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ABSTRACT

For applications where multiple stakeholders provide recommen-
dations, a fair consensus ranking must not only ensure that the
preferences of rankers are well represented, but must also miti-
gate disadvantages among socio-demographic groups in the final
result. However, there is little empirical guidance on the value or
challenges of visualizing and integrating fairness metrics and algo-
rithms into human-in-the-loop systems to aid decision-makers. In
this work, we design a study to analyze the effectiveness of inte-
grating such fairness metrics-based visualization and algorithms.
We explore this through a task-based crowdsourced experiment
comparing an interactive visualization system for constructing
consensus rankings, ConsensusFuse, with a similar system that
includes visual encodings of fairness metrics and fair-rank gen-
eration algorithms, FairFuse. We analyze the measure of fairness,
agreement of rankers’ decisions, and user interactions in construct-
ing the fair consensus ranking across these two systems. In our
study with 200 participants, results suggest that providing these
fairness-oriented support features nudges users to align their deci-
sion with the fairness metrics while minimizing the tedious process
of manually having to amend the consensus ranking. We discuss
the implications of these results for the design of next-generation
fairness oriented-systems and along with emerging directions for
future research.

CCS CONCEPTS

« Human-centered computing — Empirical studies in visual-
ization.
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1 INTRODUCTION

The broader fairness community has developed a vast array of met-
rics and algorithms that conceptualize, measure, and systematize
definitions of fairness, in part to guide decision-making in com-
puting contexts. One popular medium for operationalizing these
metrics in user-centric computing systems are interactive visualiza-
tions. Such visualizations can provide increased transparency across
the underlying data, the decision algorithms applied to the data,
and the corresponding fairness properties expressed by fairness
metrics, among other benefits.

Several recent efforts highlight the inherent promise of interac-
tive visualization for advancing goals in the fairness community,
such as work from Mitchell et al. and Crisan et al. on model cards
[15, 36], and Van Berkel et al. on examining the value of visualiza-
tion over text for communicating fairness concepts [51]. However,
efforts combining visualization approaches and fairness metrics and
algorithms raise both challenges as well as unique opportunities
in this space. Can visualizations aid some fairness-related tasks,
but hinder others? Should fairness metrics be visualized by tightly
integrating them with the underlying data items, or separately
through popular visualization techniques such as coordinated mul-
tiple views? Might some visualizations even mislead or otherwise
reduce the agency of users in achieving fairness in decision-making
contexts?

In this paper, we explore these broad questions through a par-
ticular instance of a controlled task-based visualization study. Our
context is fair ranking problems, where prior works have focused
on achieving group fairness, i.e. treating all groups in the ranking
similarly, e.g. [1, 10, 30, 48, 57]. We begin with a recently published
fairness visualization with an available open source system, Fair-
Fuse [48], which visualizes both the candidate items to be ranked
and various fairness metrics such as Favored Pair Representation
(FPR), Attribute Rank Parity (ARP), and PD Loss [10]. We adapt
FairFuse into a new system, ConsensusFuse, by removing visualized
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Figure 1: Can visualization-enabled fairness metrics aid fairness related tasks? We compare two systems: A: ConsensusFuse, a
visualization that enables fairness comparison only by interactive visual displays of underlying items. B: FairFuse, a similar
system which visualizes additional fairness metrics and provides a fair-rank generation algorithm. We find positive impact of
embedding fairness metrics and algorithms into visualization supporting consensus ranking scenarios, but also certain risks.

fairness metrics and algorithms (Figure 2). We conduct a goal and
activity analysis (e.g. [23, 24, 39] to define fairness-oriented tasks
in ranking contexts (Table 1, 2). We distill these goals and activities
into a set of evaluation tasks, with measurable outcomes (Table 3).

With the two systems and the above-identified tasks in place,
we conduct a controlled experiment with n = 200 participants (100
per condition). Results generally validate that visualizing fairness
metrics leads to notably increased accuracy in key fairness-related
tasks. However, deeper analysis of measures, exploration behavior,
and participant explanations reveal nuance, challenges and risks
in visualizing fairness metrics. We discuss findings, such as for
instance the fact that the presence of algorithm-driven fairness
schemes tended to “shift” participants’ exploration and ultimate
decisions in a ranking task. We also develop a set of takeaways
highlighting where visualized fairness generally tends to help, but
also where it may hinder users in decision-making contexts.

Contributions. Taken together, our work makes the following
contributions:

o A task-based evaluation comparing a system that visualizes
fairness metrics/algorithm results against a control with
equivalent functionality, sans metrics/algorithms.

e Results that generally validate the value of visualizing fair-
ness metrics/algorithms for rank-focused contexts.

o Additional analyses that highlight particular challenges in
visualization design for fairness, including risks and tensions
in fairness interface design that may require substantial fu-
ture effort to resolve.

2 RELATED WORK

Research to date has developed several fairness-related visualiza-
tion systems, such as tools for consensus-building and ranking-
based tasks. However, throughout these efforts, there remains a
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lack of empirical evidence examining the value and challenges of
visualizing and incorporating fairness metrics and algorithms into
human-in-the-loop systems. Here we review several of the systems,
efforts, and concepts we draw from when designing the present
experiment.

2.1 Visualizing and Presenting Fairness in
Information Systems

Much of the work in algorithmic fairness in recent years has focused
on proposing various conceptualizations of fairness, along with
algorithmic techniques for ensuring these definitions are met in
decision-making processes. Comparatively less work has proposed
fairness-oriented visualization systems or studied the merits of
visual representations of fairness and bias in decision-making.

2.1.1  Fairness Visualization Tools and Toolkits. The design of inter-
active or visual systems has predominately focused on highlighting
and providing recourse for socio-demographic bias in classification
tasks [3, 6, 44, 56, 57]. The focus on classification-based machine
learning models mirrors the attention of the larger algorithmic fair-
ness community, namely, where “Fair-ML" gained prominence in
the context of binary classification. Many tools have been developed
to detect algorithmic biases and to evaluate and compare different
machine learning models concerning fairness [5, 26, 50]. Crisan
et al. and Mitchell et al. [15, 36] proposed visual model cards for
documenting models for better transparency. Recent visualization
research has focused on addressing group bias discovery and the in-
terpretation of intersectional bias [9, 38]. In the context of rankings,
Yang et al. [58] provided “nutritional facts" for the fairness of rank-
ings, Ahn et al. [1] proposed an interactive system for building fair
rankings, and Xie et al. [57] introduced a visual system for fairness
comparing rankings produced from graph mining recommender
algorithms.
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2.1.2  Evaluation of Fairness-Oriented Toolkits. Several researchers
assessed toolkits that incorporate fairness into their process. Mash-
hadi et al. [35] studied the impact of the visualization styles of six
open-source fair classification toolkits on student learning of fair-
ness criteria. Lee et al. [32] evaluated the capabilities of open-source
fairness toolkits and their suitability for commercial use through
practitioner interviews and surveys. They found that many toolkits
that contained visual representations of fairness were difficult for
non-technical users to understand, even in tools like the What-If
Tool [56], which were designed for broader audiences. Richardson
et al. [43] conducted interviews with machine learning practition-
ers to create a rubric for evaluating fairness toolkits. While there
has been a surge in the development of fairness toolkits, Deng et al.
[16] have highlighted gaps between fairness toolkits’ capabilities
and practitioners’ needs.

2.1.3  Evaluation on Presentation of Fairness Information. Studies
have evaluated the presentation of fairness related information in
different scenarios. Van Berkel et al. [51] compared the perceived
fairness level between text and scatterplot visualization techniques.
The study found that the scatterplot visualization technique re-
sulted in a lower fairness perception than text. Saxena et al. [45]
investigated people’s attitudes towards algorithmic definitions of
fairness and found that people considered calibrated models, such
as ratios, fairer than equal or meritocratic distributions in the con-
text of loan decisions. Similar studies found that people perceive
demographic parity and equalized odds as fair, depending on the sce-
nario. Cheng et al. [12] compared three group fairness approaches
in a child maltreatment predictive system. They found that peo-
ple mostly supported equalized odds, followed by statistical parity
and unawareness. Srivastava et al. [49] found that people prefer
demographic parity among the 6 different notions of group fair-
ness. Harrison et al. [21] conducted a user study on the perceived
fairness of machine learning models in the criminal justice context
and found conflicts between various inconsistent definitions of
fairness. Nevertheless, Hannan et al. [19] showed that the factors
of "what" and "who" matter in fairness perceptions and that the
context of algorithmic fairness is more important in some domains
than others.

2.2 Tools and Evaluation Studies on Consensus
Building

Visualization systems have been designed to aid decision-makers in
inspecting multiple stakeholders’ preferences to reach a consensus
decision [2, 11, 17, 20, 22, 25, 33, 40, 42, 47, 54, 55]. A subset of these
tools consider the setting, like ours, in which stakeholder prefer-
ences are encoded as rankings [11, 23, 33]. Liu et al. [33] evaluated
a between-subjects experiment to assess the effectiveness of their
proposed tool, ConsensUs, designed for multiple stakeholders to
rate and select candidates. They found that visualizations helped
surface stakeholder disagreement that otherwise would have gone
undetected. Hindalong et al. [24] perform an evaluation study of
six tools (both visualization-focused systems and commercial sys-
tems that implicitly allow for stakeholder preference inspection),
including the systems of [11, 23, 33]. The corresponding evaluation
studies are focused on how well these tools help achieve consensus
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outcomes — yet none consider the employment of consensus gen-
eration algorithms [7, 14, 27, 46]. In contrast, we study consensus
building when decision makers are supported by fair consensus
rank generation algorithms and when fairness metrics are presented
visually throughout the process.

2.3 Tools for Ranking-based Tasks and
Corresponding Evaluation Studies

Interactive systems and evaluation studies of visualization paradigms
have been developed specifically for ranking data. Gratzl et al. [18]

propose a visualization system, LineUp, to compare ranked items

along multiple attributes. Their qualitative evaluation study found

that visualizations helped people perform challenging ranking-
based tasks faster. Wall et al. [53] presented Podium, a visual ana-
lytics tool for helping users define a ranking function combining

multiple criteria according to their interactions with a subset of
the ranked data. Behrisch et al. [4] presented a visual system to

compare similarities and differences of pairs of rankings using small

multiple views of glyphs. However, while the above works target

rank-oriented workflows, they neither consider the problem of vi-
sually comparing a consensus ranking vis-a-vis the stakeholder’s

respective base rankings nor how fairness metrics should be incor-
porated visually throughout the consensus ranking process.

3 VISUALIZATION AND INTERACTION
DESIGN

To be able to study the challenges and opportunities in visualizing
fairness metrics and algorithms, we have modified the FairFuse
system [48] to create two system variations. The FairFuse system
employed task abstraction methodologies following procedures
from Lam et al. [31] and recent works on group decision-making by
Hindalong et al. [23, 24]. Table 1 outlines the goals and sub-goals for
generating and analyzing fair consensus rankings that combines the
preferences of multiple rankers (base rankings) into a single consen-
sus ranking. For each sub-goal, we identified a set of visualization
activities (Table 2) based on a widely used method in the visual-
ization literature [8], leading to the design and implementation of
several views.

3.1 FairFuse

The FairFuse system (Figure 1B) consists of several views to support
the goals (Table 1) and activities (Table 2).

¢ Ranking Exploration View uses parallel coordinates plot
to explore and compare rankings of candidates between mul-
tiple stakeholders (A1, A2, A3, A16, A17) as shown in Figure
2F. Each candidate’s set of attributes and values are repre-
sented by glyphs and colors [34] (A5, A6), collectively called
a Candidate Card. By dragging-and-dropping the Candidate
Card (A18), any generated consensus ranking can be adjusted
if necessary.

e Group Fairness View (Figure 2E) captures fairness of a
ranking at individual group level utilizing FPR score [10]
(A6, A7, A8, A9, A10) and holistically across groups in the
ranking using ARP score [10] (A11, A12, A14).
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Figure 2: FairFuse and ConsensusFuse System Designs with changes in visualizations related to fair consensus generation.
A) Consensus Generation, B) Similarity View (in FairFuse), C) Attributes Legend, D) Tasks presented to the participants, E)
Group Fairness View (in FairFuse), F) Ranking Exploration View, G) Fair Consensus Generation (in FairFuse), H) Group View

(in ConsensusFuse).

Table 1: Generic goals for rankings inspection and fair rank-
ing generation and analysis

GENERIC GOAL

G1 Characterize Differences in Base Rankings
a Discover (dis)agreement on each candidate between
rankings
b Assess the discrepancy of candidates’ position be-
tween base rankings
G2 Investigate Protected Attribute
a Discover protected attribute groups of the candidates
b Discover groups clustering of protected attribute in
each ranking
G3 Discover Bias in the Rankings
a Discover (dis)advantaged groups in each ranking
b Investigate the treatment of groups across rankings
¢ Intuit fairness of each ranking

G4 Generate Fair Consensus Rankings
a  Analyze multiple consensus rankings of different fair-
ness level
G5 Discover Nuances (not captured by the model)
a Analyze discrepancy on candidates between base
rankings and consensus rankings
b Re-evaluate Fair Consensus Rankings

o Similarity View (Figure 2B) uses a heatmap to show the
similarity between any two rankings (A4, A15) with darker
squares representing higher similarity between the rankings.

1688

This includes the ability to compare similarities between
any two base rankings, and a base ranking with a consen-
sus ranking. The similarity measure is calculated using a
common measure for rank dissimilarity called Kendall-Tau
distance [28].

¢ Ranking Generation process uses a button to first generate
a consensus ranking without any fairness intervention 2A.
After the consensus ranking is displayed, the generation
button is replaced with a slider (Figure 2E) — allowing the
fairness threshold of generated consensus ranking to be
adjusted (A13, A18). This process utilizes the Fair-Copeland
algorithm [10].

3.2

An alternate and functionally equally capable version of FairFuse
was created, called ConsensusFuse(Figure 1A), which acts as a
baseline for comparison in our study. Changes included the removal
of 1) encodings of fairness metrics in the Group Fairness View
(Figure 2H), 2) the Similarity View which uses metrics to compare
the similarity of fair rankings, and 3) the fairness algorithm in the
consensus ranking generation process, which had a slider to control
the ARP [10]. Differences are shown in Figure 2.

ConsensusFuse

4 STUDY DESIGN

We aim to investigate the challenges and opportunities of a system
like FairFuse for the activities associated with fairness-oriented
tasks. In our study, we presented a scenario where participants were
tasked with constructing a fair consensus ranking for scholarship
distribution based on teachers’ rankings of students. We performed
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General Feedback Phase.

a between-subjects study in which each participant was assigned
to use either FairFuse or ConsensusFuse system.

4.1 Procedure

We recruited 200 English-speaking participants agreeing to an
IRB-approved consent form on Prolific, a crowd-sourcing platform.
Based on multiple pilot studies, each participant was paid $5 USD
for an estimated 25-minute study time, with an hourly rate of $12.00
USD. Since both the system used for the study is built for large
screens, participants were filtered to use only desktop devices using
Prolific’s screening process. Our study consists of 3 phases: training,
study, and feedback phase (Figure 3) as seen in a similar user study
in the literature [41].

Training Phase. The study starts with the training phase (Figure
3A) introducing participants to different parts of the system through
textual, figurative, and video explanations while also encourging
them with analysis regarding consensus finding and bias mitigation.

Study Phase. The second phase (Figure 3B) involved partici-
pants completing tasks. Both FairFuse and ConsensusFuse systems’
interfaces were adjusted to include a view displaying the tasks. The
sidebar was shortened to accommodate the tasks and participant an-
swers at the bottom. During this phase, the participants interacted
with the visualizations to find the answer(s). Each task was followed
by a multiple-choice form with a dropdown or checkbox, and some
were also followed by a free text form. The tasks in this phase were
designed to increase in complexity gradually. Participants could
refer back to the tutorial if they encountered difficulty. This phase
was further divided into two parts. The first part focused on the
systems’ specific views and activities (Table 2) while additionally
serving as a guided tutorial for the second part of this phase. On the
other hand, the second part invited participants to interact with all
system views while completing an open-ended task of constructing
a fair consensus ranking.

Feedback Phase. The final phase of the study (Figure 3C) col-
lected qualitative feedback on the system regarding generating a
fair consensus ranking and demographics-related information.
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4.2 Tasks Scenario Data

For this study, we adapted the data from the publicly available
dataset [29] of students’ rankings. The dataset contains multiple
attributes, but for generating a consensus ranking, we used the
relative ordering of students in three subjects, math, reading, and
writing, as base rankings. Since our study phase has two parts, we
created two datasets of 30 students each, where one dataset was
used for each of the two study parts. The dataset was split such that
both had all 5 groups of the protected attribute, race, the advantaged
and disadvantaged groups can be separable. Race was the protected
attribute for both datasets, with five groups: White, Native, Black,
Asian, and Pacific Islander.

4.3 Study Task Design

Targeting the goals and activities (Table 2), we created a set of tasks
for the participants, listed in Table 3. The first eight tasks focus on
different individual views of the system. These tasks encompass
the Ranking Exploration View with candidate cards containing
attributes of the candidate and parallel coordinates plot of the
rankings, Similarity View, Group Fairness View, and the Consensus
Generation process. The final task asks participants to conduct a
free-form fair consensus ranking generation.

5 RESULTS

We recruited 200 participants (a number obtained via power anal-
yses following pilot studies) and evenly divided them into two
groups, namely, FairFuse and ConsensusFuse. Random assignment
was achieved through round-robin online recruitment using the
Prolific platform. Prolific reporting shows that 99 participants (sep-
arate from the 200 completions) returned the experiment before
completing it. (On Prolific, participants can discontinue the experi-
ment for any reason.) Beyond these, 6 participants in total timed
out. We computed 95% confidence interval using a bootstrapped
method and effect size using Cohen’s d. Our results also include
p-value (p) from the Wilcox Test (W).
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Table 2: Activities resulting from the goals and activities
analysis, designed to support the goals in Table 1

ACTIVITY

Gla Discover (dis)agreement on each candidate between
rankings
Al Locate each candidate across the rankings
A2  Compare position of candidates across rank-
ings
G1b Assess the discrepancy of candidates’ position be-
tween base rankings
A3 Compare position of multiple candidates be-
tween rankings
A4 Compare Kendall Tau distance [28] between
rankings
G2a Discover protected attribute groups of the candidates
A5  Identify protected attributes of candidates
G2b Discover groups clustering of protected attributes in
each ranking
A6 Locate candidates of each group in a ranking
A7  Analyze distribution of candidates of each
group
G3a Discover (dis)advantaged groups in each ranking
A8  Identify FPR score of each group
A9  Compare FPR score with a baseline fair score
G3b Investigate the treatment of groups across rankings
A10 Compare FPR score of groups across rankings
G3c Intuit fairness of each ranking
A11 Identify ARP scores of the rankings
A12 Compare ARP across rankings
G4a Analyze multiple consensus rankings of different
fairness level
A13 Generate consensus rankings with different
ARP thresholds
A14 Compare ARP and FPR scores between rank-
ings (including consensus rankings)
A15 Compare Kendall Tau distance between rank-
ings (including consensus rankings)

G5a Analyze discrepancies on candidates between base
rankings and consensus rankings
A16 Compare individual candidate positions in base
rankings with consensus rankings
A17 Identify candidates with major differences in
base rankings with consensus rankings

G5b Re-evaluate Fair Consensus Rankings
A18 Manipulate candidate position or Re-iterate fair
consensus ranking generation with different
fairness threshold

5.1 Ranking Exploration Tasks

Since three of the tasks, T1, T6 and T7, relied on the unmodified
views presented for both groups, we observe that there is no sig-
nificant difference in the answers given by the participants. The
violin plot with confidence intervals, p-value and effect size are
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shown in Figure 4. We report no significant difference in all three
tasks between the two conditions, namely, p = 0.0827, p = 1.0,
and p = 0.637, respectively. We find that participants are able to
identify attributes and compare positions of candidates between
rankings using Parallel Coordinates Plot in both systems. For T7,
which is an advanced task compared to T1 and T6, we see a slight
decrease in the correct answers. T7 asked participants to identify
the candidate with the most disagreement between two rankings.
This task involved identifying a candidate card connected with a
line between two adjacent rankings with the most inclination.

5.2 Fairness-oriented Tasks

T2 asks participants to identify advantaged groups in one of the
three rankings provided. During the experiment, participants were
provided with checkboxes of five race groups allowing them to
select multiple race groups. The ground truth included two ad-
vantaged race groups based on the FPR scores. We observe that
the user performance in FairFuse (M = 0.84 ~ [0.74,0.89]) is sig-
nificantly better than ConsensusFuse (M = 0.23 ~ [0.15,0.31])
as shown in the violin plot (Figure 5a) with a large effect size
(d = 1.54 ~ [1.22,1.86]). The careful design of the Group Fairness
View in FairFuse with the affordance of a horizontal line providing
a visual cue of the baseline that separates the advantaged from
disadvantaged groups could have helped FairFuse achieve better
accuracy for this question. We also find that both FairFuse and
ConsensusFuse participants use the same view for tackling this
question T2 as seen in Figure 5b.

It’s noteworthy that the majority of participants in the Consen-
susFuse study selected one of the two correct advantaged groups,
while the participants in FairFuse identified both correct advan-
taged groups (as shown in Figures 6a and 6b). This highlights the
significance of fairness metrics and visualizations in identifying
multiple advantaged or disadvantaged groups when a large number
of groups are involved.

For T4, participants were asked to identify the most unfair rank-
ing among the three rankings provided. While T2 focused on the
level of advantage each group has using FPR measure [10], T4
focused on utilizing the ARP metric [10]. Similar to T2, with T4,
we get significantly different results between the two conditions
with high accuracy in FairFuse (ConsensusFuse: M = 0.4 [0.29, 0.49]
vs. FairFuse: M = 0.83 [0.73, 0.88]) as shown in Figure 5c. We also
instructed participants to express why they think their ranking
choice is unfair. Participant comments reflect at least two types
of reasoning in the FairFuse condition: expression at the vis-level
and expression at the understanding level. Expression at vis-level
reports the ARP score or visualization that mimics the ARP score,
such as:

The grey bar is the widest with [the] highest ARP index.

Expression at the understanding level goes beyond just reporting
the ARP score, such as:

Reading shows the largest disparity between the high-
est and lowest group fairness scores, ergo the disparity
between highs and lows would be the most unfair.

In contrast, some ConsensusFuse participants considered only a
single group resulting in incorrect answers, such as:



Help or Hinder? Fairness in Visualizations for Consensus Ranking

Table 3: List of task prompts given to the participants. Tasks are targeted at the Goals and Activities (Table 2) analysis.
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Task Task Prompt Target Activity

T1 Locating protected attribute What is the race of Taylor Landry? Al, A5

T2 Identifying Advantaged Group(s) Which race groups are over advantaged in the Math A6, A7, A8, A9
ranking?

T3 Visualization Use Click on the visualization you primarily used to deduce
the answer for the previous question?

T4 Identifying Attribute-level Unfairness =~ Which of the 3 rankings is the most unfair? Please ex- A11, A12
press why it is unfair?

T5 Identifying Group-level Unfairness Which of the 3 rankings have the most advantaged White A6, A7, A10
race group?

Té Utilizing PCP Position Comparison How is Taylor Landry’s position ranked in Math com- A2, A3
pared to Reading?

T7 Interpreting PCP Gradient Select the candidate with most disagreement between A2
Math and Reading rankings. Please explain how you
deduced your answer.

T8 Using Consensus Generation Procedure ~ STEP 1: Generate a consensus ranking using the button A4, A13, A15
on the top of the left sidebar.
STEP 2: Use the pin icon in the heading of the generated
ranking to pin the ranking.
STEP 3: Please identify which base ranking is most dis-
similar to consensus ranking you just generated.

T9 Using Fair Consensus Generation Pro- Generate a fair consensus ranking that: Al-A18

cedure

1. Is representative of all the base rankings

2. Does not over or under advantage race groups

T1 - What is the race of Taylor Landry?

T6 - Taylor's rank in Math vs. Reading?

T7 - Identify the most disputed candidate

Accuracy Accuracy Accuracy
0.97~[0.91,0.99, 0.84~[0.74,0.89, 0.71~[0.6,0.78
FF 4 d - FF f ] —Q- FF 4 I ] —e—
1~[1,1 0.84~[0.75,0.89 ~[0.64,0.81
CF .11 (0] CF ———<[ ! CF 4 Hj
0.0 05 10 0.0 05 10 0.0 05 10

W=5150 p=0.0827 d=-0.247~[-0.527,0.0325]

(a) Locating protected attribute [T1]

W=5000 p=1 d=0~[-0.279,0.279]

(b) Utilizing PCP Position Comparison [T6]

W=5150 p=0.637 d=-0.0669~[-0.346,0.212]

(c) Interpreting PCP Gradient [T7]

Figure 4: Results for Ranking Exploration tasks

The black group is very under-advantaged and is ranked
a lot lower than other groups.
Also, it is interesting that some ConsensusFuse participants did
meticulous calculations of individual groups, such as:

100% of the white students are in the top half, but only
28.5% of the black students are.

Task T5 builds from T2 and T4, where participants were asked
to identify the ranking with the most advantaged White race group.
We find a small but significant difference in accuracy (p = 0.000313;
FairFuse: M = 0.97 ~ [0.91,0.99] vs. ConsensusFuse: M = 0.81 ~
[0.71,0.87]) with medium effect size (d = 0.526 ~ [0.243,0.81]) as
shown in Figure 5d. This may be because T5 specifically asks about
a particular group instead of multiple groups resulting in similar
results like Identifying Advantaged Group(s) (T2) with native as a
correct answer (Figure 6b).
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5.3 Consensus Representation and Analysis
Tasks

To assess FairFuse’s performance in identifying similarity of consen-
sus ranking to base rankings, we device T8. To ensure a fair compar-
ison between the systems, we asked both groups to start with gener-
ating a fairness-unaware consensus ranking, followed by selecting
the most dissimilar base ranking. This way, both groups have the
same state of rankings to begin with. The violin plot shows the re-
sult (Figure 7) with a significant difference between the two groups
and a medium effect size (p = 0.00459, d = 0.408 ~ [0.127,0.69]).
Although FairFuse (M = 0.65 ~ [0.54,0.73]) was more accurate
than ConsensusFuse (M = 0.45 ~ [0.34, 0.53]), the advantage was
not very high.

For this particular task, we also asked participants elaborate
on their answers. We find that some participants in FairFuse, even
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T2 - Identify over-advantaged race groups

Accuracy
e ] 0.84~[0.74,0.89]
oF | >: 0.23~‘0.150.31‘
00 05 10

W=1950 p=6.42e-18 d=1.54~[1.22,1.86]

(a) Results for Identifying advantaged Group(s) [T2] (both native
and white as correct answer)

T3 - Use of Group (Fairness) View for T2

Usage
0.92~[0.82,0.95,
Fr d / — e
0.92~[0.85,0.96,
0.0 05 10

W=5000 p=1 d=0~[-0.279,0.279]

(b) Results for use of Group (Fairness) View for T2 [T3]

T4 — Which of the 3 rankings is the most unfair?
Accuracy

.83~[0.73,0.
| o83-10.730.88 :

0.4~
CF

0.0 05 1.0
W=2850 p=4.62e~10 d=0.98~0.685,1.28]

(c) Results for Identifying Attribute-level Unfairness [T4]

T5 - Identify ranking with most advantaged white group

Accuracy
0.97~[0.91,0.99
] It ] e
0.81~[0.71,0.87,
CF L ! —e=nullll
0.0 05 10

W=4200 p=0.000313 d=0.526~[0.243,0.81]

(d) Results for Identifying Group-level Unfairness [T5]

Figure 5: Results for Fairness-oriented tasks

though they correctly identify the most dissimilar ranking, mention
using the Group Fairness View instead of the Similarity View, such
as:

The ARP of reading is the furthest away from the ARP
of the consensus.
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T2 - White race correctly labelled as advantaged
Accuracy

0.94~[0.86,0.97,
F 080,000 —e

0.29~[0.19,0.38
cr{ I—— B,

0.0 05 10
W=1750 p=4.49e-21 d=1.79~[1.46,2.12]

(a) Results for Identifying Advantaged Group(s) with white as correct
answer [T2]

T2 - Native race correctly labelled as advantaged

Accuracy
0.88~[0.79,0.93,
FF 1 L J —e—
0.9~[0.82,0.94,
or| 082020 —==]]
00 05 10

W=5100 p=0.654 d=-0.0636~[-0.343,0.215]

(b) Results for Identifying Advantaged Group(s) with native as cor-
rect answer [T2]

Figure 6: Results per individual group for Identifying advan-
taged Group(s) [T2]

T8 - Identify most dissimilar ranking to consensus ranking

Accuracy
0:65~[0.54,0.73
FF (e —=
0.0 05 10

W=4000 p=0.00459 d=0.408~[0.127,0.69]

Figure 7: Results on Using Consensus Generation Procedure
[T8]

Interestingly, despite having the Similarity View in FairFuse,
some participants either used a process similar to that of the Con-
sensusFuse participants by dragging individual base rankings to-
wards the consensus ranking and counting line crossings, or didn’t
find the view useful.

I dragged each individual ranking over to place it side-
by-side with the consensus ranking. [...] reading had
the most lines that strayed from this path.

I did not find the Similarity View very helpful.

As a result, while quantitative data in aggregate supports the no-
tion that FairFuse performs better in identifying the (dis)similarity
between the consensus ranking and base rankings, qualitative re-
sults do not fully support this conclusion. Participants may focus
more on the fairness metrics compared to other available informa-
tion like the Similarity View.
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5.4 Open-Ended Fair Ranking Analysis Task

In T9, we ask participants to generate a fair consensus ranking
that is representative of all the base rankings such that it does
not over or under-advantage race groups. We analyze the ARP
scores between the two groups (which ranges from 0 to 1, with
0 representing a ranking with perfect statistical parity [10]) to
measure the group fairness requirement. We find that FairFuse
participants generally agree on consensus rankings with lower
ARP scores (M = 0.15 ~ [0.12,0.18]) compared to ConsensusFuse
(M = 0.31 ~ [0.29,0.33]) with a large effect size (d = —1.39 ~
[-1.71,-1.08]), interpreting that the participants fail to create a
fairer consensus ranking in ConsensusFuse. However, we note that
some of the participants, even without the fairness metrics and its
visualizations, built consensus rankings with low ARP scores.

We observe that the PD Loss [10] (representation of base rank-
ings in the consensus ranking, with 0 representing that all the base
rankings exactly match the consensus ranking) in both groups are
similar (Figure 8b) despite some participants in ConsensusFuse end-
ing up producing rankings that are far in distance from the base
rankings, yet on the fair side, as seen in scatterplot (Figure 9D).
Figure 9A marks the initial consensus ranking for both conditions,
which has a relatively higher ARP score. Interactions included drag-
and-drops of candidate cards for updating the consensus ranking
and generation of consensus rankings. Figure 9B marks the vastly
improved mean ARP value in FairFuse compared to Figure 9C in
ConsensusFuse. We find that FairFuse participants make fewer in-
teractions to agree on a fair consensus ranking as shown in the
violin plot (Figure 8c) (ConsensusFuse: M = 18.76 ~ [15.03, 24.62]
vs. FairFuse: M = 12.2 ~ [10.1, 15.08]).

6 DISCUSSION

Overall results suggest that while both systems are suited for ex-
ploring ranking-related tasks, FairFuse outperforms in terms of
accuracy in fairness-related tasks. Also, fewer interactions are in-
volved in generating fair consensus rankings in FairFuse. We find
that FairFuse, with its unique visualization-enabled fairness metrics,
helps keep a balance between generating a ranking that maximizes
the agreement of base rankings while keeping it as fair as possi-
ble concerning statistical parity, a common definition of fairness.
However, we also find that users are drawn towards relying on
fairness metrics and algorithms to complete the tasks, sometimes
erroneously so. This introduces a tension between the goals of
building a representative consensus versus ensuring that it is fair—
a tension that creates interesting constraints and challenges for
design.

Based on our study, we distilled a set of 4 takeaways summariz-
ing how we observed visualized fairness metrics and algorithms
helping or hindering in tasks and decision-making contexts. These
takeaways may hold broader implications for developers of fair-
ness metrics and algorithms, designers of visual interfaces, and the
fairness community at large.
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6.1 Help: Researchers developing
fairness-aware algorithms should
incorporate ways for end-users to tune
fairness, relative to other problem objectives

Given evolving societal norms and values, definitions of fairness
can change over time and place. Definitions also vary from one disci-
pline to another [37]. Algorithms designed to assist in incorporating
fairness incorporate ways for decision-makers to tune fairness in
the specific problem context. This increases both agency on the part
of decision-makers, and incorporates their specific domain knowl-
edge and worldviews. While FairFuse could produce an absolute
fair consensus ranking based on the algorithm used, we find that
participants set the fairness threshold close to the absolute thresh-
old to generate a fair consensus ranking. This behavior suggests
that allowing individuals to adjust the parameters of an algorithm
can lead to more satisfactory and appropriate results. Moreover,
making fair algorithms tunable allows for more transparency and
accountability in decision-making, as decision-makers can see and
understand the factors influencing the algorithm’s output.

6.2 Hinder: Visualization designers should be
mindful that visually displaying fairness
metric may lead to increased credence in
and over-reliance on metrics

Our results suggest that Decision makers tend to make decisions
that are consistent with visualization-enabled fairness metrics Fig-
ure 9. From a positive perspective, alignment with fairness metrics
can promote fairness in decision-making. Yet, designers should
also be cautious about the consequences of such drift. Nudging
decision-makers toward visual indications of fairness may result in
decision-makers blindly trusting such metrics and algorithms could
miss the societal nuances that the metrics cannot capture, which is
reflected in participants’ comments, e.g.: "Fairness threshold [of] 1
seems to do the job?", "I use the slider and slide it to fairness threshold
to 1. [...] Then the ranking will be unbiased." Visualization designers
and the fairness community should be mindful of the potential for
“fairness drift”, particularly as metrics are increasingly incorporated
into visual interfaces.

6.3 Help: Properly designed visualizations of
fairness metrics can help people navigate
complexity in decision-making contexts

The multi-objective nature of fairness related tasks can be tricky
to navigate for non-expert users where achieving a goal (such
as a building a good consensus ranking) is also subjected to bias
mitigation. Inclusion of large number variables can make it worse as
we see in our results where participants were able to identify only
one of the two advantaged groups without the help of visualizations
supporting fairness metrics (Figure 6). Identifying such groups can
highlight areas of concern, making it easy for further analysis in
mitigating bias. Properly designed visualization of fairness metrics
can help identify bias across a larger number of variables helping
individuals to make informed decisions in the decision-making
process.



FAccT 23, June 12-15, 2023, Chicago, IL, USA

T9 - ARP of the consensus ranking
Lower represents fairer ranking considering ARP

T9 - PD Loss of the consensus ranking
Lower is more representative of the base rankings

Shrestha, et al.

T9 - Interactions to build consensus rank.
Interactions Count

0.15~[0.12,0.18 0.18~[0.17,0.18 12.2~[10.1,15.08

. ° I | " I 1l e I ]

0.31~[0.29,0.33 0.17~[0.16,0.19, 18.76~[15.05,24.85

o e OB ORIV | | 1070013052409
0.0 0.5 1.0 0.0 0.5 1.0 0 20 40 60 80 100

W=8270.5 p=7.77e-16 d=-1.39~[-1.71,-1.08]

W=2987.5 p=7.52e-07 d=0.0935~[-0.186,0.373]

W=5638 p=0.119 d=-0.346~[-0.627,-0.0648]

(a) Results for ARP of generated fair consen- (b) Results for PD Loss of generated fair con- (c) Total interactions the participants made to

sus ranking [T9] sensus ranking [T9]

build fair consensus ranking [T9]

Figure 8: Results for Open-Ended Fair Ranking Analysis Task

ConsensusFuse
FairFuse
0.6
Few participants in ConsensusFuse were able to
Qachieve a low ARP score, but lost a great amount
representation of the base rankings.
0.5
o 04
(%]
o
—
[a)
o
0.3
4 .s..se-Mean ARP isn’t improved much
077 Livin GonsensusFuse —
- Initial consensus
02 ranking in both
- ”.conditions hasa,
Mean ARP is largely ) relatively high ARP
improved in FairFuse score
0.0 0.2 ARP 0.4 06

Figure 9: Results of ARP vs. PD Loss throughout each user
interaction while generating a fair consensus ranking. The
white dot indicates the ARP and PD Loss of the initial con-
sensus ranking in both conditions.

6.4 Hinder: Improperly designed fairness
metrics visualizations can lead people to
incorrect conclusions

While visualization tools like FairFuse can be used to promote fair-
ness in building a consensus ranking, it is crucial for visualization
designers to be mindful of the way in which fairness metrics are
presented, as improper design can lead individuals to draw incor-
rect conclusions. For example, in the case of FairFuse, presenting
new visualization such as the Group Fairness View on occasion
led participants to overlook other important information such as
the Similarity View (see Section 5.3), Yet, the later is equally impor-
tant in maintaining consensus. Failure to do so could result in an
incomplete understanding of the task at hand.
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7 LIMITATIONS AND FUTURE WORK

The limitations of FairFuse [48] are also relevant to this crowd-
sourced study. FairFuse focusses on ARP and FPR fairness metrics
[10] within the widely accepted definition of group fairness in the
fairness community. It also considers one tunable algorithm for gen-
erating fair consensus ranking. The fulfillment of the goals of the
system relied on those metrics in the tasks abstraction phase. How-
ever, Verma and Rubin [52] highlight that a decision considered fair
by one definition may be deemed unfair by others, and laypeople’s
judgment often aligns with simple notions of fairness like group
fairness [13]. Therefore, future work could incorporate multiple
fairness definitions and conduct similar user studies. Future studies
might also examine the potential benefits and drawbacks of using
tunable algorithms like in FairFuse for fairness-related tasks. In
addition, these studies could assess the impact on decision-makers
trust in these systems and the possibility of an increased cognitive
load.

8 CONCLUSION

The concern for fairness in Al tools and online platforms has am-
plified the need for effective methods of identifying and mitigating
bias in ranking processes. However, the complexities of fair consen-
sus ranking, including multiple bias-causing factors and nuanced
ethical and societal values, make a fully automated system unre-
liable. Human-in-the-loop systems, which offer a comprehensive
approach to bias mitigation, can be valuable, but there is limited
evidence on the benefits and challenges of designing visualizations
that support fairness metrics.

To investigate these challenges, we conducted a crowd-sourced
study across goals and activities designed for building a fair con-
sensus ranking between a metrics-based visualization FairFuse and
a non-metric based visualization system ConsensusFuse. Our find-
ings suggest that well-designed visualizations can aid in creating
fair consensus rankings, but they may also hinder certain tasks,
particularly balancing goals beyond fairness in decision-making
contexts.
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Table 4: Summary of the results by tasks

Task FairFuse ConsensusFuse Result

T1 Locating protected at- 0.97 ~ [0.91,0.99] 1~ [1,1] W = 5150 p = 0.0827 d = —0.247 ~ [—0.527, 0.0325]
tribute

T2 Identifying Advantaged 0.84 ~ [0.74,0.89]  0.23 ~ [0.15,0.31] W =1950 p = 6.42¢ — 18 d = 1.54 ~ [1.22,1.86]
Group(s)
a) Correctly identify race 1 0.94 ~ [0.86,0.97]  0.29 ~ [0.19,0.38] W = 1750 p = 4.49%¢ — 21d = 1.79 ~ [1.46,2.12]
b) Correctly identify race 2 0.88 ~ [0.79,0.93] 0.9 ~ [0.82,0.94] W =5100 p = 0.654 d = —0.0636 ~ [—0.343,0.215]

T3 Visualization Use 0.92 ~ [0.82,0.95]  0.92 ~ [0.85,0.96] W =5000p=1d=0~ [-0.279,0.279]

T4 Identifying Attribute-level 0.83 ~ [0.73,0.88] 0.4 ~ [0.29,0.49] W = 2850 p = 4.62e — 10 d =0.98 ~ [0.685,1.28
Unfairness

T5 Identifying Group-level 0.97 ~ [0.91,0.99]  0.81 ~ [0.71,0.87] W = 4200 p = 0.000313 d = 0.526 ~ [0.243,0.81]
Unfairness

Té6 Utilizing PCP Position 0.84 ~ [0.74,0.89]  0.84 [0.75,0.89] W =5000p=1d=0~ [-0.279,0.279]
Comparison

T7 Interpreting PCP Gradient 0.71 ~ [0.6,0.78] 0.74 ~ [0.64,0.81] W = 5150 p = 0.637 d = -0.0669 ~ [—0.346,0.212]

T8 Using Consensus Genera- 0.65 ~ [0.54,0.73] 0.45 ~ [0.34,0.53] W = 4000 p = 0.00459 d =0.408 ~ [0.127,0.69]
tion Procedure

T9 Using Fair Consensus Gen-

eration Procedure

a) ARP

b) PD Loss

c) Interactions Count

0.15 ~ [0.12,0.18]
0.18 ~ [0.17,0.18]
12.2 ~ [10.1, 15.08]

0.31 ~ [0.29,0.33]
0.17 ~ [0.16,0.19]

18.76 ~ [15.05, 24.85]

W =82705p=7.77e — 16 d = =1.39 ~ [-1.71,-1.08]
W =2987.5 p =7.52e — 07 d = 0.0935 ~ [—0.186,0.373]
W =5638 p =0.119d = —0.346 ~ [—0.627, —0.0648]
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