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1. Introduction

The Landau equation,32 originally derived to approximate the Boltzmann operator
when collisions between charged particles in a plasma are grazing, is one of the
fundamental kinetic equations in plasma physics. E�cient computational methods
for the full Vlasov–Maxwell–Landau system are of tremendous importance for mod-
elling future fusion reactors and they represent a central conundrum in computa-
tional plasma physics. An important foundation to achieve such an ambitious goal
is to provide accurate numerical methods with low computational cost to solve the
collisional step in these computations, that is, to solve the spatially homogeneous
Landau equation given by

@tf = Q(f, f) := rv ·
⇢Z

Rd

A(v � v⇤)(f(v⇤)rvf(v)� f(v)rv⇤f(v⇤))dv⇤

�
,

(1.1)

with the collision kernel given by A(z) = |z|�(|z|2Id � z ⌦ z) = |z|�+2⇧(z) with
Id being the identity matrix, ⇧(z) the projection matrix onto {z}?, �d � 1 
�  1, and d � 2. The most important case corresponds to d = 3 with � = �3
associated with the physical interaction in plasmas. This case is usually called the
Coulomb case because it can be derived from the Boltzmann equation in the grazing
collision limit when particles interact via Coulomb forces.11, 16, 39 The main formal
properties of Q rely on the following reformulation:

Q(f, f) = rv ·
⇢Z

Rd

A(v � v⇤)ff⇤(rv log f �rv⇤ log f⇤)dv⇤

�
,

where f = f(v), f⇤ = f(v⇤) are used; and its weak form acting on appropriate test
functions � = �(v)

Z

Rd

Q(f, f)� dv = �1

2

ZZ

R2d

(rv��rv⇤�⇤) ·A(v � v⇤)

⇥ (rv log f �rv⇤ log f⇤)ff⇤ dv dv⇤. (1.2)

Then choosing �(v) = 1, v, |v|2, one achieves conservation of mass, momentum
and energy. Inserting �(v) = log f(v), one obtains the formal entropy decay with
dissipation given by

d

dt

Z

Rd

f log f dv = �D(f(t, ·)) := �1

2

ZZ

R2d

Bv,v⇤ ·A(v � v⇤)Bv,v⇤ff⇤ dvdv⇤  0,

since A is symmetric and semipositive definite, with Bv,v⇤ := rv log f �rv⇤ log f⇤.
The equilibrium distributions are given by the Maxwellian

M⇢,u,T =
⇢

(2⇡T )d/2
exp

✓
� |v � u|2

2T

◆
,

for some constants ⇢, T determining the density and the temperature of the particle
ensemble, and mean velocity vector u, see Refs. 39 and 21.
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Deterministic numerical methods based on particle approximations to (1.1) have
been recently proposed in Ref. 13 keeping all the structural properties of the Lan-
dau equation described above: nonnegativity, conservation of mass, momentum and
energy, and entropy dissipation at a semidiscrete level. This paper gives a theoretical
underpinning to the numerical scheme introduced in Ref. 13. The main strategy
is to delocalize the gradient operators in the weak form (1.2) while keeping intact
the variational structure behind the equation rigorously developed in Ref. 10. This
is reminiscent of similar approaches to approximate nonlinear di↵usion models by
nonlocal equations9 while keeping their variational structure. More precisely, we
analyse the Landau gradient flow of the regularized entropy,10, 13 given by

@tf = rv ·
⇢
f(v)

Z

Rd

f(w)A(v � w)(rG" ⇤ log[f ⇤G"](v)

�rG" ⇤ log[f ⇤G"](w))dw

�
, (1.3)

where G" 2 C1(Rd) is a mollifier for fixed " > 0. More specifically,

G"(v) =
1

"d
G
⇣v
"

⌘
,

Z

Rd

G(v)dv = 1,

with 0  G 2 C1(Rd), so that G" approximates the Dirac at the origin, �0, as
" # 0. Therefore, as " # 0 (1.3) formally converges to the Landau equation. For
technical reasons (cf. Lemma 2.4), we choose G(v) = Ce�(1+|v|2)1/2 with C > 0 a
normalization constant as in Ref. 10. However, we note that from the numerical
point of view,13 Gaussian mollifiers are simpler to deal with.

Our approach is to provide an existence theory for (1.3) as well as a particle
approximation to the solution by interpreting (1.3) as a continuity equation with
solution-dependent velocity fields. In particular, to introduce notation, we define a
generalised interaction kernel for probability measures g 2 P(Rd) and v, w 2 Rd

Kg(v, w) := �|v � w|2+�⇧[v � w](rG" ⇤ log[g ⇤G"](v)�rG" ⇤ log[g ⇤G"](w)).

Additionally, for f 2 P(Rd), we define the measure-dependent velocity

U"[g, f ](v) :=

Z

Rd

Kg(v, w)df(w), U"[f ] := U"[f, f ].

In this way, (1.3) can be written as

@tf +r · (U"[f ]f) = 0. (1.4)

Formally speaking, by approximating an initial data by a finite number of atomic
measures, we expect the solution of (1.4) to be approximated by a finite number
of Dirac masses following the local velocity of particles. More precisely, suppose
we are given initial data f0 2 P(Rd) for (1.3) and we can approximate f0 by a
sequence of empirical measures µN

0 = 1
N

PN
i=1 �vi

0
, with equal weights for simplicity,
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where vi0 2 Rd for i = 1, . . . , N . We expect the solution to (1.4) to be given by the
empirical measure with equal weights

µN (t) =
1

N

NX

i=1

�vi(t) ,

where vi(t) is the solution of the ODE system

v̇i(t) = U [µN (t)](vi(t)).

In fact, µN (t) is a distributional solution to (1.4) with µN
0 as initial data. The

results in Ref. 10 do not provide a well-posedness of measure solutions to (1.3) with
measure initial data, ensuring only the existence by compactness. Due to the lack of
continuous dependence with respect to initial data to (1.4) in the general probability
measure setting, showing the convergence of the mean field limit is important from
the numerical viewpoint.13 More specifically, we show that µN converges towards
the unique weak solution f of (1.4) in the limit N ! 1.

In the simplified setting of equally weighted particles, the main result of this
paper can be summarized as follows. Suppose that the initial data are well approx-
imated in the sense that

W1(µN
0 , f0) ! 0 as N ! 1 fast enough,

where W1 denotes the 1-Wasserstein metric,35 see Hypothesis (B1) and (B2).
As mentioned above, the evolution of µN

0 through (1.3) is characterised entirely by
the evolution of the “particles” starting at vi0 according to the ODE system for
i = 1, . . . , N

v̇i = � 1

N

NX

j=1

|vi � vj |2+�⇧[vi � vj ](rG" ⇤ log[µN ⇤G"](vi)

�rG" ⇤ log[µN ⇤G"](vj)). (1.5)

We will prove, at least for short times depending on the value of � 2 (�3, 0], that
f = f(t) = ft and µN = µN (t) = µN

t exist (cf. Theorem 1.1 and Lemma 1.1, respec-
tively) and solve (1.3) according to the initial conditions f0 and µN

0 , respectively.
Given the existence of such curves f, µN and the fact that µN

0 ! f0 as N ! 1,
we seek to prove the mean field limit (cf. Theorem 1.2)

W1(µN (t), f(t)) ! 0, for t 2 (0, Tm) as N ! 1,

where Tm > 0 is the maximal existence time of f (cf. Theorem 1.1).
The mean-field limit has attracted lots of attention in the last years in di↵er-

ent settings for aggregation-di↵usion and Vlasov type kinetic equations. Di↵erent
approaches have been taken leading to a very lively interaction between di↵erent
communities of researchers in analysis and probability. We refer to Refs. 4, 17, 19,
33, 38 for the classical approaches in the field. Recent advances in non-Lipschitz
settings and with applications to models with alignment have been done in Refs. 3,
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8, 14, 15, for the aggregation-di↵usion and Vlasov-type equations in Refs. 5–7, 12,
18, 20, 24–31, 34, 37, and for incompressible fluid problems in Refs. 23 and 22.

We prove the mean field limit to the regularized Landau equation (1.3) following
the strategy and ideas from Refs. 23 and 7. The main di↵erence with these references
is the fact that Eq. (1.3) is more nonlocal, and it can be interpreted as a transport
equation with a highly nonlocal nonlinear mobility depending quadratically on the
density f . Let us finally mention that our result does not give quantitative bounds
on the mean-field limit depending onN and " compared to recent works.6, 28–30 This
is certainly an important open question of great importance from the numerical
viewpoint.

1.1. Main results

The proof of the mean field limit convergence of (1.3) for fixed " > 0 is achieved
with the following strategy borrowed from Ref. 7: we first show the existence
and uniqueness of the continuity equation (1.4) for some maximal time horizon
Tm > 0 in Secs. 2 and 3, then we show that the particle system does also exist
in Appendix C. We finally conclude by estimating the distance between the two
systems in the W1 metric when N ! 1 as well as establishing a lower bound on
the existence of the particle system, Sec. 4. Let us point out that since the kernel
A is singular or grows at infinity, these properties of the continuity equation and
the associated particle system are not obvious.

Continuity equations of the form (1.4) have been extensively studied.2, 19 We
will see how the following assumptions on f0 yield good properties for U"[f ].

(A1) The initial condition f0 belongs to Pc(Rd), the space of compactly supported
probability measures on Rd.

(A2) For � 2 (�3,�2), there exists p > 1 such that p
p�1 (2 + �) > �d and f0

belongs to Lp(Rd).

Theorem 1.1. (Existence of mean field limit) Fix " > 0, � 2 (�3, 0], and initial

data f0 2 P(Rd) satisfying (A1) and (A2). Then, there is a time horizon T =
T (�, ", f0) > 0 such that there is a unique weak solution f to (1.3) given in

f 2
(
C([0, T ];Pc(Rd)), � 2 [�2, 0],

C([0, T ];Pc(Rd)) \ L1(0, T ;Lp(Rd)), � 2 (�3,�2),

where f |t=0 = f0, and the exponent p > 1 is the same as in (A2).
In the case � 2 [�2, 0], the maximal time of existence TM = +1 is infinite.

While for the case � 2 (�3,�2), either the maximal time of existence is infinite

TM = +1, or the Lp
norm of the solution blows up

esssups2[0,t)kf(s)kLp " +1 as t " TM .

The notion of weak solution f to (1.4) (equivalently (1.3)) means that, for any
� 2 C1

c (Rd), the following equality holds

d

dt

Z

Rd

�(v)dft(v) =

Z

Rd

r�(v) · U"[f(t)](v)dft(v).
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The particle solution (1.5) is in fact a solution to the previous equation when the
initial condition is a convex combinations of delta measures (1.4). More precisely,
for every N 2 N, take initial points {vi,N0 }Ni=1 ⇢ Rd and positive weights {mi,N}Ni=1

satisfying

NX

i=1

mi,N = 1, mi,N � 0, 8 i = 1, . . . , N.

The N -particle ODE system we consider is

d

dt
vi(t) = U"[µN (t)](vi) =

NX

j=1

mjKµN (t)(v
i, vj),

µN (t) =
NX

i=1

mi�vi(t),

vi
��
t=0

= vi0.

(1.6)

Lemma 1.1. (Existence of particle solutions) For any " > 0, and � 2 (�3, 0], there

exists a time horizon T = T
�
", �,

�
vi,N0

 N
i=1

�
> 0 and a curve vi,N 2 C1([0, T ];Rd)

which satisfies (1.6). For � 2 [�2, 0], the solution to (1.6) is unique, and the time

horizon T can be arbitrarily large.

The well-posedness of the inter-particle system (1.6) is proven in Appendix C.
The case � 2 [�2, 0] is an application of Theorem 1.1, while for � 2 (�3,�2) a
standard Peano existence argument is used.

ForN 2 N and trajectories {vi,N (t)}Ni=1 such as those constructed in Lemma 1.1,
we define the minimum inter-particle distance for times t in the domain of existence

⌘Nm(t) := min
i 6=j

|vi,N (t)� vj,N (t)|.

Taking the continuum and particle solutions f and µN from Theorem 1.1 and
Lemma 1.1 respectively, we define

⌘N (t) := W1(µN (t), f(t)).

The following assumptions are well-preparedness conditions on the initial data of
the particle solution, see Ref. 7.

(B1) The initial particles {vi,N0 }Ni=1 ⇢ Rd and weights {mi,N}Ni=1 ⇢ (0, 1) satisfy
W1(µN

0 , f0) ! 0 as N ! 1.
(B2) For � 2 (�3,�2), the initial particles moreover satisfy

lim
N!1

⌘N (0)
d
p0 ⌘Nm(0)1+� = 0, (1.7)

where the conjugate exponent p0 satisfies 1
p + 1

p0 = 1 with p from (A2).

The main result concerning the mean field limit can now be stated as:
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Theorem 1.2. Fix " > 0, � 2 (�3, 0], and initial data f0
satisfying (A1)

and (A2). We consider f the solution to (1.3) on the maximal time interval [0, Tm]
provided by Theorem 1.1. Given initial particle configurations {µN

0 }n2N satisfy-

ing (B1) and (B2), we consider {µN}N2N particle solutions of (1.3) with maximal

time of existence TN > 0 provided by Lemma 1.1. Then lim infN!1 TN � Tm, and
the mean field limit holds

lim
N!1

sup
t2[0,T ]

W1(µN (t), f(t)) ! 0, 8T 2 [0, Tm). (1.8)

2. Estimates on the Velocity

This section collects the necessary estimates on the measure-dependent kernel and
velocity, K and U". To fix notation, we define the Lebesgue bracket

hvi2 = 1 + |v|2, v 2 Rd,

and the mollifying sequence by

G(v) = Ce�hvi,

Z

Rd

G(v)dv = 1, G"(v) =
1

"d
G (v/").

Moreover, we define the pth-order moment of a measure f by

Mp(f) =

Z

Rd

hvip df(v).

We will use the notation a ↵,�,... b to represent the statement that there is a
constant C = C(↵,�, . . .) > 0 such that a  Cb.

Proposition 2.1. Fix " > 0 and � = �2. Then, for every f, g 2 P(Rd), the
functions Kg(v, w) and U"[g, f ](v) are C1, skew-symmetric and satisfy the estimates

|Kg(v, w)| 
2

"
, |rvKg(v, w)| 

28

"2
,

|U"[g, f ](v)|  2

"
, |rU"[g, f ](v)|  28

"2
.

Proposition 2.1 highlights the C1-boundedness of the velocity field U" in the
special case � = �2. For this value of �, the well-posedness of (1.4) follows by
standard techniques.19 Proposition 2.1 follows from the more general results Propo-
sition 2.2, Lemma 2.3, and Proposition 2.3 where � 2 [�3, 0]. There, we shall see
the precise dependence on �. First, we recall a standard inequality for the Lebesgue
bracket.

Lemma 2.1. (Peetre) For any p 2 R and x, y 2 Rd, we have

hxip

hyip  2|p|/2hx� yi|p|.

Proof. A proof of this can be found in Ref. 10 or Ref. 1.
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Lemma 2.2. (log-derivative estimates) For fixed " > 0 we have the formula

rG"(v) = �1

"

Dv
"

E�1
G"(v)

v

"
. (2.1)

For µ 2 P(Rd), denoting @i = @
@vi and @ij = @2

@vi@vj , we obtain

|r log(µ ⇤G")(v)|  1

"
, |@ij log(µ ⇤G")(v)|  4

"2
. (2.2)

Proof. This is proven in Ref. 10.

Proposition 2.2. Fix " > 0, g 2 P(Rd), and � 2 [�3, 0]. We have the following

estimate:

|Kg(v, w)|  min

✓
4

"2
|v � w|3+� ,

2

"
|v � w|2+�

◆
.

Moreover, for fixed f 2 P(Rd), we have

|U"[g, f ](v)| ."

(
M2+�(f) hvi2+� , � 2 (�2, 0],

1, � 2 [�3,�2].

Proof. We recall the expression

Kg(v, w) = �|v � w|2+�⇧[v � w](rG" ⇤ log[g ⇤G"](v)�rG" ⇤ log[g ⇤G"](w)).

|v � w| < 1: Using the second-order estimate in (2.2), the di↵erence of logarithms
can be estimated by

|rG" ⇤ log[g ⇤G"](v)�rG" ⇤ log[g ⇤G"](w)|  4

"2
|v � w|,

giving the first estimate in the minimum.
|v � w| � 1: Bluntly apply the first-order estimate in (2.2) onto each of the

logarithms

krG" ⇤ log[g ⇤G"]kL1  1

"
.

The estimate for U" follows by recalling U"[g, f ](v) =
R
Rd Kg(v, w)df(w) and

Peetre’s inequality from Lemma 2.1 for the case � 2 (�2, 0].

The following estimate is adapted from Ref. 23.

Lemma 2.3. (Pointwise di↵erence in K) Fix " > 0, g 2 P(Rd), and � 2 [�3, 0].
We have

|Kg(v1, w)�Kg(v2, w)| .",� |v1 � v2|max(|v1 � w|2+� , |v2 � w|2+�).

For completeness, we refer to Appendix A for the proof of Lemma 2.3.
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Proposition 2.3. (Hölder continuity of U) Fix � 2 [�3,�2] and g 2 P(Rd). Then
we have

|U"[g](v1)� U"[g](v2)| ." |v1 � v2|3+� .

Proof. We split the integration region into two cases

U"[g](v1)� U"[g](v2) =

Z

Rd

(Kg(v1, w)�Kg(v2, w))dg(w)

=

 Z

|v1�v2|min(|v1�w|, |v2�w|)
+

Z

|v1�v2|>min(|v1�w|, |v2�w|)

!

⇥ (Kg(v1, w)�Kg(v2, w))dg(w)

=: I1 + I2.

We claim both |I1|, |I2| ." |v1�v2|3+� . Starting with I1 where |v1�v2|  min(|v1�
w|, |v2 � w|), we use Lemma 2.3 and the fact that 2 + �  0 to deduce

|I1| ." |v1 � v2|
Z

|v1�v2|min(|v1�w|, |v2�w|)
max(|v1 � w|2+� , |v2 � w|2+�)dg(w)

 |v1 � v2|3+� .

Turning to I2 corresponding to the other integration region, assume without loss
of generality that |v1 � v2| > |v1 � w|. By the triangle inequality we also have

|v2 � w|  2|v1 � v2|.

Putting these two estimates together and using the bound |Kg(v, w)| ." min(|v �
w|3+� , |v � w|2+�) from Proposition 2.2, we have

|I2| ."

Z

|v1�v2|>min(|v1�w|, |v2�w|)
min(|v1 � w|3+� , |v1 � w|2+�)dg(w) + · · ·

+

Z

|v1�v2|>min(|v1�w|, |v2�w|)
min(|v2 � w|3+� , |v2 � w|2+�)dg(w)

. |v1 � v2|3+� .

We can improve Proposition 2.3 to Lipschitz continuity by taking advantage of
extra regularity properties of g.

Proposition 2.4. (Lipschitz continuity of U) Fix g 2 P(Rd), " > 0, and � 2
(�3, 0]. In the case � 2 (�3,�2), assume further that g satisfies (A2). Then we

have

|U"[g](v1)� U"[g](v2)|  ⇤�(g, v
1, v2)|v1 � v2|,
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where

⇤� =

(
C"M2+�(g)(

⌦
v1
↵2+�

+
⌦
v2
↵2+�

), � 2 [�2, 0],

C", �, p0, d(1 + kgkLp), � 2 (�3,�2)

and the constants C > 0 only depend on the quantities in the subscript.

Proof. The starting point is the application of Lemma 2.3 to first write

|U"[g](v1)� U"[g](v2)| =

����
Z

Rd

(Kg(v
1, w)�Kg(v

2, w))dg(w)

����

." |v1 � v2|
Z

Rd

max(|v1 � w|2+� , |v2 � w|2+�)dg(w)

 |v1 � v2|
Z

Rd

(|v1 � w|2+� + |v2 � w|2+�)dg(w)

| {z }
=:I

.

We estimate I depending on the value of �.
The case � 2 (�3,�2): By splitting the integration region and using the fact

that g 2 Lp, we obtain

I . 1 + sup
v2Rd

Z

|v�w|1
|v � w|2+� dg(w)

 1 + sup
v2Rd

 Z

|v�w|1
|v � w|(2+�)p0

dw

! 1
p0

kgkLp

.�, p, d 1 + kgkLp .

The case � 2 [�2, 0]: The integrand is no longer singular so we use Peetre’s inequal-
ity from Lemma 2.1

|v � w|2+�  hv � wi2+� .� hvi2+� hwi2+�

for v = v1, v2 into I to get

I .
Z

Rd

(
⌦
v1
↵2+�

+
⌦
v2
↵2+�

) hwi2+� dg(w).

2.1. The velocity field as a function of measures

The previous results established estimates for the pointwise variation of Kg and
U"[g] given a fixed measure g. We now investigate the measure-wise variation of K
and U" given a fixed point.

Lemma 2.4. Fix " > 0 and let ⌧ be an optimal transport map in W1 between

f, g 2 Pc(Rd) so that g = ⌧#f . Then, we have

|log[g ⇤G"](v)� log[f ⇤G"](v)|  1

"
W1(g, f), 8 v 2 Rd.
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Proof. We first note that

g ⇤G"(v) =

Z

Rd

G"(v � w)dg(w) =

Z

Rd

G"(v � ⌧(w))df(w).

Using the fundamental theorem of calculus, we express the di↵erence of the loga-
rithms as

log[g ⇤G"](v)� log[f ⇤G"](v)

=

Z 1

0

d

dt
log

Z

Rd

G"(v � (t⌧(w) + (1� t)w))df(w)

�
dt

= �
Z 1

0

R
Rd(⌧(w)� w) ·rG"(v � (t⌧(w) + (1� t)w))df(w)R

Rd G"(v � (t⌧(w) + (1� t)w)df(w)
dt.

By definition, we have |⌧(w)�w|  W1(g, f) and moreover recalling (2.1), we see
that

|rG"|  1

"
G".

Applying these two estimates into the previous computations, we have

|log[g ⇤G"](v)� log[f ⇤G"](v)|  W1(g, f)

"
.

The following technical estimates hinge on Lemma 2.4.

Lemma 2.5. (Measure-wise di↵erence in K) Fix gi 2 Pc(Rd) for i = 1, 2 and

� 2 [�3, 0]. Then for every v, w 2 Rd, we have the estimate

|Kg1(v, w)�Kg2(v, w)| . min

✓
1

"3
|v � w|3+� ,

2

"2
|v � w|2+�

◆
W1(g1, g2).

Proof. Here, we need to estimate

Kg1(v, w)�Kg2(v, w)

= �|v � w|2+�⇧[v � w](rG" ⇤ {log[g1 ⇤G"]� log[g2 ⇤G"]}(v)

�rG" ⇤ {log[g1 ⇤G"]� log[g2 ⇤G"]}(w)).

By the fundamental theorem of calculus, we have an estimate for this di↵erence

|v � w|2+�

����
Z 1

0

d

dt
rG" ⇤ {log[g1 ⇤G"]� log[g2 ⇤G"]}(tv + (1� t)w)dt

����

 |v � w|3+�
��r2G" ⇤ {log[g1 ⇤G"]� log[g2 ⇤G"]}

��
L1 .

Using Lemma 2.4 and the comparison |r2G"| . 1
"2G

" (an extension of (2.1)), we
apply Young’s convolution inequality to deduce

|Kg1(v, w)�Kg2(v, w)| . 1

"3
|v � w|3+�W1(g1, g2).
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On the other hand, without estimating second-order derivatives, we can bluntly
prove

|Kg1(v, w)�Kg2(v, w)|  |v � w|2+�(|rG" ⇤ {log[g1 ⇤G"]� log[g2 ⇤G"]}(v)|

+|rG" ⇤ {log[g1 ⇤G"]� log[g2 ⇤G"]}(w)|)

 2|v � w|2+�krG" ⇤ {log[g1 ⇤G"]� log[g2 ⇤G"]}kL1 .

Recalling (2.1) and Lemma 2.4 which say

|rG"|  1

"
G", |log[g1 ⇤G"]� log[g2 ⇤G"]|  1

"
W1(g1, g2),

we use Young’s convolution inequality again to get

|Kg1(v, w)�Kg2(v, w)|  2

"2
|v � w|2+�W1(g1, g2).

Under minimal assumptions on the probability measures, we can obtain a Hölder
estimate with respect to the W1 metric.

Lemma 2.6. Fix gi, f i 2 P(Rd) for i = 1, 2 and � 2 (�3,�2]. Then, we have

the estimate

|U"[g1, f1](v)� U"[g2, f2](v)| . W1(g1, g2) +W1(f1, f2)3+� .

Proof. Starting from the definition, we have

U"[g1, f1](v)� U"[g2, f2](v) =

Z

Rd

Kg1(v, w)df1(w)�
Z

Rd

Kg2(v, w)df2(w)

=

Z

Rd

(Kg1(v, w)�Kg2(v, w))df1(w)

+

Z

Rd

Kg2(v, w)d(f1 � f2)(w)

=: I1 + I2.

We claim the following estimates

|I1| ." W1(g1, g2), |I2| ." W1(f1, f2)3+� .

The term I1 is almost completely treated by Lemma 2.5. We can further estimate
the minimum by

|I1| ." W1(g1, g2)

Z

Rd

min(|v � w|3+� , |v � w|2+�)df1(w)

. W1(g1, g2)

Z

Rd

hv � wi2+� df1(w).

When � 2 (�3,�2], simply estimate hv � wi2+�  1. This takes care of I1 so we
focus on I2 for the rest of this proof.
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Firstly, take ⌧ an optimal transport map in W1 between f1 and f2 i.e.

W1(f1, f2) = esssupw2Rd |⌧(w)� w|.

Moreover, the following identity holds in P(Rd); f2 = ⌧#f1. This allows us to
rewrite the di↵erence I2 as

I2 =

Z

Rd

[Kg2(v, w)�Kg2(v, ⌧(w))]df1(w). (2.3)

We split the integration region in (2.3) into A = {w 2 Rd | |v�w| < 2W1(f1, f2)}
and its complement Rd\A . In the set A , we begin with the blunt L1 bound on K
from Proposition 2.2 which implies

|Kg2(v, w)�Kg2(v, ⌧(w))| ." min(|v � w|3+� , |v � w|2+�)

+min(|v � ⌧(w)|3+� , |v � ⌧(w)|2+�)

. W1(f1, f2)3+� + |v � ⌧(w)|3+� .

For the second term, we simply use the triangle inequality

|v � ⌧(w)|  |v � w|+ |⌧(w)� w|  3W1(f1, f2).

This gives

|Kg2(v, w)�Kg2(v, ⌧(w))| ." W1(f1, f2)3+� (2.4)

which is independent of w so we have
Z

A
|Kg2(v, w)�Kg2(v, ⌧(w))| df1(w) ." W1(f1, f2)3+� .

Turning to the complement region Rd\A given as {w 2 Rd | |v�w| � 2W1(f1, f2)},
we use Lemma 2.3 to obtain

|Kg2(v, w)�Kg2(v, ⌧(w))| ." |⌧(w)� w|max(|v � w|2+� , |v � ⌧(w)|2+�).

Recalling that 2 + �  0, the reverse triangle inequality yields

|v � ⌧(w)| � |v � w|� |⌧(w)� w| � W1(f1, f2),

because |v � w| � 2W1(f1, f2).
Therefore, from the previous estimate, we obtain

|Kg2(v, w)�Kg2(v, ⌧(w))| ." |⌧(w)� w|W1(f1, f2)2+�  W1(f1, f2)3+� .

This is exactly the same as (2.4) for A . Integrating both inequalities against f1

yields

|I2| 
 Z

A
+

Z

Rd\A

!
|Kg2(v, w)�Kg2(v, ⌧(w))|df1(w)

." W1(f1, f2)3+� .
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If we impose more assumptions on the probability measures, in particular (A2),
we can derive linear stability with respect to the W1 metric.

Proposition 2.5. (Linear stability) Fix gi, f i 2 Pc(Rd) for i = 1, 2 and � 2
(�3, 0]. For � 2 (�3,�2), assume further that f i

satisfies (A2). Then we have the

estimate

|U"[g1, f1](v)� U"[g2, f2](v)|

."

8
>><

>>:

hvi2+� [M2+�(f1)W1(g1, g2)

+ {M2+�(f1) +M2+�(f2)}W1(f1, f2)], � 2 [�2, 0],

W1(g1, g2) + (1 + kf1kLp + kf2kLp)W1(f1, f2), � 2 (�3,�2).

Proof. Our starting point repeats the proof of Lemma 2.6 above. Using the same
notation from there, we split

U"[g1, f1](v)� U"[g2, f2](v) =

Z

Rd

(Kg1(v, w)�Kg2(v, w))df1(w)

+

Z

Rd

Kg2(v, w)d(f1 � f2)(w)

=: I1 + I2.

We inherit the estimate for I1 from the proof of Lemma 2.6 which reads, using
Peetre’s inequality in Lemma 2.1 for � 2 [�2, 0],

|I1| ." W1(g1, g2)⇥
(
1, � 2 (�3,�2),

M2+�(f1) hvi2+� , � 2 [�2, 0].

We focus entirely on I2; in the case � 2 (�3,�2), we claim that

|I2| ." (1 + kf1kLp + kf2kLp)W1(f1, f2).

In the case � 2 [�2, 0], we claim that

|I2| ." hvi2+� (M2+�(f
1) +M2+�(f

2))W1(f1, f2).

In both cases, we rewrite I2 in the following way; take ⌧ an optimal transport map
between f1 and f2 in W1 so that we have

I2 =

Z

Rd

(Kg2(v, w)�Kg2(v, ⌧(w))df1(w), f2 = ⌧#f1.

Applying Lemma 2.3 and recalling the (anti-)symmetry of Kg2(v, w) = �Kg2(w, v),
we have

|I2| ."

Z

Rd

|w � ⌧(w)|max(|v � w|2+� , |v � ⌧(w)|2+�)df1(w)

 W1(f1, f2)

✓Z

Rd

(|v � w|2+� + |v � ⌧(w)|2+�)df1(w)

◆
.
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We split the sum and reformulate the second term in terms of f2 using ⌧ to obtain

|I2| ." W1(f1, f2)

✓Z

Rd

|v � w|2+� df1(w) +

Z

Rd

|v � w|2+� df2(w)

◆
. (2.5)

The case � 2 (�3,�2): By partitioning Rd into {w 2 Rd | |v � w|  1} and its
complement, a standard application of Hölder’s inequality gives

Z

Rd

|v � w|2+� df1(w)  1 +

 Z

|v�w|1
|v � w|(2+�)p0

! 1
p0

kf1kLp

and similarly for f2. Using the assumption (2+�)p0 > �d, inequality (2.5) is further
refined to

|I2| .", d, �, p (1 + kf1kLp + kf2kLp)W1(f1, f2).

The case � 2 [�2, 0]: Since 2 + � � 0, we use Peetre’s inequality Lemma 2.1 to
estimate

|v � w|2+�  hv � wi2+� . hvi2+� hwi2+� .

Inserting this into (2.5), we get

|I2| ." hvi2+� W1(f1, f2)

✓Z

Rd

hwi2+� d(f1 + f2)(w)

◆
.

3. The Continuum Model

This section is devoted to the proof of Theorem 1.1; the well-posedness of (1.3). To
fix notation, we seek solutions in the following spaces:

X� = X�(T ) :=

(
C([0, T ];Pc(Rd)), � 2 [�2, 0],

C([0, T ];Pc(Rd)) \ L1(0, T ;Lp(Rd)), � 2 (�3,�2).

For � 2 (�3,�2), the exponent p corresponds to that of (A2). In particular, we
endow X� with the metric

d1(f1, f2) := sup
t2[0,T ]

W1(f1(t), f2(t)), 8 f1, f2 2 X� .

Given g 2 X� , we first want to find f 2 X� solving

@tf +r · (fU"[g]) = 0, f(t = 0) = f0. (P)

Well-posedness of (1.3) then comes from ensuring the map g 7! f just described
has a unique fixed point in a closed subspace of X� .

Given a curve g 2 X� , we denote by �g the characteristic flow corresponding
to (P) satisfying

d

dt
�g(t, v) = U"[g](�g(t, v)), �g(0, v) = v 2 Rd. (3.1)
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Proposition 3.1. Fix " > 0, � 2 (�3, 0], g 2 X� , and initial condition f0
sat-

isfying (A1) and (A2). Then, f(t) = �g(t, ·)#f0
is the unique weak solution in

C([0, T ];P(Rd)) to (P).

Proof. The (local) Lipschitz continuity of U"[g] is provided by Proposition 2.4
so the characteristic system (3.1) has a unique solution, �g, up to the flow map’s
maximal time of existence T ⇤ > 0. By Ref. 19, f(t) = �g(t, ·)#f0 is the unique weak
solution in C([0, T ⇤];P(Rd)). For � 2 (�3,�2), Proposition 2.4, implies global
Lipschitz regularity of U" hence �g is globally defined and we can directly take
T ⇤ = T . For � 2 [�2, 0], Lemma 3.1 excludes blow up of �g so we can take T ⇤ = T
here too.

Lemma 3.1. For " > 0 and g 2 X� , let �g be the flow map of (3.1) with maximal

time of existence T ⇤ > 0. Then, we have the estimates

h�gi 
(
hvi exp

�
C"

⇥
sups2[0,T ] M2(g(s))

⇤
t
 
, � 2 (�2, 0],

hvi+ C"t, � 2 (�3,�2],
8 t 2 [0, T ⇤].

Here, C" > 0 is a constant depending only on " > 0. In particular, �g extends to a

global solution of (3.1) on [0, T ].

Proof. We begin, for � 2 (�2, 0], by di↵erentiating 1
2 |�g(t, v)|2 with respect to

t 2 (0, T ⇤). Expanding the definition of U", we obtain

d

dt

1

2
|�g(t, v)|2

= �g(t, v) · U"[g](�g(t, v))

= �g(t, v) ·
Z

Rd

|�g(t, v)� w|2+�⇧[�g(t, v)� w]B"(�g(t, v), w)| {z }
=:I

dg(w), (3.2)

where we have abbreviated

B"(v, w) := rG" ⇤ log[g ⇤G"](v)�rG" ⇤ log[g ⇤G"](w).

Notice that |B"| ." 1 by (2.2). Our goal is to show
R
I dg(w) . |�g| and then apply

Grönwall’s inequality. First, we split the integral into regions where |�g � w|  1
and |�g �w| > 1. As 2+� > 0, the former piece can be easily estimated as follows:

�g ·
Z

Rd

I dg(w) = �g ·
 Z

|�g�w|1
I dg(w) +

Z

|�g�w|>1
I dg(w)

!

." |�g|+
Z

|�g�w|>1
|�g � w|2+� |⇧[�g � w]�g| dg(w)

| {z }
=:II

. (3.3)
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Turning to II, we use the fact that ⇧[v � w]v = ⇧[v � w]w and |�g � w|2 
2|�g|2 + 2|w|2 to estimate

II . |�g|2
Z

|�g�w|>1
|�g � w|� |⇧[�g � w]w| dg(w)

+

Z

|�g�w|>1
|w|2|�g � w|� |⇧[�g � w]�g| dg(w).

Finally, since |�g � w| > 1 and �  0, we can bluntly estimate the remaining
contributions by

II  M1(g)|�g|2 +M2(g)|�g|.

Putting this together with (3.3) and (3.2), we have

d

dt

1

2
h�g(t, v)i2 ." M2(g) h�g(t, v)i2 .

Grönwall’s inequality gives the inequality for � 2 (�2, 0].
Turning to the case � 2 (�3,�2], we write the integral form of (3.1)

|�g(t, v)� v| =
����
Z t

0
U"[g](�g(s, v))ds

���� ." t.

The final estimate comes from applying Proposition 2.2.

Proposition 3.2. The space (X� , d1) for � 2 (�3, 0] is a complete metric space.

Proof. This can be proven from the fact that (Pc(Rd),W1) is complete and
metrises weak convergence.35 Moreover, the Lp norm is lower semi-continuous with
respect to this topology.

3.1. Moment and Lp propagation

In this section, we derive the moment and Lp propagation estimates we will need
for the fixed point argument to prove Theorem 1.1.

Proposition 3.3. Fix " > 0, � 2 (�3, 0], and initial condition f0
satisfying (A1)

and (A2) and g 2 X� . The unique weak solution f(t) = �g(t, ·)#f0
to (P) belongs

to C([0, T ];Pc(Rd)) with second moment growth estimate

M2(f(t))  M2(f
0) exp

(
C"

 
sup

s2[0,T ]
M2(g(s))

!
t

)
, 8 t 2 [0, T ].

If, moreover, f = g (i.e. f solves (1.3)), then M2(f(t)) = M2(f0) for all t 2 [0, T ].

Remark 3.1. The same propagation result applies for higher order moments. The
constant C" grows linearly with the order of the moment.
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The following Lp estimate can be derived directly from standard facts about
solutions to the continuity equation which can be found, for example, in Refs. 19,
2. For completeness, we prove Lemma 3.2 in Appendix B.

Lemma 3.2. For fixed " > 0, � 2 (�3,�2) and g 2 X� , we have the following

Lp
estimate for f(t) = �g(t, ·)#f0

where f0 2 Lp
and �g are as in (P) and (3.1),

respectively.

kf(t)kLp  kf0kLp exp
�
C", �, d

�
1 + esssups2[0,T ]kg(s)kLp

�
t
 
, 8 t 2 [0, T ].

In particular, f 2 X� .

Proof of Proposition 3.3. We begin by writing the weak formulation of (P)
against test functions � 2 C1

c (Rd),

d

dt

Z

Rd

�(v)dft(v) =

Z

Rd

r�(v) · U"[g(t)](v)dft(v)

=

ZZ

R2d

|v � w|2+�r�(v) ·⇧[v � w]B" df(v)dg(w). (3.4)

We will derive the desired estimate by making use of hvi2 �R as a test function
in (3.4), where

�R(v) = �
⇣ v

R

⌘
, �(v) = �(|v|) =

(
1 |v|  1

0 |v| > 2
, � � 0, � 2 C1

c (R).

Firstly, notice that r(hvi2 �R(v)) is supported in |v|  2R and takes the form

r(hvi2 �R(v)) =

✓
2�R(v) +

1

R
hvi2 �0(|v|/R)

|v|

◆

| {z }
=:P (v)

v. (3.5)

In particular, since 1
R . 1

|v| . 1
hvi for large R � 1, the bound for �0 gives

r(hvi2 �R(v)) = P (v)v, with |P (v)| . 1. (3.6)

We start with the easier case of � 2 (�3,�2). By interpolating the estimates
in (2.2), the function r log[g ⇤G"] is Hölder continuous so we can deduce

|v � w|2+� |B"| ." 1, B" = rG" ⇤ log[g ⇤G"](v)�rG" ⇤ log[g ⇤G"](w).

This greatly simplifies the double integral to the following:
����
ZZ

R2d

|v � w|2+�r(hvi2 �R(v)) ·⇧[v � w]B" df(v)dg(w)

����

 C"

ZZ

R2d

hvi df(v)dg(w)  C"M1(f).
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This establishes (a stronger version of) the result for � 2 (�3,�2). Turning to
the case � 2 [�2, 0], we split the inner integral in v of (3.4) into regions where
|v � w|  1 and |v � w| � 1 obtaining a first reduction using (2.2) and (3.6)

Z

w2Rd

 Z

{v:|v�w|1}
+

Z

{v:|v�w|�1}

!
|v � w|2+�P (v)v ·⇧[v � w]B" df(v)dg(w)

." M0(g)M1(f)

+

Z

w2Rd

Z

{v:|v�w|�1}
|v � w|2+�P (v)v ·⇧[v � w]B" df(v)dg(w)

| {z }
=:I

.

(3.7)

For the term I, we use the identity ⇧[v � w]v = ⇧[v � w]w, |B"| ." 1, (3.6), and
Young’s inequality (cf. the proof of Lemma 3.1) which give

|I| ."

Z

w2Rd

Z

{v:|v�w|�1}
(|v|2 + |w|2)|v � w|� |⇧[v � w]v| df(v)dg(w)


Z

w2Rd

Z

{v:|v�w|�1}
|v|2|⇧[v � w]w| df(v)dg(w)

+

Z

w2Rd

|w|2
Z

{v:|v�w|�1}
|⇧[v � w]v| df(v)dg(w)

 M1(g)M2(f) +M2(g)M1(f).

Collecting this estimate with (3.7), we have

����
ZZ

R2d

|v � w|2+�r(hvi2 �R(v)) ·⇧[v � w]B" df(v)dg(w)

����

." (M0(g)M1(f) +M1(g)M2(f) +M2(g)M1(f))  M2(g)M2(f).

Inserting this estimate into (3.4) and integrating in time, we get

Z

Rd

hvi2 �R(v)dft(v) 
Z

Rd

hvi2 �R(v)df
0(v) + C"

Z t

0
M2(g(s))M2(f(s))ds.

By Monotone Convergence, passing to the limit R ! 1 with Grönwall’s inequality
gives the stated a priori estimate on the growth of the second moment of f .

Concerning the statement that f 2 C([0, T ];Pc(Rd)), notice that �g is bounded
in [0, T ] when g 2 X� according to Lemma 3.1. Moreover, since f0 has compact
support, f has compact support as a push-forward of f0 through a bounded
flow map.
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Finally, in the case f = g, take �(v) = hvi2 = 1+ |v|2 as a test function (justified
by the previous estimates) so that the right-hand side of (3.4) reads

d

dt
M2(f(t)) =

d

dt

Z

Rd

(1 + |v|2)dft(v)

= 2

ZZ

Rd

|v � w|2+�v ·⇧[v � w]B" dft(v)dft(w)

=

ZZ

Rd

|v � w|2+�(v � w) ·⇧[v � w]B" dft(v)dft(w) = 0.

In plain words, M2(f(t)) is constant.

3.2. Well-posedness of (1.3)

In this section, we prove Theorem 1.1 by applying the contraction mapping theorem
to the solution map of (P) denoted by S� : g 2 X� 7! f(t) = �g(t, ·)#f0 2 X�

(cf. Proposition 3.3 and Lemma 3.2). We will leverage the propagation estimates
from Sec. 3.1 to the following closed subspace of X� . For T > 0, define

M� = M�(T ) :=

(
{f 2 X� | supt2[0,T ] M2(f(t))  2M2(f0)}, � 2 [�2, 0],

{f 2 X� | esssupt2[0,T ]kf(t)kLp  3kf0kLp}, � 2 (�3,�2).

Remark 3.2. Fix b > 0 and k > a > 0. For T > 0, define the function

FT : [0, k] ! [0,+1), FT (x) = aebTx.

Then, for every T  TC := 1
bk log k

a , it holds FT  k. In other words, FT : [0, k] !
[0, k].

Motivated by Remark 3.2, we define the time horizon

TC :=

8
>>><

>>>:

log 2

2C"M2(f0)
, � 2 [�2, 0],

min

✓
log 2

C",�,d
,

log 3
2

6C",�,dkf0kLp

◆
, � 2 (�3,�2),

where C", C",�,d > 0 are the constants appearing in the exponential in Proposi-
tion 3.3 and Lemma 3.2, respectively. The plan of the following proof is to show
that S� is a contraction from M� to itself.

Proof of Theorem 1.1. For fixed g 2 M� , we denote f = S�g (i.e. f(t) =
�g(t, ·)#f0). Let us first consider � 2 [�2, 0] and show f 2 M� . The estimate
of Proposition 3.3 reads

sup
s2[0,T ]

M2(f(s))  FT

 
sup

s2[0,T ]
M2(g(s))

!
,
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where FT is the function from Remark 3.2 and the constants are a = M2(f0), b =
C". Moreover, we take the constant k = 2M2(f0) > a = M2(f0). This fulfils the
criteria of Remark 3.2 so that for T  TC = log 2

2C"M2(f0) , we have

sup
s2[0,T ]

M2(f(s))  2M2(f
0).

This proves f 2 M� in the case � 2 [�2, 0]. The case � 2 (�3,�2) follows similarly
from Lemma 3.2 (which replaces Proposition 3.3) and Remark 3.2.

Existence and uniqueness: We now prove that S� is a contraction on M� with
respect to the metric d1. We need to show that there is some universal constant
 2 (0, 1) such that for every g1, g2 2 M� , we have

d1(S�g
1, S�g

2) = sup
t2[0,T ]

W1(S�g
1(t), S�g

2(t))  d1(g1, g2).

Let us denote f i = S�gi for i = 1, 2 so that f i 2 M� solves (P) induced by gi. Let
us fix t 2 [0, T ] and suppress the time dependence. We can use (�g1 ⇥ �g2)#f0 as
an admissible transport plan between f1 and f2 and the following estimate36:

W1(f1, f2) = lim
p!1

Wp(�g1#f0,�g2#f0)

 lim
p!1

✓Z

Rd

|�g1(v)� �g2(v)|p df0(v)

◆ 1
p

. (3.8)

The crucial quantity to estimate is the di↵erence between the flow maps. Notice
that we are only concerned with the di↵erence for v 2 suppf0 ⇢ BR from (A1).
In particular, for g1, g2 2 M� and � 2 (�2, 0], we will use the following growth
estimate from Lemma 3.1

⌦
�gi

↵
 hRi exp

�
C"M2(f

0)T
 
, i = 1, 2. (3.9)

Using the fact that the flow maps satisfy (3.1), we write again for fixed t 2 [0, T ]

�g1(v)� �g2(v) =

Z t

0
U"[g1](�g1(s, v))� U"[g2](�g2(s, v))ds

=

Z t

0
U"[g1](�g1(s, v))� U"[g1](�g2(s, v))
| {z }

=:I1

ds

+

Z t

0
U"[g1](�g2(s, v))� U"[g2](�g2(s, v))
| {z }

=:I2

ds. (3.10)

Starting with the di↵erence I1, we use the Lipschitz regularity of U" from Propo-
sition 2.4 to get

|I1|  ⇤�(g
1, �g1(s, v), �g2(s, v))|�g1(s, v)� �g2(s, v)|.
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In particular, absorbing more constants into C", (3.9) gives the bound

|⇤� | 
(
C"M2(f0) hRi2+� exp(C"(2 + �)M2(f0)T ), � 2 [�2, 0],

C",�,p0,d(1 + kf0kLp), � 2 (�3,�2).

Turning to I2, we need to estimate the measure-wise di↵erence of the velocity fields
U". An application of Proposition 2.5 and (3.9) gives

|I2| ." W1(g1(s), g2(s))

8
>><

>>:

hRi2+� M2(f0)

⇥ exp
�
C"(2 + �)M2(f0)T

�
, � 2 [�2, 0],

(1 + kf0kLp), � 2 (�3,�2).

Inserting these estimates for I1 and I2 back into (3.10), we have

|�g1(v)� �g2(v)| .", f0, �, T

Z t

0
|�g1(s, v)� �g2(s, v)|+W1(g1(s), g2(s))ds.

Denoting the constant on the right-hand side by c = c(", f0) (the dependence on �
and T is bounded), an application of Grönwall’s inequality gives

|�g1(v)� �g2(v)|  c

Z t

0
ec(t�s)W1(g1(s), g2(s))ds.

Notice that the previous estimate is independent of v and p > 1, hence when it is
substituted into (3.8), we obtain

W1(f1(t), f2(t))  c

Z t

0
ec(t�s)W1(g1(s), g2(s))ds  (ecT � 1)d1(g1, g2).

By reducing T > 0 even further (depending only on " and f0), we can ensure that
the Lipschitz constant ecT � 1 =:  < 1.

Maximal time of existence: Having finished with the short time existence and
uniqueness of solutions to (1.3), we turn to the statement concerning the maximal
time of existence, TM . The dichotomy for � 2 (�3,�2) comes from the standard
Cauchy–Lipschitz theory. For the case � 2 [�2, 0], we were able to construct solu-
tions provided we could ensure

sup
t2[0,TM ]

M2(f(t))  2M2(f
0).

On the other hand, the last statement of Proposition 3.3 shows that second moments
are conserved by solutions of (1.3); M2(f(t)) = M2(f0), for every t 2 [0, TM ].
Thus, we can indefinitely repeat the contraction mapping argument and extend the
solution globally to any finite time horizon.

4. The Mean Field Limit

This section is dedicated to the proof of Theorem 1.2. The initial computations for
both cases � 2 [�2, 0] and � 2 (�3,�2) are the same which we present now until
they diverge. To fix notation, let f and µN =

PN
i=1 mi�vi(t) denote the continuum
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and (any) empirical solution constructed from Sec. 3 and Appendix C, respectively.
f0 denotes the initial data to f satisfying (A1) and (A2) while µN

0 =
PN

i=1 mi�vi
0

denotes the initial data of µN satisfying (B1) and (B2). We define the following
“discrete” flow

8
><

>:

d

dt
FN (t, s; v) = U"[µN ](FN (t, s; v)),

FN (s, s; v) = v 2 Rd,

t, s 2 [0, TN ], (4.1)

such that ⌘m(t) = mini 6=j |vi(t) � vj(t)| > 0 for t 2 [0, TN ] together with the
“continuous” flow

8
><

>:

d

dt
F (t, s; v) = U"[f ](F (t, s; v)),

F (s, s; v) = v 2 Rd,

t, s 2 [0, Tm]. (4.2)

Notice that TN > 0 may be taken as any arbitrary time horizon for � 2 [�2, 0]
since µN is defined for all times and Proposition C.1 asserts that ⌘Nm(t) > 0 for
all times. The dependence on N 2 N for the time horizon TN in (4.1) is only
relevant for � 2 (�3,�2) and this is investigated in the sequel. Here Tm > 0 is
the maximal time of existence of the continuum limit solving (1.3) as indicated
in Theorem 1.1. We may choose Tm = +1 for � 2 [�2, 0] while a priori it may be
finite for � 2 (�3,�2). From the discussion in Sec. 3 and Appendix C, the flows
in (4.1) and (4.2) are well defined. Fix 0 < t0 < min(Tm, TN ). Take ⌧0 an optimal
transport map in W1 between f(t0) and µN (t0) i.e. µN (t0) = ⌧0#f(t0). From the
construction of f in Sec. 3, we have that f(t) = F (t, t0; ·)#f(t0). Moreover, we
also have µN (t) = FN (t, t0; ·)#µN (t0). Using a composition of all these maps, we
can define a candidate transport map to estimate the W1 distance between f(t)
and µN (t) by

⌧ t#f(t) = µN (t), where ⌧ t = FN (t, t0; ·) � ⌧0 � F (t0, t; ·).

For any 1  p < 1, the Wp Wasserstein distance can be estimated by

W p
p (µ

N (t), f(t)) 
Z

Rd

|F (t, t0; v)� FN (t, t0; ⌧
0(v))|p dft0(v).

The limit p = 1 is then given by

⌘N (t) = W1(µN (t), f(t))  kF (t, t0; ·)� FN (t, t0; ⌧
0(·))kL1(ft0 )

.

By definition of the flows defined in (4.1) and (4.2), we have

d

dt

����
t=t+0

FN (t, t0; ⌧
0(v))� F (t, t0; v) = U"[µN (t0)](⌧

0(v))� U"[f(t0)](v).

Therefore, we can estimate

d

dt

����
t=t+0

⌘N (t)  kU [µN (t0)](⌧
0(v))� U [f(t0)](v)kL1

v (ft0 )
. (4.3)
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We expand the velocity di↵erence in (4.3) using the fact that ⌧0 transports ft0
to µN

t0

U"[µN (t0)](⌧
0(v))� U"[f(t0)](v)

=

Z

Rd

KµN (t0)(⌧
0(v), w)dµN

t0 (w)�
Z

Rd

Kf(t0)(v, w)dft0(w)

=

Z

Rd

(KµN (t0)(⌧
0(v), ⌧0(w))�Kf(t0)(v, w))dft0(w)

=

Z

Rd

�
KµN

t0
(⌧0(v), ⌧0(w))�KµN

t0
(⌧0(v), w) +KµN

t0
(⌧0(v), w)�KµN

t0
(v, w)

 

| {z }
=:D1

⇥dft0(w)

+

Z

Rd

�
KµN

t0
(v, w)�Kft0

(v, w)
 

| {z }
=:D2

dft0(w). (4.4)

Starting with the D2 term, we need only concern ourselves with bounded v and w
in the integrations owing to Lemma 3.1. In particular, the regions of integration
can be restricted to

|v|, |w| 
(
R exp(C"t0), � 2 (�2, 0],

R+ C"t0, � 2 (�3,�2).
(4.5)

By Lemmas 2.1 and 2.5, we can estimate the D2 term by
Z

Rd

|D2| dft0(w) ." W1(µN
t0 , ft0)

Z
min(|v � w|3+� , |v � w|2+�)dft0(w)

 W1(µN
t0 , ft0)

⇥
(
R2+� exp(C"(2 + �)t0)M2+�(ft0), � 2 (�2, 0],

1, � 2 (�3,�2).
(4.6)

As for the D1 term, we can complete the proof of Theorem 1.2 for � 2 (�2, 0].

Proof. (Proof of Theorem 1.2 for moderately soft potentials) Building on the pre-
vious discussion, we only need to estimate the D1 term. Using Lemma 2.3 twice,
we get
Z

Rd

|D1| dft0(w)

."

Z

BR exp(C"t0)

|⌧0(w)� w|min(|⌧0(v)� ⌧0(w)|2+� , |⌧0(v)� w|2+�)dft0(w)

+ |⌧0(v)� v|
Z

BR exp(C"t0)

min(|⌧0(v)� w|2+� , |v � w|2+�)dft0(w).
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The assumptions (B1) and (A1) say W1(µN
0 , f0) ! 0 and suppf0 ⇢ BR, thus

for su�ciently large N � 1, we must have suppµN
0 ⇢ BR+1. Moreover, ⌧0 pushes

forward ft0 to µN
t0 , so we obtain Im⌧0 ⇢ B(R+1) exp(C"t0) from (4.5). Hence, we can

bluntly estimate the minimum terms using Lemma 2.1 to obtain
Z

Rd

|D1| dft0(w)  R2+� exp(C"(2 + �)t0)

✓Z
|⌧0(w)� w| dft0(w) + |⌧0(v)� v|

◆

 2R2+� exp(C"(2 + �)t0)W1(µN
t0 , ft0).

Collecting this and (4.6), plugging them into (4.4) and then (4.3), we arrive at

d

dt

����
t=t+0

⌘N (t) ." R
2+�eC"(2+�)t0⌘N (t0).

As t0 2 (0, T ) was chosen arbitrarily, a direct application of Grönwall’s inequality
gives

W1(µN (t), f(t))  W1(µN
0 , f0) exp

�
C1

"R
2+�eC"(2+�)T t

 
, 8 t 2 [0, T ].

This implies the mean field limit for � 2 (�2, 0].

Proof. (Proof of Theorem 1.2 for very soft potentials) For � 2 (�3,�2), the same
method to estimate the D1 term in (4.4) does not work. Moreover, the construction
of the particle solutions µN is only local in time up to some time horizon TN > 0
(cf. Appendix C) which may be strictly less than Tm and may also degenerate to 0 as
N ! +1. We overcome these issues to show the mean field limit by repeating the
inter-particle distance analysis from.7 The general steps from7 to show ⌘N (t) ! 0
are to couple the evolutions of ⌘N and ⌘Nm together in the following way where we
recall ⌘Nm denotes the inter-minimum particle distance for the particles in µN

⌘Nm(t) := min
i 6=j

|vi(t)� vj(t)|.

(1) We show first in Sec. 4.1 the growth estimate of ⌘ coupled with ⌘m

d

dt
⌘N .",� ⌘N (1 + kfkLp)

�
1 + (⌘N )

d
p0 (⌘Nm)1+�

�
. (4.7)

(2) Then in Sec. 4.2 we obtain the decay estimate of ⌘m coupled with ⌘

d

dt
⌘Nm &",� �⌘Nm(1 + kfkLp)

�
1 + (⌘N )

d
p0 (⌘Nm)1+�

�
. (4.8)

(3) The coupled system (4.7) and (4.8) together with (B2) allow us to deduce both
lim infN!1 TN � Tm and ⌘N (t) ! 0 for all times t 2 [0, Tm). This is performed
in Appendix D based on the argument in Ref. 7.

Since the velocity vector field U" depends on the solution, we cannot directly
repeat the arguments from Ref. 7 to establish (4.7) and (4.8). Nevertheless, once
these estimates are proven, step (3) follows exactly as in Ref. 7 which we leave
to Appendix D for completeness.
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4.1. Step 1

We focus on the D1 term from (4.4) recalling that (4.6) implies
Z

Rd

|D2| dft0(w) ." ⌘
N (t0).

Proposition 4.1. For fixed " > 0 and � 2 (�3,�2), we have the estimate

Z

Rd

|D1| dft0(w) .",�,p0 ⌘N (1 + kft0kLp)(1 + (⌘N )
d
p0 (⌘Nm)1+�).

Substituting these estimates for D1 and D2 into (4.4) and then (4.3) gives (4.7)
completing the first step.

Proof. Using (2.3), we obtain

|D1| .",� |⌧0(w)� w|max(|⌧0(v)� w|2+� , |⌧0(v)� ⌧0(w)|2+�)

+ |⌧0(v)� v|max(|⌧0(v)� w|2+� , |v � w|2+�).

Integration region |v � w| � 4⌘N : We first deduce

|⌧0(v)� ⌧0(w)| � |v � w|� |⌧0(v)� v|� |⌧0(w)� w| � |v � w|� 2⌘N � |v � w|
2

.

The second inequality is obtained by remembering ⌧0 is an optimal transport map
in W1 between f(t0) and µN (t0). Similarly, we have the estimate

|⌧0(v)� w| � |v � w|� |⌧0(v)� v| � |v � w|� ⌘N � 3|v � w|
4

.

Overall, these estimates lead to

|D1| .",� ⌘N |v � w|2+�

and integrating over {w 2 Rd | |v � w| � 4⌘N} yields

Z

|v�w|�4⌘N

|D1| dft0(w) .",� ⌘N
 Z

4⌘N|v�w|1
+

Z

|v�w|>1

!
|v � w|2+� dft0(w)

.p0,� ⌘N (kft0kLp + 1).

Integration region |v � w| < 4⌘N : Here, we do not use the cancellations in

D1 = KµN (⌧0(v), ⌧0(w))�KµN (v, w),

instead, we estimate each term using Proposition 2.2. Since Im⌧0 ⇢ {vi}Ni=1, if
⌧0(v) = ⌧0(w), then the Hölder regularity of log[µN ⇤ G"] (after interpolating the
estimates in (2.2)) givesKµN (⌧0(v), ⌧0(w)) = 0. Otherwise, we use |⌧0(v)�⌧0(w)| �
⌘m and Proposition 2.2 to deduce

|D1| ."

�
⌘Nm
�2+�

+ |v � w|2+� .
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By Hölder’s inequality, the integral can be estimated by
Z

|v�w|<4⌘N

|D1| dft0(w) ."

Z

|v�w|<4⌘N

|v � w|2+� dft0(w) +
�
⌘Nm
�2+�

⇥
Z

|v�w|<4⌘N

dft0(w)

 kft0kLp

0

@
 Z

|v�w|<4⌘N

|v � w|(2+�)p0
dw

! 1
p0

+

 Z

|v�w|<4⌘N

1 dw

! 1
p0

(⌘Nm)2+�

1

A

.�,p0 kft0kLp

�
(⌘N )

d
p0 +2+� + (⌘Nm)2+�(⌘N )

d
p0
�
.

Finally, choose two indices i, j such that ⌘Nm = |vi � vj |. We seek to estimate
⌘m against ⌘ by looking at where ⌧0 sends the midpoint vi+vj

2 . In the case that
vi+vj

2 /2 suppf , then we can define ⌧0 to be whatever we want as it does not a↵ect
the W1 distance. In particular, we can assign ⌧0(v) 2 {vi}Ni=1 for every v /2 suppf0

without changing the transport cost. Suppose

⌧0
✓
vi + vj

2

◆
= vk 2 {vi}Ni=1.

Without loss of generality vk 6= vi, and we have the following lower bound

⌘N �
����⌧

0

✓
vi + vj

2

◆
� vi + vj

2

���� =
����v

k � vi + vj

2

���� =
����v

k � vi +
vi � vj

2

����

� |vk � vi|� 1

2
|vi � vj | � 1

2
⌘Nm .

This implies ⌘Nm  2⌘N which simplifies
Z

|v�w|<4⌘N

|D1| dft0(w) .",�,p0 (⌘N )
d
p0 +1�⌘Nm

�1+�kft0kLp .

4.2. Step 2

Having derived an upper bound for the growth of ⌘N coupled with ⌘Nm , we need to
find a corresponding lower bound for the decrease of ⌘Nm coupled with ⌘N to close
the system.

Proposition 4.2. The minimum inter-particle distance satisfies the lower bound

for its decay

d

dt
⌘Nm &",� �⌘Nm(1 + kfkLp)(1 + (⌘N )

d
p0
�
⌘Nm
�1+�

).
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Proof. Choose two indices i, j = 1, . . . , N such that |vi � vj | = ⌘Nm where we will
suppress time dependence for simplicity. We have

d

dt
|vi � vj | � �|U"[µN ](vi)� U"[µN ](vj)|

� �
Z

R3

|KµN (vi, w)�KµN (vj , w)| dµN (w)

= �
Z

R3

|KµN (vi, ⌧(w))�KµN (vj , ⌧(w))| df(w).

Here, we have set ⌧ as an optimal transfer map in W1 such that µN (t) = ⌧#f(t)
for t 2 [0,min(T, TN )). We split the integration into the following domains:

A = {w : min(|vi � w|, |vj � w|) � 2⌘N}, B = Rd\A .

Starting with A , we use the inequality

|vi � ⌧(w)| � |vi � w|� |w � ⌧(w)| � |vi � w|� ⌘N � |vi � w|
2

and Lemma 2.3 to deduce
Z

A
|KµN (vi, ⌧(w))�KµN (vj , ⌧(w))| df(w)

.",� |vi � vj |
Z

A
max(|vi � ⌧(w)|2+� , |vj � ⌧(w)|2+�)df(w)

 2�(2+�)|vi � vj |
Z

A
(|vi � w|2+� + |vj � w|2+�)df(w)

.� ⌘Nm(1 + kfkLp).

In the last line, we have bluntly estimated
Z

A
|vi � w|2+� df(w) 

Z

Rd

|vi � w|2+� df(w)


Z

|vi�w|�1
df(w) +

Z

|vi�w|<1
|vi � w|2+� df(w)

with the usual Hölder’s inequality for the second term and similarly for vj .
Turning to the region B, since Im⌧ ⇢ {vi}Ni=1, as soon as vi 6= ⌧(w), we must

have

|vi � ⌧(w)| � ⌘Nm ,

with a similar estimate for vj . By further blunting the L1 estimate in
Proposition 2.2, we obtain

|KµN (vi, ⌧(w))| ." |vi � ⌧(w)|2+� 
�
⌘Nm
�2+�

.
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If vi = ⌧(w), then the Hölder regularity of r log[µN ⇤ G"] from (2.2) gives
KµN (vi, ⌧(w)) = 0. The familiar method using Hölder’s inequality gives

Z

B
df(w) 

✓Z

B
dw

◆ 1
p0

kfkLp . (⌘N )
d
p0 kfkLp .

Putting these two estimates together, we treat the full integral over B by
Z

B
|KµN (vi, ⌧(w))�KµN (vj , ⌧(w))| df(w) .

�
⌘Nm
�2+�

Z

B
df(w)

.
�
⌘N
� d

p0
�
⌘Nm
�2+�kfkLp .

Finally, we add up the integrals over A and B to get
Z

Rd

|KµN (vi, ⌧(w))�KµN (vj , ⌧(w))| df(w)

.",� ⌘Nm(1 + kfkLp)(1 + (⌘N )
d
p0
�
⌘Nm
�1+�

).

Appendix A. Proof of Lemma 2.3

The structure of our kernel is more general than those considered in Ref. 7, but the
idea is the same and we provide the details for completeness.

The case � 2 [�2, 0]: The fundamental theorem of calculus with Proposition 2.2
gives

|Kg(v1, w)�Kg(v2, w)| =

����
Z 1

0

d

dt
Kg(tv1 + (1� t)v2, w)dt

����

." |v1 � v2|
Z 1

0
|tv1 + (1� t)v2 � w|2+�dt.

Up to a constant depending on �, the integrand can be estimated by

|tv1 + (1� t)v2 � w|2+� .� |v1 � w|2+� + |v2 � w|2+�

. max(|v1 � w|2+� , |v2 � w|2+�).

The case � 2 [�3,�2): Set �(t) = (1� t)v1 + tv2 �w and we separate into further
cases.

Case 1 - For every t 2 [0, 1], we have |�(t)| � 1
4 min(|v1 � w|, |v2 � w|): We can

repeat the previous computations almost exactly and recover the desired estimate.

Case 2 - There is a t 2 [0, 1] such that |�(t)| < 1
4 min(|v1 � w|, |v2 � w|): We need

to perturb the original contour � to avoid the possible singularity. Notice that we
can find t 2 (0, 1) such that |�(t)| < 1

4 min(|v1 � w|, |v2 � w|). We first take (the
unique) tm 2 (0, 1) such that

|�(tm)| = min
t2[0,1]

|�(t)|.
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Next, define the other two time points where |�(t)| = 1
4 min(|v1 � w|, |v2 � w|),

ti := inf

⇢
t 2 [0, 1] : |�(t)| = 1

4
min(|v1 � w|, |v2 � w|)

�
,

ts := sup

⇢
t 2 [0, 1] : |�(t)| = 1

4
min(|v1 � w|, |v2 � w|)

�
.

By continuity of |�(t)|, we have that all tm, ti, ts 2 (0, 1). The triangle formed by
connecting the vectors �(ti), �(ts) � �(ti), and �(ts) is isosceles so the following
quantity is well defined (see Fig. A.1)

r := |�(ti)� �(tm)| = |�(tm)� �(ts)|.

We wish to apply the fundamental theorem by taking the contour connecting
v1 � w to v2 � w that traces a semicircular arc from �(ti) to �(ts) in the direction
furthest from the origin (the green arc in Fig. A.1). More precisely, the direction
furthest away from the origin is defined as

e :=
�(tm)

|�(tm)| ,

Fig. A.1. Simplistic visual perturbation of �(t) to avoid the singularity.
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or if �(tm) = 0, take any e 2 Sd�1. For a given angle ✓ 2 [0,⇡], the green arc can
be parameterised by

A(✓) := �(tm) + r

✓
cos ✓

�(ti)� �(tm)

r
+ sin ✓ e

◆
.

Observe that by the (reverse) triangle inequality and the fact that e ? �(ti)��(tm),
we have the lower bound for all ✓ 2 [0,⇡]

|A(✓)| � |�(tm)|� r = |�(tm)|� |�(ti)� �(tm)| � |�(ti)|

=
1

4
min(|v1 � w|, |v2 � w|). (A.1)

Putting these pieces together, we define the perturbed contour �̃ : [0, ti + ⇡ + 1�
ts] ! Rd by

�̃(t) :=

8
>><

>>:

�(t), t 2 [0, ti],

A(t� ti), t 2 [ti, ti + ⇡],

�(t� ti � ⇡ + ts), t 2 [ti + ⇡, ti + ⇡ + 1� ts].

We will apply the fundamental theorem of calculus on each of the three pieces of �̃
to estimate the di↵erence

|Kg(v1, w)�Kg(v2, w)|

 |Kg(�̃(0) + w,w)�Kg(�̃(ti) + w,w)|

+ |Kg(�̃(ti) + w,w)�Kg(�̃(ti + ⇡) + w,w)|

+ |Kg(�̃(ti + ⇡) + w,w)�Kg(�̃(ti + ⇡ + 1� ts) + w,w)|


Z ti

0

����
d

dt
Kg(�̃(t) + w,w)

���� dw +

Z ti+⇡

ti

����
d

dt
Kg(�̃(t) + w,w)

���� dw

+

Z ti+⇡+1�ts

ti+⇡

����
d

dt
Kg(�̃(t) + w,w)

���� dw =: T1 + T2 + T3. (A.2)

Starting with T1, the chain rule gives

T1  |v1 � v2|
Z ti

0
|rvKg(�̃(t) + w,w)| dt.

Using the derivative estimate in Proposition 2.2 and the fact that |�(t)| �
1
4 min(|v1 � w|, |v2 � w|) for t 2 [0, ti], we obtain

T1 ." |v1 � v2|
Z ti

0
|�̃(t)|2+�dt

 |v1 � v2|
Z ti

0
max(|v1 � w|2+� , |v2 � w|2+�)dt

 ti|v1 � v2|max(|v1 � w|2+� , |v2 � w|2+�). (A.3)
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Similarly for T3, we have

T3 ." (1� ts)|v1 � v2|max(|v1 � w|2+� , |v2 � w|2+�). (A.4)

We now turn to T2, we substitute A(t � ti) into this piece and use the derivative
estimate from Proposition 2.2 with the chain rule to get

T2 ."

Z ti+⇡

ti

����
d

dt
A(t� ti)

���� |A(t� ti)|2+�dt.

Recalling the definitions of r (this is the length of a particular segment of [v1 �
w, v2 � w]) and A together with the lower bound (A.1), we use

����
d

dt
A

���� = r  |v1 � v2| and |A| � 1

4
min(|v1 � w|, |v2 � w|)

so that we have

T2 ." ⇡|v1 � v2|max(|v1 � w|2+� , |v2 � w|2+�).

Putting this inequality with (A.4) and (A.3) into (A.2), we achieve the desired
result.

Appendix B. Proof of Lemma 3.2

By our abuse of notation from interchanging probability measures with their den-
sities, we write down the explicit formula for f(t, v) as a density

f(t, v) =
f0(��1

g (t, v))

|det(r�g(t,�
�1
g (t, v)))|

. (B.1)

Here, the inverse ��1
g should be thought of as the “reverse” flow map to �g where

the direction of time has been reversed. Changing variables with (B.1), we have
Z

|f(t, v)|p dv =

Z |f0(v)|p

|det(r�g(t, v))|p�1
dv. (B.2)

We turn to estimating the denominator in the integrand of (B.2). Again, standard
facts about the flow map �g from Ref. 19 give the following formula:

detr�g(t, v) = exp

⇢Z t

0
rv · U"[g](�g(s, v))ds

�
.

From an application of the Dominated Convergence Theorem and Proposition 2.2,
we have

|rv · U"[g](v)| 
Z

|rv ·Kg(v, w)| dg(w)

."

Z
|v � w|2+� dg(w)  1 + C�,dkgkLp .
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The last computation is obtained by the usual method of splitting the integration
region between |v � w| < 1 and |v � w| � 1 recalling 2 + � < 0. Inserting this
inequality into (B.2), we obtain the desired estimate

Z
|f(t, v)|pdv 

✓Z
|f0(v)|pdv

◆
exp{C",�,d(p� 1)(1 + esssups2[0,T ]kg(s)kLp)t}.

Finally, Proposition 3.3 already proved f 2 C([0, T ];Pc(Rd)) and the L1
t Lp

v prop-
erty is clear from the estimate we have just proved.

Appendix C. The Interacting Particle System

This section is concerned with proving Lemma 1.1; the well-posedness of the particle
system described in (1.6). Throughout this section, the number N 2 N of particles
is fixed as well as the positive weights {mi}Ni=1 and initial points {vi0}Ni=1. We denote
the initial empirical data by µN

0 =
PN

i=1 mi,N�vi
0
. We can apply the same arguments

from Sec. 4 for � 2 (�2, 0].

Proof. (Proof of Lemma 1.1 for �2 < �  0) The initial empirical data µN
0 satis-

fies (A1) with radius of support RN := maxi=1,...,N |vi0|. Applying Theorem 1.1 for
any T > 0, we have the unique solution µN (t) 2 X�(T ). Moreover, Proposition 3.1
says that µN (t) can be represented as

µN (t) = �µN (t, ·)#µN
0 ,

where �µN is the (unique!) flow map in (3.1) induced by the curve µN . Since µN

is the push-forward of µN
0 , it is also an empirical measure with the form

µN (t) =
NX

i=1

mi,N��µN (t,vi,N
0 ).

Moreover, for every i = 1, . . . , N , �µN (t, vi,N0 ) solves precisely (1.6).

The following proposition gives a lower bound on the minimum inter-particle
distance

⌘Nm(t) = min
i,j=1,...,N

|vi(t)� vj(t)|.

Proposition C.1. (No collisions in finite time) Fix ", T > 0, � 2 (�2, 0], and
⌘Nm(0) = mini 6=j |vi0 � vj0| > 0. Then, there is a constant C = C(", T,M2(µN

0 )) > 0
such that the minimum inter-particle distance decays with exponential rate

⌘Nm(t) & ⌘Nm(0) exp{�Ct}, 8 t 2 [0, T ].
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Proof. Choose two indices i, j = 1, . . . , N such that ⌘Nm = |vi � vj | where we will
suppress the time dependence for simplicity. We have

d

dt
|vi � vj | � �|U"[µN ](vi)� U"[µN ](vj)|

� �
Z

R3

|KµN (vi, w)�KµN (vj , w)|dµN (w).

The goal is to estimate the integral. Firstly, we simplify the integration by recall-
ing that suppµN is bounded. Indeed, setting R = maxi=1,...,N |vi0|, Lemma 3.1
implies

⌦
vi
↵
=
⌦
�µN (vi0)

↵
 R exp(C"M2(µ

N
0 )t), 8 t 2 [0, T ].

Applying Lemma 2.3 to the di↵erence of the kernels, we have

Z

suppµN

|KµN (vi, w)�KµN (vj , w)|dµN (w)

.",� |vi � vj |
Z

suppµN

max(|vi � w|2+� , |vj � w|2+�)dµN (w)

.� R exp(C"M2(µ
N
0 )T )|vi � vj |.

In the case � 2 (�3,�2), we can no longer apply Theorem 1.1 directly, since it
requires an Lp assumption on the initial data µN

0 which is not valid for empirical
measures. In particular, the vector field is no longer Lipschitz regular (cf. Proposi-
tion 2.4) so we must make do with Hölder regularity (cf. Proposition 2.3).

Proof. (Proof of Lemma 1.1 for �3 < � < �2) We revisit the proof of Peano’s
theorem using Schauder’s fixed point theorem to construct solutions to (1.4). We
set X = C([0, T ];Rd) and define the solution map S : X ! X by

(Svi)(t) := vi0 +

Z t

0
U"[µN (s)](vi(s))ds, i = 1, . . . , N.

This is well defined and certainly Svi 2 X for each vi 2 X owing to the uniform
bound for U" in Proposition 2.2 when � 2 (�3,�2). We seek to prove (1) S is
continuous and (2) S(X) is pre-compact.

S is continuous: For every i = 1, . . . , N fix vi,n, vi 2 X such that vi,n ! vi in
X. We label their corresponding empirical measures

µN (t) =
NX

i=1

mi�vi(t), µN,n(t) =
NX

i=1

mi�vi,n(t).
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We have the estimate

|(Svi,n)(t)� (Svi)(t)| 
Z t

0
|U"[µN,n(s)](vi,n(s))� U"[µN (s)](vi(s))|ds


Z t

0
|U"[µN,n(s)](vi,n(s))� U"[µN,n(s)](vi(s))|

+|U"[µN,n(s)](vi(s))� U"[µN (s)](vi(s))|ds.

Applying Proposition 2.3 to the first di↵erence and Lemma 2.6 to the second dif-
ference without being precise about the constants, we obtain

|(Svi,n)(t)� (Svi)(t)| .",�

Z t

0
|vi,n(s)� vi(s)|3+�ds

+

Z t

0
W1(µN,n(s), µN (s)) +W1(µN,n(s), µN (s))3+�ds.

The first integral converges to 0 as n ! 1. As well, the infinite Wasserstein distance
is also continuous with respect to the particles; vi,n ! vi inX for every i = 1, . . . , N
as n ! 1 implies W1(µN,n(s), µN (s)) ! 0 as n ! 1.

S(X) is pre-compact: We fix vi 2 X for every i = 1, . . . , N in this step. Firstly,
it is clear that S(X) is bounded using Proposition 2.2

|(Sv)(t)|  |v(0)|+ C"t, 8 v 2 X.

Turning to equicontinuity, fix t1  t2 both in [0, T ]. Applying Proposition 2.2 again,
we have

|(Svi)(t1)� (Svi)(t2)| 
Z t2

t1

|U"[µN (s)](vi(s))| ds ." |t1 � t2|.

Appendix D. Step 3

In this appendix, we prove step (3) from Sec. 4 which establishes Theorem 1.2. The
results of Secs. 4.1 and 4.2 yield

d

dt
⌘N ." ⌘

N (1 + kfkLp)(1 +
�
⌘N
� d

p0
�
⌘Nm
�1+�

),

d

dt
⌘Nm &" �⌘Nm(1 + kfkLp)(1 +

�
⌘N
� d

p0
�
⌘Nm
�1+�

),

(D.1)

when t 2 [0,min(Tm, TN )). If
�
⌘N
� d

p0
�
⌘Nm
�1+�  1, then we immediately obtain

⌘N (t)  ⌘N (0)eC(1+kfkLp )t,

⌘Nm(t) � ⌘Nm(0)e�C(1+kfkLp )t, 8 t 2 [0,min(Tm, TN )). (D.2)
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We wish to show that (D.2) holds for all t 2 [0, Tm) as N ! 1 which amounts to
showing TN > Tm when N is su�ciently large. Define first

a(t) :=
⌘N (t)

⌘N (0)
, ⌘m(t) :=

⌘Nm(t)

⌘Nm(0)
, ⇠N := ⌘N (0)

d
p0 ⌘Nm(0)1+� .

Thus, we rewrite (D.1) in terms of a, b, and ⇠N

d

dt
a ." a(1 + kfkLp)(1 + ⇠Na

d
p0 b1+�),

d

dt
b &" �b(1 + kfkLp)(1 + ⇠Na

d
p0 b1+�).

Since a(0) = b(0) = 1 and we assume by (1.7) ⇠N ! 0 as N ! 1, when N is
su�ciently large, we can find TN

⇤ ( TN ) such that

⇠Na
d
p0 b1+�  1, 8 t 2 [0, TN

⇤ ]. (D.3)

Now by (D.2), we have similar estimates

a(t)  eC(1+kfkLp )t, b(t) � e�C(1+kfkLp )t, 8 t 2 [0, TN
⇤ ].

Returning to (D.3), we obtain an estimate for TN
⇤ given by

⇠NeC(1+kfkLp )
�

d
p0 �(1+�)

�
t  1 , t  � log ⇠N

C(1 + kfkLp)
⇣

d
p0 � (1 + �)

⌘ .

This means that TN
⇤ has the lower bound

� log ⇠N

C(1 + kfkLp)
⇣

d
p0 � (1 + �)

⌘  TN
⇤ .

However, since (1.7) means ⇠N ! 0 as N ! 1, this implies

lim inf
N!1

TN
⇤ = 1.

Since TN
⇤ < TN , we have that TN � Tm for N � 1 su�ciently large.
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