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Abstract In this article, we study the mean field limit of weakly interacting diffusions for
confining and interaction potentials that are not necessarily convex. We explore the relation-
ship between the large N limit of the constant in the logarithmic Sobolev inequality (LSI)
for the N -particle system and the presence or absence of phase transitions for the mean field
limit. The non-degeneracy of the LSI constant is shown to have far reaching consequences,
especially in the context of uniform-in-time propagation of chaos and the behaviour of equi-
librium fluctuations. Our results extend previous results related to unbounded spin systems
and recent results on propagation of chaos using novel coupling methods. As incidentals,
we provide concise and, to our knowledge, new proofs of a generalised form of Talagrand’s
inequality and of quantitative propagation of chaos by employing techniques from the theory
of gradient flows, specifically the Riemannian calculus on the space of probability measures.

1. Introduction. Interacting particle systems have attracted a lot of attention in recent
years since they appear in diverse areas ranging from plasma physics and galactic dynamics
to machine learning and optimization. For systems of identical (or exchangeable) particles
in which the pair-wise interactions scale like the inverse of the number of particles, it is
possible to pass to the mean field limit and obtain a coarse-grained description of the system
via a nonlinear nonlocal PDE that governs the evolution of the one-particle density. In this
paper, we consider systems of weakly interacting diffusions driven by pair-wise interactions,
confinement and independent Brownian motions (see (2.1) ). In this case the mean field PDE
is the so-called McKean—Vlasov equation.

A natural problem that one would like to address is how to obtain sharp quantitative esti-
mates on the rate at which the empirical measure of the particle system converges to the mean
field limit, as the number of particles N goes to infinity. When considering arbitrarily long
time scales, this problem is intimately connected to the rate of convergence to steady states
as time t goes to infinity. For the study of such quantitative results, a crucial role is played
by the Poincaré (PI) and logarithmic Sobolev (LSI) inequalities. Our focus in this paper is
to elucidate the connection between the validity of the LSI for the /V-particle Gibbs measure
uniformly in the number of particles /N and the properties of the mean field limit. We es-
tablish connections with uniform-in-time propagation of chaos, (non-)uniqueness of steady
states of the mean field equation, exponential convergence to equilibrium, and the behaviour
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of equilibrium fluctuations. We show the effect that the presence of multiple steady states for
the mean field equation, which correspond to invariant measures of the associated nonlin-
ear McKean SDE, has on the various quantitative and qualitative features of the underlying
interacting particle system.

In the equilibrium statistical mechanics of lattice systems, the non-uniqueness of the
infinite-volume grand canonical Gibbs measure is referred to as a phase transition [30]. The
presence of such a phase transition can then be detected with the help of some order pa-
rameter, for example the thermodynamic pressure for the nearest-neighbour Ising model, or
the average magnetisation of the ensemble for the mean-field Curie—Weiss model. Based on
the behaviour of these quantities (or rather on the behaviour of the infinite-volume partition
function), one can then characterise the phase transitions as either continuous (second-order)
or discontinuous (first-order).

The situation in our setting is more complicated but closely mirrors the one for lattice
systems. Indeed, the system we consider can be thought of as spin system with mean field
interaction and the “spins” taking values in some uncountable state space (2. The difference
between the system we consider and the Ising and Curie—Weiss model lies in the fact that,
except in a small number of specific examples, it is extremely hard to specify an order-
parameter or understand the exact behaviour of the infinite-volume partition function. An
additional important difference is that for our system we will be more interested in the non-
uniqueness of critical points of the free energy, which correspond to important changes in
the features of the system, as opposed to non-uniqueness of its minimisers. In either case,
the similarity with spin systems is instructive enough that it will serve the reader well to
remember this analogy as we discuss the notion of phase transition we work with.

A detailed characterisation of phase transitions for McKean-Vlasov PDEs on the torus
without a confining potential was given in [11]. In particular, the presence of phase transitions
for this setting as it relates to non-uniqueness of minimisers of the free energy functional was
discussed in detail. However, in this paper, we are more interested in characterising these
phase transitions as they relate to non-uniqueness of critical points of the free energy.

For convex confining and interaction potentials (when the state space is Euclidean), the
system does not undergo phase transitions. In fact, uniform-in-time propagation of chaos and
uniqueness of the steady state for the mean field PDE have been established, for e.g. in [44].
Moreover, in [13] under a uniform convexity assumption of the potentials, the authors show
exponentially fast relaxation to the unique steady state of the mean field system. Our focus in
this paper is to deal with non-convex potentials which may exhibit phase transitions and thus
could not be expected to always (for all temperatures) exhibit uniform-in-time propagation of
chaos. In terms of the LSI, we show that the existence of a non-minimising steady state im-
plies the (quantitative) degeneracy of the constant in the LSI of the N -particle Gibbs measure
in the limit as N — +o00. On the other hand, we show that the non-degeneracy of the LSI,
implies uniform-in-time propagation of chaos and Gaussianity of the fluctuations around the
mean field limit at equilibrium. Furthermore, we conjecture that the limit of the LSI constant
for the INV-particle system can be uniquely characterised in terms of the dissipation inequality
for the mean field system.

The relation between the non-degeneracy of the constant in the PI or the LSI, the absence
of phase transitions, and the exponentially fast decay of correlations has been studied exten-
sively for unbounded spin systems [63]. Conversely, in these works the equivalence between
the slow decay of correlations and the fact that the constant in the LSI becomes degenerate
at the phase transition has been established. Uniform estimates on the constant in the LSI
beyond the convex case have been established recently [32], under the Lipschitzian spectral
gap condition for the single particle. We remark that this assumption is reminiscent to the
assumptions on the conditional measures for the two-scale LSI [49, 31, 41]. We utilize the
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latter approach to show the non-degeneracy of the LSI for our N-particle Gibbs measure in
the high temperature/weak interaction regime.

In the probability literature, the study of the LSI in the context of linear Fokker—Planck
equations goes back to the classical I'y functional introduced by Bakry and Emery [3]. More
recently, contractivity for interacting particle systems has been studied in the context of en-
tropic interpolation and Schrodinger bridges [51, 29, 2, 28]. These techniques yield proofs of
both the Talagrand [16] and Sobolev [22] inequality, under lower curvature conditions on the
underlying manifold. We also mention the novel coupling techniques introduced by Eberle
in [24] that produce contractivity estimates in a tailored transportation cost distance. This
approach was then later used to prove uniform-in-time propagation of chaos estimates under
a smallness assumptions on the interaction potential [23].

Our approach in this paper exploits the fact that both the N-particle system (or rather its
Fokker—Planck equation) and its mean field limit are gradient flows of a particular energy
functional with respect to the 2-Wasserstein distance. We can use this structural feature of
the system to study the limit of all the relevant quantities as N — oo. This approach was
pioneered by Hauray and Mischler in [35], and later used by the authors in [10, 20] to study
both propagation of chaos and periodic homogenization for the interacting particle system.
The advantage of this approach is that we can often make minimal assumptions on the reg-
ularity of the confining and interaction potentials: we will essentially assume that they are
both only semi-convex, which is natural for 2-Wasserstein gradient flows (see [1]). We refer
to [54, 38, 9] for the reader interested in propagation of chaos results with more singular
potentials.

Organization of the paper.. Section 2 sets up the problem we are interested in studying
along with our notation and main assumptions. Section 3 contains the statements of all our
main results. Section 4 connects our results to the phenomenon of phase transitions and dis-
cusses possible properties that could capture the radical change of behavior in our system in
the presence multiple steady states of the mean field equation. Section 5 contains some tech-
nical results on the convergence of the relevant quantities and functionals as N — oo which
play an important role in the proofs of our main theorems. Sections 6 to 12 contain the proofs
of Theorems 3.2 to 3.4, 3.6, 3.7, 3.11 and 3.14, respectively.

2. Set up, assumptions, and notation. We consider {th },-:17___, N C R the positions

of IV indistinguishable interacting particles at time ¢ > 0, satisfying the following system of
SDE:s:

N
o dX{=—VV(X})dt - % ]Z::IVM/(Xt,Xf)dt +/28-1dB:

Law(X3, ..., X{) = p2N € Py gym (RHN),

where V: R4 - R, W : R% x R - R, 571 > 0 is the inverse temperature, Bii=1,...,N
are independent d-dimensional Brownian motions, and the initial position of the particles is
i.i.d with law p;,. The chaoticity assumption on the initial data is not necessary but it greatly
simplifies the exposition. Similarly, the state space R? can be replaced by the periodic domain
T? or any convex set  C R? with normal reflecting boundary conditions, see, for example,
[56]. We denote the space of symmetric Borel probability measures on ¥ with finite second
moment by 7727Sym(QN ), i.e. probability measures which are invariant under the relabeling
of variables (or probability measures that arise as laws of exchangeable random variables).
Throughout the paper, we will always work with probability measures that have finite second
moment; to avoid burdensome notation, we forego the subscript 2 from now on and simply
write Paym (V).
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To ensure well-posedness of the evolutionary flows and coercivity, we make the following
assumptions.

ASSUMPTION 2.1. The confining potential V' is lower semicontinuous, bounded below,
Ky -convex for some Ky € R and there exists Ry > 0 and § > 0, such that V() > |x|® for
]w\ > Ry.

ASSUMPTION 2.2. The interaction potential W is lower semicontinuous, Ky -convex
for some Ky € R, bounded below, symmetric W (x,y) = W (y, x), vanishes along the diag-
onal Wz, z) = 0, and there exists C' such that

(2.2) IVaiW (2, y)| < CA+ W (z,y)[ + V(2) + V(y))

REMARK 2.3. The K-Convexity assumptions on the potentials is short hand for global
lower bounds on their Hessians

D*V > KyI™®  and  D*W > Ky, 1?42

with Ky, Ky € R. Unlike a convexity assumption on the potentials, i.e. K-convexity with
K = 0 (see [44] for results in the convex case), these assumptions are weak enough to include
models that exhibit phase transitions with respect to changes in the system’s temperature,
1, for example, the double well potential V (z) = (1 — |z|?)? with quadratic interactions
W (x,y) = |z — y|?, also known as the Desai-Zwanzig model (for more details see [18].

REMARK 2.4. The more technical bound (2.2) replaces the more classical doubling con-
dition [1, Section 10.4.42] which is used to characterise the minimal sub-differential of the
interaction energy [1, Theorem 10.4.11].

2.1. The Fokker—Planck equation.. Tt is well known that the curve p" : [0,00) —
Psym (22V) which describes the evolution of the law of the process (X, ..., X}V) € O satis-
fies the following linear Fokker—Planck equation

opN = B1APN + V- (pV VHy) in (0,00) x QV,
(2.3) (VpN 4+ pNVHy) - figy =0 on (0,00) x 9QYN
pN(0) = pi?,
where the Hamiltonian H  is given by
N
Hy(@) =Y Vi) + 35 Wiz a),
i=1

2N &=«
7j=11i=1

pin € P(Q), and 7igw is the unit normal to Q.
2.2. de Finetti/Hewitt—Savage.. To take the limit as N — oo, we will crucially use the

exchangeability of the underlying particle system whose law is governed by (2.3). This im-
plies that the joint law p” is symmetric for all times, that is

PN (t) € Paym(Q)  forall t > 0.
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The main idea is that we can characterise the limit N — 00 of Py (V) as P(P(£)), which
denotes the Borel probability measures with bounded second moment defined over the metric
space (P(2),dz), where dy is the 2-Wasserstein distance.

Following de Finetti [19] and Hewitt—Savage [37], we know that any tight sequence
(PN ) nen, with p € Pyym (), ie. with tight (in P(£2)) I marginals for all [ € N, has
a limit Py, € P(P(2)) along a subsequence which we do not relabel such that

pNAPOO7

where weak convergence is given by duality with cylindrical test functions. That is, for any
l€Nand ¢ € C.(Q), we have

2.4 in [ o afo=[ ([ o) a0) ario),
N—o0 Ol P(Q) Q!
where
P € Poym () is the [-th marginal of p%.

In essence, this means that in the limit N — oo of symmetric probability measures can be
characterised as convex combinations of chaotic measures. For more details, we refer the
reader to [35, 10, 52]. In the sequel, we will use the notation p — P, € P(P(Q)) to denote
this notion of weak convergence for any sequence (p ) ey With p” € Py (V).
Moreover, a metric version of this result can be obtained by considering the appropriately
scaled 2-Wasserstein distance, i.e.

d2 = d2,

VN
where ds is the classical 2-Wasserstein on P(2V). More specifically, Hauray-Mischler [35]
showed that under the topology of (2.4)

Jm B2 =2s

where D5 is the 2-Wasserstein distance defined on the probabilities with second moment
bounded over the metric space (Po(R?), do). For more details, see Theorem 5.3. This metric
on P(P(R2)) is closely related to the convergence discussed above as will be seen in Propo-
sition 5.5.

2.3. The mean field limit and nonlinear behaviour. Within this formalism, the limit N —
oo of the equation (2.3) can be written as

PV (t) — dp) € P(P(2)) forall ¢t > 0,

where 4, denotes the delta measure concentrated on p(t), the unique solution of the non-
linear McKean equation

Op=PL1Ap+ V- (p(VV +VWxp)) on(0,00) x
(2.5) (Vp+p(VV +VW %p)-iig=0 on (0,00) x 0N
p(0) = pin,
with

Wk plz) == / W) doly).
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FI1G 1. A rough schematic showing two possible kinds of phase transition: The upper diagram shows a typical
continuous phase transition. In this setting, the unique critical point (shown in blue) loses its local stability
through a local (pitchfork) bifurcation which gives rise to new locally stable critical points. The lower diagram
shows a typical discontinuous phase transition. In this setting, the unique critical point retains its local stability
but new critical points arise in the free energy landscape through a saddle node bifurcation.

One of the most salient differences between the particle dynamics (2.3) and the mean field
dynamics (2.5) is that, whereas the Fokker-Planck equation governing the evolution of the
N-particle system is linear, the mean field PDE (2.5) is nonlinear. As is well known, a conse-
quence of this is that for non-convex confining/interaction potentials the mean field dynamics
might have more than one stationary state, in contrast to the particle dynamics. Indeed, the
unique steady state of the N-particle Fokker—Planck equation (2.3) is given by the Gibbs
measure
—BHnN(x
My = ¢ P dz  with  Zn:= / e PHNGW) qy.
ZN QN

On the other hand, the mean field limit can admit more than a single steady state, with the
full characterisation being the set of solutions to the self-consistency equation

(2.6) B ogpy + W xp. +V =C, on () for some C, € R,

This is discussed in detail in Proposition 4.1. See also [11, 18] and the references therein.

2.4. Phase transitions. The uniqueness/non-uniqueness of steady states of the mean field
system (2.5) depends both the temperature of the system (or, equivalently, the strength of the
interaction) and on the convexity properties of the confining and interaction potentials V' and
W. At sufficiently high temperatures, the diffusion is strong enough that the expected escape
time of particles from local minima of the potentials is bounded uniformly in the number of
particles. Indeed, a perturbation argument shows that, at sufficiently high temperatures, the
self-consistency equation (2.6) has a unique solution, see Proposition 4.2. When we cool the
system and the potentials are non-convex, particles can get trapped for arbitrarily long time
scales in local minima and condense [4]. In statistical physics terms, the system changes from
a gaseous state to a liquid or solid state. In the mean field limit, this change of behavior can
be characterised by the local or global instability of the minimisers of the mean field energy
(see (2.10)), see for instance [11, 15] and Fig. 1 for a loose picture of the change in the mean
field energy landscape as the temperature of the system is varied. For more details on the
possible definitions of a phase transition, see Section 4.
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2.5. Qualitative long time behavior. Due to the linearity of the N-particle system, we
know that (2.3) admits a unique steady state (given by the Gibbs measure My ). If the po-
tentials prevent mass from escaping to infinity, by the La-Salle’s principle for graident flows
[12, Theorem 2.13], we know that independent of the initial condition

(2.7) lim p™ (t) = My,
t—o00

in the sense of weak convergence of probability measures. Furthermore, entropy methods
and the LSI provide us with exponentially fast convergence to the steady state [45]. On the
other hand, if the McKean—Vlasov equation admits multiple steady states, then the limit
t — oo for the mean field dynamics will depend on the choice of initial condition. In this case,
the limiting dynamics (2.5) do not approximate the particle dynamics (2.1) for arbitrarily
long times. In this paper we provide evidence that phase transitions constitute the natural
obstruction to obtaining uniform-in-time propagation of chaos estimates. See Theorem 3.7
for sufficient conditions for the mean field approximation to be valid uniformly in time.

2.6. I'-convergence. Taking advantage of the 2-Wasserstein gradient flow structure of
(2.3) and (2.5) (see [1, 10, 53]), the main tool that we will use to obtain a quantitative un-
derstanding of the limit N — oo is I'-convergence with respect to the topology introduced
by de Finetti/Hewitt-Savage-type convergence (2.4). To illustrate this technique, we use it to
characterise the limit N — oo of the Gibbs measure M. Following the pioneering work of
Messer and Spohn [47], we notice that My is the unique minimiser over probability measures
of the energy per unit particle

1/
(2.8) EN[pN]:N <ﬁ 1/ oV log p d:z:+/ Hypv d:z:>.
QN QN

Taking N — oo, we can characterise the thermodynamic limit of the energy EV as BV —T

E>:P(P()) - RU {400}, where

(2.9) E®[P]:= EMT[pldP(p),
P()

with the mean field energy EM : P(Q) — R U {400} given by

@10y Bl =gt [ plog(p) dot 3 [ Wiay) dole) aoly) + [ V(w) dplo),
Q 02 Q

see [35] or Theorem 5.6 for a more modern proof. Using the fact that My is the minimiser
of (2.8), we know that any accumulation point of the sequence My (in the sense of de
Finetti/Hewitt—Savage) P, € P(P(€2)) needs to be a minimiser of (2.9). Hence, we may
conclude that the minimal energy converges

1
li ——logZy | =lim EN[My]= E®[Py]= inf E®[P|= inf EMF
Ngnoo( o N) i B[] = E¥[Pu) = _int  E¥[P)= inf BVl

where we have used that (2.9) is a potential energy, which also implies that P, needs to be
supported on the minimisers of M. This convergence and related results are discussed in

further detail in Section 5.
Under our previous hypothesis, we have the following standard result.

THEOREM A. Under Assumptions 2.1 and 2.2, EMF is bounded below and has at least
one minimiser.
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The lower bound follows from Jensen’s inequality, while the existence of a minimiser follows
from the direct method of calculus of variations. Under the extra assumption that the £
admits a unique minimiser pg € P(R?), we have

My —6,, € P(P(R)).

The perspective of the proofs in this paper is that the evolution of the N-particle law (2.3) and
the mean field limit (2.5) are respectively the gradient flows of EV and EM¥ with respect
to the scaled 2-Wasserstein distance do and the 2-Wasserstein distance on P(€2). In fact, the
A-convexity assumption on the potentials and the doubling condition (2.2) can be used to
obtain uniqueness of the gradient flow solutions. The next fundamental result is essentially a
restatement of [1, Theorem 11.2.8], for the compact case see [53].

THEOREM B. If Assumptions 2.1 and 2.2 hold, then for any pi, € P(2) there exists
unique distributional solutions p™ € C([0,00); Psym (YY) and p € C([0, 00); P(Q) to (2.3)
and (2.5), respectively, which are the gradient flows of EN (2.8) and EMF (2.10) with re-
spect to the scaled 2-Wasserstein distance dy and the 2-Wasserstein distance do on P((2),
respectively.

We remark here that in [10] an alternative proof of propagation of chaos is provided which
employs the I'-convergence result and the convergence of the gradient flow structures.

3. Main results. To quantify the convergence as ¢ — co in (2.7), we can apply the stan-
dard relative entropy estimate [60]. More specifically, we consider the Lyapunov functional
given by the scaled relative entropy of p?¥ () with respect to the equilibrium measure My

_ 1 Nt
V[N (1) - BNy = (00 =+ [ 1og (”M—”) o (1) de,
Qn N
where we use the notation & : P(2) x P(£2) — [0, 00] to denote the scaled relative entropy.
Taking a time derivative and using the PDE (2.3) we obtain the scaled relative Fisher infor-

mation Z : P(2) x P(Q) — [0, ool:
p" (t)
Vlog <M—N>

(3.1

d—= 1

—E(pN )| My)=—-p""— /

T (P ()| My)=-p N Jow
The convergence (2.7) in relative entropy is exponential whenever we can show that the V-
particle log Sobolev constant is bounded away from zero:

nf 5__17(PN|MN).

pNeP@V )My} E(pN| M)
Following the classical work of Bakry—Emery [3, 40, 36], we can find mild conditions for the
positivity of the log Sobolev constant whenever the domain €2 is R,

2
oM (1) do = — B~ T(p™ (1) M),

(3.2) 0< A=

THEOREM C. Under Assumptions 2.1 and 2.2, if there exists i > 1 and A > 0 such that
(3.3) D2HN (z) > \INNd  for every |z| > R,
then we have that A > 0.

REMARK 3.1. The convexity condition (3.3) in the far field can arise from either the
convexity of the interaction or the confining potential. We expect that the sharp condition
for the Gibbs measure My to satisfy )\]LVS > 0 uniformly in N is related to the behavior
of the mean field limit dissipation inequality (3.5). We will discuss this in more detail in
Conjecture 1.
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For the mean field limit, we can perform a similar analysis with the relative mean field
energy. More specifically, given p(t) the solution to (2.5) we can differentiate to obtain the
dissipation
(3.4)

d

EEMF[p(t)] —inf EMF = — / |37V 1og p(t) + VW xp(t) + VV *p(t) dz=: —D(p(t)).
0

Hence, we obtain exponential decay of the mean field energy to its minimum value, as long

as the so-called infinite colume log Sobolev constant, given by

oo . D(p)
(3-5) 0<Als = pelgfﬂ) EMF[p(t)] — inf EMF”
p¢K

is positive, where
K={pecP@Q): EMI[p]=inf EMFY,

In both cases, when the log Sobolev constant is positive we can show that the relative energy
behaves quadratically with respect to the 2-Wasserstein distance. This is essentially the con-
tent of Talagrand’s inequality [58]. One of our contributions in this paper is a new proof of a
generalised version of this inequality using gradient flow techniques.

THEOREM 3.2. Under Assumptions 2.1 and 2.2,
(3.6)

M —2 ) ALS
ENpN] = BN [My] 2 S5 dy (0", M) and - BV [p] —inf BMT > Z2d5(p, K),
where K is the set of minimisers of EM" and d%(p,K) = inf ,exc d3(p, 1)

An optimal transport-based proof of inequality (3.6) for EY and EM¥ can be found in [61,
Theorem 22.17]. We also refer to [16] for a proof using entropic interpolation. In Section 6,
we provide a different more intuitive proof of (3.6) for general energies E : P(2) - R U
{+00}. Our strategy is to use the associated gradient flow structure and what is sometimes
referred to as Otto calculus [48], a formal Riemannian calculus on (P(f2),ds2). We should
note that one of the main differences in Talagrand’s inequality for the N-particle energy and
for the mean field energy is that the set of minimisers X does not need to be a single point in
the mean field case.

Having established the need for understanding the behavior of the log Sobolev constant,
our first result relates the limit of the particle system log Sobolev constant (3.2) with the mean
field or infinite volume log Sobolev constant(3.5):

THEOREM 3.3. Under Assumptions 2.1 and 2.2, we have
lim sup Afs < A%
N—o00

Moreover, if the mean field energy EMT (2.10) admits a critical point that is not a minimiser,
then A\ = 0, and there exists C' > 0 such that

C
Aﬁvsgﬁ

Our result complements similar results that have been obtained for unbounded spin sys-
tems [63] and the references therein. On the other hand, when Ay > 0, we can show that the
regularized log Sobolev constant

)\N,a L . ﬁ_lj(pN‘MN)
LS ‘= o 1nf T
PN E(pN | My)>e  E(pN|My)
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does not degenerate. More specifically,

lm AN > A% > 0.

Ngnoo Ls = 7LS >0

This result implies that relaxation to neighborhoods of the stationary state of the particle
dynamics (2.3) happens exponentially fast, uniformly in V.

THEOREM 3.4.  Under Assumptions 2.1 and 2.2, assume that \{y > 0, and that pi,
in (2.1) has finite energy and bounded higher order moments,

(3.7) EME[p] < 00 and / 2|27 dpin < 00, for some 6 > 0.
Q

Then, for every € > 0, there exists Ny € N, such that for every N > Ny we have

E(p™ (1) M) < max {2, e 2B E(PEN | My) }

REMARK 3.5. For chaotic measures, we can take the limit N — oo of the relative en-
tropy obtaining

lim E(p2N|My) = EME [piy] — inf EMF.
N—oo
This is discussed in Theorem 5.6.

Unfortunately, we are not able to fully characterise the limit of /\ﬁvs in terms of the mean
field limit. Despite this, Theorem 3.3 and Theorem 3.4, provide us with evidence which is
convincing enough to make the following conjecture.

CONJECTURE 1. Under Assumptions 2.1 and 2.2, we have the equality

lim AN = APQ.
N—oo

The results of our paper provide us with a strong indication that the absence of phase
transitions (loosely defined to mean that the mean field limit has a unique stationary state),
the non-degeneracy of the infinite volume log Sobolev constant, and the validity uniform-in-
time propagation of chaos are all equivalent.

3.1. Consequences of the non-degeneracy of the log Sobolev inequality. Bearing Conjec-
ture 1 in mind, we now explore the implications of the non-degeneracy of the LSI constant in
the limit N — +-00. We begin by noticing that if the log Sobolev constant does not degenerate
in IV, then the invariant Gibbs measure My of the N-particle system is well approximated
by the unique minimiser of the mean field energy.

THEOREM 3.6. Under Assumptions 2.1 and 2.2, assume that limsupy_, ., )\]LVS > 0.
Then, there exists a unique steady state pg to (2.5). Moreover, there exists C > 0, such that

9 2 — = C
dy(p" s M) < €PN My) < ST(p5 | M) < N

— N
)‘LS

Interpolating the previous result with more standard propagation of chaos estimates that
depend on the convexity constant of the potentials, we obtain the following uniform-in-time
propagation of chaos result.
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THEOREM 3.7.  Under Assumptions 2.1 and 2.2, let p™ and p denote the unique solutions
to the particle (2.3) and mean field (2.5) dynamics given by Theorem B. Assume that py, has
finite energy

EMF [pin] <00,
that the gradient of the square of the interaction potential is uniformly integrable
(3.8) sup / VAW % % p(t)p(t) dz < oo,
te[0,00] J Q

and that iminf n_ oo )\fJVS =: \>*° > 0. Then,

do(p™ (1), p2N (1)) < % forallt >0,

where
Y if Ky + Kw(1—1/N)>0
sty UKy + Ew(l—1/N) <0

with Ky and Ky the convexity constants of V. and W in Assumptions 2.1 and 2.2. In the
case where Ky + Ky (1 —1/N) =0, we can pick any 6 < 1/2.

REMARK 3.8. The integrability assumption (3.8) is trivially true when W is uniformly
Lipschitz. Also, this assumption is satisfied when the potentials are attractive enough in the
far field, i.e. outside a ball of radius R, that we can obtain uniform exponential bounds for
the tail behavior of the mean field solution.

REMARK 3.9. We note that for convex potentials Ky, Ky > 0 the uniform propagation
of chaos with § = 1/2 has already been shown in [44]. The main difference with this work
is that our approach utilizes the convexity of the entropy along the 2-Wasserstein distance to
obtain a contraction estimate. This approach can be easily extended to manifolds with Ricci
curvature bounded from below [43], where we need to consider the sign of

Kgric+ Ky + Kw(1—1/N)

with KR;j. the lower bound on the Ricci curvature of the underlying Riemannian manifold.

REMARK 3.10. We do not expect ¢ in the above theorem to be sharp for Ky + Ky (1 —
1/N) < 0. At sufficiently high temperatures and Ky + Ky (1 — 1/N) < 0, a comparable
result for the 1-Wasserstein distance is shown by coupling methods in [25] with § = 1/2.

We can also use the non-degeneracy of the LSI constant to identify the fluctuations at
equilibrium.

THEOREM 3.11. Let Q = T% and assume that liminf y_, o )\]LVS > 0, then the fluctuations
process

N
N (t) =V N (%Z@X;’ —Pﬁ> ;
i=1

where (X}, ..., X{V) are solutions to (2.1) with initial law given by the invariant Gibbs mea-
sure My, satisfies

sup B[N Ol o] < oo,
NeN,te[0,T]
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foranyT >0,s>d/2+ 1.
Moreover, assume that V., W are smooth and that the linearised operator (2.5) around pg

Lpn=B" A0+ V- (pgVW %) +V - ()VW % pg) +V - (VV1)),
satisfies, for all ¢ € C*°(T4), the following coercivity inequality
(3.9) (=Lps b 0) 12 (1e) > | VBl T2 ey

for some ¢ > 0.
Then, for any m > d/2+3, ¥ convergesin law, as a C([0,T]; H~™(T%))-valued random
variable, to the unique stationary solution n°° of the following linear SPDE

(3.10) N> =Ly,n>* + V- (y/pst)

where & is space-time white noise.

REMARK 3.12. 'We mention the result of Fernandez and Meleard [26] (see also [59, 55])
which characterises the fluctuations of the particle dynamics with respect to the mean field
limit for finite time horizons, under a stronger closeness assumption for the initial data. We
also mention the recent preprint [62] which studies fluctuations for singular potentials.

To our knowledge, the first available results for fluctuations at equilibrium is due to Daw-
son [18] in which he shows that, for the specific case of Desai—Zwanzig model, at the phase
transition temperature, equilibrium fluctuations are non-Gaussian. It is an interesting open
problem if this behavior is universal for any system which undergoes a (continuous) phase
transition. The different notions of phase transition will be discussed in Section 4.

REMARK 3.13. For The smoothness assumptions on V' and W are used to have a
well-defined semigroup associated to the linearised operator £,, which regularizes instan-
taneously arbitrary initial data in 2~ (T%). Up to technical results, this can be quantified
by requiring V and W € W™+%>°(T4) for any € > 0. For fluctuation results with singular
potentials we refer the reader to the recent preprint [62].

The unique invariant measure of the SPDE (3.10) G € P(H ™ (T¢)) is a centred Gaussian
measure with covariance operator (Jg given by

t
Qotpv)i=lim [ [ T ve s py dnt,
0 JTd

t—00

for any mean-zero ¢, 1) € C*°(T%) and where L}, denotes the flat L?-adjoint.

In the specific case that V =0 and W (z,y) = W (x — y), we can obtain a more explicit
characterisation of G. Indeed, since lim inf ;oo /\ﬁvs > 0, we know from Proposition 4.2 (and
the discussion following it) that £ " has a unique critical point which is given by poo(dz) =
dz. We can then write down an explicit representation of the action of the semigroup e‘“i- in
Fourier space as follows

Go(k) = e 1 IREET WD a1y ke 74k £0,
where @; = et for some mean-zero ¢ € C°°(T?). This leaves us with the formula

G(k)(k)
8w2(f1 + W (k)

Qg(¢7¢) = Z

kEZ,k#£0

where we have used the fact that the coercivity inequality (3.9) is equivalent to the fact that
B~ + W (k) > 0 for all k € Z¢, k # 0, which is also equivalent to the condition 3 < By, see
Proposition 4.3.
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Another way of rewriting this is that G is the unique centred Gaussian measure with
Cameron—Martin space given by the closure of all smooth mean-zero functions  under the

norm
ol =522 (57 [ ot [ v e poar).
Td Td

Since, 371 + W(k:) > 0 for all k € Z%, k # 0, the above norm is equivalent to the standard
L2(’]I‘d) norm. The above norm is also the same, up to a multiplicative constant, as the norm
introduced in Property A.

One can further use the structure of the covariance operator (Jg to read off that G is sup-
ported on H™ E (T?) distributions. Thus, the limiting equilibrium fluctuations have the regu-
larity of spatial white noise, which is not surprising considering the fact that their Cameron—
Martin space is “basically” L*(T¢).

3.2. Non-degeneracy of the LSI constant in specific cases. Putting aside for the time
being the validity of Conjecture 1, we show that the LSI constant )\fJVS does not degenerate in
the high temperature regime when {2 is compact, or when the confinement V' satisfies an LSI
inequality and the interaction strength is small enough.

THEOREM 3.14. Assume that there exists a constant C > 0 such that
2
WL~ @2): 1DgyW L=y <C.
We then have the following two scenarios:

(a) Compact case: Assume §2 is compact and its normalised Lebesgue measure dx satisfies
a log Sobolev inequality. Then, there exists a 0 < frs = Prs(C) such that for all § < Prs,
we have

liminf Ay > 0.
N—o0

(b) weak interaction case: Assume 2 = R? and that the one-particle measure Z;le_v dx

satisfies a log Sobolev inequality with constant )\I‘fs > 0. Then there exists an eLg =

eLs(C, )\I‘fs, B) >0, such that for any 0 < € < eLg we have

. N
l}\?iggof/\is >0,

where /\iév is the log Sobolev constant of the Gibbs measure My = Z;,le_BH v dx with

N ¢ N N
i) = V(@) + 55 3 D Wiaiay).
i=1

j=1i=1

The above result relies crucially on the two-scale approach to log Sobolev inequalities in-
troduced in [49], which is based on the analysis of the marginal and conditional measures
of My . For the convenience of the reader, we describe the main result of [49] in The-
orem 11.2. In addition to the above high temperature result, it is also possible to obtain
a sharper result in certain specific scenarios. For instance, in the case in which = T,
W(z,y) = — cos(2m(x — y)), and V = 0. The corresponding system is referred to by many
names: the noisy Kuramoto model, the mean field classical XY model, the mean field O(2)
model or the Brownian mean field model [14]. It is known that this system exhibits a phase
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transition (of type A, B, and C, see Definition 4.6). Due to the particularly simple nature
of the model, it is possible to show that the IV particle log Sobolev constant )\fJVS is asymp-
totically non-degenerate all the way up to the critical inverse temperature 5. = 2. We state
without proof the following result due to Bauerschmidt and Bodineau [5], see also [6].

THEOREM D ([5, Theorem 1]). Consider the Gibbs measure M of the mean field O(2)
model and denote by )\]LVS its log Sobolev constant. Then, for all 0 < 8 < 5. = 2, we have that

L N
1}\1{11)1&15)\143 >0.

REMARK 3.15. An essentially similar argument as in [5, Theorem 1], can be used to
show that the system with Q =T, W (x,y) = — cos(2mk(z — y)), and V =0 for some k € N
has a uniform LSI all the way up to the critical inverse temperature 5. which coincides with
B¢ from Proposition 4.3.

4. Phase transitions. We start our discussion by stating and proving the following result
which provides us with a particularly useful characterisation of steady states.

PROPOSITION 4.1. Under Assumptions 2.1 and 2.2 the following statements are equiv-
alent:
1. p€P(Q) is a critical point of the mean field free energy EMT that is to say
|0EMT|(p) = D(p) = 0.

2. p € P(Q) is a steady state of the mean field equation (2.5), i.e. it is distributional weak
solution of the PDE

BIAp+V-(p(VWxp+VV))=0 z€Q.
3. p solves the self-consistency equation:

4.1) po DB g 7= / e PW*tV) gy .
Zs Q

Furthermore, for all B> 0, EMT has at least one global minimiser which is a critical point,
and any critical point p € P(Q) of EMF is Lipschitz, strictly positive, and has moments of
all orders.

PROOF. The proof of the equivalence of the three characterisations follows from similar
arguments to [11, Proposition 2.4] and so we omit the proof. The fact that £ " has a critical
point follows from Theorem A.

Now, using (4.1), we know that any critical point p € P(£2) is of the form

L —8waptv)
Zy ’

which is Lipschitz and strictly positive. We now use Assumption 2.2 to assert that, since W
is bounded below,

p < Zﬁ_leﬁce_ﬁv .

Thus, by Assumption 2.1, any critical point p € P(€2) of E™*" has moments of all orders. [

Furthermore, we have the following result regarding uniqueness of critical points.
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PROPOSITION 4.2.  Under the assumptions of Theorem 3.14 there exists a unique critical
point pg € P(Q) of the mean field free energy EMF .

PROOF. The proof of this result follows by combining the results of Theorems 3.6
and 3.14. We know from Theorem 3.14 that the logarithmic Sobolev inequality holds uni-
formly for M. We can then use Theorem 3.6 to argue that for 8 sufficiently small, the mean
field free energy EM ¥ must have a unique critical point P U

When we discuss non-uniqueness of critical points, we will often restrict ourselves to the
case in which V' =0, W (z,y) = W(z — y), and Q = T%. This case lends itself particularly
well to analysis as the Lebesgue measure po,(dx) = dx, what we shall hereafter refer to as
the “flat state”, is always a critical point of EM¥ for all 3 > 0. We shall see later that in
this setting it is possible to provide relatively clean examples of the different types of phase
transitions that we consider in this paper. For an example of what a typical phase transition
looks like, see Fig. 1 for a schematic of the free energy landscape in the vicinity of a phase
transition.

We now introduce and motivate a list of properties that may serve as a proxy for the ab-
sence of well-defined order parameter. We discuss how these properties relate to each other,
specifically in the “flat case”. We start by looking at the linearisation of the mean field dy-
namics (2.5):

PROPERTY A. Fix 8 > 0. We say that the system (2.5) satisfies Property A if EM¥ has a
unique critical point pg and the linearised operator associated to right hand side of (2.5) has
a spectral gap under the interaction weighted inner product. More specifically, we have that

(A) lnf <_£p5777 7]>W,p3

a >0,
neCe (@), fondz=0 |0l

where
Lyn=B"1An+V-(VV) +V - (psVWxn) + V- (VW xpg),

and
gt -1 1
(N V)W, = | mveg dx + 3 (W *n)vdx
Q Q

Wlth Hn||%/[/7p5 = (777”7>W,p5'

The above property captures essentially the local stability of the critical point pg. Loss
of the local stability of pg is a precursor to a phase transition. In the setting of a continu-
ous phase transition (see the upper half of Fig. 1), one expects this property to fail exactly
at the critical temperature 5 = (.. The weighted inner product arises naturally through the
linearisation of the mean field log Sobolev constant, or more specifically through the lineari-
sation of the mean field energy EMF see (4.2). We note that the bilinear form (s )wips 18
positive semi-definite when pg is the unique critical point. For the classical XY model (see
the discussion before Theorem D), it is known that the system exhibits a continuous phase
transition [11, Proposition 6.1]. In this case, the non-local inner product above it is related to
the inner product that was introduced in [8] to understand the spectral gap ahead of the phase
transition. In the absence of the interaction term, it reduces to the standard weighted inner
product that symmetrises the Fokker-Planck operator, see [50]. In the periodic translation in-
variant case Q = T%, W (z,y) = W(x —y), and V =0, when ps, = du is the unique critical
point of EMF | the weighted inner product (-, )W,p.. is equivalent to the standard L? inner
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product. Thus, in this situation, checking Property A is satisfied is equivalent to checking
that £, has a spectral gap in the standard L? inner product. This relationship will be made
clearer in Proposition 4.3. Before discussing Property A in more detail, we introduce the next
property which measures the local degeneracy of the self-consistency equation (4.1).

PROPERTY B. Fix 8 > 0. We denote by T : L?(Q2) — L*(Q2) the map associated to the
self-consistency equation (4.1):

(B) T(p)=p— e V0 20, zy= [ AWV,
B Q

We say that the system (2.5) satisfies Property B if EMT has a unique critical point pp and
the Fréchet derivative D,T of T' at pg is non-degenerate, that is to say it has a trivial kernel
consisting only of constant functions.

Under additional conditions, see [11], the above property being violated implies the pres-
ence of a local bifurcation around the minimiser pg. A simple condition that implies the
presence of a local bifurcation is when the algebraic multiplicity of the 0 eigenvalue of D,T'
at pg is odd. Local bifurcations also arise, if the map 1" can be rewritten as a so-called poten-
tial operator and its Frechét derivative D, T" has a non-zero crossing number, see [39]. The
above property exactly captures the second-order degeneracy of the mean field free energy
around the unique critical point pg. Indeed, formally expanding EMF[p] about pp we obtain

2
1
EMFp] ZEMF[/)BH/B‘l%pgl+§W*nndx+O(n3)
Q

(4.2) =EM [pg] + 87" /Q (D, Tlpslnnpz" dz+O(n*),

with ) = p — pg. Thus, if Property B is satisfied the mean field free energy is non-degenerate
at second order near the critical point pg.
The third and final property considers the validity of the Dissipation Inequality.

PROPERTY C. Fix 8 > 0. We say that the system (2.5) satisfies Property C if the infinite-
volume log Sobolev constant is positive. More precisely, if we have that
D(p)

C AT = inf >0.
© LS peP(lsrll),pglc EME[p] — minp gy EMF

The third and final property captures global aspects of the free energy landscape. Indeed,
one would expect it to be violated in both the situations described in Fig. 1. For the case of the
discontinuous phase transition, the lower half of Fig. 1, Property C would be violated because
of the presence of a non-minimising critical point of EM¥" which is represented by the red
circles. Thus, the numerator of (C) vanishes while the denominator is strictly positive. As an
explicit example of a system which exhibits such a phase transition, one can consider 2 =T,
with the bi-chromatic interaction potential W (x,y) = — cos(2m(z — y)) — cos(4n(z — y)),
and V =0 (cf. [11, Theorem 5.11]). On the other hand, in the case of a continuous phase
transition, the upper half of Fig. 1, the fact that Property C should be violated is more subtle.
To observe this, we linearise the right hand side of (C) about the unique minimiser pg at
B = B.. For the dissipation, we have that
2
D(p) =2/ 6‘1V% +VWxn| dps+0(n°),

Q
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with 1) = p — pg. Combining the above expression with (4.2), we obtain to leading order
2
D(P) N4fQ‘B_IV% +VW*T]‘ dpﬁ
EME[p] — EMF[pg] — [ 87102 + W xnnpsdps"

Moreover, we notice that

4.3)

1 _ n 2
(_£P577777)W,pg :_/ 5 1V_+VW*’I’] dpﬁ
2 Ja Ps
Using (4.3), it follows that to leading order
D(p) ~4 <_£P5777 "7>%/V,p5

EME[p] — EMFlpg] ™" |nll,,

Hence, in the setting of a continuous phase transition the infinite volume log Sobolev constant
captures the spectral gap of L, and thus also captures the loss of local stability of pg.

We now present the following result which characterises how the various properties we
have discussed relate to each other in the periodic spatially homogeneous case.

PROPOSITION 4.3.  Assume Q=T V =0, W(z,y) = W(z — ), and denote

1
Byi=— , ——— € (0,00].
min(0, — mingeza\ joy W(K))

Then, for 3 < By the linearised operator Ly, satisfies the spectral gap property (10.3), and
the kernel of the Fréchet derivative of the self-consistency equation (10.4) is non degenerate
at the “flat state”. For 3 > By, Properties A and B are violated.

Furthermore, for all 8 # (34, Property C implies Property A and Property B.

REMARK 4.4. We emphasize that Proposition 4.3 does not ensure that Properties A
and B are satisfied for 3 < ;. In fact, for the bi-chromatic potential case W (x,y) =
—cos(2m(x — y)) — cos(4m(xz — y)), we know that the “flat state” is not the unique steady
state for some 3 < [3; violating the uniqueness requirement of Properties A and B, see [11,
Theorem 5.11].

PROOF. We will first argue that Properties A and B are equivalent. It follows from the
fact that po(dz) = d is always a critical point of EM ¥ (in the flat case) that if EM* has
a unique critical point, it must be p,. For any mean-free n € C§°(€2), we have from the
previous calculation, that

(=L W, ps 1 fﬂ‘ﬁ_1V77 + VW % 77‘2d:1:

1%, 2 [(B I+ Wan)pdz
where we have used the fact that pg is the Lebesgue measure on T?. It is easy to check
. . . .. . . 1 _
that the above expression is strictly positive if and only if 8 < S 775 Bs.

Similarly, computing the Fréchet derivative of T" at p.,, we obtain
D,Tlpos|n=mn-+BW *1.

Again, the above linear operator has a trivial kernel if and only if 3 < /3. It follows that Prop-
erties A and B are equivalent.
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We will now show that Property C implies Property B for 3 # 3;. We know that Property B
is satisfied if and only if ¥ has unique critical point and 3 < Bs. Assume it is violated.
Then, either EM¥ has more than one critical point or 3 > f3; (or both).

Consider the case in which 5 < 4 but EMF has more than one critical point one of which
iS pso. Furthermore, we know from [33, Lemma 5.6] that p, is a strict local minimum. If
at least one of the other critical points is not a minimiser then clearly Property C is violated
since the numerator can be chosen to be zero while the denominator remains positive. We will
now argue that this is the case. Assume it is not, that is all other critical points are minimisers.
Then, we can apply the mountain pass theorem in P(£2) (using the fact that p is a strict local
minimum) [33, Theorem 1.1] to construct a new non-minimising critical point thus obtaining
a contradiction.

Consider now the case in which 8 > ;. In this situation, we note from [11, Proposition
5.3] that p, is a non-minimising critical point of £ ¥ Thus, Property C is again violated.

O

REMARK 4.5.  We note here that one would expect the Properties A to C to be equivalent
to each other. However, we unable to show that this holds true in general.

Given the above result, we are now finally in a position to present our definition of a phase
transition in the “flat case”.

DEFINITION 4.6 (Phase transition). Assume V =0, W (z,y) = W (z — %), and Q = T%.
Then, we say that the system (2.5) exhibits a phase transition of type A (resp. type B, type C)
if there exists a 0 < 8. < oo such that for all 0 < 8 < (. Property A (resp. type B, type C) is
satisfied, and for 5. < 3 Property A (resp. type B, type C) is violated.

Except for the Brownian mean field model see Theorem D, we cannot ensure that the
existence of a phase transition in the sense of Definition 4.6. Combining Theorem 3.14 with
analysis in [15, 11], we can show the following result.

THEOREM 4.7. Assume V =0, W(z,y) = W(z — y), and Q = T If W is H-stable,
that is to say W (k) > 0 for all k € Z4\ {0}, then the system (2.5) satisfies Properties A and B
forall B € (0,00).

If there exists k € Z4\ {0} such that W (k) < 0, then there exists 31 < f3; such that Prop-
erties A to C are satisfied for all 3 < 31, and Properties A to C are violated for all 3 > [3;.

PROOF. If W is H-stable, it follows from linear convexity p,, = dx is the unique critical
point of EMF for all 0 < B < o0, hence Properties A and B cannot be violated, see [11,
Proposition 5.8]. On the other hand, if 3; < 0o, we know from Proposition 4.3 that Proper-
ties A to C are violated for all 3 > ;.

By Theorem 3.14 and Theorem 3.3, we know that there exists Sr,g such that 0 < 8 < B
then Property C is satisfied. Finally, by Proposition 4.3 we have that Properties A and B are
also satisfied. O

5. The limit Psym, (2Y) — P(P(2)). In this section, we recall some useful results
that allows us the characterise the various relevant objects in the limit as N — oco. We fol-
low the approach taken by Hauray and Mischler in [35]. We start by defining the empirical
measure.
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DEFINITION 5.1.  Given some pV € Py (), the empirical measure is the P(Q)-
valued random variable which is given by

N
1
p) = N ;&E where (z1,...,xx) is distributed according p.

We denote the law of the empirical measure 1) on P(2) by
PN eP(PQ).

The topology we consider throughout most of the manuscript is the one induced by the
scaled 2-Wasserstein distance.

DEFINITION 5.2.  Given pY, p € Pqym (), the scaled 2-Wassertein distance between
them is given by

= (N N 1 2 V2
d = inf | =E[|X-Y
o) = it (EIX-VE)
Y~py
where X, Y are QV -valued random variables.
Similarly, given P;, P» € P(P(12)), the 2-Wasserstein distance between them is given by

Dy(P1, P2) = jnt, (EB3(X.V)))"”
VP,

where X', ) are P(£2)-valued random variables.

A fundamental result we need to understand the convergence Psym (QV) — P(P(R)) is
the fact that the mapping p” +~ % is an isometry for the appropriately scaled 2-Wasserstein
distance defined in Definition 5.2. Indeed, we have the following result.

THEOREM 5.3 ( [35, Proposition 2.14]).  For each u, vV € Psym(QN), we have
da (™, vy = Do (pN, o) .

_ PROOF. We present only a sketch of the proof of this result. The first inequality
do(uN,v™N) > Dy (Y, o) follows from the mapping in Definition 5.1 X + X, i.e. given
X = (X1, ..., Xn) an Q¥ -valued random variable with law z"V, we define

1 N
X = N Z 5X1 ’
=1
is a P(Q2)-valued random variable with law /2’V. The converse inequality follows from taking
the inverse mapping and exploiting the symmetry of 1V and v O

Using this result, we can provide a metric notion of the de Finetti/Hewitt—Savage conver-
gence.

DEFINITION 5.4.  We say that the sequence (p™)ney such that p& € Poym (2V) con-
verges in the 2-Wasserstein distance to P, € P(P(Q)) if

lim Dy(p", Py) =0,
N—oo

where 5% is the law of the empirical measure (as P(£2)-valued random variable) associated
to pN .
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We now have the following result which connects the above convergence to the one intro-
ducedin (2.4).

PROPOSITION 5.5.  For any sequence (p™ ) nen with p € Psym () and

(5.1) Sup/ |27 dp () < o0

NeNJQ
for some v > 2, the metric convergence in Definition 5.4 is equivalent to the original marginal
convergence of (2.4).

PROOF. We first notice that by the results of Diaconis and Freedman [21], for a fixed
[ € N, the marginal pfv coincides in the limit as N — oo with the [ product of the empirical
measure. More specifically, for any ¢ € C2°(Q!) we have that

/ wdp{v—/ </ sodu®l> dp™N ()| <
o P@) \Jo

Furthermore, (5.1) implies that 5% is tight in P(Q). Indeed, we have

Lo 00 4¥) = [ jal apt
P(Q)

Now if pV converges in the sense of Definition 5.4 to Ps, we know that it must converge
when tested against every Cp,(P(2)). Since cylindrical test functions are a subset of C(2),
it is clear from (5.2) that pN must also converge to P, in the sense of (2.4).

On the other hand if pN converges to P, in the sense of (2.4) we know that, under (5.1),
the sequence p" is relatively compact in (P(P(12)),D2). By the Stone—Weierstrass theorem
cylindrical functions are dense in Cy(P(2)) (see [52, Theorem 2.1 ]), which tells us that the
limits in (5.2) and Definition 5.4 coincide. ]

2 el Lo (2t ‘

(5.2) N

Next, we discuss the limit of the associated free energy and dissipation functionals.

THEOREM 5.6. Under Assumptions 2.1 and 2.2, consider the sequence (p")nen with
P € Poym () such that p¥ — Ps, € P(P(SY)) in the sense of Definition 5.4. Then,

liminf BN [p] > E®[P.] and lim inf Z(p™ | My) > / D(p) dPx(p)

where EN, E*®, T, and D(p) are defined by (2.8), (2.9), (3.1), and (3.4), respectively. More-
over, for any Py, € P(P(S2)) the sequence

P — / PN AP (p) € Paym( V)
P(2)

attains the limits the limits, i.e.
53 Jim BV =E¥P and  Jim (M) = [ D(p)dPa(e)
PROOF. The convergence of the relative entropy functional follows directly from the clas-

sical arguments in [47]. A more modern proof can be found in [35]. The convergence of
the relative Fisher information with respect to the Lebesgue measure is covered in [35]. Our
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case is slightly more involved due to the minimal regularity assumptions on the potentials.
Formally, expanding the square we obtain after integrating by parts

_ 1
Z(p", My) =% /QN Viogp" — VHN 2 dp"

(5.4) :/ (IVlog p™|? +2AHY + |[VHN|?) dp" .
QN

The first term of the above expression is exactly the relative Fisher information with respect
to the Lebesgue measure and so is already covered in [35]. Under stronger regularity assump-
tions on the potentials, the second and third term fall within the type of functionals already
considered in the classical [47]. The main obstruction to conclude under Assumptions 2.1
and 2.2 is that AV and AW are merely signed measures bounded below, so we need to adapt
the proofs of [35] to a lower regularity setting. We will circumvent the regularity problem, by
appealing again and again to convexity. More specifically, by Assumptions 2.1 and 2.2, we
know that

(5.5) jl/2(pN\MN) = sup

EN N7 _ EN N K K —
< [p™] [v™] By + Wd2(pN VN)) 7
UN EPyym (V) n

(o, o) 2 ’

see [1, Theorem 2.4.9]. We pick vV to be the recovery sequence for a generic Q. €
P(P(1)), using the lower semicontinuous convergence of £, and the isometry Theo-
rem 5.3, to obtain

E®[Py]— B¥[Qux] Ky + K

92(P [eB) Qoo) 2

To obtain equality, we consider S; : P(2) — P(£2) the solution operator associated to (2.5)
which is well-defined by Theorem B and consider the curve Qo = Si# Pso, Which coincides

with the unique gradient flow of £°° with respect to D4 (see [10, Lemma 19]). Taking ¢t —
0T, we obtain

o (EPo] — EX[Si#Px) Ky + Kw
10+ D2 (Poo, Si# P 2

1/2
= ( D(p) dPoo(/’)) s
Q)

obtaining the desired lower semicontinuity result.

liminfZ72 (o |My)>  sup ( QQ(POO,QOO)>
N—oo ))

Qo €P(P(Q2 +

92(P00y St#Poo)>
_l’_

liminf 2" [My) = [ Do) dPu(p)
Now we focus on showing that given P € P(P(f)), the sequence
(5.6) py = / PPN dP(p)
P(Q)

attains the limit (5.3). For convenience, we consider the auxiliary functional Z' : P(P(2)) —
R U {oo}, which is given by

T(P)= Jim T [My),
—00

where pY is given by (5.6). Next, we show that Z’ is well defined and that it is weakly lower
semicontinuous.
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To show this, we regularize p2 by using the N-particle dynamics (2.3). Using the convex-
ity in Assumptions 2.1 and 2.2, we obtain that
VAT (ST ¥ M) <T(p [Mn)

where S : P(QY) — P(QV) is the solution operator associated to the Fokker—Planck equa-
tion (2.3). Using the weak lower semicontinuity of Z from the expression (5.5), we obtain

(5.7) lim Z(S{ o [My) = Z(pY [My) .
t—0+
Using the fact that S} is immediately regularizing, we can use the formal expression (5.4)

freely for the measure S;¥ pY¥. By using the sub-additivity of the Fisher information, we can
notice that forany 3 < j < N

(5.8) Z((SN ) ;1M;5) <Z(SP pY | M),

where (S} p? ) is the " marginal of SN p2. Taking t — 07, using (5.7) and the weak lower
semicontinuity from (5.5), we obtain for any 3 < j < N

Z(pl|M;) <Z(p | M),
which implies that we can characterise

T'[P] = sup Z(p} | My).
N>3

By the weak lower semicontinuity of Z, we obtain the weak lower semicontinuity of Z'.
Using (5.8) and the propagation of chaos result of [10], we obtain that

(5.9) etV )T (] |M)<et()‘v+’\w)hm1nf1((5t p™M);IM;) <T'[P],
where

plo= [ oV SR = [ (Si0)% aP (o)
P() P(Q)

with S; the solution operator to (2.5). Taking j — oo in (5.9), we obtain the inequality
e!Av+Haw) D(Si#p) dP(p) = AT (5,4 P) <T'[P],
P(Q)

where the equality in the left hand side follows from using the expression (5.4) and the result
for the standard Fisher information in [35]. Taking ¢ — 0" and using the lower semicontinuity
of Z' we have showed above, we obtain the desired conclusion (5.3)

T'[P]= . D(p) dP(p).

Standard arguments also yield the convergence of the minimal energy.

COROLLARY 5.7. Any accumulation point Py, € P(P(QY)) of the sequence (My)nen
satisfies

supp(Pao) C {p : EM"[p] = g}g;EMF}

and

1 N—o0 .
5.10 ENMy] = ——1log(Z EME
(5.10) [My] I og(Zn) — min
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We remark that the convergence (5.10) coincides with the standard definition of the ther-
modynamic limit from statistical mechanics (see [36, Ch. 3]).

THEOREM 5.8 (HWI inequality). LetV and W be K -convex. Given two arbitrary prob-
ability measures pN; VN € Poym (QN), it holds

_ _ _ — K _
GAD EEN|My) £ E@NMy) + o v TN M) = Sy (N oY)

PROOF. The proof of this result can be found in [61, Theorem 30.22]. We just present the
main idea of the proof for the reader’s convenience. We consider 7 : [0, 1] — Psym(QN ) the
2-Wasserstein geodesic between p”V and vV. Under the hypothesis of K convexity of the
potentials, we obtain that t — E(y(t)|My) is K-convex, which implies the desired inequal-
ity (5.11). O

COROLLARY 5.9. Assume that Assumptions 2.1 and 2.2 hold true and that the sequence
(PN nven with pV € Peym(QN) such that p converges to Ps, € P(P(R)) in the sense
of Definition 5.4 and

sup Z(p" | My) < oo,
NeN

then

lim E(pN|My) = E®[Ps] — min EMF
i E(pT M) [Poc] min

PROOF. Given P,,, we consider the recovery sequence (p2¥) yey from Theorem 5.6. By
the HWI inequality (5.11), we have

_ _ — — Ko
E(pN|My) < E(pY | My) + dz(PN,P*N)\/ Z(pN|My) — gdz(PNmiV)-

Using that both sequences converge to Ps, and that (p)¥)yen is a recovery sequence, we
obtain

limsup (EN[pN] - EN[MN]) = limsup&(p" |My) < E®°[Ps] — min EME
N—oo N—oo P(Q)

The reverse inequality follows from Theorem 5.6. O

REMARK 5.10. A version of this result without the potentials V' and W can be found
in [35].

6. Proof of Theorem 3.2.

PROOF OF THEOREM 3.2. We prove the result only for EM¥ as the proof for £V and
even more general energies F : P(2) — [0, 00| is analogous, see Remark 6.1. We consider
p:[0,00) — P(R), the unique 2-Wasserstein gradient flow of EM¥ with initial condition
po € P(€2), see Theorem B.

We notice that if AT = 0, then there is nothing left to prove. Hence, we can assume with-
out loss of generality that A\{y > 0, which implies (cf. Property C and Proposition 4.1) that
EMF does not admit non-minimising steady state. Using the version of LaSalle’s invariance
principle for gradient flows proved in [12, Theorem 4.11], we know that p(¢) accumulates on
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the set of steady states of EM¥', as t — co. Using the fact that all steady states are minimisers,
we can find a sequence of times t,, — oo such that

(6.1) p(tn) = poo
for some p € K. Differentiating E [p(¢)] with respect to time and using that Afg > 0 we
obtain

d

5 <EMF[p(t)] — %) EMF> = /Q 1871V log p(t) + VV + VW % p(1)|* dp(t)

1/2
<— /A% <EMF [p(t)] — 7%) EMFE >

1/2
X </Q|5_1V10gp(t) —|—VV+VW*p(t)|2 dp(t)) .

Integrating from O to ¢,, for some n € N, we obtain

1/2 1/2
(2t = g ) = (2= g £7)

pres /2 rt, 1 1/2
< - <$> / <§/ 1871V log p(s) + VV + VIV * p(s) > dp(s)> ds
0 0

<— <%> v da(po, p(tn)),

where the last inequality follows from the Benamou-Brenier [7] formulation of the 2-
Wasserstein distance. Taking ¢,, — oo, applying (6.1), and rearranging, we end up with

1/2 L 1/2 pYes 1/2
<EMF[PO] —;?é) EMF) > <$> d2(po, psc) > <$> da(po, ).

The desired inequality (3.6) follows by squaring both sides. O

REMARK 6.1. This proof can easily be adapted to general E : P(Q) — (0, co], that are
regular enough to admit gradient flow solutions from arbitrary initial data, and that sub-level
sets are weakly compact to ensure convergence of the gradient flows to steady states [12,
Theorem 2.12].

7. Proof of Theorem 3.3.

PROOF OF THEOREM 3.3. For the proof of the first part of the theorem, we consider
some p € P(2) such that EMF[p] > infp ) EMF > —oo, see Theorem A. By Theorem 5.6

and Corollary 5.9, we can find a recovery sequence P = p®" such that

. T (pN _ pMF[ s MF . F(pN _
Jim E(PT[My) = ET ) ;?g)E and  lim Z(PY|My) = D(p).

Using the definition of the log Sobolev constant and passing to the limit as N — oo, we
observe
I(PY|My) D(p)

lim sup A < lim sup = = - .
N_mp LS = N—)oopg(PN|MN) EMF[p]_meMF




25

Taking the infimum over all p ¢ KC, we obtain

: . D(p)
1 AN <A = inf .
ISP AL <A = L BN~ tnfpg BT

This completes the proof of the first half of the theorem.
Next, we consider the case when there exists p. € P({2) a non-minimising steady state,
that is to say

D(p,) =0 d EMF,]> inf EMF,
(ps) an [p+] it

Consider now the sequence p@~ € Pyyin (V). We have
ALS <§(P§N|MN)
T E(PRN M)
By Theorem 5.6 and Corollary 5.9, we can pass to the limit in the denominator to obtain

Ii _®NM :EMF*_-fEMF )
Jm E(p T [My) [p+] nd >0

Thus, we have that for /V large enough

2 _
AR < . Z(pE™ | My).
N = BMF[p,] —infp(q) EMF (o= M)
The desired bound
C
AP < ~
follows from the decay estimate for the Fisher information proved in Lemma 7.1. O

LEMMA 7.1. Under Assumptions 2.1 and 2.2, assume that p, is a critical point of the
mean field free energy EMY | then we have the following bound

1
T(p2V M) = (1 - N) /Q (IVsW Ik pular) = 92 % pula)?) pulan)
1
—i—ﬁ/\VlW*p*(wl)\2p*(x1)dx1
<C.

PROOF OF LEMMA 7.1. We start by expanding Z(p2" | My) as follows
2

I(p?N\MN):/QN \Y logpf@N—FﬁZV(m)—i— %ZW(x“x]) p2N dz
i irj

2
v *\Lg
:zi:/QN p=(xi) +5VV($i)+%zj:V1W(xi,xj) pEN dx

p«(@i)

2

=N —ﬁvlw*p*(ZL’l)—I—%Z:le(l’l,lL'j) p?N dz
N 7
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2
:NB2/ ]VlW*p*(acl)]2—NV1W*p*(w1)-ZV1W(w1,xj)
QN r

+—ZV1W T1,T5) - V1W(:L'1,l’k)p®N dz,
7.k

where we have used symmetry of the particle system to write the integrand in terms of the
variable x; and that p, is critical point of the mean field energy EM ¥ which itself implies
that

B logps + W xpe +V =C.

Next, proceeding term by term, we notice the following cancellation (for simplicity, we as-
sume that W (z,z) = 0, otherwise we can change V' by an additive constant such that this
holds):

/ VL % (1) 22 dx—/\vlvv*p*(xl)\?p*(xl) dey,

2
—/QN NV1W*p* x1) Zle (x1,5) p*N der = — <2_N> /Q|V1W*p*(:1:1)|2p*(:£1) dzq,

and

N—-1)(N -2
/N N2ZV1W x1,1;) - ViW (21, 21) p2N dw—( ]3[(2 )/Q\VlW*p*(acl)\2p*(x1) dxy

(71)px (1) dy .

Putting the previous identities together, we obtain

25" 10w = (1= 5 ) [ (900 #puton) = (9207 pu(an) ) o) i

1
t /]V1W*p*(w1)]2p*(x1) dxy .
Finally, the second inequality in the statement follows from applying Jensen’s inequality to
obtain
VAW % pu(2) > [ VAW * pu ()2 for every z € Q.

The final bound follows from the assumption that W grows at most polynomially (cf. As-
sumption 2.2) and the fact that all steady states have finite moments of every order by Propo-
sition 4.1. O

8. Proof of Theorem 3.4.

PROOF OF THEOREM 3.4. We prove the statement of the theorem by contradiction. To
this end, we assume that there exists a sequence N; — oo and a sequence of times ¢; > 0

0<t; < Tolog((EN [N — BN [My,]) /)
ALS
such that

LSt

E(p: (t)| M) > max(e, e 5 (BN [pEN] — BV [My ).
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Using the finite energy assumption on the initial condition (3.7), and Assumptions 2.1 and 2.2
which imply that E¥ is uniformly bounded below, we have that

log((B™ [pfy™] = EM[My,))/e) = T(e) < 0.

8.1) supt; < sup e
? ? LSI

By the relative entropy dissipation estimate (3.1), we obtain

o0 4.
Lsti

E(pN ()| My,) > e 5 (BN [pEN] — EN:[My,))

which implies that there exists at least one s; € (0,¢;) such that
BTN () Mw) _ AR
E(pNi (s:)| M) 2
The contradiction will arise if we can show that
—1Z(pNi(s;)| My, D
liminfﬁ_ S\i) (5) [ M) > A\[g = inf T (p) TF
imoo E(pNi(s)| M) pek EME[p] —infpq) E
First, we consider the case when

lim inf Z(p™" (s;)| Mn,) = o0

1—00

By using the monotonicity of the relative entropy (3.1) and the finite energy assumption in
the statement of the theorem, we obtain

E(p" (si)|M,) < E(p™ | Mn,) = BMT [piw] — BN [My] < oo

Hence, we can conclude

“IT(pMNi(s5)| M,
lim inf 5_ (]5 (50)| M. =00 > ATg-
imoo E(pNi(si)|[Mn,)
Therefore, we can assume that up to a subsequence, which we do not relabel,

sqpf(pNi(si)\MNi) < 0.

By the bounded higher moment hypothesis in (3.7), the uniform boundedness of s; (8.1),
and the propagation of moments along the flow for K -convex potentials [10], we have that
p™i(s;) has uniformly bounded moments of order 2 4 &. By Proposition 5.5, we obtain that
there exists P, € P(P(R?)), such that up to a (not relabeled) subsequence, p™i(s;) — P in
the sense of Definition 5.4. By the HWI inequality Theorem 5.8 and Corollary 5.9, we obtain
the strong convergence in the relative entropy term, which yields

1—»00

e < lim E(pNi(s;)|My,) :/ EME[p] —inf EME dP,(p).
P(R)

Combining this limit with the lim inf-inequality of Theorem 5.6 for the dissipation we obtain
that
B Z(pN (s:)|M,) Jpway D(p) dPu(p)

liminf — > . > 9%,
B BN () My)  Jpgey BVl i BV dP(p) ~ 1

where the last inequality follows from the point-wise inequality
D(p) = AY(EMF [p] — inf EMF).

This is the desired contradiction and the result now follows. O
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9. Proof of Theorem 3.6.

PROOF OF THEOREM 3.6. The uniqueness of the minimiser in the limit follows from
applying the Talagrand inequality (3.6), which states that the energy grows quadratically
around the Gibbs measure M. We take p; and po, two minimisers of EMF and show that
they must coincide. By the triangle and Talangrand inequality, we have

—2 —2 —2
d3(p1, p2) = dy (PN, 3N ) < 2d5(pPN , M) + 2dy (M, p5)
= —(BEMF[p1] + EMF[po] — 2EN [My)).

The fact that p; is equal to po follows from taking the limit in the previous inequality, using
the hypothesis that lim supy_, o, /\ﬁvs > 0, and Corollary 5.9 to obtain

lim EN[My]=EMF[p)] = EMF[p] = inf EMF.
Jim BT My] [p1] [p2] nd

The quantitative convergence of My to pg, follows from the bound in Lemma 9.1. O
LEMMA 9.1. Under Assumptions 2.1 and 2.2, assume that liminfy_, o )‘ivs =: A% > 0.

Consider My the N particle Gibbs measure and pg the unique minimiser of the mean field
energy. Then, for N large enough,

B N 5 /lelW\z*pgpg dx .
do(Mp, pG™) < = < :
2( N> pﬁ ) = \o© \/N = \/N
PROOF OF LEMMA 9.1. Using the Talagrand and log Sobolev inequality, we have for N
large enough

2o aNy o 2 5(P?N!MN)< 2 I(P?N!MN)< 4 Z(p5"N|My)

The result now follows from bounding the Fisher information using Lemma 7.1. O

10. Proof of Theorem 3.7. We start by revisiting the classical propagation of chaos
results [57, 44] by using a convexity approach based on the 2-Wasserstein distance.

THEOREM 10.1.  Under Assumptions 2.1 and 2.2, if Ky + Ky (1 — 1/N) # 0, then
(10.1)

DoV (), p2N (1) < ——° suPsefo, (Jo |VIW P % p(s)p(s) d)

=Ky + Kw(l—1/N) N1/2 ’

_Ky+Kw(-1/N), 1/2
2

else if Ky + Ky (1 —1/N) =0, then

1/2
subseiog (Jo IVIW 2% p(s)p(s) da)"/

N1/2 ’

102) Dl @05 0) <5

PROOF OF THEOREM 10.1. Using [1, Theorem 8.4.7], we differentiate the 2-Wasserstein
distance between p¥ and p®% along their respective flows (2.3) and (2.5), to obtain

d_—
adg(pN,pw) = —% a0k (Vx (87" log p™ () + Hy (x))
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i=1

N
(10.3) -V, (Z B og p(yi) + V (yi) + W*p(y,-)) ) dIl(z,y)

where IT € P(QY x Q) denotes the optimal transport plan between p¥ and p®~. The con-
vexity along 2-Wasserstein geodesics of the entropy functional as discussed in [46] implies
that (cf. [1, Section 10.1.1])

(10.4) /Q v on (z—y) (B 'Vilogp™(z) — 87V, log p®N (y)) dIl(z,y) >0,

where we have used that V log p”¥ and V log p®” are in the sub-differential of the entropy at
pN and p®V, respectively (cf. [1, Theorem 10.4.6]).
Applying inequality (10.4) to (10.3), we obtain

d—o 1
—dy (PN, pPN) < —— (x—y)- | VaHn(z) — VyHn(y)
dt N Jonxan

1 & N
V0| gy 20 Wlow) =W xol) )amx,y)

2,7=1
1
< —(Ky + K (1—1/N)) |z —y[* dIl(z,y)
QN x QN
=d; (p™ ,p®N)
(10.5)

1 1 N N N

- z—y)-V <— W (ys,y;) — W*pyi>dﬂw,y7
S G zNgg (5035) = W o)) il

R

where the last inequality follows from the convexity hypothesis on the potentials (cf. Assump-
tions 2.1 and 2.2). To estimate the second term R, we employ Cauchy-Schwarz inequality
and use the fact that II is the optimal transference plan to obtain

(10.6)
1/2
2
_ 1 1 N Al N
R <da(p™, p®N) N/QNV o 2o 2 Wi w) = D Wp(w) || do®
i=1 j=1 i=1

T
Expanding the square, using the symmetry of the underlying system and the fact that
W (y,y) = 0, we obtain

2

N
1 QN
I:/QN N;vlw(yl7yj)_vlw*/7(yl) dp

N N N
1 2
:/QNmzzvlw(ylayj)vlw(yhyk)_szlw(yhyj)vlw*p(yl)
j=2 k=2 Jj=2

A B
+ (VaW x p(y1))? dp®N.
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Going term by term, we have

B0 [ (a0 ) o)+

A= *p(y1) dp(y1),

B=—2" 1 /Q (VAW 5 p(y1))? dp(un)-

Using these identities, we are left with

=~ <1 - %) /Q VATV % plan) — (V4 5 p(0))? dp(an) + 175 /Q (VAW * p(y1)? dp(yn)

1
SN/ VAW 2% p(y1) dp(yr),
Q

where the last inequality follows from Jensen’s inequality. Replacing the previous equation
in (10.6), combined with (10.5), we obtain

SBY oY) <~ (Ky + K (1L 1/N)BN, p2)

N8N (Jo IViW]? % pp dz) e
N1/2 ’
The estimates (10.1) and (10.2) now follow from Grénwall’s inequality. ]

+da(p

We are now ready to prove Theorem 3.7.

PROOF OF THEOREM 3.7. Using the uniform integrability assumption on the gradients
of W (3.8), the estimates of Theorem 10.1 simplify to

1—et(Ky + Ky (1-1/N))/2

- C e~ i Kv+ Kw(1—-1/N)=0
(10.7) da(p™ (), p%N (t)) < : if Ky + Kw(1—1/N) =0

N1/ et Ky +Kw(1-1/N)[/2_1 .
Ko rRe o Ky + Kw(1-1/N) <0

Next, we derive a competing estimate by employing the triangle inequality and the long
time behavior of the flows. More specifically,

da(p™ (1), 05N (1)) < da(p™ (), M) + do(Mn, p5N) + da (5™, p*N (1))

(10.8) = dy(p" (t), Mn) + do(My, p57) + da(pg, p(t)) .
For the first term, we use the Talagrand inequality (3.6)

- 2 \/2 =1/2
w00 < () E PN O
LS
By the log Sobolev inequality we obtain exponential contraction of the relative entropy
- N _Ms, 2 1/2 =1/2
109 GpN O < B () E R ) <0
LS

where in the last equality we have used the hypothesis p;, has finite energy and that the log
Sobolev constant does not degenerate.
For the second term, we use Lemma 9.1 to obtain

(10.10) dy(M, p5N) <

EE
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For the third term, we use the limiting Talgrand inequality and the limiting log Sobolev
inequality to obtain the exponential contraction estimate

9 \ /2
alolt) ) < () (ML) - B os))
92 1/2 e
<(2) e B ] - )
(10.11) < Ce 51,
Combining (10.8) with (10.9), (10.10) and (10.11) we obtain the estimate
_ A 1

10.12 do(p™N (1), p®N (¢ <C<‘ft+—>.
( ) 2(p ( ) P ( )) = € \/N

The result now follows from interpolating the estimates (10.7) and (10.12). In the case,
Ky + Kw(1—1/N) > 0 the desired estimate follows directly from (10.7). For K_ := Ky +
Kw (1 —1/N) <0, we consider the distinguished time scale 7y := log N7, for some v > 0
to be chosen in terms of K_. Applying (10.12), we obtain

do(p™ (0, 0N () < C (N4 NTE) fort > Ty,

For t < T, we apply (10.7)1 to obtain

— 1+ K _

da(p" (1), p*N () <CN~ "= .

Choosing

is satisfied with
1 Ao
T 2h0 — 2K
O

11. Proof of Theorem 3.14. As mentioned earlier, our proof of Theorem 3.14 will rely
on the two-scale approach to log Sobolev inequalities introduced in [49] and discussed fur-
ther in [31], see also [41]. Before we introduce the main result of [49], we introduce some
preliminary notions.

DEFINITION 11.1 (Conditional measures). Given a probability measure py € P(QV)

we define the conditional measure iy ;,¢ € 1,..., N as the family of measures indexed by
zj, j # i such that for all p € C,(QY)

/ sOdMNZ/ /sﬁdMN,iduN\{i}7
Qv av-1.Jo

where i (3 1s the marginal of 1y obtained by integrating out z; € (2.
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We can now the state the result of interest.

THEOREM 11.2 ([49, Theorem 1]). Let ) be a smooth, connected, and complete Rie-
mannian manifold and assume that the measure py has a Gibbs structure, that is to say
pn(dz) = Zyte PHY dx

where dx is the Riemannian volume measure and Hy : QN — R is some smooth Hamilto-
nian. Assume there exists some constants k;j, such that for all i # j

HD?cixjHNH < Kij forall z € QV,

where ||-|| is the operator norm of D%imj H . Furthermore, assume that the conditional mea-

sures N ,; satisfy a log Sobolev inequality with uniform constant )\ivs’i for all & € QN1
Consider the matrix A € RV*N vwith entries Ai; = )\ivs’l and A;j = —Brij;; if
A > CINXN ,

the measure p satisfies a log Sobolev inequality with constant C.
Relying on Theorem 11.2, we present now the proof of Theorem 3.14.

PROOF OF THEOREM 3.14. We note first that from the Definition 11.1, the conditional
measure My ; of My can be expressed as

M
MNJ(de) :MN(de’wh ey Lj—1, L4121y - - - ,Z'N) = m7

where (My) N\{:} 1s the marginal of My obtained by integrating out x;. We are thus left
with

eXp(—ﬁ(V(ZEi) + % Zjvzl Wz, z;)) — 5(2%&@3’:1 V(zj) + ﬁ Zj,k:Lj,k;éi W(z;, xk)))

My,; =
N, erxp(—BHN)daji
LN
=7y exp —ﬁ(V(xz)JrNZ;W(%%’)) ;
]:
where
L
ZN,i:/QeXp _5(V($i)+ﬁzw(xi,xj)) dz; .
j=1

We now assert that the conditional measure My ; satisfies a log Sobolev inequality. We first
treat the case in which € is compact, that is to say Theorem 3.14 (a). By the Holley—Stroock
perturbation Theorem [3, Proposition 5.1.6], we have that

Ny < =2B(IWlpeo @2y HIV Il oo () 12
)‘LS >e Lo°(Q2) Lo (Q )‘st

for all z;,j5 #14,j =1,...,N and where )\%S is the optimal log Sobolev constant of the
Lebesgue measure on ).
Note that because of the exchangeability of the underlying particle system, we have that
ANg =\ foralli,j=1,...,N
g =Ang foralli,j=1,... N.
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Note now that

1
D?Ei%‘HN(xl’ S IN) = NDf%iijW(xi7 j).

Using the hypothesis that W € W2°°(02), we can bound
2 Lo
1Dz, z, HN Lo (v) < NHDgcyWHLf’O(SP) = Kij,

forall 4,5 =1,...,N. We will show that the matrix A € RV*¥ from Theorem 11.2 is pos-
itive definite, by showing that it is diagonally dominant. In fact, for 3 sufficiently small we
have that

Aii B Z |A2]| 2 6_2B(HWHL00(Q2)+HVHLOO(Q)))\gs _ 5
J#
holds true for all N with the constant ¢ independent of N. Applying Theorem 11.2, Theo-
rem 3.14 (a) now follows.
For the proof of Theorem 3.14 (b) we can apply essentially the same perturbative argument
as before but now around the measure Z‘jle_v dz. For e sufficiently small, we obtain that
the analogous bound

N -1
THD:%Z/WHLoo(Qz) >c> 0,

2 , N -1
Aii — Z ’A”’ >e 2 B||W||L°°(fz ))‘I‘{S — E/BT”D:%Z/WHL“’(QZ) >c>0
J#i
holds true for all N with the constant ¢ independent of V. O

12. Proof of Theorem 3.11. To simplify the computations in this section, we will take
the following definition of the negative Sobolev norm H; *(T¢) of mean-zero distributions is
given by

(12.1) 1232 ray = D 1B ),
JEN
where () en is a given a smooth orthonormal basis for the Sobolev space H(T?).

We remark that Theorem 3.11 can also be proved when Q = R?, under appropriate as-
sumptions on the confining and interaction potentials. In particular, we can construct an ap-
propriate orthonormal basis using the eigenfunctions of the linearised McKean-Vlasov oper-
ator with a weighted inner-product. Conditions on the growth of the confining potential so
that the Sobolev embedding theorems needed in the proof in the appropriate weighted spaces
are given in [42].

LEMMA 12.1 (Law of large numbers). Assume that liminfy_, o )\ivs > 0. Let ,u(N ) be
the empirical measure associated to the N-particle Gibbs measure My € Psym((T4)N).

Then, for any s > %, there exists C > 0 such that

C
E[I1s™ = pll}-.zo)) < 75

where pg € P(T4) is the unique critical point of the mean field energy EMT .
REMARK 12.2. The solutions to the linear SPDE (12.6) are supported in H ~° with s >

d/2, see Lemma 12.4. Hence, the Law of large numbers does not hold for any H~* with
s <d/2.
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PROOF. We consider p(BN) the empirical measure associated to p%N € Peym(THN), ie.

p(BN) the probability-measure valued random variable defined as

N
1
p(BN) =~ Z 0x, such that (X7, ..., X ) are distributed according to p%w .
i=1

By the triangle inequality we have that
(12.2)

E[I6® = pall3 - roy] <2(B[16Y = o570y +E[1057 = 51310 )

We start by controlling the first term [E [H,u(N ) — P(ﬁN) H%{ﬂ(w)] . We consider the optimal

coupling between () and p(ﬁN) such that

E|d3(u ™, pi")] =23 (", 55 .

where 4V = Law (1)) € P(P(T?)), ﬁjﬁv = Law (p(ﬁN)) € P(P(T9)), and Dy is the
2-Wassertein distance defined on the space of probability measures of the metric space
(P(T%),ds). Then by the isometry from Theorem 5.3, we obtain

N A ) C

where we have used Lemma 9.1 and the fact that lim inf 5, oo /\ﬁvs > 0 for the last inequality.
Next, using the compactness of T¢ and the fact that s > d/2+ 1, we have the pointwise bound

N N N
(™, p50) > e[ 1™ = p5V 12 ey = el ™ = oSV

(N) (V)

for some constants c1,cy > 0 independent of p'\**/, p 5 - Combining the previous three ex-

pressions, we obtain the first desired bound

N C
(12.3) E[I™ = o8 ) < 3

Next, we bound E [Hp(ﬁN) —pB ||§{,S(Td)} - We take {¢;}72 to be the orthonormal basis of

H§(T?) from (12.1). Expanding the square, we obtain
ENL,M 2 CEISY ™ [
Hpﬁ pﬁ”H*S(Td) = Z <Pg Pg> bj)

2

N
050 = [ o0 @

i=1

1 & 1 2
:N;/‘ﬁpﬁ de — </¢jpﬁ dw)

181l Lo (1) 5
ST; 1651172 (pay-

j=1
[e.e]

=2 E
j=1
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Noticing that s > d/2 implies that the embedding H§(T?) — L?(T¢) is Hilbert-Schmidt, we
can use the boundedness of pg to obtain

(N) > c
(12.4) E Hpﬁ — ngHﬁq(Td)] < N
Combining (12.2) with (12.3) and (12.4), we obtain the desired conclusion. ]

REMARK 12.3. An alternative proof of inequality (12.4) can be found in [35, Theorem
5.11.

We now consider the implications of having uniform control of the log Sobolev constant
the fluctuations of the stationary solutions to (2.1), i.e. solutions of (2.1) started at stationarity.
To this end, we consider the empirical measure process t — () (t) defined by

1 N
N . )
M( )(t) =N i:EI 6XZ"

where X; = (X},..., X}¥) is the solution to (2.1) started from the unique invariant Gibbs

measure My . Our goal is to analyze the corresponding fluctuation process ¢ — n'¥ (t) defined
by

7V () == VN@EM(t) — pg),

As a direct consequence of the estimates from the previous lemma and using the fact that
liminfy_ o0 )\g g > 0, we have the uniform bound

(12.5) s;E)E HnN(t)H%{,S(Td) <00 forany s >d/2 + 1.

In the sequel, we will use the above estimate together with the classical martingale method,
c.f. [17, Chapter 8], to establish convergence in law as N — oo of 0’V to the stationary
solution 7 of the following linear SPDE

(12.6) om=Ly,n+V - (/psé),

where ¢ is a mean-zero space-time white noise on R, x T¢ and L,, is the linearisation of
the McKean-Vlasov operator (2.5) around the unique invariant measure pg defined by

Ly =B"TA+V - (VW xthpg) + V- (VW % pgah) + V- (VV ).

The SPDE (12.6) can be solved using classical methods, the three typical notions of solution
being the mild, weak, and martingale formulations. As is typical, the martingale formula-
tion is the most convenient for identifying the limiting law of a tight subsequence of 7',
while the mild formulation provides a clearer picture of the uniqueness in law and hence the
convergence in law of the full sequence.

Denote U as the closed mean-zero subspace of L?(T%; T%) and H := H~*(T%) for s > %l.
Let (X, F, (F:)t>0,P) be a stochastic basis, i.e a complete filtered probability space with a
right continuous filtration endowed with an F;-adapted U-valued cylindrical Wiener pro-
cess W and let 9 be an H-valued Fy-measurable random variable independent of W.
The mild formulation of (12.6) with initial condition 7y involves stochastic integration in
Hilbert spaces, c.f. [17, Chapter 4], which we quickly review for our specific case below. Let
Lg(U; H) denote the Hilbert-Schmidt operators from U to H equipped with the standard
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Hilbert-Schmidt norm |[|-||p,g( U ) Given T'> 0 and ® € L*([0,T]; L§(U; H)), the stochas-

tic integral [0,7] > t — fo s)dW(s) is well defined as a continuous F;-martingale with
trajectories in C'([0,T]; H). We remind the reader that the relevance of L3(U; H) in this
context is that the Itd isometry takes the following form

EU [ aawes H] = [ 19650 05

The mild solution to ¢ — 7n(t) € H to (12.6) with initial condition 7 is then given by the
following stochastic convolution:

t
(12.7) 7> (t) == ew"ﬁno—k/ 70 - (/ppdW (s)).
0

LEMMA 12.4. The mild solution (12.7) is well-defined as a stochastic process with tra-
jectories in C([0,T]; H).

PROOF. In light of our remarks in the preceding paragraph, it suffices to show that s —
®(s) defined by U > u s "%V - (, /p5u) € H belongs to L2([0, T]; L3(U; H)). Given
an orthornormal basis {ej, } 3, of U, using the definition of the Hilbert-Schmidt norm and
integrating by parts leads to

T oo T
/0 160 5= 2 /0 1207 . (Bgen) I ds

- Z/ ekax/—ve(t g pﬁ¢y>

j,k=1

(12.8) :Z/ H\/%Ve(t‘s)ﬁzﬂtbj\\?]ds,
j=1"0

where in the last step we used Parseval’s identity in U. Finally, we note that the coercivity
hypothesis for £,, (see Lemma 12.8) implies that

t
—8)L*
/0 IVe950 6,12 ds < Clley 2.

Combining this with (12.8) and using the fact that ps € L>(T9), yields

[e.e]

T
(12.9) /0 1006 a0y ds < Clsllioeiroy 3 1511y
J=1

Since s > %l, the embedding of H3(T9) into L?(T?) is Hilbert-Schmidt. Thus, the above
series converges, completing the proof of the lemma. U

REMARK 12.5. We note that the representation (12.7) immediately implies that solutions
to (12.6) are unique in law, i.e. (12.6) satisfies weak umqueness That is to say, given two dif-
ferent stochastic bases (X, F, (F;)i>0, P, W) and (X, F, (F;)t>0, P , W) defining solutions 7
and 7) to (12.6) on their respective probability spaces through the formula (12.7), the laws of
n and 7 agree on C'([0,T]; H) for any T > 0, as long as 71y and 7y are equal in law on H.



37

For our purposes, it is easier to work with the martingale formulation of (12.6), which
is in turn motivated by the weak formulation of (12.6). Hence, we note in passing that the
mild solution (12.7) has the property that for each ¢ € [0, 7] the following equality holds in
H=5(T9), for s > &2,

t t
(12.10) n°°(t)=m+/0 L,,0>(s) ds+/0 V- (/ppdW,).

LEMMA 12.6. Let (X, F,(Fi)i>0,P) be a filtered probability space. Assume that n is a
continuous-time Fi-adapted H -valued stochastic process and define t — M (t) by

t
(12.11) M(t) :=n(t) —no — / L,,n(s) ds.
0
Assume that the following two conditions hold:
s Forall ¢ € C°°(TY) it holds that
(12.12) t= (M(t), )

is an Fy-martingale.
s Forall @, € C>(TY) it holds that

(12.13) 0o (MO, (M0).0) = | T0-Tps do
is an F; martingale.

Then, n is equal in law on C([0,T]; H) to the mild solution (12.7).

PROOF. By [17, Theorem 8.2], it follows that on a suitable extension of the probability
space, n is a weak solution in the sense of (12.10). By [17, Theorem 5.4], the weak and mild
solutions coincide on that probability space, so equality in law follows from Remark 12.5.

O

Using the above lemma, we are now finally in a position to prove the convergence of the
fluctuations.

THEOREM 12.7. Assume that liminf y_, )\gs > 0 and that V and W are smooth. Then,
for any m > d/2 + 3 the fluctuation process n™¥ converges in law on C ([0, T]; H=™(T%)) to
the unique stationary mild solution n°° of the SPDE (12.6).

PROOF. The proof has four steps. In Step 1, we apply It6’s formula to show that n’v
satisfies (12.14), an approximate version of the weak formulation (12.10). In Step 2, we
combine Step 1 with the uniform bound (12.5) to show that the laws of (7")yen on
C([0,T]; H~™(T%)) are uniformly tight for m large enough. In Step 3, we pass to the limit
in the martingale problem and verify the assumptions of Lemma (12.6) to identify the limit
along any tight subsequence. In Step 4, we conclude the uniqueness of the limit and hence
the proof of the theorem.

STEP 1. In this step, we show that for all ¢ € C°*°(T?) it holds

N
(12.14) (™, ) = (", L}, 0) dt + (Ry, @) dt+ V2(BN) "2 Y Vip(X}) - dBj,
i=1
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with Xf the solution to (2.1) and where R is defined as
Ry:=N"2V-(NV,W V).
Indeed, 1t6’s formula gives
N
. . 1 S .
dp(X{) =(F7'A = VV - V)p(X])dt = =3 ViW (X[, X{) - Vip(X7) dt
j=1
+ V287 Vp(X}) - dBL!.
We now sumover:=1,..., N, divide by N, and use the identity
1 X o 1 X . .
7 20 VI (X X)) V() = SO VW s p N (X)) - V(X))
i,j=1 i=1
=™, VW N V)
to obtain
L1 o
A, 0) = (W, 57 A = (VV +ViW > ™)) Vi) dt + V2672 2 > Vop(XY) - dB;
i=1
Next, we insert the identity V) = pg+N _%nN , to deduce
d(n™, @) =N"? (pg, 7 Ap = (VV + V1 W % pg) - Vip) dt
=0
+ (N BT A — (VV + ViW % pg) - Vo) + {pg, ViW %™ - Vo) dt

=(N.L; 0)

N
+ NN VW« V) + v2 > V(X)) dB]
BN=
(RN )
The first identity follows from the fact that pg is a steady state and the second follows from
integration by parts and Fubini’s theorem (using the symmetry of W).
STEP 2. In this step, we will show that the laws of (7™)yen on C ([0, T]; H~™(T%)) for
m > mg := d/2+ 3 are uniformly tight. To this end, we define a decomposition of ¢ — n™ (¢)
via the equality n'¥ (t) = Y () + My (t), where

t
Vv (t) =™ (0) + / (L™ (r)+RN(r)) dr.
0
We claim that for m > mg and all p > 1 there exist constants C, C;, > 0 such that

(12.15) E [HYN(tl) - YN(t2)H%{—M(Td)] < Clt1 — tof?

(12.16) E[IMY (41) = MY (£2) 8 )| < Colts = ol
To obtain (12.15), first observe that at each fixed time we have
RNz zey =V - (7N VW 5 (6 = pg)) |11 ey
VW (1) = pg) - (e
<Colln™ | rr-m ray VW % (™) = pg)llrom—r
(12.17) SO W llwmooo (ray [0 | r1-on -
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Furthermore, note that the regularity of V', W, and pg implies the operator £, is bounded
from H?~™(T¢) to H~™(T?). Therefore, integrating in time, taking the second moment,
and applying the Cauchy—Schwartz inequality we find

ta 2
E[HYN(tl) - YN@ﬁH%{—m(Td)} <E </t 1L0,0™ ()| 1= 7y + BN RN || gr-m (e dT)

to
<Clts—t] / B 0™ 2 iray + Bl Wps gy dr

<Clts — 11 PE[[0" (0)]3z- o) -
where we used the stationarity of n” in the last step. The inequality (12.15) now follows
immediately from the bound (12.5), since our choice of m implies m —2 > 1+ %l. We now
turn our attention to the estimate (12.16). Note that for any smooth ¢ it holds that

E[[(MY (1) - MV (s), 0] gcxa(% i / t |w<Xf>|2dt)
i=17"%

P
2

(12.18) <Clt = s|* |Vl T o (pay-
We take ¢ to be elements of a basis of H{]”(']l‘d), the inequality (12.16) holds as long as

Y V@5l ray < o0

JEN
The above estimate follows when we take m > d/2 + 1. Finally, we note that by an argument
entirely analogous to the one showing (12.15) and (12.16), we can also show

(12.19) sup B | sup [[n™ (613 (pay | <00,
NeN | te[0,T)

by using that M~ (0) =0 and YV (0) = n™V(0) together with (12.5). Combining (12.15),
(12.16), and (12.19) we obtain the tightness of the laws of (nN )NeN as a consequence
of [27, Theorem 2.2] and Chebyshev’s inequality. Specifically, we use the embedding
of W1==2([0,T); H—™+%(T%)) + W%’p([O,T];H‘mJFE(']I‘d)) into C([0,T]; H~™(T4)) for
p > 2 and € > 0 sufficiently small.

STEP 3. In light of Step 2 and the Skorokhod representation theorem, passing to a sub-
sequence (which we do not relabel) we can find a new probability space (2? JF, IP)), a new
sequence (7"V)yen, and a limiting random variable 7 such that 7 is equal in law to 1™V
for all N € N and converges P-a.s to i in C([0,7]; H~™(T<)). In this step, we claim that
(12.12) and (12.13) hold true.

To this end, for each ¢ > 0, we denote by r; the restriction operator from C ([0, T]; H~™(T%))
to C([0,t]; H=™(T%)) and define a filtration (F;);>0 by letting F; = o (r47) for t > 0, i.e. the
sigma algebra generated by r,7. Recalling the definition (12.11) of ¢t — M (t), we will show
that that for all times s < ¢, functions ¢, € C"O(']I‘d), and bounded, continuous functions
I':C([0,s]; H~™(T%)) — R it holds that

(12.20) E[D(ron) (M(t) — M(s), )] = 0.
(12.21) E[D(ryn) (M), ) (M(2), &) — (M(s), ) (M(s), )
— (t—5)(psVip, V)] = 0.



40

By the definition of conditional expectation and Egorov’s theorem, (12.20) and (12.21) imply
(12.12) and (12.13) hold true with respect to the filtration (F)¢>¢. To prove (12.20) and

(12.21), define t — M™N (t) as in Step 2 but with 7 in place of ™.
Since 7Y and ™V are equal in law, (12.14) implies that

(12.22) E [T (rsfin (MY (1) — M™ (s), )] = 0.

(12.23) E [P(TsﬁN) (<MN(t)7 90> <MN(t)7 ¢> - <MN(S)7 (:0> <MN(S)7 1/}>
—(t = 5){psV, Vb)) | = 0.

By a calculation similar to (12.17), it follows that for each t <T'

/ t Rn(s)ds

0 < CN 2N B oy - (zey):

H—(m+1)(T4)

which converges to zero P-a.s. As a consequence, we obtain (M (t),¢) converges P-a.s.
to (M (t), ) as a consequence of the a.s. convergence of 7V to °°. In addition, for all ¢ > 0,
the sequence (MY (t), ) is uniformly bounded in LP(X) for all p > 1 as a consequence
of the equality in law of 77V and nV and the estimate (12.18). Using the Vitali convergence
theorem, we may pass to the limit in (12.22) and (12.23) to obtain (12.20) and (12.21) as
desired.

STEP 4. In light of Step 3 and Lemma 12.6, every subsequence of 7" has a further sub-
sequence which converges to a stationary mild solution to (12.6) on some probability space.
Note that 7 inherits stationarity from 7"V in the N — oo limit. Hence, it suffices to show
that all limit points induce the same law on C([0,7]; H~™(T¢)). In light of Remark 12.5,
the problem further reduces to showing that the initial distributions are the same. However,
if 7 satisfies (12.7) and is stationary, we can explicitly check that its law is a Gaussian on
H ‘m(']I‘d) for all ¢ > 0. This follows from [34, Theorem 5.22 and Proposition 5.23], (12.9),
and the fact that for all f € H~™(T%), we have

lim [[e"%s fllg-m =0.
t—o0

The fact that this holds true follows from the coercivity assumption and the fact that the
semigroup e'“#s is smoothing, i.e. it maps H~"(T%) to L2(T¢) for all t > 0. O

We finish this section with the implication of the coercivity property, that is used in the
proof to show the Hilbert-Schmidt property of the appropriate operators.

LEMMA 12.8.  Assume that L, satisfies

_<£p5¢7 ¢> > C||V¢H%2('H‘d)

for some ¢ > 0, then

0o 2
. 9|7
\VA tﬁpﬂ 22 A dt < ” L )
/0 IVe™ 2 gllzs(pay dt <

PROOF. We use the short hand notation ¢; = s ¢. We then have
O — L,,00=0.
Multiplying by ¢, and integrating, we obtain the identity

1d
id_tHQStH%?(’ﬂ‘d) - <‘Cpg¢t7¢t> =0.
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Applying the coercivity bound, we obtain

d
d—tllcbt\\%z(w) +2¢] Vi1 72 0.

Integrating in time we obtain

2 [ T IV6Iaqany 6t < [0l = [6lgms

which is the desired estimate. O
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