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1. Introduction

The Landau equation,32 originally derived to approximate the Boltzmann operator
when collisions between charged particles in a plasma are grazing, is one of the
fundamental kinetic equations in plasma physics. Efficient computational methods
for the full Vlasov-Maxwell-Landau system are of tremendous importance for mod-
elling future fusion reactors and they represent a central conundrum in computa-
tional plasma physics. An important foundation to achieve such an ambitious goal
is to provide accurate numerical methods with low computational cost to solve the
collisional step in these computations, that is, to solve the spatially homogeneous
Landau equation given by

atf = Q(f7 f) =V, - { A(’U - U*)(f(v*)vvf(v) - f(v)vv*f(v*))dv*}a

Rd
(1.1)

with the collision kernel given by A(z) = [2|7(|2|?14 — 2 ® 2) = |2|"T211(2) with
I; being the identity matrix, II(z) the projection matrix onto {z}*, —d — 1 <
v <1, and d > 2. The most important case corresponds to d = 3 with v = —3
associated with the physical interaction in plasmas. This case is usually called the
Coulomb case because it can be derived from the Boltzmann equation in the grazing
collision limit when particles interact via Coulomb forces 216 39 The main formal
properties of @ rely on the following reformulation:

QUf, f)=V,- {/Rd A(v — ) ff(Vylog f — Vo, logf*)dv*},

where f = f(v), f« = f(vs) are used; and its weak form acting on appropriate test
functions ¢ = ¢(v

)
[Letnsto=—; [[ (96-u6 aw-u)

X (Vylog f =V, log fi) f f« dvdu,. (1.2)

Then choosing ¢(v) = 1,v,|v|?, one achieves conservation of mass, momentum
and energy. Inserting ¢(v) = log f(v), one obtains the formal entropy decay with
dissipation given by

1

d
T /Rd flog fdv=—-D(f(t-)) = 3 //RM By, - A(v — vi) By p, f [« dvdu, <0,

since A is symmetric and semipositive definite, with B,, ,, := V,log f — V,, log f..
The equilibrium distributions are given by the Maxwellian

P o —wf?
Ayt = (sz)dﬂeXp( 9T )

for some constants p, T determining the density and the temperature of the particle
ensemble, and mean velocity vector u, see Refs. [39 and 21l
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Deterministic numerical methods based on particle approximations to (|1.1]) have
been recently proposed in Ref. [13| keeping all the structural properties of the Lan-
dau equation described above: nonnegativity, conservation of mass, momentum and
energy, and entropy dissipation at a semidiscrete level. This paper gives a theoretical
underpinning to the numerical scheme introduced in Ref. [13l The main strategy
is to delocalize the gradient operators in the weak form (|1.2)) while keeping intact
the variational structure behind the equation rigorously developed in Ref.[10l This
is reminiscent of similar approaches to approximate nonlinear diffusion models by
nonlocal equations? while keeping their variational structure. More precisely, we
analyse the Landau gradient flow of the regularized entropy/t% 13 given by

O f =V, - {f(v) , f(w)A(v — w)(VG* *log[f * G](v)
R
—VG* *log[f*Gs](w))dw}, (1.3)
where G¢ € 0°(R?) is a mollifier for fixed € > 0. More specifically,

Ge(v) = gda (g) [ Gl =1,
with 0 < G € C™(R?), so that G° approximates the Dirac at the origin, &y, as
¢ | 0. Therefore, as € | 0 (1.3) formally converges to the Landau equation. For
technical reasons (cf. Lemm7 we choose G(v) = Ce=H1vY? with ¢ > 0 a
normalization constant as in Ref. [10l However, we note that from the numerical
point of view 3 Gaussian mollifiers are simpler to deal with.

Our approach is to provide an existence theory for as well as a particle
approximation to the solution by interpreting as a continuity equation with
solution-dependent velocity fields. In particular, to introduce notation, we define a
generalised interaction kernel for probability measures g € 2(R?) and v, w € R?

K,(v,w) == —|v — w* ' T[v — w](VGE xlog[g * GZ|(v) — VG* x log[g * G|(w)).

Additionally, for f € 2(R%), we define the measure-dependent velocity

Ul AI0) = [ | Kylww)dfu), USLF)i= U7IF.
In this way, (1.3) can be written as
Of + V- (U°[f1f) = 0. (1.4)

Formally speaking, by approximating an initial data by a finite number of atomic
measures, we expect the solution of to be approximated by a finite number
of Dirac masses following the local velocity of particles. More precisely, suppose
we are given initial data f0 € Z2(RY) for and we can approximate f° by a
sequence of empirical measures plY = % Doict 5“6’ with equal weights for simplicity,
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where v € R? for i = 1,..., N. We expect the solution to (T.4) to be given by the
empirical measure with equal weights

| X
Ny — E .
H (t) - N Pt 6”1(25) ?
where v*(t) is the solution of the ODE system

o' () = U™ ()]0 (1))

In fact, puV(t) is a distributional solution to with pl’ as initial data. The
results in Ref. [L0ldo not provide a well-posedness of measure solutions to (1.3 with
measure initial data, ensuring only the existence by compactness. Due to the lack of
continuous dependence with respect to initial data to in the general probability
measure setting, showing the convergence of the mean field limit is important from
the numerical viewpoint.™¥ More specifically, we show that p converges towards
the unique weak solution f of in the limit N — oo.

In the simplified setting of equally weighted particles, the main result of this
paper can be summarized as follows. Suppose that the initial data are well approx-
imated in the sense that

Wao (Y, f%) = 0 as N — oo fast enough,

where W, denotes the oo-Wasserstein metric,*® see Hypothesis (B1) and (B2).
As mentioned above, the evolution of Y through (1.3) is characterised entirely by
the evolution of the “particles” starting at v} according to the ODE system for
i=1,...,N

N
i 1 i j 12+ i j € N (v
=y L (T g« 10)

— VG® xlog[u™ * G¥](v)). (1.5)

We will prove, at least for short times depending on the value of v € (—3,0], that
f=f@t) = frand pv = pN(t) = ul exist (cf. Theorem|1.1/and Lemma respec-
tively) and solve according to the initial conditions f° and p{, respectively.
Given the existence of such curves f, u’¥ and the fact that p’ — f9 as N — oo,
we seek to prove the mean field limit (cf. Theorem [1.2))

Wao (N (1), f(t)) =0, forte (0,T},) as N — oo,

where T, > 0 is the maximal existence time of f (cf. Theorem [1.1)).

The mean-field limit has attracted lots of attention in the last years in differ-
ent settings for aggregation-diffusion and Vlasov type kinetic equations. Different
approaches have been taken leading to a very lively interaction between different
communities of researchers in analysis and probability. We refer to Refs. 4] [17] [19]
33, 38| for the classical approaches in the field. Recent advances in non-Lipschitz
settings and with applications to models with alignment have been done in Refs. [3]
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8|, [14L [15] for the aggregation-diffusion and Vlasov-type equations in Refs. [5H7) |12,
18}, 20}, [24{-31}, |34} |37, and for incompressible fluid problems in Refs. 23| and 22|

We prove the mean field limit to the regularized Landau equation following
the strategy and ideas from Refs.[23land[7. The main difference with these references
is the fact that Eq. is more nonlocal, and it can be interpreted as a transport
equation with a highly nonlocal nonlinear mobility depending quadratically on the
density f. Let us finally mention that our result does not give quantitative bounds
on the mean-field limit depending on N and ¢ compared to recent works.® 28139 Thig
is certainly an important open question of great importance from the numerical
viewpoint.

1.1. Main results

The proof of the mean field limit convergence of for fixed € > 0 is achieved
with the following strategy borrowed from Ref. [Tt we first show the existence
and uniqueness of the continuity equation for some maximal time horizon
T, > 0 in Secs. 2] and [3] then we show that the particle system does also exist
in We finally conclude by estimating the distance between the two
systems in the W, metric when N — oo as well as establishing a lower bound on
the existence of the particle system, Sec. |4} Let us point out that since the kernel
A is singular or grows at infinity, these properties of the continuity equation and
the associated particle system are not obvious.

Continuity equations of the form have been extensively studied 219 We
will see how the following assumptions on f© yield good properties for U[f].

(A1) The initial condition f° belongs to Z2.(R?), the space of compactly supported
probability measures on R?.

(A2) For v € (=3,-2), there exists p > 1 such that ;27(2+v) > —d and f°
belongs to LP(RY).

Theorem 1.1. (Existence of mean field limit) Fiz e > 0, v € (—3,0], and initial

data fO € 2(RY) satisfying (A1) and (A2). Then, there is a time horizon T =

T(v,e, f%) > 0 such that there is a unique weak solution f to (1.3) given in

C([OaT]N@c(Rd))a e [_270]7
C([0,T); Ze(RY)) N L>(0, T; LP(R)), v € (=3,-2),
where fli—o = f°, and the exponent p > 1 is the same as in (A2).

In the case v € [—2,0], the mazimal time of existence Thy = +o00 is infinite.
While for the case v € (—3,—2), either the mazimal time of existence is infinite
Ty = +00, or the LP norm of the solution blows up

esssupgeio,p [lf(s)lle T o0 ast 1 T

The notion of weak solution f to (1.4) (equivalently (1.3))) means that, for any
¢ € C(R?), the following equality holds

%/Rd p(v)dfi(v) = /Rd Vo(v) - U[f(®)](v)dfi(v).
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The particle solution is in fact a solution to the previous equation when the
initial condition is a convex combinations of delta measures . More precisely,
for every N € N, take initial points {vg™ }¥., C R? and positive weights {m; x},
satisfying

N
Smin=1, miy>0, Vi=1,.. N
=1

The N-particle ODE system we consider is

d . . N o
avl(f) = U [N (1)) = ijKuNu) (v', v7),

N
pN () = midui,
=1

vi’tzo = ).
Lemma 1.1. (Existence of particle solutions) For any e > 0, and v € (=3, 0], there
exists a time horizon T =T (e, 7, {US’N}Z,J\;) >0 and a curve vV € C([0, T]; R?)

which satisfies (1.6)). For v € [—2,0], the solution to (1.6) is unique, and the time
horizon T can be arbitrarily large.

The well-posedness of the inter-particle system is proven in @.
The case v € [—2,0] is an application of Theorem while for v € (—3,-2) a
standard Peano existence argument is used.

For N € N and trajectories {v*" (#)}, such as those constructed in Lemma
we define the minimum inter-particle distance for times ¢ in the domain of existence

T (£) = min [N () — 0PN ()]
i#]

Taking the continuum and particle solutions f and p¥ from Theorem and
Lemma [T.1] respectively, we define

™ () == Wao (™ (1), f(1))-

The following assumptions are well-preparedness conditions on the initial data of
the particle solution, see Ref. [Tl

B1) The initial particles viN N ¢ R? and weights {m; y}Y, C (0,1) satisfy
0 i=1 ) i=1
Woo (udY, £9) — 0 as N — cc.
(B2) For v € (—3,—2), the initial particles moreover satisfy

lim ™ (0)7 7 (0)'+7 = 0, (1.7)

N—o0

where the conjugate exponent p’ satisfies % + 1% =1 with p from (A2).

The main result concerning the mean field limit can now be stated as:
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Theorem 1.2. Fiz e > 0, v € (=3,0], and initial data f° satisfying (A1)
and (A2). We consider f the solution to on the mazimal time interval [0, Ty,
provided by Theorem [L.1L Given initial particle configurations {ud }nen satisfy-
ing (B1) and (B2), we consider {™ }nen particle solutions of with mazimal
time of existence TN > 0 provided by Lemma . Then liminf y_oo TN > T}, and
the mean field limit holds

lim  sup Wao(uN(t), f(t)) =0, VT €[0,T,,). (1.8)
N—004e0,T)
2. Estimates on the Velocity

This section collects the necessary estimates on the measure-dependent kernel and
velocity, K and U*¢. To fix notation, we define the Lebesgue bracket

W?=14v]?, veR?
and the mollifying sequence by

Gw)=Ce ™, [ Gudv=1, G @)= EidG@/a).
Rd

Moreover, we define the pth-order moment of a measure f by

(0= [ wrare)

We will use the notation a <, 3,.. b to represent the statement that there is a
constant C' = C(«, 8,...) > 0 such that a < Cb.

Proposition 2.1. Fiz e > 0 and v = —2. Then, for every f, g € 2(RY), the
functions K ,(v,w) and U¢[g, f](v) are C1, skew-symmetric and satisfy the estimates

2 28

[Ky(v,w)] < 2, [VoK,(v,w)] < 5,
2 28

UZlg, i)l < =, [VU%lg, fl(0)] < S5

Proposition Iﬂ‘ highlights the C'-boundedness of the velocity field U in the
special case v = —2. For this value of «y, the well-posedness of follows by
standard techniques1? Propositionlwfollows from the more general results Propo-
sition Lemma and Proposition where v € [—3,0]. There, we shall see
the precise dependence on ~. First, we recall a standard inequality for the Lebesgue
bracket.

Lemma 2.1. (Peetre) For any p € R and z,y € R?, we have

@ o2y _ ol
g =7t

Proof. A proof of this can be found in Ref.[10 or Ref. [1L O
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Lemma 2.2. (log-derivative estimates) For fized ¢ > 0 we have the formula

1 /v\1 v
€ =——(- “(v)—. 2.1
VG ) = —= () G(v)g (2.1)
For yu € 2(R%), denoting 0" = Ui and 0% = 8U awv we obtain

1 . 4
[Vlog(+ G)(0)| < =, 107 log(u * G*)(v)] < .

Proof. This is proven in Ref. [10. O

Proposition 2.2. Fize >0, g € Z2(R?), and v € [-3,0]. We have the following
estimate:

. 4 2
|Kg(v, w)| < min <€2|v —wf, ZJo - w|2+7>.

Moreover, for fized f € 2(R?), we have

|U=[g, f1(v)| < {M2+7(f) W e (=2,0],

Proof. We recall the expression
K,y(v,w) = —|v — w* v — w](VG* * log[g * G¥](v) — VG x log[g * G¥](w)).

|v — w| < 1: Using the second-order estimate in (2.2), the difference of logarithms
can be estimated by

€ € € € 4
IVG® +loglg + G°](v) — VG xloglg * G°J(w)| < 5 |v —wl,

giving the first estimate in the minimum.
|v — w| > 1: Bluntly apply the first-order estimate in (2.2) onto each of the
logarithms

VG *log[g * G°J|| L <

1
€
The estimate for U® follows by recalling U¢[g, f](v) = fRd (v,w)df(w) and
Peetre’s inequality from Lemma - 1| for the case v € (—2,0]. O

The following estimate is adapted from Ref. 23|

Lemma 2.3. (Pointwise difference in K) Fiz ¢ > 0, g € Z(R?), and v € [-3,0].
We have

|[Kg(v1,w) = Kg(va,w)] ey o1 = va max(foy = w]**7, vy — w]**7),

For completeness, we refer to [Appendix A for the proof of Lemma
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Proposition 2.3. (Holder continuity of U) Fizy € [-3,—2] and g € Z(R?). Then
we have

U=[g)(v1) — U[g)(v2)] Se o1 — val 7.

Proof. We split the integration region into two cases

Uslgl(v1) — U%[g)(v2) = /Rd(Kg(vuw)—Kg(vmw))dg(w)

+/
</|v1v2<min(|v1w, v —w)) |[v1 —v2|>min(|v; —w|, [v2—w]|)

X (Kg(v1, w) = Ky (v, w))dg(w)

=: Il + IQ.

We claim both |I1|, [I2| <c |vr —v2 217, Starting with I; where |v; —v2| < min(|v; —
wl, |vg — w]|), we use Lemma and the fact that 2 + v < 0 to deduce

| Se o1 — 02 max(|vy — w**7, vy — w[**7)dg(w)
[v1 —vz|<min(Jvi —wl, [va—w])

< |v1 — U2|3+V~

Turning to Iy corresponding to the other integration region, assume without loss
of generality that |v; — va| > |v1 — w|. By the triangle inequality we also have

|va — w| < 2|v; — val.

Putting these two estimates together and using the bound |K, (v, w)| <. min(jv —
w|37, |v — w|*t7) from Proposition [2.2] we have

Bl5 [ min(for — w47, oy = w7 dg(w) + -
|[v1—v2|>min(|vi —w]|, [va—w])

+/ min(jos — w*7, [0 — w2 )dg(w)
|[v1 —v2|>min(|vi —w|, |[va—w])

5 ‘Ul — ’l)2|3+’y. O

We can improve Proposition to Lipschitz continuity by taking advantage of
extra regularity properties of g.

Proposition 2.4. (Lipschitz continuity of U) Fiz g € 2(R%), e > 0, and v €
(—3,0]. In the case v € (—3,—2), assume further that g satisfies (A2). Then we
have

U%[g](v") — U [g](v?)] < A, (g0, %) |0t — v,
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where

A {CEM2+W(9)(<01>2+7 + <v2>2+’y), v € [-2,0],
T Cealt + llgle), e (=3,-2)

and the constants C > 0 only depend on the quantities in the subscript.
Proof. The starting point is the application of Lemma [2.3] to first write

U%[g)(v") = U%[g)(v*)] = /Rd(Kg(vlﬂlJ) — Ky(v*,w))dg(w)

Selo =7 [ max(lo! — w7, Jo? - ) dg(w)
R

< ot =] [ (0 = el ) dg).
Rd

=:I
We estimate I depending on the value of ~.
The case v € (—3,—2): By splitting the integration region and using the fact
that g € L?, we obtain

I <1+ sup / lv — w]**7 dg(w)
veERL J|v—w|<1

1

p/
<1+ sup / v — w|(2+7)p dw llgll e
vERE Jv—w|<1

Smp,d 1+ ||9||LP~

The case v € [—2,0]: The integrand is no longer singular so we use Peetre’s inequal-
ity from Lemma [2.1

2 2 2
v —w*™ < (v—w)*H <y (V) Y ()Y

L 2 into I to get

1< /Rd<<v1>“” + (7)) (@) dg(w). o

forv=w

2.1. The velocity field as a function of measures

The previous results established estimates for the pointwise variation of K, and
U¢[g] given a fixed measure g. We now investigate the measure-wise variation of K
and U€ given a fixed point.

Lemma 2.4. Fix e > 0 and let 7 be an optimal transport map in W, between
f,g € Z.(RY) so that g = 74#f. Then, we have

llogg * G=)(v) — log[f * G<](v)| < gwm@,f), v e R
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Proof. We first note that
gxG®(v) = /Rd G* (v —w)dg(w) = /]Rd G (v —7(w))df(w).

Using the fundamental theorem of calculus, we express the difference of the loga-
rithms as

loglg * G| (v) — log[f * G°](v)
= / — log [/R G*(v— (tr(w)+ (1 — t)w))df(w)} dt

/ Jra(7 VG&(U — (tr(w) + (1 = Hw))df(w)
f]Rd (w) + (1 = tyw)d f(w)

By definition, we have |7(w) — w| < Wy, (g, f) and moreover recalling (2.1), we see

that

dt.

1
IVG®| < =G*.
€
Applying these two estimates into the previous computations, we have
W (9,
logly = G¥](v) —loglf » G¥](w)] < 2=l9S), 0

The following technical estimates hinge on Lemma

Lemma 2.5. (Measure-wise difference in K) Fiz g' € Z2.(R?%) fori =1, 2 and
€ [-3,0]. Then for every v, w € R, we have the estimate

. 1 2
B (00) = K (o0)] S i (o= w7, o= w0 ) Wil ).

Proof. Here, we need to estimate
Kgi(v,w) — Kg2(v,w)
~Jo — w0 — w](VG* « {loglg" + G¥] — log[g? * GTH(v)
— VGe * {log[g" * G°] — log[g? * G°]}(w)).
By the fundamental theorem of calculus, we have an estimate for this difference

1
|v — w|?T / %VGE * {log[g" * G°] —log[g® * G°]}(tv + (1 — t)w)dt
0

< v —wt HVQG6 + {log[g" * G°] — log[g” GE]}HLOC :

Using Lemma and the comparison [V2G®| < £ G° (an extension of (2.I)), we
apply Young’s convolution inequality to deduce

1
Ky (v0,w0) = Ko (v,0)] S S5l = w7 Weo (g7, 6%).
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On the other hand, without estimating second-order derivatives, we can bluntly
prove

|Kg1 (v,w) = Kge (v,0)] < v —wP([VGE + {loglg" + G°] —log[g” * G°]}(v))|
+VG® x {log[g * G°] —logg” * G} (w)])
< 2fv — w*7||VGE + {loglg" * G°] — log[g? * G°]}| L.
Recalling and Lemma which say
VG < 267, lloglg! + 6]~ logle? = G| < S Weclg' 4°),
we use Young’s convolution inequality again to get
s (0,0) — Ko (0,)] < o — 0 W', 67). 0
Under minimal assumptions on the probability measures, we can obtain a Holder
estimate with respect to the W, metric.

Lemma 2.6. Fiz g, f' € 2(R?) fori=1,2 and v € (—3,-2]. Then, we have
the estimate

U%[g", f11(v) = U[g?, £2)(0)| S Weo(g', 9%) + W (f1, £2)*17.
Proof. Starting from the definition, we have

Ulg!, £(0) — U[g%, F2)( /K (v, w)df (w /K (0, w)df?(w)
_ /R (K (v, w) — Ko (v, w))df (w)

+ [ Kg(v,w)d(f — f*)(w)

Rd
=: Il + IQ.

We claim the following estimates

L] Se Woolg's97), | Se Wa(fF, )7

The term I is almost completely treated by Lemma [2.5] We can further estimate
the minimum by

1] S Wael'sg?) [ mino = w7 o = w)df )
R,

<Welg' o) / (0 — w)*™ df(w).

Rd

When 7 € (—3,—2], simply estimate (v —w)*"” < 1. This takes care of I so we
focus on Iy for the rest of this proof.
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Firstly, take 7 an optimal transport map in W, between f! and f2 i.e.

so(f1, £7) = esssupy,epalT(w) — wl.

Moreover, the following identity holds in Z(R%); f2 = 7#f!. This allows us to
rewrite the difference I as

I = / K o (0, w) — K o (v, 7(w))]df (w). (2.3)
R

We split the integration region in (2.3) into o = {w € R?||v —w| < 2W.(f1, f3)}
and its complement R?\.¢7. In the set .7, we begin with the blunt L> bound on K
from Proposition which implies

[Kg2 (v, w) = Kga (v, 7(w))] Se min(jv — w7, o —w[*)
+min(fv — 7(w)"7, Jo — 7(w) PF7)
S Weo(F1 £ + v — 7(w) 7.
For the second term, we simply use the triangle inequality
v = 7(w)] < |v—w| + |r(w) - w| < 3We(f', f?).
This gives
Ko (0, w) — Ko (0, 7(w))] Se Wao (1, £2)%7 (2.4)

which is independent of w so we have

/ﬂ [ Kg2 (v,w0) = Kg2 (v, 7(w))| df (w) Se Woo (1, f2)7.

Turning to the complement region R%\ &7 given as {w € R? | [v—w| > 2W.(fL, f?)},
we use Lemma [2.3] to obtain

K2 (v, w) — Ko (v, 7(w))] e |7(w) — wmax(jo — wl**7, Jv - 7(w)[**7).
Recalling that 2 + v < 0, the reverse triangle inequality yields
[0 = 7(w)| = v — w| = |r(w) —w| = Wee (', f?),

because |[v — w| > 2W (1, f2).
Therefore, from the previous estimate, we obtain

[Kg2(v,w) = Kg2 (v, 7(w))| Se [7(w) — w[Woo (f1, )7 < Weo (1, f2)°7.

This is exactly the same as ([2.4) for <. Integrating both inequalities against f!

yields
+ K — Ko (v, 7(w))|dfY (w
|I2| < </ ~/]Rd\ >| gz(’u,’w) g ( ) ( ))| f( )

WOO(flaf2)3+’Y' o
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If we impose more assumptions on the probability measures, in particular (A2),
we can derive linear stability with respect to the W, metric.

Proposition 2.5. (Linear stability) Fir gi, f* € Z.(R%) fori = 1,2 and v €
(—=3,0]. For v € (—3,—2), assume further that f* satisfies (A2). Then we have the
estimate

U%lg", f11(v) = U%lg?, f2)(v)]
(W) [Maan (F)Wes(9, 9%)
Se H{ Moy (f1) + Moy (£)}Woo (1, £2)], v € [=2,0],
Woo(ghs 92) + L+ 1 ee + 1F21lLe) Weo (f1, f2), v € (=3,-2).

Proof. Our starting point repeats the proof of Lemma [2.6] above. Using the same
notation from there, we split

Ul £1(0) = VI, £210) = [ (e (o) = Koplo ) )

+ [ Kgp(v,w)d(f! = f)(w)

We inherit the estimate for I; from the proof of Lemma which reads, using
Peetre’s inequality in Lemma [2.1] for v € [-2,0],

1, v € (=3,-2),
M2+’Y(f1) <IU>2+77 v E [_270]'
We focus entirely on I; in the case v € (—3,—2), we claim that
[L2] Se (L I e + 12 1e)Wee (1, £2).
In the case v € [—2,0], we claim that
|Bo| Se (0)7 (Main (') + Moy ()W (£, £2).

In both cases, we rewrite I5 in the following way; take 7 an optimal transport map
between f! and f? in Wy, so that we have

12:/ (ng(v,w)—ng(v,T(w))dfl(w), 2 =14fL
Rd

Applying Lemma and recalling the (anti-)symmetry of K2 (v, w) = —K g2 (w,v),
we have

‘Il| Se Woo(gly 92) X {

12| e /Rd jw — 7(w)| max(|jv — w7, v — 7(w)*F)df (w)

< Wl ) ([ (o= P o= rw) P ).
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We split the sum and reformulate the second term in terms of f2 using 7 to obtain
Ll S Wl £ ([ o= wPapi) + [ p-utarw). e
Rd R4

The case v € (—3,—2): By partitioning R? into {w € R%||v — w| < 1} and its
complement, a standard application of Holder’s inequality gives

1

/deﬁﬂdfl(w)gu(/ | |vw<2”>p’> £ e
R v—w|<1

and similarly for f2. Using the assumption (24+)p’ > —d, inequality (2.5) is further
refined to

2| Se.dvp A+ 2o + P20 Woo (£, £2).

The case v € [—2,0]: Since 2 + v > 0, we use Peetre’s inequality Lemma to
estimate

o = w7 < (0 —w)* T S ()7 (w)*

Inserting this into (2.5)), we get

Bl S P Wl ) ([ @ a2 :

3. The Continuum Model

This section is devoted to the proof of Theorem the well-posedness of (|1.3)). To

fix notation, we seek solutions in the following spaces:
C([O7T}"@F(Rd))v v e [7270]3
X, =X,(T) = 4 J
C([0,T]; Z(RY)) N L>(0, T LP(RY)), v € (=3,-2).

For v € (—3,—2), the exponent p corresponds to that of (A2). In particular, we
endow X, with the metric

dOO(fla f2) ‘= Ssup Woo(fl(t)’fZ(t))v vflv f2 € X’Y'

t€[0,T]

Given g € X, we first want to find f € X, solving

Ouf +V - (fU°[g) =0, f(t=0)=f" (P)

Well-posedness of then comes from ensuring the map g — f just described
has a unique fixed point in a closed subspace of X,.
Given a curve g € X, we denote by ®, the characteristic flow corresponding
to (]E) satisfying
d

&fbg(t,v) = U%[g)(®,(t,v)), ®,(0,v) =ve R (3.1)
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Proposition 3.1. Fize > 0,7y € (-3,0], g € X, and initial condition f° sat-
isfying (A1) and (A2). Then, f(t) = ®4(t, )#f° is the unique weak solution in
C([0,T]; 2(RY)) to (P).

Proof. The (local) Lipschitz continuity of U¢[g] is provided by Proposition
so the characteristic system has a unique solution, ®,, up to the flow map’s
maximal time of existence T* > 0. By Ref.[19] f(t) = ®4(t,-)#f° is the unique weak
solution in C([0,7*]; Z(R%)). For v € (—3,—2), Proposition implies global
Lipschitz regularity of U® hence ®, is globally defined and we can directly take
T* =T. For v € [-2,0], Lemmaexcludes blow up of ®, so we can take T* =T
here too. O

Lemma 3.1. Fore >0 and g € X, let @, be the flow map of (3.1) with mazimal
time of existence T* > 0. Then, we have the estimates

@) < {<v>exp{cs[supse[o,ﬂ Ma(g(s)]t}, v € (=2,0),

Vit e[0,T7].
<U> + C€t7 b aS (—37 —2],

Here, C; > 0 is a constant depending only on € > 0. In particular, ®, extends to a
global solution of (3.1) on [0,T].

Proof. We begin, for v € (—2,0], by differentiating 1|®,(¢,v)[* with respect to
t € (0,7*). Expanding the definition of U¢, we obtain

d1 ,
&5\‘1’9(15’””

= ®,(t,v) - U%[g](Pg4(t,v))

= Dy(t,v) - /Rd | @y (t,v) — w [ (t,0) — w] B (Py(t,v), w) dg(w), (3.2)

=:1

where we have abbreviated
B (v,w) := VG* xlog[g * G°|(v) — VG® xlog[g * G*|(w).

Notice that |B?| <. 1 by (2.2)). Our goal is to show [ Idg(w) < |®,] and then apply
Gronwall’s inequality. First, we split the integral into regions where |®, —w| < 1
and |®, —w| > 1. As 24 > 0, the former piece can be easily estimated as follows:

P, - /Rd Idg(w) = @, - (/l%wq Idg(w) + /q>gw>1 Idg(w))

Sl + [y wl IR, - uld|dgw).  (33)
|®y—w|>1

=:1I
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Turning to II, we use the fact that II[v — wjv = v — wjw and [P, — w|* <
2|®,|? + 2|w|? to estimate

H5@ﬁ/ By — w]|TI[B, — wlw dg(w)
|[Pg—w|[>1

[ Pl — i, - wie|dgw).
[®g—w|>1

Finally, since |®, —w| > 1 and v < 0, we can bluntly estimate the remaining
contributions by

IT < My (g)|®g|* + Ma(g)|Dy].

Putting this together with (3.3 and (3.2)), we have
d1
dt 2

Gronwall’s inequality gives the inequality for v € (—2,0].
Turning to the case v € (—3, —2], we write the integral form of (3.1)

<(I)g(t’ U)>2 Se Ma(g) <(I).q(t’ U)>2 :

t
By(t.0) ~ | = | [ U¥lgl(@,(5,0)ds| - .
0
The final estimate comes from applying Proposition O

Proposition 3.2. The space (X, ds) for vy € (=3,0] is a complete metric space.

Proof. This can be proven from the fact that (Z2.(R?), W) is complete and
metrises weak convergence 3% Moreover, the LP norm is lower semi-continuous with
respect to this topology. O

3.1. Moment and LP propagation
In this section, we derive the moment and LP propagation estimates we will need

for the fixed point argument to prove Theorem

Proposition 3.3. Fire > 0,7 € (=3,0], and initial condition f° satisfying (A1)
and (A2) and g € X. The unique weak solution f(t) = ®4(t, )#f° to belongs
to C([0,T); Z2.(RY)) with second moment growth estimate

My(f(1)) < M2(f0) exXp {CE ( es[l(l)pT] M2(g(5))> t}> vt e [0,7].

If, moreover, f = g (i.e. f solves (L.3)), then Ma(f(t)) = Ma(f°) for all t € [0,T].

Remark 3.1. The same propagation result applies for higher order moments. The
constant C. grows linearly with the order of the moment.
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The following LP estimate can be derived directly from standard facts about
solutions to the continuity equation which can be found, for example, in Refs. [19]

2. For completeness, we prove Lemma [3.2]in

Lemma 3.2. For fized ¢ > 0,y € (=3,-2) and g € X, we have the following
LP estimate for f(t) = ®4(t,-)#f° where fO € LP and ®, are as in (P) and (3.1),
respectively.

1F@Ollze < NN ze exp {Cc, 4, a(1 + esssupeopyllg(s)lee)t}, Vit €[0,T7.
In particular, f € X,.
Proof of Proposition We begin by writing the weak formulation of (]ED
against test functions ¢ € C°(RY),

d

G [ owan = [ o vlaens)

= //R?d v — w*TVe(v) - Hv — w]B* df(v)dg(w). (3.4)

We will derive the desired estimate by making use of <v>2¢R as a test function

in (3.4), where

— (2 —ageh =4t TS a0 secxm
or() =6 (F): )=o) =q | . P20 FeCE®).

Firstly, notice that V((v)* ¢z(v)) is supported in |v] < 2R and takes the form

1 d'(|v|/R
V() or(0) = (26m(0) + o T ) (35
=:P(v)
In particular, since & < \71| < ﬁ for large R > 1, the bound for &’ gives
V((v)? ¢r(v)) = P(v)v, with [P(v)| < 1. (3.6)

We start with the easier case of v € (—3,—2). By interpolating the estimates
in (2.2)), the function Vlog[g * G¢] is Holder continuous so we can deduce

v — w|2+7|BE\ <e 1, Bf =VG*® xloglg * G](v) — VG* x log[g * G%](w).

This greatly simplifies the double integral to the following:
1o = w0 oo - 1o~ w47 0)dg(w)
R

<c. / /IR (v) df(v)dg(w) < CM ().
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This establishes (a stronger version of) the result for v € (—3,—2). Turning to

the case v € [—2,0], we split the inner integral in v of (3.4) into regions where
|v —w| <1 and |v —w| > 1 obtaining a first reduction using (2.2]) and (3.6)

/ </ v/ ) o — w7 P(o)o - TI[o — w] B df (v)dg(uw)
weR {v:lv—w|<1} {v:|lv—w|>1}

Se Mo(g) M (f)

+ / / |v — w|*T P(v)v - T[v — w] B df (v)dg(w) .
weR J {v:|lv—w|>1}

=:1
(3.7)

For the term I, we use the identity II[v — w]v = II[v — w]w, |B*| <. 1, (3.6), and
Young’s inequality (cf. the proof of Lemma which give

< 2 2 _ ¥ _
s [ ) el e — ] 47 @y

< /eRd/ ool |v|| v — w]w| df (v)dg(w)
wl? v — wlv|df(v)dg(w
+/ | '/{MM}I v — wlo] df (v)dg(w)
< Mi(g)Ma(f) + Ma(g)Mi(f).

Collecting this estimate with (3.7]), we have

’/Amw—wF”VwV¢mmyH@—MBﬂu@mmw‘
Se (Mo(g)Mi(f) + Mi(g)Ma(f) + Mz(9)Mi(f)) < Ma(g)Ma(f)-

Inserting this estimate into (3.4) and integrating in time, we get

/ (0)? br(v)df,(v) < / (0)? Sr(W)Af W) + C. / Ma(g(s)) Ma(f(5))ds.
Rd Rd 0

By Monotone Convergence, passing to the limit R — oo with Gronwall’s inequality
gives the stated a priori estimate on the growth of the second moment of f.

Concerning the statement that f € C([0,T]; 2.(R%)), notice that @, is bounded
in [0,T] when g € X, according to Lemma Moreover, since f° has compact
support, f has compact support as a push-forward of f° through a bounded
flow map.
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Finally, in the case f = g, take ¢(v) = (v)> = 1+|v|? as a test function (justified
by the previous estimates) so that the right-hand side of (3.4) reads

d d

GIRCO) = 5 [ 0+ P)ne)

= v —w]? - Iv — w] B df(v)d f(w
_z//R\ [0 Ty — w] B d i (v)d fi (w)

— //Rd v — w\2+7(v —w) - v — w]| B df;(v)d fi(w) =

In plain words, My(f(¢)) is constant. |

3.2. Well-posedness of (1.3

In this section, we prove Theorem [I.1] by applying the contraction mapping theorem
to the solution map of (]ED denoted by S, : g € X, — f(t) = O,(t,)#f° € X,
(cf. Proposition and Lemma . We will leverage the propagation estimates
from Sec. to the following closed subspace of X,. For T' > 0, define

€ X, | sup My(f(1) < 2M5(f%)}, € [-2,0],
M) {{f subio M) S 7€ (-2
{f € Xy [esssupepomllf(O)lle <3/ Mee}, v € (=3,-2).
Remark 3.2. Fixb>0and k > a > 0. For T > 0, define the function
Fr:[0,k] = [0,400), Fr(z)=ae’™®.

Then, for every T < T := i log , it holds Fr < k. In other words, Fr : [0,k] —
[0, &].

Motivated by Remark we define the time horizon
log 2

T € [-2,0],
. 2C. Ms(f9) v €20
c =
. log 2 log% >
min , , € (-3,-2),
<Offmd 608,%d||f0||L1’ 7 ( )

where C, C, .q > 0 are the constants appearing in the exponential in Proposi-
tion and Lemma respectively. The plan of the following proof is to show
that S, is a contraction from M, to itself.

Proof of Theorem For fixed g € M,, we denote f = S,g (ie. f(t) =
D, (t,)#f°). Let us first consider v € [-2,0] and show f € M,. The estimate
of Proposition reads

sup Ma(f(s)) < Fr ( sup Mz(g(é’))>7

s€[0,T) 5€[0,T]
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where Fr is the function from Remark and the constants are a = My(fY), b =
C.. Moreover, we take the constant k = 2Ms(f°) > a = My(f°). This fulfils the
criteria of Remark so that for T'< Ty = #gf(fo), we have

sup Ms(f(s)) < 2Ma(f°).
s€[0,T]

This proves f € M, in the case v € [—2,0]. The case v € (—3, —2) follows similarly
from Lemma (which replaces Proposition and Remark

Existence and uniqueness: We now prove that .S, is a contraction on M., with
respect to the metric do,. We need to show that there is some universal constant
k € (0,1) such that for every g',g? € M., we have

dso (549", S19°) = sup. Woo (Sy9' (1), 197 (1)) < kdoo(g", g%).
telo,

Let us denote f? = S,g¢° for i =1, 2 so that f* € M, solves induced by ¢°. Let
us fix t € [0,7] and suppress the time dependence. We can use (®g1 x <I>gz)#f0 as
an admissible transport plan between f! and f2 and the following estimate35:

Woo(fla f2) = plgglo Wp(cbgl #fov q)gz#fo)
< lim ( / @1 (v) — B2 (v)] d f%)) " (3.8)
p—00 Rd

The crucial quantity to estimate is the difference between the flow maps. Notice
that we are only concerned with the difference for v € suppf® C Bg from (A1l).
In particular, for g', g% € M, and v € (—2,0], we will use the following growth
estimate from Lemma B.1]

(®,) < (Ryexp {C-Ma(f°)T}, i=1,2. (3.9)

Using the fact that the flow maps satisfy (3.1), we write again for fixed ¢ € [0, T
t
B (0) = @ (0) = [ U7[g")(1(5,0) — UF[gP) @y, 0))ds
0

:Avwm%ww»%ﬂﬂ@ﬂwm®

::Il

+/U%W%¢M%ﬂ%%%$@ﬂ&(wm
0

=:15

Starting with the difference I, we use the Lipschitz regularity of U¢ from Propo-
sition [2.4] to get

|I1| < A’Y(917 égl (S,'U), (1)92(87U))|@gl (va) - (I)gz(svv)"
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In particular, absorbing more constants into C., (3.9) gives the bound
A< {Cst(fO) (B)*" exp(Ce(2 +7)Ma(fO)T), v € [-2,0),
v =
Ceryar L+ 11£0]120), Y e (=8,-2).

Turning to I, we need to estimate the measure-wise difference of the velocity fields
U¢. An application of Proposition and (3.9) gives

(R)** My(f°)
T2 S Weo(g'(5), 9°(5)) § xexp (C=(2+7)Ma(fO)T), ~ € [-2,0],
L+l ), v € (-3,-2).

Inserting these estimates for I; and I3 back into (3.10), we have

|@gl (v) — (I)gz (v)] Ss)fo’%T /0 |(I>91 (s,v) — (sz (S, v)| + Woo(gl(s)792(s))ds.

Denoting the constant on the right-hand side by ¢ = c(e, f°) (the dependence on v
and T is bounded), an application of Gronwall’s inequality gives

B (0) = Bp0) < [ UIW(g! (). 67())ds

Notice that the previous estimate is independent of v and p > 1, hence when it is
substituted into (3.8), we obtain

Woo(f1(1), f2(1)) < C/o eI Was (g (5), g°(9))ds < (T = 1)doc(g", 9%)-

By reducing 7' > 0 even further (depending only on € and f°), we can ensure that
the Lipschitz constant e? — 1 =: k < 1.

Maximal time of existence: Having finished with the short time existence and
uniqueness of solutions to , we turn to the statement concerning the maximal
time of existence, Ths. The dichotomy for v € (—3,—2) comes from the standard
Cauchy—Lipschitz theory. For the case v € [—2,0], we were able to construct solu-
tions provided we could ensure

sup  Ma(f(t)) < 2Ma(f°).
t€[0,T'a]

On the other hand, the last statement of Proposition[3.3]shows that second moments
are conserved by solutions of (L.3); Ma(f(t)) = Ma(f°), for every ¢t € [0, Ta].
Thus, we can indefinitely repeat the contraction mapping argument and extend the
solution globally to any finite time horizon. m|

4. The Mean Field Limit

This section is dedicated to the proof of Theorem The initial computations for
both cases v € [-2,0] and v € (—3,—2) are the same which we present now until
they diverge. To fix notation, let f and p’v = Zil m;,i(y) denote the continuum
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and (any) empirical solution constructed from Sec. 3 I and Appendlx IAppendix C| respectlvely
f° denotes the initial data to f satisfying (A1) and (A2) while uj) = Z —1 Miby;
denotes the initial data of ™V satisfying (B1) and (B2). We define the following

“discrete” flow
d

SNt 530) = US [N (FY (1, 530),

FN(s,s;v) =v € RY,

t,s € [0, TV, (4.1)

such that 7,,(t) = min;; [v'(t) — vi(t)] > 0 for t € [0,TV] together with the
“continuous” flow

d € S;v
&F(t,s,v) = U [fI(F(t, s;v)), t,s € [0, Tl (4.2)

F(s,s;v) =v € RY,

Notice that TV > 0 may be taken as any arbitrary time horizon for v € [~2,0]
since pV is defined for all times and Proposition asserts that nl¥ () > 0 for
all times. The dependence on N € N for the time horizon TV in is only
relevant for 7 € (—3,—2) and this is investigated in the sequel. Here T,, > 0 is
the maximal time of existence of the continuum limit solving as indicated
in Theorem We may choose T,,, = +o0 for v € [—2,0] while a priori it may be
finite for v € (—3,—2). From the discussion in Sec. [3| and [Appendix C, the flows
in and are well defined. Fix 0 < tg < min(T},, TV). Take 70 an optimal
transport map in W, between f(to) and u® (¢9) i.e. u (to) = 7°#f(to). From the
construction of f in Sec. |3| we have that f(t) = F(t, to; -)#f(to). Moreover, we
also have pV (t) = FN (¢, to; -)#u" (o). Using a composition of all these maps, we
can define a candidate transport map to estimate the W, distance between f(t)
and p? (t) by

() = pN (), where 78 = FN(t, to; -) o 70 0 F(to, t; -).

For any 1 < p < oo, the W, Wasserstein distance can be estimated by

WP (™ (1), £(1) < /Rd [F(t, to; v) = FY(t, to; 7°(0)) [P dfe ().
The limit p = co is then given by
™ () = W (1N (1), £(1)) < IF (2, to; -) — FN (¢, to; TO('))”LOO(f,,O)'

By definition of the flows defined in (4.1)) and (4.2)), we have

% . FN(t, to; 7°(v)) — F(t, to; v) = U [N (to)](7°(v)) — U?[f(t0)](v).

Therefore, we can estimate

% . ™ () < U™ (t0))(r°(0) = ULf (t0)] ()]l L= (1) (4.3)
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We expand the velocity difference in (4.3) using the fact that 79 transports fi,
to pgy

U= (o)) (7%(v)) = US[f (to)] (v)
/ K1) (77 (v), w )d:utg / K (to) (v, w)d fi, (w)

- / (B ) (), 7)) — K (0 ) ()

[y (70,7 0) — Ky (7 (0), 0) + Ky (), w) = K (0,0)

=:D;

X dfto (w)

, {Kuif) (v,w) — Ky, (v,w)} dfi, (w). (4.4)

=:Do

Starting with the Do term, we need only concern ourselves with bounded v and w
in the integrations owing to Lemma In particular, the regions of integration
can be restricted to

Rexp(Ceto), 7€ (—2,0],
jol, ol < (15)
R+Cst07 gaS (737 *2)'
By Lemmas [2.1 and 2.5 we can estimate the Dy term by
[ 1al iy ) e Waclil i) [ min(fo =l fo = w)dfy )
S Woo(ﬂigafto)
y R**7 exp(Ce(2 +9)to) M214(fro), v € (=2,0], (16)
1, ye(=3,-2).

As for the D; term, we can complete the proof of Theorem for v € (-2,0].
Proof. (Proof of Theorem for moderately soft potentials) Building on the pre-

vious discussion, we only need to estimate the D; term. Using Lemma twice,
we get

/ 1Dy dfyy ()
Rd
<. / 179 (1) — | min(r(w) — T2w)P7, [7(0) — w[*H)d iy (1)
BRexp(cet)

+[r0(v) = v min(|7°(v) — w7, Jv — w*)d fy, (w).

BRexp(cetg)
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The assumptions (B1) and (A1) say W (ud', fo) — 0 and suppfy C Bg, thus
for sufficiently large N > 1, we must have suppul’ C Bry1. Moreover, 70 pushes
forward f;, to ,u%’\g, so we obtain Im7°% C B(R41) exp(C.to) from . Hence, we can
bluntly estimate the minimum terms using Lemma [2.1| to obtain

[ 1Dl (w) < 8 ez )00 ([ 17(0) = wlafiw) + 17(0) = ol

< 2R*Y7 exp(C(2 + 7)to) Woo (114 » f1o)-

Collecting this and (4.6)), plugging them into (4.4) and then (4.3)), we arrive at
d

el WN(t) <. R2+veCs(2+v)to77N(t0).
dt T

As tg € (0,T) was chosen arbitrarily, a direct application of Gronwall’s inequality
gives

Woo (™ (1), f(1)) < Woo(g, f0) exp {CIR*F 7T}, vt € [0,7].
This implies the mean field limit for v € (-2, 0]. |

Proof. (Proof of Theorem [1.2]for very soft potentials) For v € (-3, —2), the same
method to estimate the Dy term in does not work. Moreover, the construction
of the particle solutions pV is only local in time up to some time horizon 7% > 0
(cf. which may be strictly less than T,,, and may also degenerate to 0 as
N — 400. We overcome these issues to show the mean field limit by repeating the
inter-particle distance analysis from.” The general steps from” to show 7% (t) — 0
are to couple the evolutions of ™V and 1 together in the following way where we
recall 77,1,\{ denotes the inter-minimum particle distance for the particles in v

(0 1= min v/ (1) — o/ (1)

(1) We show first in Sec. the growth estimate of 1 coupled with 7,

d a4
77 Sea V([ F ) (14 0™)* () 7). (4.7)
(2) Then in Sec. we obtain the decay estimate of 7,, coupled with 7
d a4
2m Rer ~Mm (L [ F 1) (14 ™) () 7). (4.8)

(3) The coupled system (4.7)) and (4.8)) together with (B2) allow us to deduce both
liminfx oo T > T}, and ¥ (t) — 0 for all times ¢ € [0, T},). This is performed

in based on the argument in Ref. [7. O

Since the velocity vector field U® depends on the solution, we cannot directly
repeat the arguments from Ref. [7] to establish (4.7) and (4.8). Nevertheless, once
these estimates are proven, step (3) follows exactly as in Ref. [7l which we leave

to Eﬁﬁenaix |§ for completeness.
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4.1. Step 1
We focus on the D; term from (4.4) recalling that (4.6) implies

[ 1als ) S o).

Proposition 4.1. For fized € > 0 and y € (=3, —2), we have the estimate

d
7

/Rd D1l dfey(w) Serypr 1Y (14 | frollzo) (1 + (™) () ).

Substituting these estimates for D1 and Dy into (4.4) and then (4.3) gives (4.7)
completing the first step.

Proof. Using (2.3)), we obtain
1D1] Sey |7°(w) — wlmax(|r®(v) — w**7, |7(v) — 7°(w)[**7)
+7%(v) — vl max(|7(v) — w7, Jo — w[**7).

Integration region |v — w| > 4n™: We first deduce

[P0(0) = 70)| 2 o — w] — () — o] — |7 (w) — w] > Jo | 29" > LY

The second inequality is obtained by remembering 7° is an optimal transport map

in W, between f(to) and ™ (o). Similarly, we have the estimate

3l —
P00) ] 2 o — ] ~ [r(0) ~ ] 2 o — ] " > A0
Overall, these estimates lead to
D] ey 1™ v —w]*H7

and integrating over {w € R?||v — w| > 4™V} yields

[ IDidfw) S 0 ( / +f ) 0= WP 4y ()
lv—w|>4nN AnN <|v—w|<1 [v—w|>1

Svlv nN(HftoHLP +1).
Integration region |v — w| < 4n™: Here, we do not use the cancellations in
Dy = K~ (TO(U),TO(w)) — K~ (v,w),

instead, we estimate each term using Proposition Since Im7° C {v'}¥,, if
7(v) = 7%(w), then the Hélder regularity of log[u * G¢] (after interpolating the
estimates in (2.2))) gives K~ (7%(v), 7%(w)) = 0. Otherwise, we use |7%(v) —7%(w)| >
Nm and Proposition [2.2] to deduce

2+
D] Se ()™ H v — w7
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By Holder’s inequality, the integral can be estimated by

2
[ mrlasa) s [ o — w7 dfyy () + ()"
v—w|<4n

[v—w|<4nN

<[ dfyy ()
[lv—w|<4nN

ool / v — ]+ du
[lv—w|<4nN

1

7

+ </ 1dw> ()2
[lv—w|<4nN

445 4
St feolloe (™) 257+ ()2 (™) 7).

Finally, choose two indices i, j such that 7)) = v’ — v7|. We seek to estimate
Nm against i by looking at where 7° sends the midpoint Y+ In the case that

‘ 2
# ¢ suppf, then we can define 7° to be whatever we want as it does not affect

IN

the W, distance. In particular, we can assign 7°(v) € {v*}}¥, for every v ¢ supp f°
without changing the transport cost. Suppose

vt + v ;
7'0< 5 )zvke{vz N

Without loss of generality v # v;, and we have the following lower bound

PN > |0 A W Ukiv’#vj _ kivi+vi_vj
2 2 2 2
. 1 . . 1
> [of — of] — St — o] 2 2.
This implies Y < 2n"™ which simplifies
441 T4y
L 1P ) S 0N )l .
v—w|<4n

4.2. Step 2

Having derived an upper bound for the growth of ™ coupled with Y, we need to
find a corresponding lower bound for the decrease of n)¥ coupled with " to close
the system.

Proposition 4.2. The minimum inter-particle distance satisfies the lower bound
for its decay

d
at’”

d

N e =N ) L+ ™) ().
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Proof. Choose two indices i, j = 1,..., N such that [v’ — v7| = nY where we will
suppress time dependence for simplicity. We have

St 03] 2 U] 0) — U0

Y

. (K (v, w) = K (07, w)| dp® (w)

== [ 1 (0 0) = s (07 () ),

Here, we have set 7 as an optimal transfer map in W, such that p™¥ () = 74 f(t)
for t € [0, min(T, T?)). We split the integration into the following domains:

o = {w:min(jv’ —w|, [V —w|) > 29V}, B =RN.

Starting with 7, we use the inequality

i
0 = 7 w)| 2 o — ] — o — 7w)] 2 o — ]~ > L

and Lemma 2.3 to deduce

]/ K o (0, 7)) — K (09, 7(w))] df (w)
MJW—M/mev—ﬂ>WWW (W) f (w)
<2- (2+~/ v]\/ w‘2+v + |Uj _ w|2+7)df(w)

Sy i (L 1 fllr)-

In the last line, we have bluntly estimated

/wtw“mmws/wtw“wmm
o R4

i 2+
<f v [ e ar

[vt—w|<1

with the usual Holder’s inequality for the becond term and similarly for v7.
Turning to the region %, since Imm C {v'},, as soon as v’ # 7(w), we must
have

0" = 7(w)| >y,

with a similar estimate for v/. By further blunting the L°° estimate in
Proposition we obtain

7 i 2
K v (v, 7(w))] <o [of = 7(w) 27 < ()7
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If v = 7(w), then the Holder regularity of Vlog[u® * G¢] from ([2.2)) gives
K, ~(v',7(w)) = 0. The familiar method using Holder’s inequality gives

/
/ df(w) < (/ dw) ’ Iflze < ™) 7 (£ o
B B

Putting these two estimates together, we treat the full integral over % by

/ K v (v, 7(w) = Kyw (v, 7(w) ] d f (w) S (n%)QH/ df (w)
B B

d
7

< ™) )N e

Finally, we add up the integrals over &/ and £ to get

[ B (0 7)) = Ko (0 () 4 )

d
v

S 0N+ (I F 1) X+ (™) (). O

Appendix A. Proof of Lemma [2.3

The structure of our kernel is more general than those considered in Ref.[7, but the
idea is the same and we provide the details for completeness.

The case v € [—2,0]: The fundamental theorem of calculus with Proposition
gives

1
d
|Kg(v1,w) — Kg(vo,w)| = /aKg(tU1+(1—t)v2,w)dt
0

1
< |v1 — v2|/ [tvg + (1 — t)vy — w]*Tdt.
0
Up to a constant depending on -, the integrand can be estimated by
[toy + (1 — t)ve — w7 < oy — w7 + vy — w|* T
< max(|v; — w|*T7, Jvg — w|*T7).

The case v € [—3,—2): Set I'(t) = (1 — t)v1 + tva — w and we separate into further
cases.

Case 1 - For every t € [0,1], we have [['(t)| > % min(Jv; — w|, [vz — w|): We can
repeat the previous computations almost exactly and recover the desired estimate.
Case 2 - There is a t € [0,1] such that [I'(t)| <  min(Jv; — wl, jv2 — w|): We need
to perturb the original contour I" to avoid the possible singularity. Notice that we

can find ¢ € (0,1) such that |T'(¢)| < 1 min(Jv; — wl,[v2 — w|). We first take (the
unique) t,,, € (0,1) such that

[(t,,)| = min |T(¢)].
[T () tgég]\()l
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Next, define the other two time points where |I'(¢)| = § min(Jv; — w|, [vz — wl),

1
t; := inf {t €[0,1]: IT(t)| = Zmin(|v1 —w|, lvg — w|)},

1
ts := sup {t e [0,1]: |T(t)| = Zmin(|v1 —w|, |ve — w|)}

By continuity of |T'(t)|, we have that all ¢,,, t;, ts € (0,1). The triangle formed by
connecting the vectors I'(¢;), T'(ts) — I'(¢;), and T'(ts) is isosceles so the following
quantity is well defined (see Fig.|A.1

ri= [D(t;) = D(tm)| = D(tm) — D(t)]-

We wish to apply the fundamental theorem by taking the contour connecting
v1 —w to vy — w that traces a semicircular arc from I'(¢;) to I'(¢s) in the direction
furthest from the origin (the green arc in Fig. . More precisely, the direction
furthest away from the origin is defined as

T(tm)
T (tm)]’
r= ‘Ij(fi\)flﬁ(fflz)‘
<,,,, ,,,,, e
A(0)
6 (tm)
V) —Ww - 4 V) — W
r l‘,‘) F(ts)
| i/ Al N SUEINL o IR BN AL 1
4“““\“‘} ll‘.‘\; \\‘] N llllllll‘ 7 4||lll\‘ll l\‘. |7 |l‘/

Fig. A.1. Simplistic visual perturbation of I'(t) to avoid the singularity.
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or if D(t,,) = 0, take any e € S¥~!. For a given angle 0 € [0, 7], the green arc can
be parameterised by

A(O) :=T(ty) +r (cos GM + sin@e).

r

Observe that by the (reverse) triangle inequality and the fact that e 1L T'(¢;) —T'(¢m),
we have the lower bound for all 6 € [0, 7]

[AO)] = [T(tm)| =7 = [L(tm)| = [T(t:) = T(tm)| = [D(8:)]

L.
= me“vl —wl|, |vg — wl). (A1)

Putting these pieces together, we define the perturbed contour I : 0,t; +7+1—
ts] — R9 by

r(t), telo, t],
D(t) := { At —ty), t et ti +ml,
D(t—ti—m+ts), t€ti+m ti+m+1—ts.

We will apply the fundamental theorem of calculus on each of the three pieces of T
to estimate the difference

[ Ky (01, w) = Kg(v2, w)]|
< K (D(0) + 1w, w) = Ky (D(t:) + w, w)]
+ | Kg(D(t:) +w,w) — Ko(D(t; +7) +w, w)|

+ K (T(t; + ) +w,w) — K (Dt + 7 + 1 —tg) + w,w)|

t; 5 ti+m 5
g/ qu(F(t)+w,w)’dw+/ Lk () + w, w)| duw
L@ L
tibmtl—ts | g R
+/ dtK (T(t )—l—w,w)’dw =T\ + T+ Ts. (A.2)
ti+m

Starting with 77, the chain rule gives
t; ~
T1 < |'U1 — U2|/ |VUK9(F(t) + U/,’LU)| dt.
0

Using the derivative estimate in Proposition and the fact that |T'(t)] >

1 min(|v; — w, [ve — wl) for t € [0,¢;], we obtain

Ty Se | — U2|/ (t)**dt

i
< vy — v2|/ max(|v; — w|*™7, jvg — w[*T7)dt
0

< ti|vg — va| max(|vg — w\2+7, |vg — w|2+7). (A.3)
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Similarly for T3, we have
T3 <. (1 —ty)|v1 — vo| max(|v; — w|*T7, Jvg — w|*T7). (A.4)

We now turn to T5, we substitute A(t — ¢;) into this piece and use the derivative
estimate from Proposition with the chain rule to get

ti+m
T /Sa /
t.

i

At —t;)| |A(t — t;) P dt.

dt

Recalling the definitions of r (this is the length of a particular segment of [v; —
w, vy —w]) and A together with the lower bound (A.1), we use

d 1
’th’ =r<|vy —ve| and |A4|> Zmin(\vl —w), |vg — wl)

so that we have
Ty Se mlor — vo max(joy — w]**7, [vg — w[**7).

Putting this inequality with (A.4) and (A.3) into (A.2), we achieve the desired

result.

Appendix B. Proof of Lemma

By our abuse of notation from interchanging probability measures with their den-
sities, we write down the explicit formula for f(¢,v) as a density

B fO(@g 1 (t,v))
 [det(Vey (¢, @5 (1, 0))]

f(t,v) (B.1)

Here, the inverse <I>g_1 should be thought of as the “reverse” flow map to ®, where
the direction of time has been reversed. Changing variables with (B.1]), we have

. )P
Jisoran= [ eos Sl (B.2)

We turn to estimating the denominator in the integrand of (B.2)). Again, standard
facts about the flow map ®, from Ref. 19 give the following formula:

detV®y(t,v) = exp {/Ot V- Ua[g](q)g(s,v))ds}.

From an application of the Dominated Convergence Theorem and Proposition
we have

¥, - Uslg)(v)] < / IV, - Ky (0, )| dg(w)

Se [ lo=wPdgw) < 14 €. alglur
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The last computation is obtained by the usual method of splitting the integration
region between |[v — w| < 1 and |v — w| > 1 recalling 2 + v < 0. Inserting this
inequality into (B.2), we obtain the desired estimate

/ F(t0)Pdo < ( / fo(v)l”dv> exp{Cery a(p — 1)(1 + esssup,eo.z1ll(s)l|10)t}-

Finally, Proposition already proved f € C([0,T); Z.(R%)) and the L{° L prop-
erty is clear from the estimate we have just proved.

Appendix C. The Interacting Particle System

This section is concerned with proving Lemmal[I.1} the well-posedness of the particle
system described in . Throughout this section, the number N € N of particles
is fixed as well as the positive weights {m;}}; and initial points {v}}¥ ;. We denote
the initial empirical data by ul’ = Zi\;l my, N5v3~ We can apply the same arguments
from Sec. [ for v € (—2,0].

Proof. (Proof of Lemmal/l.1|for —2 < ~ < 0) The initial empirical data p’ satis-
fies (A1) with radius of support Ry := max;—;__ x |v§|. Applying Theorem for
any T > 0, we have the unique solution p (t) € X, (T'). Moreover, Proposition
says that () can be represented as

P () = @y ()0

where ®,,~ is the (unique!) flow map in (3.1) induced by the curve pV. Since p?
is the push-forward of p{, it is also an empirical measure with the form

N
Ny .
pt(t) = Zmi»N(Sq:MN(t,vé'N)'
i=1
Moreover, for every i = 1,..., N, ®,~(t, fué’N) solves precisely (|1.6). O

The following proposition gives a lower bound on the minimum inter-particle
distance

Ny — o N
M) = min () = (0]

Proposition C.1. (No collisions in finite time) Fiz e, T > 0, € (—2,0], and
ni(0) = min,z; [v§ — vy > 0. Then, there is a constant C = C(e, T, Ma(ud’)) > 0
such that the minimum inter-particle distance decays with exponential rate

T (8) 2 11 (0) exp{—~Ct}, VYt € [0,T].
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Proof. Choose two indices i, j = 1,..., N such that )Y = |v! —v7| where we will
suppress the time dependence for simplicity. We have

Y

o Tl (O )

Y%

—/ Ky (0, w0) — K (7, )] dp™ ().
R3

The goal is to estimate the integral. Firstly, we simplify the integration by recall-
ing that suppu is bounded. Indeed, setting R = max;—1,_n |0§|, Lemma
implies

(v') = (D, (vh)) < Rexp(CeMa(pp)t), Vit e [0,T].

Applying Lemma [2.3] to the difference of the kernels, we have
[ K0~ Ko (07wl ()
suppuN

Sepy 0" =] max(|v’ — w>*, Jo? — w7 dpN (w)
suppu®Y

Sy Rexp(CoMa () YD) o — v, o

In the case v € (=3, —2), we can no longer apply Theorem directly, since it
requires an LP assumption on the initial data pj)” which is not valid for empirical
measures. In particular, the vector field is no longer Lipschitz regular (cf. Proposi-
tion so we must make do with Hélder regularity (cf. Proposition .

Proof. (Proof of Lemma for —3 < v < —2) We revisit the proof of Peano’s
theorem using Schauder’s fixed point theorem to construct solutions to (1.4). We
set X = C([0,T]; R%) and define the solution map S : X — X by

t
(Sv?)(t) := v} +/ U (s)](vi(s))ds, i=1,...,N.
0

This is well defined and certainly Sv® € X for each v* € X owing to the uniform
bound for U® in Proposition when v € (—3,—2). We seck to prove (1) S is
continuous and (2) S(X) is pre-compact.

S is continuous: For every i = 1,..., N fix v®", v* € X such that v*" — v% in
X. We label their corresponding empirical measures

N N
/LN(t) = Z mi(qu‘,(t), [IJN’TL (t) = Z mlévm(t)
i=1 =1
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‘We have the estimate

[(Sv™)(t) = (Sv')(D)] S/O U= ()] (0" (5)) = U [ (5)] (v"(5))Ids

S/ U= ()] (v"" (5)) = U [™" (5)] (" (5))]
0

HU [ (5))(v'(5)) = U[u™ (s)] (v () Ids.

Applying Proposition to the first difference and Lemma [2.6] to the second dif-
ference without being precise about the constants, we obtain

I(Svi’”)(t)*(Svi)(t)lSm/0 07" (s) = v'(s)PF7ds

+/0 Woo (™7 (8), 1™ (5)) + Woo (" (), 1™ (5)) 7 ds.

The first integral converges to 0 as n — oco. As well, the infinite Wasserstein distance
is also continuous with respect to the particles; v — v*in X foreveryi=1,...,N
as n — oo implies W, (u™¥"(s), u™ (s)) — 0 as n — oco.

S(X) is pre-compact: We fix v* € X for every i = 1,..., N in this step. Firstly,
it is clear that S(X) is bounded using Proposition

[(Sv) ()] < [v(0)| 4+ Cet, VYveX.

Turning to equicontinuity, fix ¢; < t5 both in [0, T]. Applying Proposition again,
we have

(S0%)(t1) — (Su)(t)] < / U ()]0 (5))] ds S [t — ol o

t1

Appendix D. Step 3

In this appendix, we prove step (3) from Sec. Which establishes Theorern The
results of Secs. [.1] and [4.2] yield

pi, (nN)1+’Y)

m )

&nN Se N+ fllee) X+ (n7)
(D.1)

d
T Ze =N A+ ) 1+ ()7 () ),

da
when t € [0, min(T},, TV)). If (UN) »’ (77%) I+ < 1, then we immediately obtain
N () < N (0)eCOHIS Lo,

nN(t) > N (0)e= €I et = ¢ € [0, min(T,, TV)). (D.2)
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We wish to show that (D.2)) holds for all ¢t € [0,7},) as N — oo which amounts to
showing TV > T, when N is sufficiently large. Define first

() M ()
=y O oy

Thus, we rewrite (D.1) in terms of a, b, and £y

En =1 (0)7 iy (0)1F7.

d a
@ S all+ [ fle)(1+ Enar b ),

d A
370 Re O+ [ fle) (1 +Enar’ o),

Since a(0) = b(0) = 1 and we assume by (1.7) &y — 0 as N — oo, when N is
sufficiently large, we can find TV (< TV) such that

Enar bt <1, Vite o, TN (D.3)
Now by (D.2), we have similar estimates
a(t) < eCUHIflzr)t b(t) > e~ COtIfllze)t ¢ e [07T>ZV].

Returning to (D.3), we obtain an estimate for 7V given by

e PO (=)t < 1 g < log £ .
O+ /1) (% — (1 +7)
This means that ij has the lower bound
B log &
C+fll) (& = (1+7)

However, since ((1.7) means £y — 0 as N — oo, this implies

<TN.

lim inf TV = oo.
N—o0
Since TN < TV, we have that TV > T,, for N > 1 sufficiently large.
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