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ABSTRACT

In social choice, traditional Kemeny rank aggregation combines the
preferences of voters, expressed as rankings, into a single consensus
ranking without consideration for how this ranking may unfairly
affect marginalized groups (i.e., racial or gender). Developing fair
rank aggregation methods is critical due to their societal influence
in applications prioritizing job applicants, funding proposals, and
scheduling medical patients. In this work, we introduce the Fair Ex-
posure Kemeny Aggregation Problem (FairExp-kap) for combining
vast and diverse voter preferences into a single ranking that is not
only a suitable consensus, but ensures opportunities are not with-
held from marginalized groups. In formalizing FairExp-kap, we
extend the fairness of exposure notion from information retrieval to
the rank aggregation context and present a complimentary metric
for voter preference representation. We design algorithms for solv-
ing FairExp-kap that explicitly account for position bias, a common
ranking-based concern that end-users pay more attention to higher
ranked candidates. epik solves FairExp-kap exactly by incorporat-
ing non-pairwise fairness of exposure into the pairwise Kemeny
optimization; while the approximate epira is a candidate swap-
ping algorithm, that guarantees ranked candidate fairness. Utilizing
comprehensive synthetic simulations and six real-world datasets,
we show the efficacy of our approach illustrating that we succeed
in mitigating disparate group exposure unfairness in consensus
rankings, while maximally representing voter preferences.
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1 INTRODUCTION

In social choice, the goal of rank aggregation rules, such as the
widely popular Kemeny rule [7], is to combine the vast individual
preferences of voters, modeled as rankings, into a single consensus
ranking. Both the initial collection of voter input rankings, called a
preference profile, and the consensus ranking, order the same set of
candidates. Rank aggregation is used to collectively, from diverse
preferences, prioritize job applicants for employers [26], patients
for medical care [18], and proposals for funding [13]. For each of
these contexts it is paramount to generate high-quality consensus
rankings that not only represent the individual preferences of voters,
but are also unbiased. Namely, rank aggregation (i.e. voting) rules
bear responsibility to ensure their consensus ranking does not
withhold opportunities or resources from candidates belonging to
marginalized or protected groups (e.g., racial or gender).

In this work, we thus focus on modeling and achieving the fair
treatment of ranked candidates in consensus rankings. The fair
ranking of candidates is complicated by the phenomenon, known
as position bias [25], i.e., that the end user’s attention is concen-
trated on higher positioned candidates, and their attention decays
or altogether stops before the entire consensus ranking has been
seen. The attention a ranked candidate receives, called exposure, is
tied to the candidate’s position in the ranking. Mitigating disparate
group exposure ensures fairness for ranked candidates in the pres-
ence of position bias, which commonly plagues the practical use of
consensus rankings.

Unfortunately, prior work studying fairness concerns in Kemeny
rank aggregation [9, 29, 43] does not guarantee the mitigation of dis-
parate exposure amongst ranked candidate groups. As we show in
Section 7.3, the representation-based method of [43] and the cross-
group pairwise method of [9, 28] sometimes even increase disparate
exposure relative to the traditional Kemeny rule. Moreover, in [43]
the consensus ranking is generated from a single voters ranking.
Bridging this gap, we address the challenging problem of develop-
ing rank aggregation approaches that combine the preferences of
numerous voters in a way that mitigates disparate exposure unfair-
ness and maximally represents voter preferences. As the Kemeny
rule is pairwise, we must integrate exposure (by design, a listwise
concept) into pairwise methods. Further, Kemeny rank aggregation
is NP-hard, without considering integrating fairness objectives.

In particular, we extend the commonly accepted fairness of ex-
posure notion from information retrieval [39] to the rank aggrega-
tion context, and design a complimentary metric to quantify voter
preference representation in a consensus ranking. We formulate
these metrics to have intentionally aligned interpretations: range
in [0, 1], whereby 1 is best. This ensures easy comparison between
the fairness and preference representation objectives they quantify.
Utilizing these metrics, we introduce the Fair Exposure Kemeny
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Rank Aggregation Problem (for short, FairExp-kap). Addressing
this new problem, we design exact and approximate techniques,
explicitly handling the concern of position bias and including an
easy-to-use parameter controlling how much disparate exposure
mitigation is applied to a given scenario.

This controlled ability to tune bias mitigation provides practition-
ers with the flexibility to incorporate their domain knowledge when
deciding on the appropriate amount of fairness intervention. Our
exact epik method, explicitly integrates fairness of exposure into
the Kemeny rule by finding the ranking that has minimum Kendall
tau distance from voter preferences subject to fairness of exposure.
Our approximate method epira is highly flexible and provably opti-
mal at representing within-a-group voter preferences (Theorem 6),
and we demonstrate it works not only with the Kemeny voting rule,
but can be used with any other voting rule. Our work demonstrates
that we can succeed in generating consensus rankings in a way
that both mitigates disparate exposure and maximally represents
the preference of all voters. This research can benefit groups of peo-
ple who are adversely impacted by traditional consensus ranking
processes. This work makes the following technical contributions:

• We formalize the problem of mitigating disparate exposure
in Kemeny rank aggregation as FairExp-kap, along with
metrics for quantifying its candidate fairness and voter pref-
erence representation objectives (Section 4).

• We introduce epik, a technique for solving FairExp-kap
exactly, that incorporates non-pairwise disparate exposure
constraints into the pairwise Kemeny integer program (Sec-
tion 5).

• We design epira, an approximation technique for solving
FairExp-kap efficiently by repositioning candidates within
a pre-computed consensus ranking (our implementation sup-
ports five voting rules). We prove that subject to fairness
of exposure, it maximally represents within-a-group voter
preferences (Section 6).

• Through comprehensive simulations using the Mallows
model and experiments on six real-world datasets, we show
the efficacy of our approach. We observe that our algorithms
outperform both the standard Kemeny rule (Section 7.2) and
prior fair Kemeny rule methods for solving FairExp-kap
(Section 7.3). We confirm Theorem 5.1 in that epira opti-
mally represents within-a-group voter preferences (Section
7.4) and show the generality of epira using five alternate
voting rules. Based on our study we recommend its use with
the Copeland rule.

2 RELATEDWORK

Kemeny rank aggregation is a well-studied problem in social choice
[7, 12, 32, 37]. We present fairness-aware algorithms for Kemeny
rank aggregation that mitigate potential disparate exposure among
protected groups of candidates (harms of allocation). There is a rich
line of related work that also proposes variations to Kemeny rank
aggregation. Unlike our work, this literature does not ensure the fair
treatment (exposure) of ranked candidates. This includes designing
web search engines [3, 16], addressing settings where voters provide
partial rankings [48], settings where candidates become unavailable

[4], where candidates are voters [26], a privacy-preserving variant
[1] and a set-wise variant [19].

Recently methodologies for Kemeny rank aggregation consider-
ing other fairness definitions have been proposed [9, 28, 43]; they
do not directly translate to our target problem of mitigating dis-
parate exposure amongst candidate groups (as shown in Section
7.3). [9] propose pairwise Fair-Kemeny (PFair-Kem) which extends
the procedure from [28] to multiple groups.

PFair-Kem addresses cross-group pairwise comparison fairness
in the consensus ranking. Fairness is ensured only when the en-
tire ranking is considered [9]. This is not suitable for applications
where the consensus ranking is a list that is used top down or not
entirely viewed or displayed [20, 21]. [43] proposes Rank Aggre-
gation p-Fairness (RAPF). RAPF randomly selects a single voter’s
ranking and corrects it to satisfy p-fairness (a representation-based
criteria that each group is proportionally represented) [43], which
does not address position bias. Moreover, RAPF lacks a meaningful
consensus process, by using a single voter’s preference it priori-
tizes the preference of one voter, whereas the opposite (namely
non-dictatorship) is a common and desirable voting rule property
[7]. PFair-Kem and RAPF achieve altogether different fairness ob-
jectives. Thus, unsurprisingly, when we compare against them in
our evaluation study, Section 7.3, they significantly under-perform
our introduced techniques in mitigating disparate exposure.

Also, at the nexus of social choice and algorithmic fairness, is
fair multi-winner voting [8, 10, 33]. This context differs from our
setting since an unordered subset, sometimes called committee, of
candidates is produced from voter rankings or chosen committees.
This setting selects, but does not order, 𝑘 candidates from 𝑘 < 𝑛

candidates. Additionally, [8, 10, 33] is not applicable to fair rank
aggregation due to the distinct difference in fairness concerns be-
tween the two problems. In multi-winner voting, unfairness results
from demographic groups being underrepresented in or excluded
from the chosen candidate committee. Instead, in our rank aggrega-
tion context (e.g., ordering all 𝑛 candidates), unfairness results from
groups being denied the attention of the viewer(s) of the consensus
ranking.

Lastly, since its introduction in [39], fairness of exposure has
underpinned much related literature in fair information retrieval.
However, unlike our work, this literature does not consider vot-
ing, in particular the setting of multiple rankings, nor the prob-
lem of explicit preference aggregation. Examples include fairness
metrics [15, 39, 44], learning-to-rank applications [34, 40, 45, 46],
outlier-aware fair ranking [23, 36], online fair ranking [22], and
multi-stakeholder fair recommendation [42]. For recent surveys of
fairness in ranking and recommendation, see [17, 35, 47].

3 PRELIMINARIES

Here, we introduce standard terminology and notation [7], setting
up our rank aggregation context, as well as the mathematical notion
of fair group exposure.

3.1 Notation for Rankings and Rank

Aggregation

Our setting involves finite sets 𝑉 = {𝑣1, ..., 𝑣𝑛} of 𝑛 voters and
𝐶 = {𝑐1, ..., 𝑐𝑚} of𝑚 candidates (also called alternatives or items).
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The preferences of each voter are represented as a ranking over
𝐶 . The collection of these rankings expressing voter preferences
defines a preference profile 𝑅. That is, 𝑅 = {𝑟1, ..., 𝑟𝑛}, whereby 𝑟 𝑗 is
the ranking by voter 𝑗 . Let 𝑟𝑝𝑜𝑠

𝑗
(𝑐𝑖 ) denote the position of candidate

𝑐𝑖 in the ranking produced by voter 𝑗 , where position 1 is the highest
(best) and position𝑚 is the lowest (worst). Let Π𝐶 denote the set
of all possible rankings over candidate set 𝐶 .

As we seek to generate a consensus ranking from 𝑅, we are
interested in voter aggregation rules that, given profile 𝑅, find a
consensus ranking that is a suitable compromise representing the
preferences 𝑅. We employ two such rules:

• Kemeny Rule [27]: selects a ranking with minimal Kendall tau
distance to 𝑅. The Kendall tau distance 𝑑𝐾𝑇 between any two
rankings is the number of candidate pairs on which the two
rankings disagree. Given preference profile 𝑅, the Kemeny
rule returns a ranking 𝑟 in argmin𝑟 ∈Π𝐶

∑𝑛
𝑖=1 𝑑𝐾𝑇 (𝑟, 𝑟𝑖 ).

• Copeland Rule [14]: orders candidates by decreasing
Copeland score summed ∀ 𝑟 ∈ 𝑅. The Copeland score for
candidate 𝑐𝑖 in ranking 𝑟 is 𝐶𝑜𝑝𝑒𝑙𝑎𝑛𝑑 (𝑐𝑖 , 𝑟 ) = |{𝑐 𝑗 ∈ 𝐶 |
𝑟𝑝𝑜𝑠 (𝑐𝑖 ) < 𝑟𝑝𝑜𝑠 (𝑐 𝑗 )}| − |{𝑐 𝑗 ∈ 𝐶 | 𝑟𝑝𝑜𝑠 (𝑐 𝑗 ) < 𝑟𝑝𝑜𝑠 (𝑐𝑖 )}|. It
orders candidates by the total number of pairwise contests
they win over other candidates in the profile 𝑅.

3.2 Group Fairness of Exposure in Rankings

In our setting, candidates 𝐶 have an associated protected attribute,
such as gender, race, or their combination. Let 𝐴 be the protected
attribute and 𝐺𝐴:𝑙 be the set of candidates with value 𝑙 in 𝐴. We
refer to this candidate set𝐺𝐴:𝑙 as a "group". We aim to ensure group
fairness in the resulting consensus ranking, that is, a fair group

ordering in the ranking.
In information retrieval, Singh and Joachims [39] introduce the

concept of group exposure, that is, the attention a group receives in
a ranking. First, the exposure of a candidate 𝑐𝑖 in ranking 𝑟 is:

𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (𝑟, 𝑐𝑖 ) = 1/𝑙𝑜𝑔2 (𝑟𝑝𝑜𝑠 (𝑐𝑖 ) + 1) ) . (1)

For instance, if the ranking is being used for hiring decisions, we
can think about the exposure of a candidate as the probability that
the candidate is hired. Then the group exposure of a group 𝐺𝐴:𝑗 in
ranking 𝑟 is:

𝑔𝑟𝑜𝑢𝑝 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (𝑟,𝐺𝐴:𝑙 ) = |𝐺𝐴:𝑙 |−1
∑︁

∀𝑐𝑖 ∈𝐺𝐴:𝑙

𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (𝑟, 𝑐𝑖 ) . (2)

This is the average of exposure (Equation 1) of all groupmembers.
We can think of group exposure as the likelihood someone from
group 𝐺𝐴:𝑙 is hired. Singh and Joachims [39], for the case of two
groups, define a minimal difference in exposure (Equation 2) to
indicate a fair ranking. Next, we use the concept of exposure to
define our fairness metric.

4 FAIR-EXPOSURE KEMENY AGGREGATION

Given fair rank aggregation is a dual objective task, namely, voter
preference representation and ranked candidate fairness, measuring
both objectives is critical for formulating our problem. Thus, we
introduce metrics to quantify its consensus and fairness objectives
before defining our Fair Exposure Kemeny Aggregation problem
(Section 4.2).

4.1 Proposed Measurement of Preference

Representation and Fairness Objectives

To wholistically quantify fairness across multiple groups (as op-
posed to per group as in Equation 2), we can measure disparate
group exposure in two ways. One, which directly adopts the ap-
proach of Singh and Joachims [39] by using the maximum absolute
difference in exposure across pairs of groups. Or, two, where we use
the ratio between the minimum and maximum group exposure. We
adopt the latter, since it has two advantages. First, it nicely aligns
with contemporary fairness objectives such as the US EEOC 1, "four-
fiths" rule which states the least privileged group must receive a
proportion of the positive outcome (in our case, exposure) that is at
least 80% of the proportion received by the most privileged group
[11]. And second, its interpretation is not sensitive to the number
of ranked candidates. Definition 4.1 presents the exposure ratio
metric, with range [0, 1], where lower values indicate groups have
disparate exposure (thus unfairness) and 1 indicates each group has
the same exposure (complete fairness).

Definition 4.1. (Exposure Ratio). Given ranking 𝑟 and protected

attribute 𝐴, the exposure ratio (ER) of the groups defined by 𝐴 in

ranking 𝑟 is 𝐸𝑅(𝑟, 𝐴) = min{𝑔𝑟𝑜𝑢𝑝 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (𝑟,𝐺𝐴:𝑙 ) }
max{𝑔𝑟𝑜𝑢𝑝 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (𝑟,𝐺𝐴:𝑘 ) }∀𝐺𝐴:𝑙 ,𝐺𝐴,𝑘 .

Next, we turn to our second objective: maximally representing
the preference profile 𝑅 in the consensus ranking. While, traditional
Kemeny rank aggregation minimizes the Kendall tau distance 𝑑𝐾𝑇
between consensus ranking 𝑟 and profile 𝑅, utilizing, 𝑑𝐾𝑇 (𝑟, 𝑅), to
measure preference representation in our context has significant
drawbacks. First, a lower Kendall tau distance is always preferred,
which is the opposite of exposure ratio where a higher value is
a better (indicating a more fair ranking). And second, a "good"
Kendall tau distance is surprisingly difficult to pinpoint, for instance
𝑑𝐾𝑇 (𝑟, 𝑅) of 10 could be low preference representation if there are
6 candidates, but high preference representation if there are 60.
To address these issues, we introduce the notion and measure of
consensus accuracy (Definition 4.2), which captures the opposite
of the Kendall tau distance, namely, agreement.

Definition 4.2. (Consensus Accuracy). Given consensus ranking

𝑟 and preference profile 𝑅, the consensus accuracy (CA) of 𝑟 is

𝐶𝐴(𝑟, 𝑅) = (
(𝑚
2
)
𝑛 − 𝑑𝑘𝑡 (𝑟, 𝑅))/

∑
𝑄 (𝑅)𝑥𝑦 , where 𝑄 is a pairwise

comparison matrix representing the profile 𝑅.

Specifically, each (𝑥,𝑦) entry of the matrix𝑄 denotes the number
of voters agreeing with 𝑐𝑥 ranked above 𝑐𝑦 , that is:

𝑄 (𝑅)𝑥𝑦 =
∑︁

∀𝑟𝑖 ∈𝑅
|𝑟𝑝𝑜𝑠
𝑖

(𝑐𝑥 ) < 𝑟𝑝𝑜𝑠𝑖
(𝑐𝑦 ) | . (3)

In words, consensus accuracy corresponds to the total pairwise
agreements between the preference profile 𝑅 and the consensus
ranking 𝑟 , divided by the sum total of pairwise agreements in 𝑅. It
ranges from [0, 1], where 1 is the best value, meaning every single

pairwise preference in 𝑅 is represented in 𝑟 . Consensus accuracy
quantifies preference representation in a way that is both consistent
across the number of ranked candidates, and aligned with exposure
ratio (i.e., higher and closer to 1 is "better").

1United States Equal Employment Opportunity Commission
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4.2 Fair Exposure Kemeny Aggregation Problem

With our fairness and preference representation objectives in place,
along with their respective measures (ER and CA), we present the
Fair Exposure Kemeny Aggregation Problem.

Problem 1. (FairExp-kap). Given preference profile 𝑅 (of 𝑛 voters

ranking candidate set 𝐶), where each candidate belongs to a group

defined by protected attribute 𝐴, and desired exposure ratio 𝜆 ∈ (0, 1]
the Fair Exposure Kemeny Aggregation Problem (FairExp-

kap) is to find consensus ranking 𝑟 ∈ Π𝐶 , such that :

(1.) the exposure ratio (Definition 4.1) of consensus ranking 𝑟 is

greater than parameter 𝜆, i.e, ER(𝑟, 𝐴) ≥ 𝜆, and

(2.) the consensus accuracy (Definition 4.2) of 𝑟 , CA(𝑟, 𝑅), is maxi-

mized.

In short, the FairExp-kap problem is to determine the consensus
ranking via the Kemeny rule, where the primary objective is the
consensus ranking has fairness 𝐸𝑅(𝑟, 𝐴) ≥ 𝛾 . Maximizing consen-
sus accuracy, is in fact, the Kemeny rule, as maximizing pairwise
agreements is the same as minimizing pairwise disagreements (i.e,
the minimized Kendall tua distance in the traditional Kemeny rule).
This approach, compared to maximizing fairness subject to main-
taining the consensus accuracy of the fairness-unaware Kemeny
ranking, ensures that the resulting ranking satisfies a provided de-
gree of fairness (𝛾 ), critically facilitating consensus rankings fairer
than the Kemeny ranking.

By emphasizing fairness for ranked candidates in FairExp-kap,
we observe that the positions of some candidates in the resulting
consensus ranking will be different from had we only applied the
Kemeny rule to the preference profile. These changes could lower
the consensus accuracy of the resulting consensus ranking. Thus,
there is a tradeoff between exposure ratio (fairness) and consensus
accuracy (profile representation). This tradeoff is unique to each
preference profile as it is influenced by the relative agreement
amongst voters and the underlying fairness of their rankings.

5 EPIK: EXACT INTEGER PROGRAM

SOLUTION

We present our integer program solution for FairExp-kap called
epik (Exposure Parity in Kemeny) in Algorithm 1.

Our key insight is that we can translate pairwise information,
namely the number of pairs each candidate wins in the consensus
ranking, into ordinal rank positions. Then we utilize this expression
to formulate the non-pairwise exposure ratio as a constraint on
the pairwise Kemeny integer program. We explain in our remarks
below.

The first remark shows we can translate the number of pair-
wise wins candidate 𝑐𝑖 has over all other candidates in ranking 𝑟 ,
𝑊𝑃 (𝑟, 𝑐𝑖 ), into its ordinal rank position, 𝑟𝑝𝑜𝑠 (𝑐𝑖 ).

Remark 1. We can express 𝑟𝑝𝑜𝑠 (𝑐𝑖 ), the position of candidate 𝑐𝑖
in ranking 𝑟 , in terms of the number of pairs that candidate has won

in 𝑟 ,𝑊𝑃 (𝑟, 𝑐𝑖 ), as 𝑟𝑝𝑜𝑠 (𝑐𝑖 ) = |𝑟 | −𝑊𝑃 (𝑟, 𝑐𝑖 ).

Thus, remark 1 translates rank positions, the building block of
exposure, into pairwise wins, the building block of the Kemeny rule.
Next, remark 2 directly transforms the exposure of a candidate into
its pairwise wins.

Algorithm 1 EPIK - Exposure Parity In Kemeny
Input: Preference profile 𝑅 (𝑛 voters and𝑚 candidates), with
candidates defined by protected attribute 𝐴, and parameter 𝛾
representing the minimum exposure ratio (Definition 4.1) for the
consensus ranking.
Output: Binary variables 𝐶𝑎,𝑏∀ 𝑐𝑎, 𝑐𝑏 ∈ 𝐶 inducing consensus
ranking 𝑟 with ER(𝑟 ,𝐴) ≥ 𝛾 .

Maximize:
∑︁
∀𝑎,𝑏

𝑄𝑎,𝑏𝐶𝑎,𝑏 (4)

Subject to: 𝐶𝑎,𝑏 ∈ {0, 1} (5)
𝐶𝑎,𝑏 +𝐶𝑏,𝑎 = 1 ∀𝑐𝑎, 𝑐𝑏 (6)
𝐶𝑎,𝑏 +𝐶𝑏,𝑑 +𝐶𝑑,𝑎 ≤ 2 ∀𝑐𝑎, 𝑐𝑏 , 𝑐𝑑 (7)
∀𝐺𝐴:𝑗 ,𝐺𝐴:𝑘

min{|𝐺𝐴:𝑗 |−1
∑

∀𝑐𝑖 ∈𝐺𝐴:𝑗
1

𝑙𝑜𝑔2 ( |𝑟 |−
∑𝑚

ℎ=1𝐶𝑖,ℎ+1) ) }

max{|𝐺𝐴:𝑘 |−1
∑

∀𝑐𝑙 ∈𝐺𝐴:𝑘
1

𝑙𝑜𝑔2 ( |𝑟 |−
∑𝑚

𝑞=1𝐶𝑙,𝑞+1) ) }
≥ 𝛾

(8)

Remark 2. We can write the exposure of a candidate 𝑐𝑖 in rank-

ing 𝑟 in terms of the number of pairs that candidate has won as

𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (𝑟, 𝑐𝑖 ) = 1/𝑙𝑜𝑔2 ( |𝑟 | −𝑊𝑃 (𝑟, 𝑐𝑖 ) + 1).

epik exactly solves our FairExp-kap problem. In epik (Algorithm
1), binary decision variables 𝐶𝑖, 𝑗 are utilizied to represent if candi-
date 𝑐𝑖 is placed above candidate 𝑐 𝑗 in the output consensus ranking.
While epik operates in the space of𝑚2 binary variables, this is for-
tunately the same computational space as the fairness-unaware
Kemeny integer program [12]. In epik, the objective function (Equa-
tion 4) maximizes consensus accuracy (i.e, minimizes 𝑑𝐾𝑇 (𝑟, 𝑅)) by
maximizing pairwise agreements in matrix 𝑄 (Equation 3). Subse-
quent constraints (Equations 5 - 7) ensure that the output is a valid
ranking and contains no cycles. These equations find the Kemeny
consensus ranking [12]. The last constraint (Equation 8) bounds
the exposure ratio (ER) of the resulting consensus ranking to be
≥ 𝛾 .

To bound the exposure ratio of the consensus ranking, we use
Remark 1 and Remark 2. First, we express the exposure of a group
𝐺𝐴:𝑗 in ranking 𝑟 , 𝑔𝑟𝑜𝑢𝑝 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (𝑟,𝐺𝐴:𝑗 ), as:

𝑔𝑟𝑜𝑢𝑝 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (𝑟,𝐺𝐴:𝑗 ) = |𝐺𝐴:𝑗 |−1
∑︁

∀𝑐𝑖 ∈𝐺𝐴:𝑗

𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (𝑟, 𝑐𝑖 ) (9)

= |𝐺𝐴:𝑗 |−1
∑︁

∀𝑐𝑖 ∈𝐺𝐴:𝑗

1
𝑙𝑜𝑔2 (𝑟 (𝑐𝑖 ) + 1) ) (10)

= |𝐺𝐴:𝑗 |−1
∑︁

∀𝑐𝑖 ∈𝐺𝐴:𝑗

1
𝑙𝑜𝑔2 ( |𝑟 | −

∑𝑚
∗=1𝐶𝑖,∗ + 1) ) .

(11)

Where the second equality is from Equation 1 of exposure and
the third equality uses remark 2 expressed in terms of the binary
variables 𝐶𝑖, 𝑗 . We express the exposure ratio for groups defined by
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Algorithm 2 EPIRA - Exposure Parity In Rank Aggregation (default
is Copeland voting rule.)
Input: Profile 𝑅 (𝑛 voters and𝑚 candidates), with candidates
defined by protected attribute 𝐴, and parameter 𝛾 representing the
minimum exposure ratio (Definition 4.1) for the consensus ranking.
Unless specified to be Kemeny, Borda, Schulze, or Maximin,
VotingRule is defaulted to Copeland.
Output: Consensus ranking 𝑟 with ER(𝑟 ,𝐴) ≥ 𝛾 .

1: Let 𝑟𝑐 = VotingRule(𝑅), with default Copeland, 𝑟 = deep copy
of 𝑟𝑐 .

2: while ER(𝑟 ,𝐴) < 𝛾 do

3: 𝐺𝑚𝑖𝑛 = group with lowest 𝑔𝑟𝑜𝑢𝑝 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (Eq. 2) in 𝑟 .
4: 𝐺𝑚𝑎𝑥 = group with highest 𝑔𝑟𝑜𝑢𝑝 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (Eq. 2) in 𝑟 .
5: 𝑐𝐺𝑚𝑖𝑛 = highest ranked candidate of 𝐺𝑚𝑖𝑛, that is still

below a candidate of 𝐺𝑚𝑎𝑥 , provided the candidate was not
re-positioned in a prior iteration.

6: 𝑈𝑛𝑑𝑒𝑟𝐸 = 𝑔𝑟𝑜𝑢𝑝 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (𝑟,𝐺𝑚𝑖𝑛) -
𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (𝑟, 𝑙𝑜𝑤𝑒𝑠𝑡 (𝑏𝑜𝑡𝑡𝑜𝑚) 𝑟𝑎𝑛𝑘𝑒𝑑 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ∈ 𝐺𝑚𝑖𝑛).

7: 𝐵𝑜𝑜𝑠𝑡 = |𝐺𝑚𝑖𝑛 | ∗ AverageExp(r,Gmax) ∗ 𝛾 −𝑈𝑛𝑑𝑒𝑟𝐸.
8: Determine position 𝑝 in 𝑟 with exposure closest to 𝐵𝑜𝑜𝑠𝑡

not occupied with a member of 𝐺𝑚𝑖𝑛.
9: Insert 𝑐𝐺𝑚𝑖𝑛 into 𝑝 and the item at previously at 𝑝 to the

position of the former.
10: end while

11: Preserving assignment of groups to positions, re-assign items
to positions in 𝑟 by item order within a group in 𝑟𝑐 .

12: return 𝑟

attribute 𝐴 in consensus ranking 𝑟 as:

𝐸𝑅 (𝑟,𝐴) =
min{𝑔𝑟𝑜𝑢𝑝 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (𝑟,𝐺𝐴:𝑗 ) }
max{𝑔𝑟𝑜𝑢𝑝 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (𝑟,𝐺𝐴:𝑘 ) }

∀ 𝐺𝐴:𝑗 ,𝐺𝐴,𝑘 (12)

=

min{ |𝐺𝐴:𝑗 |−1
∑

∀𝑐𝑖 ∈𝐺𝐴:𝑗
1

𝑙𝑜𝑔2 ( |𝑟 |−
∑𝑚
∗=1𝐶𝑖,∗+1) )

}

max{ |𝐺𝐴:𝑘 |−1
∑

∀𝑐𝑙 ∈𝐺𝐴:𝑘
1

𝑙𝑜𝑔2 ( |𝑟 |−
∑𝑚
∗=1𝐶𝑙,∗+1) )

}
, ∀𝐺𝐴,𝑗 ,𝐺𝐴,𝑘 .

(13)

The second equality is from Equation 2 of group exposure and
Remark 2. Thus, we can formulate a constraint on the exposure
ratio of a consensus ranking 𝑟 in terms of the binary variables 𝐶𝑖, 𝑗 .
Hence, we can use exposure ratio ER as a fairness constraint even
though it is not pairwise. Because we integrate fairness of exposure
into the Kemeny optimization, epik is an exact solution.

6 EPIRA: CANDIDATE SWAPPING

ALGORITHM FOR SOLVING FAIREXP-KAP

It bears consideration that optimization can be computationally
intensive both for fairness-unaware consensus generation [2, 12]
and for fairness of exposure in recommendation ystems [6, 39].
And while Kemeny is extremely popular it is just one approach
to consensus generation [7]. Thus we think it is of great signifi-
cance to address fair rank aggregation (FairExp-kap) for any voting
rule without requiring access to optimization solvers. Therefore,
we design the epira (Exposure Parity in Rank Aggregation) strat-
egy, which is extremely flexible in that it can be used with any

voting rule favored in a given application context. epira is a post-
processing candidate swapping algorithm that deterministically
swaps candidates to ensure, first, that the exposure ratio of the
resulting consensus ranking is at least 𝛾 . And second, that based on
the candidate swaps performed to ensure ER(𝑟, 𝐴) ≥ 𝛾 , consensus
accuracy does not degrade. This is done by ensuring the ordering of
candidates within a group is preserved from the fairness-unaware
consensus ranking to the fair consensus ranking.

We utilize Copeland as the default voting rule with epira since
it a known high-fidelity Kemeny rule approximation [2], and our
empirical results (Section 7.5) confirm this design choice. epira
finds the Copeland consensus ranking 𝑟𝑐 2, then while the exposure
ratio of 𝑟𝑐 is below the desired value of 𝛾 it re-positions groups in
ranking 𝑟 , a copy of 𝑟𝑐 . The repositioning, lines 3 − 9, where each
is linear in𝑚, is done by moving up the highest ranked candidate,
𝑐𝐺𝑚𝑖𝑛 , in the group with lowest exposure, 𝐺𝑚𝑖𝑛 . However, as the
highest candidate in 𝐺𝑚𝑖𝑛 could be at the top of 𝑟 (i.e., position
1) we restrict 𝑐𝐺𝑚𝑖𝑛 to be ranked below at least one member of
𝐺𝑚𝑎𝑥 , the group with the highest exposure. Further, during each
swap we mark a candidate as "swapped", and we do not swap the
same candidate twice to avoid falling into a loop where the same
candidate is re-positioned back and forth. The actual swap is done
by first determining 𝐵𝑜𝑜𝑠𝑡 , which is the exposure value needed
to satisfy 𝛾 provided 𝑐𝐺𝑚𝑖𝑛 replaces its contribution to 𝐺𝑚𝑖𝑛 ’s ex-
posure with exposure equal to 𝐵𝑜𝑜𝑠𝑡 . Then, 𝑐𝐺𝑚𝑖𝑛 is moved into
position 𝑝 , which is the position with exposure closest to 𝐵𝑜𝑜𝑠𝑡 .
Once ER(𝑟, 𝐴) ≥ 𝛾 , we use ranking 𝑟 as a blueprint to re-assign
candidates to positions in 𝑟 by preserving their original within-a-

group (WiG) order from the Copeland ranking 𝑟𝑐 . The WiG order
is the order of candidates within the same group, i.e. signifying
preference preservation within groups.

A natural question is why we insist on what appears to be an
extra final step in epira, instead of returning 𝑟 when ER(𝑟, 𝐴) ≥ 𝛾

is satisfied. The reason is that our proposed final step yields the
following guarantee.

Theorem 5.1 epira (Algorithm 2) has smaller Kendall tau distance

to 𝑅, and thus higher consensus accuracy (CA), than epira without

preserving the within-a-group order (WiG) of the initial Copeland (or

alternate voting rule) ranking.

To develop a foundation for Theorem 5.1, we first establish and
then prove Lemma 5.1 below.

Lemma 5.1 Given the result 𝑟𝑣 of a rank aggregation rule, and

two rankings 𝑟𝑊𝑖𝐺
and 𝑟𝑁𝑜𝑊 , such that each have the same assign-

ment of groups to rank positions, but 𝑟𝑊𝑖𝐺
preserves the within-a-

group (WiG) order of 𝑟 and 𝑟𝑁𝑜𝑊 does not, then 𝑑𝐾𝑇 (𝑟, 𝑟𝑁𝑜𝑊 ) <
𝑑𝐾𝑇 (𝑟, 𝑟𝑊𝑖𝐺 ) cannot hold.

Proof. Let 𝑟 be a consensus ranking, and 𝑟𝑊𝑖𝐺 and 𝑟𝑁𝑜𝑊

be the same ranking except that in 𝑟𝑁𝑜𝑊 there are candidates
𝑐𝑖 and 𝑐 𝑗 belonging to the same group, whereby in 𝑟 and 𝑟𝑊𝑖𝐺 ,
𝑟𝑝𝑜𝑠 (𝑐𝑖 ) < 𝑟𝑝𝑜𝑠 (𝑐 𝑗 ) and 𝑟

𝑝𝑜𝑠

𝑊 𝑖𝐺
(𝑐𝑖 ) < 𝑟

𝑝𝑜𝑠

𝑊 𝑖𝐺
(𝑐 𝑗 ) (i.e., 𝑐𝑖 is ranked

higher towards the top than 𝑐 𝑗 in 𝑟 and 𝑟𝑊𝑖𝐺 ), but 𝑟𝑝𝑜𝑠
𝑁𝑜𝑊

(𝑐 𝑗 ) <

𝑟
𝑝𝑜𝑠

𝑁𝑜𝑊
(𝑐𝑖 ) (i.e., 𝑐 𝑗 is ranked higher towards the top than 𝑐𝑖 in

2We use Copeland in this text as it is the default VotingRule. Algorithm 2 input
displays the existing voting rules supported in our implementation, other rules can be
used as well.
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𝑟𝑁𝑜𝑊 ). Using 𝑑𝐾𝑇 :𝑐𝑖 ,𝑐 𝑗 (𝑟, 𝑟𝑊𝑖𝐺 ) to denote the Kendall tau distance
between candidates 𝑐𝑖 and 𝑐 𝑗 in rankings 𝑟 and 𝑟𝑊𝑖𝐺 , let D =

𝑑𝐾𝑇 (𝑟, 𝑟𝑊𝑖𝐺 ) − 𝑑𝐾𝑇 :𝑐𝑖 ,𝑐 𝑗 (𝑟, 𝑟𝑊𝑖𝐺 ). Then from Kendall tau, it fol-
lows D also equals 𝑑𝐾𝑇 (𝑟, 𝑟𝑁𝑜𝑊 ) − 𝑑𝐾𝑇 :𝑐𝑖 ,𝑐 𝑗 (𝑟, 𝑟𝑁𝑜𝑊 ) since 𝑟𝑛

and 𝑟𝑊𝑖𝐺 are otherwise the exact same ranking. By contradic-
tion, we will show that 𝑑𝐾𝑇 (𝑟, 𝑟𝑁𝑜𝑊 ) ≥ 𝑑𝐾𝑇 (𝑟, 𝑟𝑊𝑖𝐺 ). Assume
𝑑𝐾𝑇 (𝑟, 𝑟𝑁𝑜𝑊 ) < 𝑑𝐾𝑇 (𝑟, 𝑟𝑊𝑖𝐺 ). Observe that:

𝑑𝐾𝑇 (𝑟, 𝑟𝑁𝑜𝑊 ) = 𝑑𝐾𝑇 (𝑟, 𝑟𝑁𝑜𝑊 ) − 𝑑𝐾𝑇 :𝐶𝑖 ,𝐶 𝑗
(𝑟, 𝑟𝑁𝑜𝑊 )

+ 𝑑𝐾𝑇 :𝐶𝑖 ,𝐶 𝑗
(𝑟, 𝑟𝑁𝑜𝑊 )

= 𝑑𝐾𝑇 (𝑟, 𝑟𝑁𝑜𝑊 ) − 𝑑𝐾𝑇 :𝐶𝑖 ,𝐶 𝑗
(𝑟, 𝑟𝑁𝑜𝑊 ) + 1

= D + 1

since 𝑑𝐾𝑇 :𝐶𝑖 ,𝐶 𝑗
(𝑟, 𝑟𝑁𝑜𝑊 ) = 1 by Kendall tau. Then

𝑑𝐾𝑇 (𝑟, 𝑟𝑊𝑖𝐺 ) = 𝑑𝐾𝑇 (𝑟, 𝑟𝑊𝑖𝐺 ) − 𝑑𝐾𝑇 :𝐶𝑖 ,𝐶 𝑗
(𝑟, 𝑟𝑊𝑖𝐺 )

+ 𝑑𝐾𝑇 :𝐶𝑖 ,𝐶 𝑗
(𝑟, 𝑟𝑊𝑖𝐺 )

= 𝑑𝐾𝑇 (𝑟, 𝑟𝑊𝑖𝐺 ) − 𝑑𝐾𝑇 :𝐶𝑖 ,𝐶 𝑗
(𝑟, 𝑟𝑊𝑖𝐺 )

= D

since 𝑑𝐾𝑇 :𝐶𝑖 ,𝐶 𝑗
(𝑟, 𝑟𝑊𝑖𝐺 ) = 0 by Kendall tau. Further, observe

that, D + 1 cannot be < D. Thus, we have a contradiction
with 𝑑𝐾𝑇 (𝑟, 𝑟𝑁𝑜𝑊 ) < 𝑑𝐾𝑇 (𝑟, 𝑟𝑊𝑖𝐺 ). Hence, we have shown
𝑑𝐾𝑇 (𝑟, 𝑟𝑁𝑜𝑊 ) cannot be < 𝑑𝐾𝑇 (𝑟, 𝑟𝑊𝑖𝐺 ). □

Thus, epira is guaranteed to be equal or better at representing
profile 𝑅 than epira without the within-a-group property. Thus,
for the specific candidate swaps performed to achieve ER(𝑟, 𝐴) ≥ 𝛾

epira maximizes consensus accuracy.

7 EXPERIMENTS

In the first two parts of this section we evaluate the proposed epik
and epira algorithms, studying their behavior compared to the
Kemeny rule (Section 7.2), along with providing empirical assess-
ment for their performance compared to using alternate techniques
for solving FairExp-kap (Section 7.3). In the final two parts, we
evaluate epira in terms of its WiG property (Section 7.4) and its
performance with voting rules beyond the Copeland rule (Section
7.5).

7.1 Experimental Setup

7.1.1 Compared Methods. As we newly propose FairExp-kap, no
prior work supports finding consensus rankings subject to group
fair exposure. We thus compare against the alternate techniques
below.

• kemeny [12]: the standard Kemeny rule integer program.
• pre-fe: we study pre-processing by using the re-ranking
piece of epira to pre-process each ranking in profile 𝑅 to
be fair prior to aggregation, i.e., to satisfy ER ≥ 𝛾 . Then the
standard Kemeny rule is applied.

• pfair-kem [9]: this fair rank aggregation method applies
constraints on cross-group pairs in the Kemeny integer pro-
gram to ensure each group wins a proportional share of
cross-group pairwise comparisons in the consensus ranking
(enforced by parameter 𝛿). As done in [9], 𝛿 = 0.1.

Reference ranking 𝑎 𝑏 𝑐 𝑑 𝑒

Exposure ratio (ER ) 0.484 0.573 0.721 0.797 0.844
Table 1: Fairness of reference rankings used in the Mal-
lows datasets. Fairness, by exposure ratio (ER), increases "al-

phabetically".

• rapf [43]: this fair rank aggregation method selects a ran-
dom ranking in the profile and corrects it to satisfy what
the authors call p-fairness, which represents groups propor-
tionally at each position and is inspired by the Chairman
assignment problem. It does not employ voter aggregation
rules, yet we include it for completeness.

7.1.2 Datasets. In our experiments, we consider seven datasets.

• Mallows: for our controlled study, we input profiles accord-
ing to the popularMallows model [24, 30]. The model has
a reference ranking of candidates and a spread parameter
𝜙 , which as it increases the profile contains more consensus
(agreement) with the provided reference ranking. For 𝑛 = 12,
and𝑚 = 20, we control the fairness of five profiles based
on the exposure ratio (ER) of the reference ranking. Table 1
summarizes the ER values of the five reference rankings (a -
e) we use in our Mallows datasets. Fairness increases "alpha-
betically". We refer to the 30 profiles (5 references rankings
with 6 dispersion parameters each) as the Mallows dataset.

From Social Choice we use five datasets that contain strictly ordered
profiles from the Preflib repository [31].

• AGH 2003 [41]: AGH University of Science and Technol-
ogy course selection from 2003. Where 146 students ranked
all courses. We create groups by splitting courses so 1 − 6
comprise group A and courses 7 − 9 group B.

• AGH 2004 [41]: AGH University of Science and Technol-
ogy course selection from 2004. Where 153 students ranked
all courses. We create groups by splitting courses so 1, 3, 4
comprise group A and courses 2, 5, 6, 7 group B.

• Dublin North [31]: 3, 662 voters ranking all 12 candidates
in a Irish election (2002), with male and female groups.

• Dublin West [31]: 3, 800 voters ranking all 9 candidates in
a Irish election (2002), with male and female groups.

• Meath [31]: 2, 490 voters ranking all 9 candidates in a Irish
election (2002), with male and female groups.

From the fairness literature [9], we use the following rank aggrega-
tion dataset.

• CSRankings [5]: consists of rankings of 65 US CS depart-
ments from 2010 − 2020, using relative order from csrank-
ings.org as the yearly ranking. The protected attribute is the
combination of the geographic region (Northeast, Midwest,
West, and South) and whether the institution is public or
private. This forms eight groups.

Our source code and experiment implementation is avail-
able at: https://github.com/KCachel/Fairer-Together-Mitigating-
Disparate-Exposure-in-Kemeny-Aggregation.
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7.2 How do our FairExp-kap solutions compare

to the fairness-unaware Kemeny rule

solution?

To compare our FairExp-kap solutions with the Kemeny rule so-
lution, we study how both are affected by the underlying fairness
(modeled by reference rankings a - e) and consensus (modeled by 𝜙)
of the profile. Figure 1a compares the consensus rankings found by
epik and kemeny across preference profiles in the Mallows dataset.
Immediately, we observe that kemeny almost always returns very
unfair consensus rankings (seen in pale green squares with low ER

values). The one exception is the profile with very low underlying
fairness and consensus (e.g. 𝑎 and 𝜙 = 0). Here, low underlying
consensus with an unfair reference means most voters have rela-
tively fair rankings, so when they are combined Kemeny creates a
fair consensus ranking. Observing the kemeny exposure ratios we
provide two takeaways. First, the conditions in the profile that are
likely to yield the most unfair Kemeny consensus rankings are high
consensus with an unfair reference ranking (bottom right, e.g., 𝑎, 𝑏
and 𝜙 = 0.8, 1) and low consensus with a fair reference ranking (top
left, e.g., 𝑑, 𝑒 and 𝜙 = 0, 0.2, .4). Second, unsurprisingly, the more
consensus in the profile, the greater the consensus accuracy is for
kemeny.

Turning to FairExp-kap solutions shown by epik in Figure 1a
and epira in Figure 1b our algorithms always achieve the desired
exposure ratio of ≥ 0.9, demonstrating theymitigate disparate expo-
sure in the Kemeny rule across diverse preference profile conditions.
We see that due to the swapping strategy of epira it has slightly
higher exposure ratios than epik (e.g., ER is often around 0.95),
whereas the optimization approach of epik ensures its exposure
ratios hover right at the desired 𝛾 = 0.9. This also results in the
consensus accuracy of epira generally being around 0.01 − 0.02
lower than epik. Overall, we see epira is a very good approximation
of epik.

We generally observe that the consensus accuracy of both meth-
ods is not significantly lower than that of kemeny. Nonetheless,
we eschew statements that our algorithms provide comparable con-
sensus accuracy as kemeny, since as it is clear to see, consensus
accuracy is influenced by the preference profile. However, based
on our two takeaways from kemeny above, we would expect, and
empirically confirm, that consensus ranking produced by epik and
epira have higher relative consensus accuracy when there is more
consensus in the profile (e.g., 𝜙 = 0.8, 1). Also, when the profile has
high consensus with low underlying fairness the drop in consensus
accuracy from kemeny to our algorithms is greatest (e.g., for 𝑎 and
𝜙 = 0.8 CA drops 0.09 between kemeny and epik). Interestingly, this
statement is not analogous to “when kemeny is most unfair then
epik and epira have the lowest consensus accuracy”. A counterex-
ample is the profile 𝑐 and 𝜙 = 0.6, which has the same exposure
ratio as profile 𝑎 and 𝜙 = 1 In this case, both have ER = 0.49. In
the former profile, the consensus accuracy of epik is 0.02 less than
kemeny, but in the latter the consensus accuracy of epik is 0.09
less than kemeny.

7.3 How do epik and epira compare to

alternate techniques for solving the

FairExp-kap problem?

We now assess the ability of our proposed algorithms and com-
parative methods (detailed in Section 7.1.1) to solve FairExp-kap
with exposure ratio ER ≥ 𝛾 , along with preference representation
measured by consensus accuracy (CA).

7.3.1 Mallows results. In Figure 1, in addition to the comparison of
epik and kemeny (Figure 1a) and epira (Figure 1b) discussed earlier,
Figure 1b also shows the performance of the comparative methods
for the Mallows dataset. We observe several expected behaviors in
Figure 1. First, epik and epira always return a consensus ranking
with ER ≥ 0.9 (seen with dark green squares). Second, kemeny, al-
most always returns very unfair consensus rankings, but naturally
has the highest consensus accuracy values (seen in dark purple).
Third, as expected due to pfair-kem and rapf having altogether
different fairness notions than the FairExp-kap problem, we see
that they do not effectively mitigate disparate exposure. For both,
we observe a spectrum of outcomes including slight fairness im-
provement (e.g., 𝑒 and 𝜙 = 0.8), significant improvement (e.g., 𝑎 and
𝜙 = 1), and even the introduction of more disparate exposure (un-
fairness) than kemeny (e.g., 𝑒 and 𝜙 = 1). And fourth, epira often
has higher exposure ratios than epik, since epira performs candi-
date swaps to meet 𝛾 , so it sometimes creates consensus rankings
that are fairer than they need to be.

Interestingly, we observe that pre-fe solves FairExp-kap well
when the preference profile has a high underlying consensus (e.g.,
𝜙 = 0.8, 1). In this case, voters are in agreement (regardless of the
underlying fairness), thus increasing the exposure ratio to ≥ 𝛾

for each ranking in the profile prior to the Kemeny rule achieves
fairness since the rankings were similar to begin with. Nonethe-
less, pre-fe is not a consistently good solution to FairExp-kap (as
seen when 𝜙 = 0.2, 0.4). In contrast to pre-fe, pfair-kem has no
discernible condition in the preference profile as to when the pfair-
kem is expected to mitigate disparate exposure. Further, pfair-kem
consistently achieves lower consensus accuracy values than our
algorithms, even when it is less fair (e.g. 𝑎, 𝜙 = 0.8). However, rapf
has the lowest consensus accuracy values of all methods. We also
find that rapf frequently results in the same consensus ranking
regardless of the preference profile (as seen by the frequent .76 ER
value). Since rapf re-ranks a single voter’s ranking in the profile
to satisfy a different fairness objective, only using one ranking
performs poorly on consensus accuracy and its fairness notion
does not mitigate disparate exposure. Thus, across diverse fairness
and consensus conditions in preference profiles, only our proposed
epik and epira consistently solve FairExp-kap, outperforming all
comparative methods.

7.3.2 Real dataset results. Table 2 shows results for all methods
for the preflib data sets (Table 2a), and CS Rankings data set (Table
2b), respectively. Unsurprisingly, exactly as in the Mallows dataset,
we again observe the same four expected behaviors as discussed
earlier (Section 7.3.1). Further, across all six data sets, epik and
epira outperform the comparative methods in achieving fair group
exposure (ER) and preference representation (CA). Alternative fair-
ness techniques in rank aggregation, pfair-kem and rapf, do not
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(b) Comparison of epira, pfair-kem, rapf, and pre-fe.

Figure 1: Mallows data set results. Preference representation, CA, is in purple (more consensus accuracy is darker) and fairness,

ER, is in green (fairer is darker). For exposure ratio in epik, epira, and pre-fe we set 𝛾 = 0.9.

mitigate disparate exposure. In fact, as seen in the Dublin North data
set, they can be more unfair than simply performing kemeny. Post-
processing is sometimes more effective at mitigating disparate ex-
posure than either pfair-kem and rapf (e.g. in AGH 2003, AGH
2004, Dublin North, and CS Rankings), but even so it does not reli-
ably ensure an exposure ratio ≥ 𝛾 while delivering high consensus
accuracy.

Interestingly, the fourth expected behavior (epira may some-
times have a higher exposure ratio than epik for the same 𝛾 param-
eter) does create a potential tradeoff in deciding which algorithm
to use in mitigating Kemeny rule disparate exposure. For this, we
observe that epik provides the better balance of satisfying exposure
ratio at or extremely close to 𝛾 along with high consensus accuracy.
However, trading a bit of consensus accuracy to use epira does
yield the benefit of the flexibility of epira to integrate into existing
consensus ranking processes.

7.4 Ablation Study of WiG (Within-a-Group)

Property EPIRA Algorithm

Assessing the effectiveness of the Within-A-Group (WiG) property,
we compare our epirawith WiG and without applying WiG. Figure
2 plots the percentage increase in epira’s consensus accuracy (CA)
across Mallows profiles. This empirically confirms, as all squares
are ≥ 0%, the results of Theorem 5.1, that our proposed epira has a
higher consensus accuracy than epira without WiG preservation.
Further, when there is a higher agreement (e.g.,𝜙 = 0.6, 0.8, 1) in the
profile and a reference ranking with a low underlying fairness (e.g,
𝑎, 𝑏, 𝑐), the WiG property allows epira to represent substantially
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Figure 2: Percent increase in consensus accuracy (CA ) of

epira from the within a group property, WiG.

more preferences from the profile. Our key takeaway is that WiG
for epira achieves a better preference representation.

7.5 Studying Efficacy of EPIRA Algorithm with

Alternate Voting Rules

In our previous expiremental results (Sections 7.3.1 - 7.5), we used
epira with our default Copeland voting rule. Table 3, for the AGH
2003 and CS Rankings datasets, demonstrates that epira can be used
effectively with alternate voting rules. See Appendix A for the back-
ground descriptions of each voting rule and our publicly-available
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Dataset Metric kemeny epik epira pfair-kem rapf pre-fe
𝛾 = .95 𝛾 = .95 𝛿 = .1 𝛾 = .95

AGH 2003

consensus accuracy (CA) 0.7536 0.6897 0.6714 0.7456 0.7190 0.7536
group A avg. exposure 0.4343 0.4796 0.4680 0.4305 0.4329 0.4343
group B avg. exposure 0.5496 0.4590 0.4821 0.5572 0.5524 0.5496
exposure ratio (ER) 0.7902 0.9572 0.9707 0.7725 0.7836 0.7902

AGH 2004

consensus accuracy (CA) 0.7877 0.6772 0.6545 0.7314 0.7006 0.6545
group A avg. exposure 0.6121 0.5301 0.5191 0.5550 0.5801 0.5191
group B avg. exposure 0.3965 0.5059 0.5205 0.4726 0.4392 0.5205
exposure ratio (ER) 0.6478 0.9545 0.9972 0.8515 0.7570 0.9972

Dublin West

consensus accuracy (CA) 0.6482 0.6392 0.6385 0.6482 0.6427 0.6295
men avg. exposure 0.5130 0.4807 0.4755 0.5130 0.4207 0.3719

women avg. exposure 0.4224 0.4628 0.4693 0.4224 0.5377 0.5987
exposure ratio (ER) 0.8233 0.9628 0.9869 0.8233 0.7824 0.6212

Dublin North

consensus accuracy (CA) 0.6524 0.6524 0.6524 0.6515 0.5821 0.6493
men avg. exposure 0.4259 0.4259 0.4259 0.4373 0.3823 0.4162

women avg. exposure 0.4167 0.4167 0.4167 0.3601 0.6351 0.4653
exposure ratio (ER) 0.9782 0.9782 0.9782 0.8235 0.6019 0.8944

Meath

consensus accuracy (CA) 0.6423 0.6415 0.6415 0.6423 0.5235 0.6180
men avg. exposure 0.3931 0.4034 0.4034 0.3931 0.3887 0.3873

women avg. exposure 0.4468 0.3851 0.3851 0.4468 0.4732 0.4821
exposure ratio (ER) 0.8799 0.9546 0.9546 0.8799 0.8215 0.8032

(a) Results for all Preflib data sets with desired exposure ratio being .95 (𝛾 = .95).

Dataset Metric kemeny epik epira pfair-kem rapf pre-fe
𝛾 = .8 𝛾 = .8 𝛿 = .1 𝛾 = .8

CS Rankings

consensus accuracy (CA) 0.9274 0.8962 0.8985 0.8560 0.8166 0.9056
northeast private avg. exposure 0.3285 0.2281 0.2675 0.2901 0.2749 0.2654
northeast publicavg. exposure 0.2125 0.2238 0.2142 0.2149 0.2135 0.2138
midwest private avg. exposure 0.1833 0.2170 0.2413 0.2025 0.2005 0.2125
midwest public avg. exposure 0.2385 0.2457 0.2144 0.2557 0.2567 0.2433
west private avg. exposure 0.2973 0.2258 0.2231 0.2698 0.2718 0.2188
west public avg. exposure 0.2246 0.2333 0.2244 0.2309 0.2242 0.2252
south private avg. exposure 0.1992 0.2561 0.2346 0.2099 0.2090 0.2150
south public avg. exposure 0.1807 0.2590 0.2584 0.1993 0.2286 0.2589

exposure ratio (ER) 0.5500 0.8378 0.8008 0.6871 0.7293 0.8007
(b) Results for CS Rankings data sets with desired exposure ratio being four-fiths (𝛾 = 0.8).

Table 2: Consensus accuracy, exposure ratio (best marked in bold), and average exposure of each group results for all methods.

repository for additional results from all six datasets further con-
firming the trends in Table 3. Collectively, we observe the following
four takeaways.

First, epira always find a consensus ranking with exposure ratio
≥ 𝛾 , regardless of the voting rule used. Second, epira’s consensus ac-
curacy is sensitive to the voting rule. This can be seen with Maximin
which generally does not do as well in the preference representa-
tion objective as other voting rules. This is expected as Maximin
diverges the most from Kemeny. Third, Copeland generally per-
forms the best with high consensus accuracy, indicating it is a great
alternative to Kemeny. And, fourth, using Schulze and Borda finds
exceptionally similar fair consensus rankings as using Copeland.

8 LIMITATIONS

While we do not foresee clear negative outcomes of this work,
but rather positive benefits to disadvantaged groups in consensus

processes, we are mindful that we have only begun the study of mit-
igating disparate exposure in rank aggregation. Thus, our approach
has potential limitations wemust consider. First, the central fairness
concern of our work is the disparate exposure of ranked candidate
groups, which limits our ability to address maximally represent-
ing voter preferences. In social choice, preference representation
itself has long been considered a form of fairness with respect to
voters [7]. By centering ranked candidate fairness, even though
we maximize consensus accuracy, our consensus rankings will in-
herently have less consensus accuracy (potential voter fairness)
than the Kemeny rule solution. And second, we cannot provide
an optimal exposure ratio parameter 𝛾 , as from a practical stand-
point, how much disparate exposure “intervention” is reasonable
will be context specific. Ultimately, we leave it to practitioners to
control how much fairness intervention is needed and suggest they
assess rankings for both ranked candidate fairness and preference
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Dataset Metric epira 𝛾 = .95
Kemeny Copeland Schulze Borda Maximin

AGH 2003

consensus accuracy (CA) 0.6714 0.6714 0.6714 0.6688 0.5546
exposure ratio (ER) 0.9707 0.9707 0.9707 0.9707 0.9855

(a) AGH 2003 dataset with desired exposure ratio being .95 (𝛾 = .95).

Dataset Metric epira 𝛾 = .8
Kemeny Copeland Schulze Borda Maximin

CS Rankings

consensus accuracy (CA) 0.9002 0.8985 0.8986 0.8983 0.8725
exposure ratio (ER) 0.8017 0.8008 0.8032 0.8134 0.8033

(b) CS Rankings dataset with desired exposure ratio being four-fiths (𝛾 = 0.8).

Table 3: Consensus accuracy, exposure ratio, and average exposure of each group results for epira with alternate VotingRules.

representation (exposure ratio and consensus accuracy metrics
are helpful in this regard). And lastly, while our methodology sup-
ports intersectional protected attributes, we do not inherently study
intersectional fairness concerns in rank aggregation. We believe
studying intersectional concerns (beyond a simple cross-product of
protected attributes) would be exciting grounds for future work.

9 CONCLUSION

We study the new problem of creating a consensus ranking of
candidates from a preference profile that is both fair by group
exposure and as representative of the profile as possible. Extending
the notion of fairness of exposure from information retrieval to
social choice, we formally introduce this problem, FairExp-kap,
and present an exact integer program epik and an approximate and
voting rule agnostics method epira. In our empirical results, we find
that utilizing prior work that addresses different fairness notions
in rank aggregation, does not achieve the efficacy of our proposed
techniques in both the fair exposure and consensus objectives of
FairExp-kap.
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A DESCRIPTIONS AND EXPLANATION OF

VOTING RULES

Below we describe all voting rules used in this work.

• Kemeny Rule [27]: selects a ranking with minimal Kendall tau
distance to 𝑅. The Kendall tau distance 𝑑𝐾𝑇 between any two
rankings is the number of candidate pairs on which the two
rankings disagree. Given preference profile 𝑅, the Kemeny
rule returns a ranking 𝑟 in argmin𝑟 ∈Π𝐶

∑𝑛
𝑖=1 𝑑𝐾𝑇 (𝑟, 𝑟𝑖 ).

• Copeland Rule [14]: creates a ranking by ordering candi-
dates by decreasing Copeland scores. The Copeland score
for candidate 𝑐𝑖 is 𝐶𝑜𝑝𝑒𝑙𝑎𝑛𝑑 (𝑐𝑖 ) = |{𝑐 𝑗 ∈ 𝐶 | 𝑟𝑝𝑜𝑠 (𝑐𝑖 ) <

𝑟𝑝𝑜𝑠 (𝑐 𝑗 )}| − |{𝑐 𝑗 ∈ 𝐶 | 𝑟𝑝𝑜𝑠 (𝑐 𝑗 ) < 𝑟𝑝𝑜𝑠 (𝑐𝑖 )}|. In words, it
orders candidates by the total number of pairwise contests
they win over other candidates in the profile 𝑅.

• Schulze Rule [38]: also known as the path or beatpathmethod,
creates a ranking by ordering candidates by decreasing
strength of their beatpaths in profile 𝑅. Here, a beatpath

is an ordered sequence of candidates such that each candi-
date in the sequence wins a pairwise contest over the next
one, and it’s strength is the number of candidates in this
sequence.

• Borda Rule [7] : creates a ranking by ordering candidates
by decreasing Borda score. The Borda score for candidate
𝑐𝑖 is 𝐵𝑜𝑟𝑑𝑎(𝑐𝑖 ) = 𝑛 − 𝑟𝑝𝑜𝑠 (𝑐𝑖 ). Borda results in candidates
ordered by the total number of candidates below then in the
profile 𝑅.

• Maximin Rule [7] : also known as Simpson and or Minimax,
creates a ranking by ordering candidates by decreasing max-
imin score. Let 𝑁 (𝑐𝑖 , 𝑐 𝑗 ) be the number of voters for whom
𝑟𝑝𝑜𝑠 (𝑐𝑖 ) < 𝑟𝑝𝑜𝑠 (𝑐𝑖 ), then the maximin score for candidate
𝑐𝑖 is 𝑀𝑎𝑥𝑖𝑚𝑖𝑛(𝑐𝑖 ) =𝑚𝑖𝑛∀𝑐 𝑗 ∈𝐶𝑁 (𝑐𝑖 , 𝑐 𝑗 ). In words, it orders
candidates by their worst scores in pairwise contents in the
profile 𝑅.
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