comple-
tion. In NIPS, pages 406–414, 2011. (Cited on pages 1 and 25.)

N. Boumal, B. Mishra, P-A. Absil, and R. Sepulchre. Manopt, a Matlab toolbox for optimization on
manifolds. Journal of Machine Learning Research, 15(1):1455–1459, 2014. (Cited on page 11.)

N. Boumal, P-A. Absil, and C. Cartis. Global rates of convergence for nonconvex optimization on
manifolds. IMA Journal of Numerical Analysis, 39(1):1–33, 2019. (Cited on page 22.)

14

https://openreview.net/forum?id=rkxZyaNtwB
https://openreview.net/forum?id=rkxZyaNtwB
https://openreview.net/forum?id=r1eiqi09K7
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S. S. Du, C. Jin, J. D. Lee, M. I. Jordan, B. Póczos, and A. Singh. Gradient descent can take exponential
time to escape saddle points. In NIPS, pages 1067–1077, 2017. (Cited on page 1.)

F. Facchinei and J-S. Pang. Finite-Dimensional Variational Inequalities and Complementarity Problems.
Springer Science & Business Media, 2007. (Cited on page 23.)

15



A. Fallah, A. Ozdaglar, and S. Pattathil. An optimal multistage stochastic gradient method for minimax
problems. In CDC, pages 3573–3579. IEEE, 2020. (Cited on page 10.)

J. Fearnley, P. W. Goldberg, A. Hollender, and R. Savani. The complexity of gradient descent: CLS =
PPAD∩ PLS. In STOC, pages 46–59, 2021. (Cited on page 2.)

O. P. Ferreira and P. R. Oliveira. Subgradient algorithm on Riemannian manifolds. Journal of Opti-
mization Theory and Applications, 97(1):93–104, 1998. (Cited on page 23.)

O. P. Ferreira and P. R. Oliveira. Proximal point algorithm on Riemannian manifolds. Optimization,
51(2):257–270, 2002. (Cited on page 23.)
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A Related Work

The literature for the geometric properties of Riemannian Manifolds is immense and hence we cannot
hope to survey them here; for an appetizer, we refer the reader to Burago et al. [2001] and Lee [2012]
and references therein. On the other hand, as stated, it is not until recently that the long-run non-
asymptotic behavior of optimization algorithms in Riemannian manifolds (even the smooth ones) has
encountered a lot of interest. For concision, we have deferred here a detailed exposition of the rest of
recent results to Appendix A of the paper’s supplement. Additionally, in Appendix B we also give a
bunch of motivating examples which can be solved by Riemannian min-max optimization.

Minimization on Riemannian manifolds. Many application problems can be formulated as the
minimization or maximization of a smooth function over Riemannian manifold and has triggered a line
of research on the extension of the classical first-order and second-order methods to Riemannian setting
with asymptotic convergence to first-order stationary points in general [Absil et al., 2009]. Recent years
have witnessed the renewed interests on nonasymptotic convergence analysis of solution methods. In
particular, Boumal et al. [2019] proved the global sublinear convergence results for Riemannian gradient
descent method and Riemannian trust region method, and further demonstrated that the Riemannian
trust region method converges to a second-order stationary point in polynomial time; see also similar
results in some other works [Kasai and Mishra, 2018, Hu et al., 2018, 2019]. We are also aware of
recent works on problem-specific methods [Wen and Yin, 2013, Gao et al., 2018, Liu et al., 2019] and
primal-dual methods [Zhang et al., 2020].
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Compared to the smooth counterpart, Riemannian nonsmooth optimization is harder and relatively
less explored [Absil and Hosseini, 2019]. A few existing works focus on optimizing geodesically convex
functions over Riemannian manifold with subgradient methods [Ferreira and Oliveira, 1998, Zhang and
Sra, 2016, Bento et al., 2017]. In particular, Ferreira and Oliveira [1998] provided the first asymptotic
convergence result while Zhang and Sra [2016] and [Bento et al., 2017] proved an nonasymptotic global
convergence rate of O(ε−2) for Riemannian subgradient methods. Further, Ferreira and Oliveira [2002]
assumed that the proximal mapping over Riemannian manifold is computationally tractable and proved
the global sublinear convergence of Riemannian proximal point method. Focusing on optimization over
Stiefel manifold, Chen et al. [2020] studied the composite objective function and proposed Riemannian
proximal gradient method which only needs to compute the proximal mapping of nonsmooth component
function over the tangent space of Stiefel manifold. Li et al. [2021] consider optimizing a weakly convex
function over Stiefel manifold and proposed Riemannian subgradient methods that drive a near-optimal
stationarity measure below ε within the number of iterations bounded by O(ε−4).

There are some results on stochastic optimization over Riemannian manifold. In particular, Bonnabel
[2013] proved the first asymptotic convergence result for Riemannian stochastic gradient descent, which
is extended by a line of subsequent works [Zhang et al., 2016, Tripuraneni et al., 2018, Becigneul and
Ganea, 2019, Kasai et al., 2019]. If the Riemannian Hessian is not positive definite, some recent works
have suggested frameworks to escape saddle points [Sun et al., 2019, Criscitiello and Boumal, 2019].

Min-Max optimization in Euclidean spaces. Focusing on solving specifically min-max problems,
the algorithms under euclidean geometry have a very rich history in optimization that goes back at least
to the original proximal point algorithms [Martinet, 1970, Rockafellar, 1976] for variational inequality
(VI) problems; At a high level, if the objective function is Lipschitz and strictly convex-concave, the
simple forward-backward schemes are known to converge – and if combined with a Polyak–Ruppert
averaging scheme [Ruppert, 1988, Polyak and Juditsky, 1992, Nemirovski et al., 2009], they achieve an
O(1/ε2) complexity2 without the caveat of strictness [Bauschke and Combettes, 2011]. If, in addition, the
objective admits Lipschitz continuous gradients, then the extragradient (EG) algorithm [Korpelevich,
1976] achieves trajectory convergence without strict monotonicity requirements, while the time-average
iterate converges at O(1/ε) steps [Nemirovski, 2004]. Finally, if the problem is strongly convex-concave,
forward-backward methods computes an ε-saddle point at O(1/ε) steps; and if the operator is also
Lipschitz continuous, classical results in operator theory show that simple forward-backward methods
suffice to achieve a linear convergence rate [Facchinei and Pang, 2007, Bauschke and Combettes, 2011].

Min-Max optimization on Riemannian manifolds. In the case of nonlinear geometry, the liter-
ature has been devoted on two different orthogonal axes: a) the existence of saddle point for min-max
objective bi-functions and b) the design of algorithms for the computation of such points. For the
existence of saddle point, a long line of recent work tried to generalize the seminal minima theorem
for quasi-convex-quasi-concave problems of Sion [1958]. The crucial bottleneck of this generalization
to Riemannian smooth manifolds had been the application of both Knaster–Kuratowski–Mazurkiewicz
(KKM) theorem and Helly’s theorem in non-flat spaces. Before Zhang et al. [2022], the existence of

2For the rest of the presentation, we adopt the convention of presenting the fine-grained complexity performance
measure for computing an O(ε)-close solution instead of the convergence rate of a method. Thus a rate of the form
‖xt − x∗‖ ≤ O(1/t1/p) typically corresponds to O(1/εp) gradient computations and the geometric rate ‖xt − x∗‖ ≤
O(exp(−µt)) matches usually up with the O(ln(1/ε)) computational complexity.
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saddle points had been identified for the special case of Hadamard manifolds [Komiya, 1988, Kristály,
2014, Bento et al., 2017, Park, 2019].

Similar with the existence results, initially the developed methods referred to the computation
of singularities in monotone variational operators typically in hyperbolic Hadamard manifolds with
negative curvature [Li et al., 2009]. More recently, Huang et al. [2020] proposed a Riemannian gradient
descent ascent method (RGDA), yet the analysis is restricted to N being a convex subset of the Euclidean
space and f(x, y) being strongly concave in y. It is worth mentioning that for the case Hadamard and
generally hyperbolic manifolds, extra-gradient style algorithms have been proposed [Wang et al., 2010,
Ferreira et al., 2005] in the literature, establishing mainly their asymptotic convergence. However it
was not until recent Zhang et al. [2022] that the riemannian correction trick has been analyzed for the
case of the extra-gradient algorithm. Bearing in our mind the higher-order methods, Han et al. [2022]
has recently proposed the Riemannian Hamiltonian Descent and versions of Newton’s method for for
geodesic convex geodesic concave functions. Since in this work, we focus only on first-order methods, we
don’t compare with the aforementioned Hamiltonian alternative since it incorporates always the extra
computational burden of second-derivatives and hessian over a manifold.

B Motivating Examples

We provide some examples of Riemannian min-max optimization to give a sense of their expressivity.
Two of the examples are the generic models from the optimization literature [Ben-Tal et al., 2009, Absil
et al., 2009, Hu et al., 2020] and the two others are the formulations of application problems arising from
machine learning and data analytics [Pennec et al., 2006, Fletcher and Joshi, 2007, Lin et al., 2020a].

Example B.1 (Riemannian optimization with nonlinear constraints) We can consider a rather
straightforward generalization of constrained optimization problem from Euclidean spaces to Riemannian
manifolds [Bergmann and Herzog, 2019]. This formulation finds a wide range of real-world applications,
e.g., non-negative principle component analysis, weighted max-cut and so on. Letting M be a finite-
dimensional Riemannian manifold with unique geodesic, we focus on the following problem:

min
x∈M

f(x), s.t. g(x) ≤ 0, h(x) = 0,

where g := (g1, g2, . . . , gm) :M 7→ Rm and h := (h1, h2, . . . , hn) :M 7→ Rn are two mappings. Then, we
can introduce the dual variables λ and µ and reformulate the aforementioned constrained optimization
problem as follows,

min
x∈M

max
(λ,µ)∈Rm

+×Rn
f(x) + 〈λ, g(x)〉+ 〈µ, h(x)〉.

Suppose that f and all of gi and hi are geodesically convex and smooth, the above problem is a geodesic-
convex-Euclidean-concave min-max optimization problem.

Example B.2 (Distributionally robust Riemannian optimization) Distributionally robust opti-
mization (DRO) is an effective method to deal with the noisy data, adversarial data, and imbalanced
data. We consider the problem of DRO over Riemannian manifold; indeed, given a set of data samples
{ξi}Ni=1, the problem of DRO over Riemannian manifold M can be written in the form of

min
x∈M

max
p∈S

N∑
i=1

pi`(x; ξi)− ‖p− 1
N 1‖2,
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where p = (p1, p2, . . . , pN ) and S = {p ∈ RN :
∑N

i=1 pi = 1, pi ≥ 0}. In general, `(x; ξi) denotes the loss
function over Riemannian manifold M. If ` is geodesically convex and smooth, the above problem is a
geodesic-convex-Euclidean-concave min-max optimization problem.

Example B.3 (Robust matrix Karcher mean problem) We consider a robust version of classical
matrix Karcher mean problem. More specifically, the Karcher mean of N symmetric positive definite
matrices {Ai}Ni=1 is defined as the matrix X ∈M = {X ∈ Rn×n : X � 0, X = X>} that minimizes the
sum of squared distance induced by the Riemannian metric:

d(X,Y ) = ‖ log(X−1/2Y X−1/2)‖F .

The loss function is thus defined by

f(X; {Ai}Ni=1) =

N∑
i=1

(d(X,Ai))
2.

which is known to be nonconvex in Euclidean spaces but geodesically strongly convex. Then, the robust
version of classical matrix Karcher mean problem is aiming at solving the following problem:

min
X∈M

max
Yi∈M

f(X; {Yi}Ni=1)− γ

(
N∑
i=1

(d(Yi, Ai))
2

)
,

where γ > 0 stands for the trade-off between the computation of Karcher mean over a set of {Yi}Ni=1

and the difference between the observed samples {Ai}Ni=1 and {Yi}Ni=1. It is clear that the above problem
is a geodesically strongly-convex-strongly-concave min-max optimization problem.

Example B.4 (Projection robust optimal transport problem) We consider the projection ro-
bust optimal transport (OT) problem – a robust variant of the OT problem – that achieves superior
sample complexity bound [Lin et al., 2021]. Let {x1, x2, . . . , xn} ⊆ Rd and {y1, y2, . . . , yn} ⊆ Rd denote
sets of n atoms, and let (r1, r2, . . . , rn) and (c1, c2, . . . , cn) denote weight vectors. We define discrete
probability measures µ =

∑n
i=1 riδxi and ν =

∑n
j=1 cjδyj . In this setting, the computation of the k-

dimensional projection robust OT distance between µ and ν resorts to solving the following problem:

max
U∈St(d,k)

min
π∈Π(µ,ν)

n∑
i=1

n∑
j=1

πi,j‖U>xi − U>yj‖2,

where St(d, k) = {U ∈ Rd×k | U>U = Ik} is a Stiefel manifold and Π(r, c) = {π ∈ Rn×n+ |
∑n

j=1 πij =
ri,
∑n

i=1 πij = cj} is a transportation polytope. It is worth mentioning that the above problem is a
geodesically-nonconvex-Euclidean-concave min-max optimization problem with special structures, making
the computation of stationary points tractable. While the global convergence guarantee for our algorithm
does not apply, the above problem might be locally geodesically-convex-Euclidean-concave such that our
algorithm with sufficiently good initialization works here.

In addition to these examples, it is worth mentioning that Riemannian min-max optimization problems
contain all general min-max optimization problems in Euclidean spaces and all Riemannian minimization
or maximization optimization problems. It is also an abstraction of many machine learning problems,
e.g,. principle component analysis [Boumal and Absil, 2011], dictionary learning [Sun et al., 2016a,b],
deep neural networks (DNNs) [Huang et al., 2018] and low-rank matrix learning [Vandereycken, 2013,
Jawanpuria and Mishra, 2018]; indeed, the problem of principle component analysis resorts to optimiza-
tion problems on Grassmann manifolds for example.
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C Metric Geometry

To generalize the first-order methods in Euclidean setting, we introduce several basic concepts in metric
geometry [Burago et al., 2001], which are known to include both Euclidean spaces and Riemannian
manifolds as special cases. Formally, we have

Definition C.1 (Metric Space) A metric space (X, d) is a pair of a set X and a distance function
d(·, ·) satisfying: (i) d(x, x′) ≥ 0 for any x, x′ ∈ X; (ii) d(x, x′) = d(x′, x) for any x, x′ ∈ X; and
(iii) d(x, x′′) ≤ d(x, x′) + d(x′, x′′) for any x, x′, x′′ ∈ X. In other words, the distance function d(·, ·) is
non-negative, symmetrical and satisfies the triangle inequality.

A path γ : [0, 1] 7→ X is a continuous mapping from the interval [0, 1] toX and the length of γ is defined as
length(γ) := limn→+∞ sup0=t0<...<tn=1

∑n
i=1 d(γ(ti−1), γ(ti)). Note that the triangle inequality implies

that sup0=t0<...<tn=1

∑n
i=1 d(γ(ti−1), γ(ti)) is nondecreasing. Then, the length of a path γ is well defined

since the limit is either +∞ or a finite scalar. Moreover, for ∀ε > 0, there exists n ∈ N and the partition
0 = t0 < . . . < tn = 1 of the interval [0, 1] such that length(γ) ≤

∑n
i=1 d(γ(ti−1), γ(ti)) + ε.

Definition C.2 (Length Space) A metric space (X, d) is a length space if, for any x, x′ ∈ X and
ε > 0, there exists a path γ : [0, 1] 7→ X connecting x and x′ such that length(γ) ≤ d(x, x′) + ε.

We can see from Definition C.2 that a set of length spaces is strict subclass of metric spaces; indeed,
for some x, x′ ∈ X, there does not exist a path γ such that its length can be approximated by d(x, x′)
for some tolerance ε > 0. In metric geometry, a geodesic is a path which is locally a distance minimizer
everywhere. More precisely, a path γ is a geodesic if there is a constant ν > 0 such that for any t ∈ [0, 1]
there is a neighborhood I of [0, 1] such that,

d(γ(t1), γ(t2)) = ν|t1 − t2|, for any t1, t2 ∈ I.

Note that the above generalizes the notion of geodesic for Riemannian manifolds. Then, we are ready
to introduce the geodesic space and uniquely geodesic space [Bacak, 2014].

Definition C.3 A metric space (X, d) is a geodesic space if, for any x, x′ ∈ X, there exists a geodesic
γ : [0, 1] 7→ X connecting x and x′. Furthermore, it is called uniquely geodesic if the geodesic connecting
x and x′ is unique for any x, x′ ∈ X.

Trigonometric geometry in nonlinear spaces is intrinsically different from Euclidean space. In particular,
we remark that the law of cosines in Euclidean space (with ‖ · ‖ as `2-norm) is crucial for analyzing the
convergence property of optimization algorithms, e.g.,

‖a‖2 = ‖b‖2 + ‖c‖2 − 2bc cos(A),

where a, b, c are sides of a geodesic triangle in Euclidean space and A is the angle between b and c.
However, such nice property does not hold for nonlinear spaces due to the lack of flat geometry, further
motivating us to extend the law of cosines under nonlinear trigonometric geometry. That is to say,
given a geodesic triangle in X with sides a, b, c where A is the angle between b and c, we hope to
establish the relationship between a2, b2, c2 and 2bc cos(A) in nonlinear spaces; see the main context
for the comparing inequalities.

Finally, we specify the definition of section curvature of Riemannian manifolds and clarify how such
quantity affects the trigonometric comparison inequalities. More specifically, the sectional curvature is
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defined as the Gauss curvature of a 2-dimensional sub-manifold that are obtained from the image of a
two-dimensional subspace of a tangent space after exponential mapping. It is worth mentioning that the
above 2-dimensional sub-manifold is locally isometric to a 2-dimensional sphere, a Euclidean plane, and
a hyperbolic plane with the same Gauss curvature if its sectional curvature is positive, zero and negative
respectively. Then we are ready to summarize the existing trigonometric comparison inequalities for
Riemannian manifold with bounded sectional curvatures. Note that the following two propositions are
the full version of Proposition 2.1 and will be used in our subsequent proofs.

Proposition C.1 Suppose that M is a Riemannian manifold with sectional curvature that is upper
bounded by κmax and let ∆ be a geodesic triangle in M with the side length a, b, c and A which is the
angle between b and c. If κmax > 0, we assume the diameter of M is bounded by π√

κmax
. Then, we have

a2 ≥ ξ(κmax, c) · b2 + c2 − 2bc cos(A),

where ξ(κ, c) := 1 for κ ≤ 0 and ξ(κ, c) := c
√
κ cot(c

√
κ) < 1 for κ > 0.

Proposition C.2 Suppose that M is a Riemannian manifold with sectional curvature that is lower
bounded by κmin and let ∆ be a geodesic triangle in M with the side length a, b, c and A which is the
angle between b and c. Then, we have

a2 ≤ ξ(κmin, c) · b2 + c2 − 2bc cos(A),

where ξ(κ, c) := c
√
−κ coth(c

√
−κ) > 1 if κ < 0 and ξ(κ, c) := 1 if κ ≥ 0.

Remark C.1 Proposition C.1 and C.2 are simply the restatement of Alimisis et al. [2020, Corollary 2.1]
and Zhang and Sra [2016, Lemma 5]. The former inequality is obtained when the sectional curvature is
bounded from above while the latter inequality characterizes the relationship between the trigonometric
lengths when the sectional curvature is bounded from below. If κmin = κmax = 0 (i.e., Euclidean spaces),
we have ξ(κmin, c) = ξ(κmax, c) = 1. The proof is based on Toponogov’s theorem and Riccati comparison
estimate [Petersen, 2006, Proposition 25] and we refer the interested readers to Zhang and Sra [2016]
and Alimisis et al. [2020] for the details.

D Riemannian Gradient Descent Ascent for Nonsmooth Setting

In this section, we propose and analyze Riemannian gradient descent ascent (RGDA) method for nons-
mooth Riemannian min-max optimization and extend it to stochastic RGDA. We present our results on
the optimal last-iterate convergence guarantee for geodesically strongly-convex-strongly-concave setting
(both deterministic and stochastic) and time-average convergence guarantee for geodesically convex-
concave setting (both deterministic and stochastic).

D.1 Algorithmic scheme

Compared to Riemannian corrected extragradient (RCEG) method, our Riemannian gradient descent
ascent (RGDA) method is a relatively straightforward generalization of GDA in Euclidean spaces. More
specifically, we start with the scheme of GDA as follows (just consider M and N as convex constraint
sets in Euclidean spaces),

xt+1 ← projM(xt − ηt · gtx), yt+1 ← projN (yt + ηt · gty). (D.1)
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Algorithm 3 RGDA

Input: initial points (x0, y0) and stepsizes ηt > 0.
for t = 0, 1, 2, . . . , T − 1 do

Query (gtx, g
t
y)← (subgradxf(xt, yt), subgradyf(xt, yt))

as Riemannian subgradient of f at a point (xt, yt).
xt+1 ← Expxt

(−ηt · gtx).
yt+1 ← Expyt(ηt · g

t
y).

end for

Algorithm 4 SRGDA

Input: initial points (x0, y0) and stepsizes ηt > 0.
for t = 0, 1, 2, . . . , T − 1 do

Query (gtx, g
t
y) as a noisy estimator of Rieman-

nian subgradient of f at a point (xt, yt).
xt+1 ← Expxt

(−ηt · gtx).
yt+1 ← Expyt(ηt · g

t
y).

end for

where (gtx, g
t
y) ∈ (∂xf(xt, yt), ∂yf(xt, yt)) is one subgradient of f . By replacing the projection operator

by the corresponding exponential map and the gradient by the corresponding Riemannian gradient, we
have

xt+1 ← Expxt(−ηt · g
t
x), yt+1 ← Expyt(ηt · g

t
y).

where (gtx, g
t
y) ← (subgradxf(xt, yt), subgradyf(xt, yt)) is one Riemannian subgradient of f . Then, we

summarize the resulting scheme of RGDA method in Algorithm 3 and its stochastic extension with
noisy estimators of Riemannian gradients of f in Algorithm 4.

D.2 Main results

We present our main results on the global convergence rate estimation for Algorithm 3 and 4 in terms of
Riemannian gradient and noisy Riemannian gradient evaluations. The following assumptions are made
throughout for geodesically strongly-convex-strongly-concave and geodesically convex-concave settings.

Assumption D.1 The objective function f :M×N 7→ R and manifolds M and N satisfy

1. f is geodesically L-Lipschitz and geodesically strongly-convex-strongly-concave with µ > 0.

2. The diameter of the domain {(x, y) ∈M×N : −∞ < f(x, y) < +∞} is bounded by D > 0.

3. The sectional curvatures of M and N are both bounded in the range [κmin,+∞) with κmin ≤ 0.

Assumption D.2 The objective function f :M×N 7→ R and manifolds M and N satisfy

1. f is geodesically L-Lipschitz and geodesically convex-concave.

2. The diameter of the domain {(x, y) ∈M×N : −∞ < f(x, y) < +∞} is bounded by D > 0.

3. The sectional curvatures of M and N are both bounded in the range [κmin,+∞) with κmin ≤ 0.

Imposing the geodesically Lipschitzness condition is crucial to achieve finite-time convergence guarantee
if we do not assume the geodesically smoothness condition. Note that we only require the lower bound
for the sectional curvatures of manifolds and this is weaker than that presented in the main context.

Letting (x?, y?) ∈ M × N be a global saddle point of f (it exists under either Assumption D.1
or D.2), we let D0 = (dM(x0, x

?))2 + (dN (y0, y
?))2 > 0 and summarize our results for Algorithm 3 in

the following theorems.

Theorem D.1 Under Assumption D.1 and let ηt > 0 satisfies that ηt = 1
µ min{1, 2

t }. There exists

some T > 0 such that the output of Algorithm 3 satisfies that (d(xT , x
?))2 + (d(yT , y

?))2 ≤ ε and the
total number of Riemannian subgradient evaluations is bounded by

O

(
ξ0L

2

µ2ε

)
,
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where ξ0 = ξ(κmin, D) measures the lower bound for the change of non-flatness in M and N .

Theorem D.2 Under Assumption D.2 and let ηt > 0 satisfies that ηt = 1
L

√
D0

2ξ0T
. There exists some

T > 0 such that the output of Algorithm 3 satisfies that f(x̄T , y
?)− f(x?, ȳT ) ≤ ε and the total number

of Riemannian subgradient evaluations is bounded by

O

(
ξ0L

2D0

ε2

)
,

where ξ0 = ξ(κmin, D) measures the lower bound for the change of non-flatness in M and N , and the
time-average iterates (x̄T , ȳT ) ∈M×N can be computed by (x̄0, ȳ0) = (0, 0) and the inductive formula:
x̄t+1 = Expx̄t(

1
t+1 · Exp−1

x̄t (xt)) and ȳt+1 = Expȳt(
1
t+1 · Exp−1

ȳt (yt)) for all t = 0, 1, . . . , T − 1.

Remark D.1 Theorem D.1 and D.2 establish the last-iterate and time-average rates of convergence of
Algorithm 3 for solving Riemannian min-max optimization problems under Assumption D.1 and D.2
respectively. Further, the dependence on L and 1/ε can not be improved since it has matched the lower
bound established for the nonsmooth min-max optimization problems in Euclidean spaces.

In the scheme of SRGDA, we highlight that (gtx, g
t
y) is a noisy estimators of Riemannian subgradient of

f at (xt, yt). It is necessary to impose the conditions such that these estimators are unbiased and has
bounded variance. By abuse of notation, we assume that

gtx = subgradxf(xt, yt) + ξtx, gty = subgradyf(xt, yt) + ξty, (D.2)

where the noises (ξtx, ξ
t
y) satisfy that

E[ξtx] = 0, E[ξty] = 0, E[‖ξtx‖2 + ‖ξty‖2] ≤ σ2. (D.3)

We are ready to summarize our results for Algorithm 4 in the following theorems.

Theorem D.3 Under Assumption D.1 and let Eq. (D.2) and Eq. (D.3) hold with σ > 0 and let ηt > 0
satisfies that ηt = 1

µ min{1, 2
t }. There exists some T > 0 such that the output of Algorithm 4 satisfies

that E[(d(xT , x
?))2 + (d(yT , y

?))2] ≤ ε and the total number of noisy Riemannian gradient evaluations
is bounded by

O

(
ξ0(L2 + σ2)

µ2ε

)
,

where ξ0 = ξ(κmin, D) measures the lower bound for the change of non-flatness in M and N .

Theorem D.4 Under Assumption D.2 and let Eq. (D.2) and Eq. (D.3) hold with σ > 0 and let ηt > 0

satisfies that ηt = 1
2

√
D0

ξ0(L2+σ2)T
. There exists some T > 0 such that the output of Algorithm 4 satisfies

that E[f(x̄T , y
?) − f(x?, ȳT )] ≤ ε and the total number of noisy Riemannian gradient evaluations is

bounded by

O

(
ξ0(L2 + σ2)D0

ε2

)
,

where ξ0 = ξ(κmin, D) measures the lower bound for the change of non-flatness in M and N , and the
time-average iterates (x̄T , ȳT ) ∈M×N can be computed by (x̄0, ȳ0) = (0, 0) and the inductive formula:
x̄t+1 = Expx̄t(

1
t+1 · Exp−1

x̄t (xt)) and ȳt+1 = Expȳt(
1
t+1 · Exp−1

ȳt (yt)) for all t = 0, 1, . . . , T − 1.
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Remark D.2 Theorem D.3 and D.4 establish the last-iterate and time-average rates of convergence of
Algorithm 4 for solving Riemannian min-max optimization problems under Assumption D.1 and D.2.
Moreover, the dependence on L and 1/ε can not be improved since it has matched the lower bound
established for nonsmooth stochastic min-max optimization problems in Euclidean spaces.

E Missing Proofs for Riemannian Corrected Extragradient Method

In this section, we present some technical lemmas for analyzing the convergence property of Algorithm 1
and 2. We also give the proofs of Theorem 3.1, 3.2 and 3.3.

E.1 Technical lemmas

We provide two technical lemmas for analyzing Algorithm 1 and 2 respectively. Parts of the first lemma
were presented in Zhang et al. [2022, Lemma C.1]. For the completeness, we provide the proof details.

Lemma E.1 Under Assumption 3.1 and let {(xt, yt), (x̂t, ŷt)}T−1
t=0 be generated by Algorithm 1 with the

stepsize η > 0. Then, we have

0 ≤ 1
2

(
(dM(xt, x

?))2 − (dM(xt+1, x
?))2 + (dN (yt, y

?))2 − (dN (yt+1, y
?))2

)
+2ξ0η

2`2((dM(x̂t, xt))
2 + (dN (ŷt, yt))

2 − 1
2ξ0

(
(dM(x̂t, xt))

2 + (dN (ŷt, yt))
2
)

−µη
2

(
(dM(x̂t, x

?))2 + (dN (ŷt, y
?))2

)
.

where (x?, y?) ∈M×N is a global saddle point of f .

Proof. Since f is geodesically `-smooth, we have the Riemannian gradients of f , i.e., (gradxf, gradyf),
are well defined. Since f is geodesically strongly-concave-strongly-concave with the modulus µ ≥ 0
(here µ = 0 means that f is geodesically concave-concave), we have

f(x̂t, y
?)− f(x?, ŷt) = f(x̂t, ŷt)− f(x?, ŷt)− (f(x̂t, ŷt)− f(x̂t, y

?))
Definition 2.2
≤ −〈gradxf(x̂t, ŷt),Exp−1

x̂t
(x?)〉+ 〈gradyf(x̂t, ŷt),Exp−1

ŷt
(y?)〉 − µ

2 (dM(x̂t, x
?))2 − µ

2 (dN (ŷt, y
?))2.

Since (x?, y?) ∈ M×N is a global saddle point of f , we have f(x̂t, y
?) − f(x?, ŷt) ≥ 0. Recalling also

from the scheme of Algorithm 1 that we have

xt+1 ← Expx̂t(−η · gradxf(x̂t, ŷt) + Exp−1
x̂t

(xt)),

yt+1 ← Expŷt(η · gradyf(x̂t, ŷt) + Exp−1
ŷt

(yt)).

By the definition of an exponential map, we have

Exp−1
x̂t

(xt+1) = −η · gradxf(x̂t, ŷt) + Exp−1
x̂t

(xt),

Exp−1
ŷt

(yt+1) = η · gradyf(x̂t, ŷt) + Exp−1
ŷt

(yt).
(E.1)

This implies that

−〈gradxf(x̂t, ŷt),Exp−1
x̂t

(x?)〉 = 1
η (〈Exp−1

x̂t
(xt+1),Exp−1

x̂t
(x?)〉 − 〈Exp−1

x̂t
(xt),Exp−1

x̂t
(x?)〉),

〈gradyf(x̂t, ŷt),Exp−1
ŷt

(y?)〉 = 1
η (〈Exp−1

ŷt
(yt+1),Exp−1

ŷt
(y?)〉 − 〈Exp−1

ŷt
(yt),Exp−1

ŷt
(y?)〉).

30



Putting these pieces together yields that

0 ≤ 1
η (〈Exp−1

x̂t
(xt+1),Exp−1

x̂t
(x?)〉 − 〈Exp−1

x̂t
(xt),Exp−1

x̂t
(x?)〉)− µ

2 (dM(x̂t, x
?))2

+ 1
η (〈Exp−1

ŷt
(yt+1),Exp−1

ŷt
(y?)〉 − 〈Exp−1

ŷt
(yt),Exp−1

ŷt
(y?)〉)− µ

2 (dN (ŷt, y
?))2.

Equivalently, we have

0 ≤ 〈Exp−1
x̂t

(xt+1),Exp−1
x̂t

(x?)〉 − 〈Exp−1
x̂t

(xt),Exp−1
x̂t

(x?)〉 − µη
2 (dM(x̂t, x

?))2 (E.2)

+〈Exp−1
ŷt

(yt+1),Exp−1
ŷt

(y?)〉 − 〈Exp−1
ŷt

(yt),Exp−1
ŷt

(y?)〉 − µη
2 (dN (ŷt, y

?))2.

It suffices to bound the terms in the right-hand side of Eq. (E.2) by leveraging the celebrated comparison
inequalities on Riemannian manifold with bounded sectional curvature (see Proposition C.1 and C.2).
More specifically, we define the constants using ξ(·, ·) and ξ(·, ·) from Proposition C.1 and C.2 as follows,

ξ0 = ξ(κmin, D), ξ
0

= ξ(κmax, D).

By Proposition C.1 and using that max{dM(x̂t, x
?), dN (ŷt, y

?)} ≤ D, we have

−〈Exp−1
x̂t

(xt),Exp−1
x̂t

(x?)〉 ≤ −1
2

(
ξ

0
(dM(x̂t, xt))

2 + (dM(x̂t, x
?))2 − (dM(xt, x

?))2
)
,

−〈Exp−1
ŷt

(yt),Exp−1
ŷt

(y?)〉 ≤ −1
2

(
ξ

0
(dN (ŷt, yt))

2 + (dN (ŷt, y
?))2 − (dN (yt, y

?))2
)
.

(E.3)

By Proposition C.2 and using that max{dM(x̂t, x
?), dN (ŷt, y

?)} ≤ D, we have

〈Exp−1
x̂t

(xt+1),Exp−1
x̂t

(x?)〉 ≤ 1
2

(
ξ0(dM(x̂t, xt+1))2 + (dM(x̂t, x

?))2 − (dM(xt+1, x
?))2

)
.

and
〈Exp−1

ŷt
(yt+1),Exp−1

ŷt
(y?)〉 ≤ 1

2

(
ξ0(dN (ŷt, yt+1))2 + (dN (ŷt, y

?))2 − (dN (yt+1, y
?))2

)
.

By the definition of an exponential map and Riemannian metric, we have

dM(x̂t, xt+1) = ‖Exp−1
x̂t

(xt+1)‖ Eq. (E.1)
= ‖η · gradxf(x̂t, ŷt)− Exp−1

x̂t
(xt)‖,

dN (ŷt, yt+1) = ‖Exp−1
ŷt

(yt+1)‖ Eq. (E.1)
= ‖η · gradyf(x̂t, ŷt) + Exp−1

ŷt
(yt)‖.

(E.4)

Further, we see from the scheme of Algorithm 1 that we have

x̂t ← Expxt(−η · gradxf(xt, yt)),

ŷt ← Expyt(η · gradyf(xt, yt)).

By the definition of an exponential map, we have

Exp−1
xt (x̂t) = −η · gradxf(xt, yt), Exp−1

yt (ŷt) = η · gradyf(xt, yt).

Using the definition of a parallel transport map and the above equations, we have

Exp−1
x̂t

(xt) = η · Γx̂txtgradxf(xt, yt), Exp−1
ŷt

(yt) = −η · Γŷtytgradyf(xt, yt)

Since f is geodesically `-smooth, we have

‖gradxf(x̂t, ŷt)− Γx̂txtgradxf(xt, yt)‖ ≤ `(dM(x̂t, xt) + dN (ŷt, yt)),

‖gradyf(x̂t, ŷt)− Γŷtytgradyf(xt, yt)‖ ≤ `(dM(x̂t, xt) + dN (ŷt, yt)).
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Plugging the above inequalities into Eq. (E.4) yields that

max {dM(x̂t, xt+1), dN (ŷt, yt+1)} ≤ η`(dM(x̂t, xt) + dN (ŷt, yt)).

Therefore, we have

〈Exp−1
x̂t

(xt+1),Exp−1
x̂t

(x?)〉 ≤ 1
2

(
2ξ0η

2`2((dM(x̂t, xt))
2 + (dN (ŷt, yt))

2) + (dM(x̂t, x
?))2 − (dM(xt+1, x

?))2
)
,

〈Exp−1
ŷt

(yt+1),Exp−1
ŷt

(y?)〉 ≤ 1
2

(
2ξ0η

2`2((dM(x̂t, xt))
2 + (dN (ŷt, yt))

2) + (dN (ŷt, y
?))2 − (dN (yt+1, y

?))2
)
.

Plugging the above inequalities and Eq. (E.3) into Eq. (E.2) yields the desired inequality. �

The second lemma gives another key inequality that is satisfied by the iterates generated by Algorithm 2.

Lemma E.2 Under Assumption 3.1 (or Assumption 3.2) and the noisy model (cf. Eq. (3.2) and (3.3))
and let {(xt, yt), (x̂t, ŷt)}T−1

t=0 be generated by Algorithm 2 with the stepsize η > 0. Then, we have

E[f(x̂t, y
?)− f(x?, ŷt)] ≤ 1

2ηE
[
(dM(xt, x

?))2 − (dM(xt+1, x
?))2 + (dN (yt, y

?))2 − (dN (yt+1, y
?))2

]
+6ξ0η`

2E
[
(dM(x̂t, xt))

2 + (dN (ŷt, yt))
2
]
− 1

2η ξ0
E
[
(dM(x̂t, xt))

2 + (dN (ŷt, yt))
2
]

−µ
2E
[
(dM(x̂t, x

?))2 + (dN (ŷt, y
?))2

]
+ 3ξ0ησ

2,

where (x?, y?) ∈M×N is a global saddle point of f .

Proof. Using the same argument, we have (µ = 0 refers to geodesically convex-concave case)

f(x̂t, y
?)− f(x?, ŷt) = f(x̂t, ŷt)− f(x?, ŷt)− (f(x̂t, ŷt)− f(x̂t, y

?))

≤ −〈gradxf(x̂t, ŷt),Exp−1
x̂t

(x?)〉+ 〈gradyf(x̂t, ŷt),Exp−1
ŷt

(y?)〉 − µ
2 (dM(x̂t, x

?))2 − µ
2 (dN (ŷt, y

?))2.

Combining the arguments used in Lemma E.1 and the scheme of Algorithm 2, we have

−〈ĝtx,Exp−1
x̂t

(x?)〉 = 1
η (〈Exp−1

x̂t
(xt+1),Exp−1

x̂t
(x?)〉 − 〈Exp−1

x̂t
(xt),Exp−1

x̂t
(x?)〉),

〈ĝty,Exp−1
ŷt

(y?)〉 = 1
η (〈Exp−1

ŷt
(yt+1),Exp−1

ŷt
(y?)〉 − 〈Exp−1

ŷt
(yt),Exp−1

ŷt
(y?)〉).

Putting these pieces together with Eq. (3.2) yields that

f(x̂t, y
?)− f(x?, ŷt) ≤ 1

η (〈Exp−1
x̂t

(xt+1),Exp−1
x̂t

(x?)〉 − 〈Exp−1
x̂t

(xt),Exp−1
x̂t

(x?)〉) (E.5)

+ 1
η (〈Exp−1

ŷt
(yt+1),Exp−1

ŷt
(y?)〉 − 〈Exp−1

ŷt
(yt),Exp−1

ŷt
(y?)〉)− µ

2 (dM(x̂t, x
?))2 − µ

2 (dN (ŷt, y
?))2

+〈ξ̂tx,Exp−1
x̂t

(x?)〉 − 〈ξ̂ty,Exp−1
ŷt

(y?)〉.

By the same argument as used in Lemma E.1, we have

−〈Exp−1
x̂t

(xt),Exp−1
x̂t

(x?)〉 ≤ −1
2

(
ξ

0
(dM(x̂t, xt))

2 + (dM(x̂t, x
?))2 − (dM(xt, x

?))2
)
,

−〈Exp−1
ŷt

(yt),Exp−1
ŷt

(y?)〉 ≤ −1
2

(
ξ

0
(dN (ŷt, yt))

2 + (dN (ŷt, y
?))2 − (dN (yt, y

?))2
)
,

(E.6)

and

〈Exp−1
x̂t

(xt+1),Exp−1
x̂t

(x?)〉 ≤ 1
2

(
ξ0η

2‖ĝtx − Γx̂txtg
t
x‖2 + (dM(x̂t, x

?))2 − (dM(xt+1, x
?))2

)
,

〈Exp−1
ŷt

(yt+1),Exp−1
ŷt

(y?)〉 ≤ 1
2

(
ξ0η

2‖ĝty − Γŷtytg
t
y‖2 + (dN (ŷt, y

?))2 − (dN (yt+1, y
?))2

)
.
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Since f is geodesically `-smooth and Eq. (3.2) holds, we have

‖ĝtx − Γx̂txtg
t
x‖2 ≤ 3‖ξ̂tx‖2 + 3‖ξtx‖2 + 6`2(dM(x̂t, xt))

2 + 6`2(dN (ŷt, yt))
2,

‖ĝty − Γŷtytg
t
y‖2 ≤ 3‖ξ̂ty‖2 + 3‖ξty‖2 + 6`2(dM(x̂t, xt))

2 + 6`2(dN (ŷt, yt))
2.

Therefore, we have

〈Exp−1
x̂t

(xt+1),Exp−1
x̂t

(x?)〉+ 〈Exp−1
ŷt

(yt+1),Exp−1
ŷt

(y?)〉

≤ 6ξ0η
2`2((dM(x̂t, xt))

2 + (dN (ŷt, yt))
2) + 3

2ξ0η
2(‖ξ̂tx‖2 + ‖ξtx‖2 + ‖ξ̂ty‖2 + ‖ξty‖2)

+1
2

(
(dM(x̂t, x

?))2 − (dM(xt+1, x
?))2 + (dN (ŷt, y

?))2 − (dN (yt+1, y
?))2

)
.

Plugging the above inequalities and Eq. (E.6) into Eq. (E.5) yields that

f(x̂t, y
?)− f(x?, ŷt) ≤ 1

2η

(
(dM(xt, x

?))2 − (dM(xt+1, x
?))2 + (dN (yt, y

?))2 − (dN (yt+1, y
?))2

)
+6ξ0η`

2((dM(x̂t, xt))
2 + (dN (ŷt, yt))

2) + 3
2ξ0η(‖ξ̂tx‖2 + ‖ξtx‖2 + ‖ξ̂ty‖2 + ‖ξty‖2)

− 1
2η ξ0

(
(dM(x̂t, xt))

2 + (dN (ŷt, yt))
2
)
− µ

2 (dM(x̂t, x
?))2 − µ

2 (dN (ŷt, y
?))2

+〈ξ̂tx,Exp−1
x̂t

(x?)〉 − 〈ξ̂ty,Exp−1
ŷt

(y?)〉.

Taking the expectation of both sides and using Eq. (3.3) yields the desired inequality. �

E.2 Proof of Theorem 3.1

Since Riemannian metrics satisfy the triangle inequality, we have

(dM(x̂t, x
?))2 + (dN (ŷt, y

?))2 ≥ 1
2((dM(xt, x

?))2 + (dN (yt, y
?))2)− (dM(x̂t, xt))

2 + (dN (ŷt, yt))
2.

Plugging the above inequality into the inequality from Lemma E.1 yields that

(dM(xt+1, x
?))2 + (dN (yt+1, y

?))2

≤
(
1− µη

2

) (
(dM(xt, x

?))2 + (dN (yt, y
?))2

)
+ (4ξ0η

2`2 + µη − ξ
0
)((dM(x̂t, xt))

2 + (dN (ŷt, yt))
2.

Since η = min{ 1
4`
√
τ0
,
ξ
0

2µ}, we have 4ξ0η
2`2 + µη − ξ

0
≤ 0. By the definition, we have τ0 ≥ 1, κ ≥ 1 and

ξ
0
≤ 1. This implies that

1− µη
2 = 1−min

{
1

8κ
√
τ0
,
ξ
0
4

}
> 0.

Putting these pieces together yields that

(dM(xT , x
?))2 + (dN (yT , y

?))2 ≤
(

1−min
{

1
8κ
√
τ0
,
ξ
0
4

})T
(dM(x0, x

?))2 + (dN (y0, y
?))2

≤
(

1−min
{

1
8κ
√
τ0
,
ξ
0
4

})T
D0.

This completes the proof.

33



E.3 Proof of Theorem 3.2

Since Riemannian metrics satisfy the triangle inequality, we have

(dM(x̂t, x
?))2 + (dN (ŷt, y

?))2 ≥ 1
2((dM(xt, x

?))2 + (dN (yt, y
?))2)− (dM(x̂t, xt))

2 + (dN (ŷt, yt))
2.

Plugging the above inequality into the inequality from Lemma E.2 yields that

E[f(x̂t, y
?)− f(x?, ŷt)] ≤ 1

2ηE
[
(dM(xt, x

?))2 − (dM(xt+1, x
?))2 + (dN (yt, y

?))2 − (dN (yt+1, y
?))2

]
+(6ξ0η`

2 + µ
2 −

1
2η ξ0

)E
[
(dM(x̂t, xt))

2 + (dN (ŷt, yt))
2
]
− µ

4E
[
(dM(x̂t, x

?))2 + (dN (ŷt, y
?))2

]
+ 3ξ0ησ

2.

Since (x?, y?) ∈ M× N is a global saddle point of f , we have E[f(x̂t, y
?) − f(x?, ŷt)] ≥ 0. Then, we

have

E
[
(dM(xt+1, x

?))2 + (dN (yt+1, y
?))2

]
≤

(
1− µη

2

)
E
[
(dM(xt, x

?))2 + (dN (yt, y
?))2

]
+ (12ξ0η

2`2 + µη − ξ
0
)E
[
(dM(x̂t, xt))

2 + (dN (ŷt, yt))
2
]

+6ξ0η
2σ2.

Since η ≤ min{ 1
24`
√
τ0
,
ξ
0

2µ}, we have 12ξ0η
2`2 + µη − ξ

0
≤ 0. This implies that

E
[
(dM(xt+1, x

?))2 + (dN (yt+1, y
?))2

]
≤
(
1− µη

2

)
E
[
(dM(xt, x

?))2 + (dN (yt, y
?))2

]
+ 6ξ0η

2σ2.

By the definition, we have τ0 ≥ 1, κ ≥ 1 and ξ
0
≤ 1. This implies that

1− µη
2 ≥ 1−min

{
1

48κ
√
τ0
,
ξ
0
4

}
> 0.

By the inductive arguments, we have

E
[
(dM(xT , x

?))2 + (dN (yT , y
?))2

]
≤

(
1− µη

2

)T (
(dM(x0, x

?))2 + (dN (y0, y
?))2

)
+ 6ξ0η

2σ2

(
T−1∑
t=0

(
1− µη

2

)t)
≤

(
1− µη

2

)T
D0 + 12ξ0ησ

2

µ .

Since η = min{ 1
24`
√
τ0
,
ξ
0

2µ ,
2(log(T )+log(µ2D0σ−2))

µT }, we have

(
1− µη

2

)T
D0 ≤

(
1−min

{
1

48κ
√
τ0
,
ξ
0
4

})T
D0 +

(
1− log(µ2D0σ−2T )

T

)T
D0

1+x≤ex
≤

(
1−min

{
1

48κ
√
τ0
,
ξ
0
4

})T
D0 + σ2

µ2T
,

and
12ξ0ησ

2

µ ≤ 24ξ0σ
2

µ2T
log
(
µ2D0T
σ2

)
.

Putting these pieces together yields that

E
[
(dM(xT , x

?))2 + (dN (yT , y
?))2

]
≤
(

1−min
{

1
48κ
√
τ0
,
ξ
0
4

})T
D0 + σ2

µ2T
+ 24ξ0σ

2

µ2T
log
(
µ2D0T
σ2

)
.

This completes the proof.
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E.4 Proof of Theorem 3.3

By the inductive formulas of x̄t+1 = Expx̄t(
1
t+1 · Exp−1

x̄t (x̂t)) and ȳt+1 = Expȳt(
1
t+1 · Exp−1

ȳt (ŷt)) and
using Zhang et al. [2022, Lemma C.2], we have

f(x̄T , y
?)− f(x?, ȳT ) ≤ 1

T

(
T−1∑
t=0

f(x̂t, y
?)− f(x?, ŷt)

)
.

Plugging the above inequality into the inequality from Lemma E.2 yields that (recall that µ = 0 in
geodesically convex-concave setting here)

E[f(x̄T , y
?)− f(x?, ȳT )] ≤ 1

2ηT

(
(dM(x0, x

?))2 + (dN (y0, y
?))2

)
+ 1
T

(
6ξ0η`

2 − 1
2η ξ0

)(T−1∑
t=0

E
[
(dM(x̂t, xt))

2 + (dN (ŷt, yt))
2
])

+ 3ξ0ησ
2.

Since η ≤ 1
4`
√
τ0

, we have 6ξ0η`
2− 1

2η ξ0
≤ 0. Then, this together with (dM(x0, x

?))2+(dN (y0, y
?))2 ≤ D0

implies that
E[f(x̄T , y

?)− f(x?, ȳT )] ≤ D0
2ηT + 3ξ0ησ

2.

Since η = min{ 1
4`
√
τ0
, 1
σ

√
D0

ξ0T
}, we have

D0
2ηT ≤

2`D0
√
τ0

T + σ
2

√
ξ0D0

T ,

and

3ξ0ησ
2 ≤ 3σ

√
ξ0D0

T .

Putting these pieces together yields that

E[f(x̄T , y
?)− f(x?, ȳT )] ≤ 2`D0

√
τ0

T + 7σ
2

√
ξ0D0

T .

This completes the proof.

F Missing Proofs for Riemannian Gradient Descent Ascent

In this section, we present some technical lemmas for analyzing the convergence property of Algorithm 3
and 4. We also give the proofs of Theorem D.1, D.2, D.3 and D.4.

F.1 Technical lemmas

We provide two technical lemmas for analyzing Algorithm 3 and 4 respectively. The first lemma gives
a key inequality that is satisfied by the iterates generated by Algorithm 3.

Lemma F.1 Under Assumption D.1 (or Assumption D.2) and let {(xt, yt)}T−1
t=0 be generated by Algo-

rithm 3 with the stepsize ηt > 0. Then, we have

f(xt, y
?)− f(x?, yt) ≤ 1

2ηt

(
(dM(xt, x

?))2 − (dM(xt+1, x
?))2

)
+ 1

2ηt

(
(dN (yt, y

?))2 − (dN (yt+1, y
?))2

)
− µ

2 (dM(xt, x
?))2 − µ

2 (dN (yt, y
?))2 + ξ0ηtL

2,

where (x?, y?) ∈M×N is a global saddle point of f .
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Proof. Since f is geodesically strongly-concave-strongly-concave with the modulus µ ≥ 0 (here µ = 0
means that f is geodesically concave-concave), we have

f(xt, y
?)− f(x?, yt) = f(xt, yt)− f(x?, yt)− (f(xt, yt)− f(xt, y

?))

≤ −〈subgradxf(xt, yt),Exp−1
xt (x?)〉+ 〈subgradyf(xt, yt),Exp−1

yt (y?)〉 − µ
2 (dM(xt, x

?))2 − µ
2 (dN (yt, y

?))2.

Recalling also from the scheme of Algorithm 3 that we have

xt+1 ← Expxt(−ηt · subgradxf(xt, yt)),

yt+1 ← Expyt(ηt · subgradyf(xt, yt)).

By the definition of an exponential map, we have

Exp−1
xt (xt+1) = −ηt · subgradxf(xt, yt),

Exp−1
yt (yt+1) = ηt · subgradyf(xt, yt).

(F.1)

This implies that

−〈subgradxf(xt, yt),Exp−1
xt (x?)〉 = 1

ηt
〈Exp−1

xt (xt+1),Exp−1
xt (x?)〉,

〈subgradyf(xt, yt),Exp−1
yt (y?)〉 = 1

ηt
〈Exp−1

yt (yt+1),Exp−1
yt (y?)〉.

Putting these pieces together yields that

f(xt, y
?)− f(x?, yt) ≤ 1

ηt
〈Exp−1

xt (xt+1),Exp−1
xt (x?)〉 (F.2)

+ 1
ηt
〈Exp−1

yt (yt+1),Exp−1
yt (y?)〉 − µ

2 (dM(xt, x
?))2 − µ

2 (dN (yt, y
?))2.

It suffices to bound the terms in the right-hand side of Eq. (F.2) by leveraging the celebrated comparison
inequalities on Riemannian manifold with lower bounded sectional curvature (see Proposition C.2).
More specifically, we define the constants using ξ(·, ·) and ξ(·, ·) from Proposition C.2 as follows,

ξ0 = ξ(κmin, D).

By Proposition C.2 and using that max{dM(xt, x
?), dN (yt, y

?)} ≤ D, we have

〈Exp−1
xt (xt+1),Exp−1

xt (x?)〉 ≤ 1
2

(
ξ0(dM(xt, xt+1))2 + (dM(xt, x

?))2 − (dM(xt+1, x
?))2

)
,

〈Exp−1
yt (yt+1),Exp−1

yt (y?)〉 ≤ 1
2

(
ξ0(dN (yt, yt+1))2 + (dN (yt, y

?))2 − (dN (yt+1, y
?))2

)
.

Since f is geodesically L-Lipschitz, we have

‖subgradxf(xt, yt)‖ ≤ L, ‖subgradyf(xt, yt)‖ ≤ L.

By the definition of an exponential map and Riemannian metric, we have

dM(xt, xt+1) = ‖Exp−1
xt (xt+1)‖ Eq. (F.1)

= ‖ηt · subgradxf(xt, yt)‖ ≤ ηtL,
dN (yt, yt+1) = ‖Exp−1

yt (yt+1)‖ Eq. (F.1)
= ‖ηt · subgradyf(xt, yt)‖ ≤ ηtL.

Putting these pieces together yields that

〈Exp−1
xt (xt+1),Exp−1

xt (x?)〉 ≤ 1
2

(
ξ0η

2
tL

2 + (dM(xt, x
?))2 − (dM(xt+1, x

?))2
)
,

〈Exp−1
yt (yt+1),Exp−1

yt (y?)〉 ≤ 1
2

(
ξ0η

2
tL

2 + (dN (yt, y
?))2 − (dN (yt+1, y

?))2
)
.

Plugging the above inequalities into Eq. (F.2) yields the desired inequality. �

The second lemma gives another key inequality that is satisfied by the iterates generated by Algorithm 4.
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Lemma F.2 Under Assumption D.1 (or Assumption D.2) and the noisy model (cf. Eq. (D.2) and (D.3))
and let {(xt, yt)}T−1

t=0 be generated by Algorithm 4 with the stepsize ηt > 0. Then, we have

E[f(xt, y
?)− f(x?, yt)] ≤ 1

2ηt
E
[
(dM(xt, x

?))2 − (dM(xt+1, x
?))2

]
+ 1

2ηt
E
[
(dN (yt, y

?))2 − (dN (yt+1, y
?))2

]
− µ

2E
[
(dM(xt, x

?))2 + (dN (yt, y
?))2

]
+ 2ξ0ηt(L

2 + σ2),

where (x?, y?) ∈M×N is a global saddle point of f .

Proof. Using the same argument, we have (µ = 0 refers to geodesically convex-concave case)

f(xt, y
?)− f(x?, yt) = f(xt, yt)− f(x?, yt)− (f(xt, yt)− f(xt, y

?))

≤ −〈subgradxf(xt, yt),Exp−1
xt (x?)〉+ 〈subgradyf(xt, yt),Exp−1

yt (y?)〉 − µ
2 (dM(xt, x

?))2 − µ
2 (dN (yt, y

?))2.

Combining the arguments used in Lemma F.1 and the scheme of Algorithm 2, we have

−〈gtx,Exp−1
xt (x?)〉 = 1

ηt
〈Exp−1

xt (xt+1),Exp−1
xt (x?)〉,

〈gty,Exp−1
yt (y?)〉 = 1

ηt
〈Exp−1

yt (yt+1),Exp−1
yt (y?)〉.

Putting these pieces together with Eq. (D.2) yields that

f(xt, y
?)− f(x?, yt) ≤ 1

ηt
〈Exp−1

xt (xt+1),Exp−1
xt (x?) (F.3)

+ 1
ηt
〈Exp−1

yt (yt+1),Exp−1
yt (y?)〉 − µ

2 (dM(xt, x
?))2 − µ

2 (dN (yt, y
?))2 + 〈ξtx,Exp−1

xt (x?)〉 − 〈ξty,Exp−1
yt (y?)〉.

By the same argument as used in Lemma F.1 and Eq. (D.2), we have

〈Exp−1
xt (xt+1),Exp−1

xt (x?)〉 ≤ 1
2

(
ξ0(dM(xt, xt+1))2 + (dM(xt, x

?))2 − (dM(xt+1, x
?))2

)
,

〈Exp−1
yt (yt+1),Exp−1

yt (y?)〉 ≤ 1
2

(
ξ0(dN (yt, yt+1))2 + (dN (yt, y

?))2 − (dN (yt+1, y
?))2

)
,

and
dM(xt, xt+1) = ‖Exp−1

xt (xt+1)‖ = ‖ηt · gtx‖ ≤ ηt(L+ ‖ξtx‖),
dN (yt, yt+1) = ‖Exp−1

yt (yt+1)‖ = ‖ηt · gty‖ ≤ ηt(L+ ‖ξty‖).

Therefore, we have

〈Exp−1
xt (xt+1),Exp−1

xt (x?)〉+ 〈Exp−1
yt (yt+1),Exp−1

yt (y?)〉
≤ 1

2ξ0η
2
t (4L

2 + 2‖ξtx‖2 + 2‖ξty‖2) + 1
2

(
(dM(xt, x

?))2 − (dM(xt+1, x
?))2 + (dN (yt, y

?))2 − (dN (yt+1, y
?))2

)
.

Plugging the above inequalities into Eq. (F.3) yields that

f(xt, y
?)− f(x?, yt) ≤ 1

2ηt

(
(dM(xt, x

?))2 − (dM(xt+1, x
?))2 + (dN (yt, y

?))2 − (dN (yt+1, y
?))2

)
+ξ0ηt(2L

2 + ‖ξtx‖2 + ‖ξty‖2)− µ
2 (dM(xt, x

?))2 − µ
2 (dN (yt, y

?))2 + 〈ξtx,Exp−1
xt (x?)〉 − 〈ξty,Exp−1

yt (y?)〉.

Taking the expectation of both sides and using Eq. (D.3) yields the desired inequality. �
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F.2 Proof of Theorem D.1

Since (x?, y?) ∈ M×N is a global saddle point of f , we have f(xt, y
?) − f(x?, yt) ≥ 0. Plugging this

inequality into the inequality from Lemma F.1 yields that

(dM(xt+1, x
?))2 + (dN (yt+1, y

?))2 ≤ (1− µηt)
(
(dM(xt, x

?))2 + (dN (yt, y
?))2

)
+ 2ξ0η

2
tL

2.

Since ηt = 1
µ min{1, 2

t }, we have

(dM(xt+1, x
?))2 + (dN (yt+1, y

?))2 ≤ (1− 2
t )
(
(dM(xt, x

?))2 + (dN (yt, y
?))2

)
+ 8ξ0L

2

µ2t2
, for all t ≥ 2.

Letting {bt}t≥1 be a nonnegative sequence such that at+1 ≤ (1 − P
t )at + Q

t2
where P > 1 and Q > 0.

Then, Chung [1954] proved that at ≤ Q
P−1

1
t . Therefore, we have

(dM(xt, x
?))2 + (dN (yt, y

?))2 ≤ 8ξ0L
2

µ2t
, for all t ≥ 2.

This completes the proof.

F.3 Proof of Theorem D.2

By the inductive formulas of x̄t+1 = Expx̄t(
1
t+1 · Exp−1

x̄t (xt)) and ȳt+1 = Expȳt(
1
t+1 · Exp−1

ȳt (yt)) and
using Zhang et al. [2022, Lemma C.2], we have

f(x̄T , y
?)− f(x?, ȳT ) ≤ 1

T

(
T−1∑
t=0

f(xt, y
?)− f(x?, yt)

)
.

Plugging the above inequality into the inequality from Lemma F.1 yields that (recall that µ = 0 in

geodesically convex-concave setting and ηt = η = 1
L

√
D0

2ξ0T
)

f(x̄T , y
?)− f(x?, ȳT ) ≤ 1

2ηT

(
(dM(x0, x

?))2 + (dN (y0, y
?))2

)
+ ξ0ηL

2.

This together with (dM(x0, x
?))2 + (dN (y0, y

?))2 ≤ D0 implies that

f(x̄T , y
?)− f(x?, ȳT ) ≤ D0

2ηT + ξ0ηL
2.

Since η = 1
L

√
D0

2ξ0T
, we have

f(x̄T , y
?)− f(x?, ȳT ) ≤ L

√
2ξ0D0

T .

This completes the proof.

F.4 Proof of Theorem D.3

Since (x?, y?) ∈M×N is a global saddle point of f , we have E[f(xt, y
?)− f(x?, yt)] ≥ 0. Plugging this

inequality into the inequality from Lemma F.2 yields that

E
[
(dM(xt+1, x

?))2 + (dN (yt+1, y
?))2

]
≤ (1− µηt)E

[
(dM(xt, x

?))2 + (dN (yt, y
?))2

]
+ 4ξ0η

2
t (L

2 + σ2).
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Since ηt = 1
µ min{1, 2

t }, we have

E
[
(dM(xt+1, x

?))2 + (dN (yt+1, y
?))2

]
≤ (1−2

t )E
[
(dM(xt, x

?))2 + (dN (yt, y
?))2

]
+16ξ0(L2+σ2)

µ2t2
, for all t ≥ 2.

Applying the same argument as used in Theorem D.1, we have

(dM(xt, x
?))2 + (dN (yt, y

?))2 ≤ 16ξ0(L2+σ2)
µ2t

, for all t ≥ 2.

This completes the proof.

F.5 Proof of Theorem D.4

Using the same argument, we have

f(x̄T , y
?)− f(x?, ȳT ) ≤ 1

T

(
T−1∑
t=0

f(xt, y
?)− f(x?, yt)

)
.

Plugging the above inequality into the inequality from Lemma F.2 yields that (recall that µ = 0 in

geodesically convex-concave setting and ηt = η = 1
2

√
D0

ξ0(L2+σ2)T
)

E[f(x̄T , y
?)− f(x?, ȳT )] ≤ 1

2ηT

(
(dM(x0, x

?))2 + (dN (y0, y
?))2

)
+ 2ξ0η(L2 + σ2).

This together with (dM(x0, x
?))2 + (dN (y0, y

?))2 ≤ D0 implies that

E[f(x̄T , y
?)− f(x?, ȳT )] ≤ D0

2ηT + 2ξ0η(L2 + σ2).

Since η = 1
2

√
D0

ξ0(L2+σ2)T
, we have

f(x̄T , y
?)− f(x?, ȳT ) ≤ 2

√
ξ0(L2+σ2)D0

T .

This completes the proof.

G Additional Experimental Results

We present some additional experimental results for the effect of different choices of α as well the effect
of different choices of η for for RCEG. In our experiment here, we set n = 40 consistently.

Figure 3 presents the performance of RCEG when α = 2.0. We observe that the results are similar
to that summarized in Figure 1. In particular, the last iterate of RCEG consistently achieves the
linearly convergence to an optimal solution in all the settings. In contrast, the average iterate of RCEG
converges much slower than the last iterate of RCEG. Figure 4 summarizes the effect of different choices
of η in RCEG. We observe that setting η as a relatively larger value will speed up the convergence to
an optimal solution while all of the choices here lead to the linear convergence. This suggests that the
choice of stepsize η in RCEG can be aggressive in practice.
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Figure 3: Comparison of last iterate (RCEG-last) and time-average iterate (RCEG-avg) for solving the RPCA problem
when α = 2.0. The horizontal axis represents the number of data passes and the vertical axis represents gradient norm.
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Figure 4: Comparison of different step sizes (η ∈ {0.1, 0.05, 0.02}) for solving the RPCA problem with different dimensions
when α = 2.0. The horizontal axis represents the number of data passes and the vertical axis represents gradient norm.
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