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A B S T R A C T

The Kalman Filter is a widely used approach for the linear quadratic estimation of dynamical systems and is
frequently employed within nuclear and particle physics experiments for the reconstruction of charged particle
trajectories, known as tracks. Implementations of this formalism often make assumptions on the linearity of
the underlying dynamic system and the Gaussian nature of the process noise and measurement model, which
are violated in a number of track reconstruction applications. This paper introduces an implementation of a
Non-Linear Kalman Filter (NLKF) within the ACTS track reconstruction toolkit. The NLKF addresses the issue
of non-linearity by using a set of representative sample points during the projection of the track state to the
measurement. In a typical use case, the NLKF outperforms the so-called Extended Kalman Filter in the accuracy
and precision of the track parameter estimates obtained, with an increase in CPU time below a factor of two.
It is therefore a promising approach for use in applications where precise estimation of track parameters is a
key concern.
1. Introduction

The reconstruction of the trajectories of charged particles requires
the identification of the set of hits corresponding to a single particle and
the determination of the kinematic properties of the particle’s trajectory
by fitting that set of hits using a track model. The most commonly
used algorithm for the reconstruction of charged particle trajectories,
or tracks, in nuclear and particle physics is the Kalman Filter (KF).
The KF was introduced approximately 70 years ago [1] and is used
in many fields including navigation, aerospace engineering, space engi-
neering, remote surveillance, telecommunications, physics, audio signal
processing and control engineering. The KF for track reconstruction was
introduced to particle physics by the DELPHI experiment [2] at the
Large Electron Positron (LEP) collider at the European Organization for
Nuclear Research (CERN).

The KF processes a set of discrete measurements to determine the
internal state of a linear dynamical system. Both the measurements and
the system can be subjected to independent random perturbations or
noise. By combining predictions based on the previous state estimates
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1 Magnetic fields are used to deflect the trajectory to allow the charged particle momentum to be measured and material effects cause random fluctuations

due to elastic scattering and energy loss.

with subsequent measurements, the impact of these perturbations on
the following state estimates can be minimized. The KF is known to be
the optimal linear estimator for such linear systems.

In track reconstruction [3], the description of the system incorpo-
rates the impact of magnetic fields and detector material on charged
particle trajectories.1 KF algorithms are used both in track finding,
where the collection of measurements corresponding to a single charged
particle trajectory are identified, and in track fitting, where the param-
eters describing the trajectory of the charged particle are determined
from a set of measurements. To date, the KF remains the method with
the best overall performance for most track reconstruction applications.
See Ref. [4] for a review.

KF algorithms for track reconstruction typically proceed in two
steps. The starting point is the track seed, which is an initial coarse
trajectory estimate for a candidate track, based on a small number
of measurements, typically three or four. Subsequent measurements
are added progressively to the track seed following a track propa-
gation to reachable detection elements. Once all the measurements
have been added, a smoothing operation is performed by either using
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the Rauch–Tung–Striebel (RTS) smoother formalism [5] or running
a second filtering sequence in the opposite direction, i.e. backward
filtering. This means that information from all measurements are in-
cluded in the track parameter estimates at all measurement points.
Without the smoothing operation, only the parameters estimated at
the final measurement point would include the information from all
measurement points due to the progressive nature of the KF procedure.
An extension of the KF is the Combinatorial Kalman Filter (CKF) [6–8],
which can account for multiple matching hits during track finding.

Despite the success of the KF, a key limitation for many applications
is the assumption of linear models for the system and measurement and
Gaussian distributions for the system state, process and measurement
noise. This has motivated the development of a number of extensions.
One such extension is the linearized Extended Kalman filter (EKF) [9]
which uses a model that has been linearized via a first-order Taylor
expansion. This description, while significantly improved, is insufficient
in particular when the incidence angle of the charged particle on the
measurement surface is large. The assumption within the EKF that
the noise is described by a Gaussian distribution is not necessarily
appropriate.

The Gaussian Sum Filter (GSF) [10] relaxes the assumption of
Gaussian process noise by assuming that the noise distribution can be
described by a sum of Gaussian distributions [11]. In the domain of
nuclear and particle physics, this is particularly important when mod-
elling radiative energy loss such as is common when electrons undergo
bremsstrahlung as they pass through tracking detectors [12,13]. The
application of the GSF procedure is typically restricted to track candi-
dates which have been identified as being a potential electron candidate
(e.g. by combining track information with calorimeter information,
or other forms of particle identification such as transition radiation).
The GSF does not address potential effects arising from a non-linear
measurement model in track fitting.

This paper will explore a non-linear Kalman filter (NLKF) based on
the Unscented Kalman filter (UKF) [14,15], as a method to mitigate
some of the previously-discussed issues in charged particle reconstruc-
tion for high-energy nuclear and particle physics experiments. The UKF
uses a set of discretely sampled points to parameterize the mean and
covariance to account for non-linearities of the system and measure-
ment models, and has been shown to have comparable performance to
a second-order Gaussian filter. We investigate the performance of the
NLKF in high energy physics use cases. We focus on the performance
improvements observed through using the NLKF during the projection
of the track state to the measurement compared to the EKF.

The manuscript is organized as follows. Section 2 provides a brief
introduction to track reconstruction and A Common Tracking Software
Toolkit (ACTS) [16]. The formalism for the EKF is discussed in Section 3
nd the extension to the NLKF in Section 4. Section 5 compares the per-
ormance of the EKF and the NLKF using a typical detector geometry.
rief conclusions are presented in Section 6.

. Track reconstruction and the ACTS toolkit

A Common Tracking Software (ACTS) [16] is a toolkit providing a
et of encapsulated track reconstruction components that can be used
y a wide range of experiments. ACTS features an internal geometry
nd navigation model, including a minimal Event Data Model (EDM)
hat allows client applications to augment and extend the data with
nformation specific to the target experiment. It imposes minimal de-
endencies. ACTS is written in C++17 using modern programming
est-practices and follows a component level design that provides
ncapsulated, stateless modules. These modules perform well-defined
asks for track reconstruction (e.g. track propagation or track fitting)
nd are designed to be executed in parallel call paths if desired, in com-
liance with modern multi-core CPU architectures. ACTS is currently
sed within a number of nuclear and particle physics experiments,
.g. ATLAS [17], sPHENIX [18], and is being investigated as a potential
rack reconstruction library by a number of others.
 r

2

Using its internal geometry and navigation model, ACTS provides a
ast track simulation engine, based on the concept of the ATLAS Fast
rack Simulation (Fatras) [19].2 The internal navigation model of the
CTS geometry is used to predict the particle trajectories through the
etector. Hits are created at the intersection points of the trajectory
ith sensitive detector elements, and the interaction of particles with
etector material is modelled using approximate electromagnetic and
adronic physics models. The multiple scattering is modelled as a
andom Gaussian noise and the energy loss is modelled with random
umbers drawn from a Landau distribution according to the traversed
aterial. The recorded hits are processed by a digitization module that
mulates the detector readout and provides an estimate for the detector
esolution.
In ACTS, candidate tracks are created from input measurements by
series of track reconstruction algorithms, and are represented by a
eries of track states that describe the trajectory at various points. A
rack state can be expressed in either a free (also called global) or a
ocal representation. Local representations are constrained to a surface
ithin the detector.
The free (global) track parameters, 𝑔, are 8-dimensional and repre-

ented as:

= (𝑥, 𝑦, 𝑧, 𝑡, 𝑑𝑥, 𝑑𝑦, 𝑑𝑧, 𝑞∕𝑝). (1)

The first four parameters are the space–time coordinates (𝑥, 𝑦 and 𝑧
for position and 𝑡 for time) of the track state, 𝑑𝑥, 𝑑𝑦 and 𝑑𝑧 represent
the direction of the track at that point, and 𝑞∕𝑝 is the ratio of the
charge, 𝑞, and the momentum, 𝑝.3 The 𝑑𝑥, 𝑑𝑦 and 𝑑𝑧 are constrained
by 𝑑2𝑥 + 𝑑2𝑦 + 𝑑2𝑧 = 1.

The local track parameters, 𝑙, are 6-dimensional and represented
s:

= (𝑙𝑜𝑐0, 𝑙𝑜𝑐1, 𝜙, 𝜃, 𝑞∕𝑝, 𝑡). (2)

ere, 𝑙𝑜𝑐0 and 𝑙𝑜𝑐1 are the coordinates of the track in the local co-
rdinate frame of a reference surface, the 𝜙 and 𝜃 are the azimuthal
nd polar angles, respectively, describing the track direction in the
lobal coordinate frame, and the 𝑞∕𝑝 and 𝑡 are the same as the global
rack parameters. The reference surfaces can include different types
nd shapes, including cylindrical and planar surfaces, and surfaces
escribing straw-like detector or virtual lines. An example of a line
urface is the perigee surface used to describe the track parameters
ear the vertex.4 The track parameters on a perigee surface are called
he perigee track parameters and, in this case, the 𝑙𝑜𝑐0 and 𝑙𝑜𝑐1 are
ften denoted as 𝑑0 and 𝑧0, which are the transverse and longitudinal
mpact parameters. The perigee parameters are often used when the
rack is described by a single set of parameters because they are the
arameters at its estimated point of production, which is typically of
ost relevance for physics analyses. See Ref. [16]for more details of
he track parametrization.
In the ACTS Kalman filtering algorithm, the track state is repre-

ented by the local track parameters expressed at measurement planes.
easurements are represented by a subset of the local track parameters,
s explained in Section 4.3.

2 i.e. Fatras is significantly simplified with respect to a physics-based simu-
ation such as Geant4 [20], resulting in orders-of-magnitude faster processing
imes.
3 Following the convention of the ATLAS experiment, we use a right-handed
artesian coordinate system with its origin at the nominal interaction point
IP) in the centre of the detector. The 𝑧-axis is along the beam pipe, and the 𝑥-
xis points from the IP to the centre of the collider ring. Cylindrical coordinates
𝑟, 𝜙) are used in the transverse plane, 𝜙 ∈ [−𝜋, 𝜋) being the azimuthal angle
efined in the transverse 𝑥–𝑦 plane around the beam pipe. The rapidity is
efined as 𝑦 = (1∕2) ln[(𝐸 + 𝑝𝑧)∕(𝐸 − 𝑝𝑧)], while the pseudorapidity is defined
n terms of the polar angle 𝜃 which is measured from the positive 𝑧-axis in an
nterval of [0, 𝜋] as 𝜂 = − ln tan(𝜃∕2). 𝜂 = +∞ corresponds to the direction of
he beam.
4 The vertex is assumed to be the common point where particles from
single interaction or decay originated. ACTS also includes algorithms for
econstructing the positions of such vertices from a set of input tracks.
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3. Track fitting with an extended Kalman filter

This section introduces EKF-based track fitting using the mathemat-
ical prescription following Ref. [3].

Track fitting with a Kalman filter requires evolving the track state
and its associated covariance matrix, as it is propagated through a
discrete dynamical system. If we take the seed of the track fit as the
first track state with index 0 and that there are 𝐾 track states in total,
this can be described by a track state propagation model:

𝑥𝑘 = 𝑓𝑘−1(𝑥𝑘−1) + 𝜂𝑘−1, 𝑘 = 1,… , 𝐾 − 1. (3)

Here,

• 𝑥𝑘−1 and 𝑥𝑘 are the track state vector at the states 𝑘 − 1 and 𝑘,
respectively.

• 𝜂𝑘−1 is the vector representing the noise when propagating from
state 𝑘 − 1 to state 𝑘, i.e. process noise. It can be decomposed
into two terms, 𝜂𝑘−1 = 𝜂𝑚𝑘−1 + 𝜂𝑒𝑘−1, where the former accounts for
multiple scattering and the latter for energy loss due to ionization
or radiation (in case of electrons).

• 𝑓𝑘−1 is a function that encodes the track state propagation model
from 𝑘−1 to state 𝑘, which describes the motion of the particle. It
depends on the kinematics of the particle and the magnetic field.

The track state is projected onto the measurement using the mea-
surement projection model:

𝑦𝑘 = ℎ𝑘(𝑥𝑘) + 𝜖𝑘, 𝑘 = 1,… , 𝐾 − 1. (4)

Here,

• 𝑦𝑘 is the measurement vector at state 𝑘.
• 𝜖𝑘 is the measurement noise vector at state 𝑘.
• ℎ𝑘 is the measurement projection function from track state to
measurement, which depends on the kinematics of the particle
and detector geometry.

Both the track state propagation model, 𝑓 , and the measurement
projection model, ℎ, are often non-linear functions. The process noise
𝜂𝑚𝑘−1 and measurement noise 𝜖𝑘 are assumed to be Gaussian distri-
butions with zero means, and variances 𝑄𝑚

𝑘 and 𝑉𝑘 respectively. The
process noise 𝜂𝑒𝑘−1 is also assumed to follow a Gaussian distribution
with non-zero mean (since it will act to reduce the momentum) and
variance 𝑄𝑒

𝑘, even though it is known that it does not typically follow
a Gaussian distribution.

As nuclear and particle experiments often have inhomogeneous
magnetic fields, the 𝑓𝑘−1 is evaluated to obtain 𝑥𝑘 using the Runge–
Kutta method [21] by numerically solving the second-order differen-
tial equations describing charged particles moving through magnetic
fields. For example, the ATLAS experiment uses an adaptive Runge–
Kutta–Nyström approach [22], which adapts the step size to minimize
computational costs while ensuring that the estimation error remains
below a set threshold. The 𝑦𝑘 is obtained analytically by calculating the
intersection of the track with the detector plane, which is described by
ℎ𝑘.

The covariance of 𝑥𝑘 and 𝑦𝑘 are obtained based on the first-order
erivative of the track state at 𝑘 with respect to the track state at 𝑘−1,

𝐹𝑘−1, and that of the measurement at 𝑘 with respect to the track state
at 𝑘, 𝐻𝑘, respectively, as follows:

𝐹𝑘−1 = 𝜕𝑓𝑘−1∕𝜕𝑥𝑘−1, 𝑘 = 1,… , 𝐾 − 1

𝐻𝑘 = 𝜕ℎ𝑘∕𝜕𝑥𝑘, 𝑘 = 1,… , 𝐾 − 1,
(5)

here the 𝐹𝑘−1 is obtained numerically using the Runge–Kutta method
nd the 𝐻𝑘 is calculated analytically using ℎ𝑘 and 𝑥𝑘.
The EKF has three steps: the prediction of the track state at state 𝑘

ased on previous 𝑘 − 1 measurements, the filtering of predicted track
tate at state 𝑘 taking into account the measurement at state 𝑘, and the

moothing of the filtered track state with all measurements taken into

3

ccount. A full description can be found in Ref. [3]. Here we briefly
utline the formulae where the 𝑘 runs from 1 to K−1 used to update
he track state vector, 𝑥 and its covariance, 𝐶.

• Prediction:
𝑥𝑘−1𝑘 = 𝑓𝑘−1(𝑥𝑘−1) + 𝜂𝑒𝑘−1,

𝐶𝑘−1
𝑘 = 𝐹𝑘−1𝐶𝑘−1𝐹 𝑇

𝑘−1 +𝑄𝑚
𝑘−1 +𝑄𝑒

𝑘−1,
(6)

where the upper index 𝑘 − 1 indicates the estimate prior to the
filtering, i.e. with only the previous 𝑘 − 1 measurements taken
into account. The 𝐹𝑘−1 is evaluated at this stage using the filtered
track state at 𝑘 − 1 and the predicted track state at state 𝑘.

• Filtering:

𝑥𝑘 = 𝑥𝑘−1𝑘 +𝐾𝑘(𝑚𝑘 − 𝑦𝑘),

𝐶𝑘 = (1 −𝐾𝑘𝐻𝑘)𝐶𝑘−1
𝑘 ,

(7)

where 𝑚𝑘 is the measurement on state 𝑘, and the 𝐾𝑘 is the Kalman
gain matrix:

𝐾𝑘 = 𝐶𝑘−1
𝑘 𝐻𝑇

𝑘 (𝑉𝑘 +𝐻𝑘𝐶
𝑘−1
𝑘 𝐻𝑇

𝑘 )
−1. (8)

• Smoothing:

𝑥𝑛𝑘 = 𝑥𝑘 + 𝐴𝑘(𝑥𝑛𝑘+1 − 𝑥𝑘𝑘+1),

𝐶𝑛
𝑘 = 𝐶𝑘 + 𝐴𝑘(𝐶𝑛

𝑘+1 − 𝐶𝑘
𝑘+1)𝐴

𝑇
𝑘 ,

(9)

where the upper index 𝑛 indicates the smoothed estimation with
all 𝑛measurements taken into account, and the 𝐴𝑘 is the smoother
gain matrix:

𝐴𝑘 = 𝐶𝑘𝐹
𝑇
𝑘 (𝐶𝑘

𝑘+1)
−1. (10)

. The non-linear Kalman filter

.1. Non-linear effects in track reconstruction

A typical tracking detector at a particle collider is a cylindrical
etector with concentric cylindrical layers around the collision point,
hich are oriented parallel to the beam direction, and disc layers
n either side, which are oriented normal to the beam direction.
his guarantees almost hermetic coverage of the phase space of the
articles produced in the collisions, while complying with mechanical
onstraints and minimizing detector material. However, when a track
rom the beam interaction point intersects with a detector module, the
ependence of the intersection position on the incident track direction
s non-linear. Fig. 1 demonstrates an example of such non-linear effects
sing a straight line track model, i.e. the track direction is the same
etween state 𝑘 − 1 and 𝑘. A track propagates through a simplified
etector (shown in Fig. 2) consisting of two parallel detector planes
riented normal to the beam direction without the presence of magnetic
ield and material effects. As a simple assumption, at state 𝑘 − 1,
he track parameters 𝜙 and 𝜃, i.e. the azimuthal angle 𝜙 and polar
ngle 𝜃 of the track direction, have non-zero uncertainty while the
rack parameters 𝑙𝑜𝑐0 and 𝑙𝑜𝑐1, i.e. the local coordinates of state in
he cartesian frame of a plane (𝑙𝑜𝑐0 is along the global 𝑥 axis and 𝑙𝑜𝑐1
s along the global 𝑦 axis), have zero uncertainty. The dependence of
𝑜𝑐0 and 𝑙𝑜𝑐1 at state 𝑘 on the 𝜙 and 𝜃 at state 𝑘 can be calculated
nalytically and is shown in Fig. 1. In this example, the dependence
s closest to linear when 𝜙 and 𝜃 are zero, which corresponds to the
ase when the track intersects the detector module at a perpendicular
ngle, or zero incidence angle, and become increasingly non-linear as
he absolute angles increase. This effect is particularly significant for
he 𝜃, which is highly correlated with the track incidence angle. As we
ill show, these non-linear effects can be addressed by the NLKF.
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Fig. 1. Example of non-linear dependence of the local coordinate of the intersection of a track on detector plane 𝑘 on the (left) azimuthal angle 𝜙 with 𝜃 = 45◦ and (right) polar
angle 𝜃 with 𝜙 = 0◦ of the track on detector plane 𝑘 for two parallel detector planes oriented normal to the beam direction and placed with a distance of 10 mm. The dependence
of the 𝑙𝑜𝑐0 and 𝑙𝑜𝑐1 on the track direction are shown by the short-dashed blue and long-dashed orange lines, respectively. The vertical dashed line denotes the angle at zero and
the horizontal line denotes the local coordinate at zero.
Fig. 2. Illustration of the impact of non-linear effects during track parameter transformation for a two layer detector without magnetic field. The detector planes are placed normal
to global 𝑧 axis with a distance of 10 mm. (Top left) A track with 𝜙 = 0◦ and 𝜃 = 45◦ intersects planes 𝑘−1 and 𝑘. Both 𝜙 and 𝜃 have uncertainty of 14.32◦ with their covariance
denoted by the orange cones. The local coordinates of the track on plane 𝑘− 1 has zero covariance. The green circle shows the covariance of a measurement located at the centre
of the circle. (Top right) The scatter plot shows the local coordinates on plane 𝑘 for 10,000 sampled tracks. The orange dots show the location of the sample points with NLKF
(some of them overlap). (Bottom left) The normalized distribution of the coordinate 𝑙𝑜𝑐0 of the sampled tracks on plane 𝑘 (black dots) and the Gaussian functions used to model
the distribution by EKF (blue long-dashed line) and NLKF (orange short-dashed line). The black solid, blue long-dashed and orange short-dashed vertical lines denote the mean of
the sample, EKF and NLKF, respectively. (Bottom right) Comparison of pull of the filtered 𝜃 using EKF (blue dots) and NLKF (orange triangles).
4.2. NLKF formalism

The NLKF calculates the propagated or projected track state and
covariance using a set of sample points around the mean of the track
state being propagated or projected, with each point assigned a weight.
This is analogous to the random sampling of a distribution function
4

in Monte Carlo simulation, the method typically used to generate
events corresponding to different physics processes, but using a set of
representative sample points. For an 𝑁-dimensional track state vector
𝑥𝑘−1 with covariance 𝐶𝑘−1 at state 𝑘 − 1, 2𝑁 + 1 sample points are
considered [14,15]. These comprise the nominal track state vector plus
2𝑁 vectors obtained by varying the nominal track state vector along
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the direction of the eigenvectors of the covariance matrix. The magni-
tudes of the variations are chosen according to the eigenvalues of the
covariance matrix. The eigenvectors and eigenvalues of the covariance
matrix are obtained via Singular Value Decomposition (SVD) [23]. 𝐶𝑘−1
is a real symmetric matrix and therefore can be expressed through SVD
as,

𝐶𝑘−1 = 𝑈𝑘−1𝑆𝑘−1𝑈
𝑇
𝑘−1, (11)

where 𝑈𝑘−1 is a unitary matrix whose columns are the eigenvectors of
𝐶𝑘−1, and 𝑆𝑘−1 is a diagonal matrix whose non-zero diagonal elements
are the corresponding eigenvalues of 𝐶𝑘−1. Denoting the 𝑖th column of
𝑈𝑘−1 as 𝑢𝑖𝑘−1 and the 𝑖th diagonal element of 𝑆𝑘−1 as 𝑠𝑖𝑘−1, we define 𝑁
sets of orthogonal shifting vectors 𝛿𝑖𝑘−1:

𝛿𝑖𝑘−1 =
√

𝑠𝑖𝑘−1𝑢
𝑖
𝑘−1, 𝑖 = 1,… , 𝑁, (12)

here
√

𝑠𝑖𝑘−1 is the magnitude of the variation in the direction of 𝑢
𝑖
𝑘−1.

The 2𝑁 + 1 sample points for 𝑥𝑘−1 are:

(𝑖)
𝑘−1 =

⎧

⎪

⎨

⎪

⎩

𝑥𝑘−1, 𝑖 = 0;

𝑥𝑘−1 + 𝛾𝛿𝑖𝑘−1, 𝑖 = 1,… , 𝑁 ;

𝑥𝑘−1 − 𝛾𝛿𝑖−𝑁𝑘−1 , 𝑖 = 𝑁 + 1,… , 2𝑁,

(13)

where 𝛾 is a scaling parameter defined as,

𝛾 =
√

𝑁 + 𝜆, 𝜆 = 𝛼2𝑁 −𝑁, (14)

and 𝛼 is tunable parameter used to control the deviation of the sample
point from the nominal point, in the range 0 < 𝛼 ≤ 1.

The sample points for 𝑥𝑘−1 can be propagated to state 𝑘 using the
track model in Eq. (3),

X(𝑖)𝑘 = 𝑓𝑘−1(X
(𝑖)
𝑘−1) + 𝜂𝑘−1, 𝑖 = 0,… , 2𝑁, (15)

and projected to a measurement point at state 𝑘 using the measurement
model in Eq. (4),

Y(𝑖)𝑘 = ℎ𝑘(X
(𝑖)
𝑘 ) + 𝜖𝑘, 𝑖 = 0,… , 2𝑁. (16)

The mean, 𝑦̃𝑘, and covariance, 𝑃𝑘, of the projected track state are
alculated as

𝑦̃𝑘 =
2𝑁
∑

𝑖=0
𝑤(𝑖)

𝑚 Y
(𝑖)
𝑘 ,

𝑃𝑘 =
2𝑁
∑

𝑖=0
𝑤(𝑖)

𝑐 (Y(𝑖)𝑘 − 𝑦̃𝑘)(Y
(𝑖)
𝑘 − 𝑦̃𝑘)𝑇 + 𝑉𝑘,

(17)

nd the covariance between the track state and the measurement, 𝑇𝑘,
s calculated as

𝑇𝑘 =
2𝑁
∑

𝑖=0
𝑤(𝑖)

𝑐 (X(𝑖)𝑘 − 𝑥𝑘−1𝑘 )(Y(𝑖)𝑘 − 𝑦̃𝑘)𝑇 . (18)

In Eqs. (17) and (18), the weights 𝑤(𝑖)
𝑚 and 𝑤(𝑖)

𝑐 are defined as

𝑤(0)
𝑚 = 𝜆

𝑁+𝜆 , 𝑖 = 0,

𝑤(0)
𝑐 = 𝜆

𝑁+𝜆 + (1 − 𝛼2 + 𝛽), 𝑖 = 0,

𝑤(𝑖)
𝑚 = 𝑤(𝑖)

𝑐 = 1
2(𝑁+𝜆) , 𝑖 = 1,… , 2𝑁,

(19)

where 𝛽 is a non-negative weighting parameter used to tune the weight
of the Y(0) when calculating 𝑃𝑘. A value of 𝛽 = 2 as suggested in
Ref. [24] is used.

The Kalman gain is calculated as

𝐾𝑘 = 𝑇𝑘𝑃
−1
𝑘 , (20)

and used, with the mean and covariance, to update the track state and
its covariance in the Kalman filtering step as follows

𝑥𝑘 = 𝑥𝑘−1𝑘 +𝐾𝑘(𝑚𝑘 − 𝑦̃𝑘),
𝑘−1 𝑇 𝑘−1 𝑇

(21)

𝐶𝑘 = 𝐶𝑘 −𝐾𝑘𝑃𝑘𝐾𝑘 = 𝐶𝑘 − 𝑇𝑘𝐾𝑘 .

5

4.3. Implementation of NLKF in ACTS

In this paper, we apply only the non-linear corrections during the
projection of the track state to the measurement point. In such cases,
the propagation from state 𝑘 − 1 to state 𝑘 is performed using the
adaptive Runge–Kutta method in the presence of a magnetic field as
in EKF and the sample points considered for 𝑥𝑘 are passed to ℎ𝑘 in
Eq. (16) to obtain Y(𝑖)𝑘 .

As described in Section 2, a measurement is described by a subset
of the local track parameters in ACTS. Therefore, projecting a track
state to a measurement is equivalent to transforming the global track
parameters to the local track parameters, where the track state is
constrained to the measurement plane, and projecting the local track
parameters to the measurement with an identity projection matrix.
The track state is represented by global track parameters during its
propagation between detector planes and transformed to local track
parameters at the detector plane where a material effect needs to be
taken into account or a measurement is present. In the latter case, the
measurement is used to update the predicted track state 𝑥𝑘−1𝑘 and its
covariance 𝐶𝑘−1

𝑘 represented by the local track parameters at state 𝑘
using Kalman filtering formulae.

If the incidence angle of track on a detector plane is larger than
a certain value, the transformation of a single set of global track
parameters at state 𝑘 to local track parameters at state 𝑘 is replaced
by the transformation of the 17 sets,5 of global track parameters at
state 𝑘 to the local track parameters at state 𝑘. Eq. (16) is used and
the corrected local track parameters (𝑥𝑘−1,c𝑘 , the superscript c here and
thereafter denotes ‘corrected’) and associated covariance (𝐶𝑘−1,c

𝑘 ) are
calculated according to Eq. (17). In ACTS, the covariance in Eq. (18)
between the local track parameters and the measurement is part of the
covariance matrix of the local track parameters, i.e.

𝑇𝑘 = 𝐶𝑘−1,c
𝑘 𝐻𝑇

𝑘 , (22)

and

𝑃𝑘 = 𝐻𝑘𝐶
𝑘−1,c
𝑘 𝐻𝑇

𝑘 + 𝑉𝑘. (23)

The Kalman gain formulae for the EKF and NLKF are identical:

𝐾𝑘 = 𝑇𝑘𝑃
−1
𝑘 = 𝐶𝑘−1,c

𝑘 𝐻𝑇
𝑘 (𝑉𝑘 +𝐻𝑘𝐶

𝑘−1,c
𝑘 𝐻𝑇

𝑘 )
−1, (24)

and Eq. (21) for Kalman filtering becomes

𝑥c𝑘 = 𝑥𝑘−1,c𝑘 +𝐾𝑘(𝑚𝑘 −𝐻𝑘𝑥
𝑘−1,c
𝑘 ),

𝐶c𝑘 = 𝐶𝑘−1,c
𝑘 − 𝑇𝑘𝐾𝑇

𝑘 = (1 −𝐾𝑘𝐻𝐾 )𝐶
𝑘−1,c
𝑘 .

(25)

The updated track state at state 𝑘 with track position constrained to
the measurement plane is then represented as global track parameters
before being propagated to the next track state at 𝑘 + 1 using the
adaptive Runge–Kutta method. The state vector of the global track
parameters is transformed from the state vector of the local track pa-
rameters representing the track state analytically. The state covariance
is transformed using the first-order derivative of the representing global
track parameters at state 𝑘 with respect to the representing local track
parameters at state 𝑘.

The smoothing formulae for NLKF are:

𝑥𝑛,c𝑘 = 𝑥c𝑘 + 𝐴𝑘(𝑥
𝑛,c
𝑘+1 − 𝑥𝑘,c𝑘+1),

𝐶𝑛,c
𝑘 = 𝐶c𝑘 + 𝐴𝑘(𝐶

𝑛,c
𝑘+1 − 𝐶𝑘,c

𝑘+1)𝐴
𝑇
𝑘 ,

(26)

where

𝐴𝑘 = 𝐶c𝑘𝐹
𝑇
𝑘 (𝐶𝑘,c

𝑘+1)
−1. (27)

As in the formulae for EKF, the index 𝑘 runs from 1 to 𝐾 − 1 in the
above formulae.

5 As discussed in Section 4.2 the NLKF uses 2𝑁 + 1 samples points and 𝑁
is 8 for the global track parameters.
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4.4. Comparison of the EKF and NLKF for track fitting

Fig. 2 illustrates the impact of the non-linear effects on track pa-
rameter propagation and Kalman filtering procedure using the config-
uration shown in the top left panel. With a straight track model and no
material effects, the track direction at plane 𝑘 has the same value and
uncertainty as those at plane 𝑘 − 1. The uncertainty of the intersection
of the track at plane 𝑘 is correlated with the uncertainty of the track
direction at plane 𝑘. Given the uncertainty of the track direction, the
2-dimensional distribution of the local coordinates of the intersection
of the track on plane 𝑘 obtained using 10,000 sampled tracks is shown
in the top right panel. It can be seen that the distribution of 𝑙𝑜𝑐0, shown
in the bottom left panel, is non-Gaussian with positive skew. Both EKF
and NLKF use Gaussian functions to model the distribution. The mean
and width of the Gaussian functions differ between EKF and NLKF. With
NLKF, the mean and width are closer to the mean and Root-Mean-Square
(RMS) of the MC sample.

Such non-linear effects will impact the Kalman filtering procedure.
In particular, the Kalman gain matrix in Eq. (8) tends to either over- or
under-estimate the polar angle of the track. This effect is demonstrated
in the bottom right panel of Fig. 2 showing the pull distribution of the
filtered polar angle. The pull value for a track parameter 𝑣 is defined
as,

pull𝑣 = 𝑣fit − 𝑣truth

𝜎𝑣
. (28)

ere 𝑣fit and 𝜎𝑣 are the estimated value and uncertainty of the track
arameter 𝑣 respectively, and 𝑣truth is the true simulated value of the
. If both the values and uncertainties of the track parameters are
stimated correctly, the pull distributions are expected to follow normal
istributions. The widths of the distributions are estimated using robust
MS evaluations rather than Gaussian fits. The mean and the RMS
alues of the pulls are compared between the EKF and the NLKF. For the
KF, the filtered polar angles are biased to larger values than their true
alues with a large RMS. For the NLKF, the mean of the polar angles is
iased to negative values, but the RMS is significantly improved. The
mpact of the non-linear effects on the azimuthal angle is smaller. Both
mplementations have mean at zero and RMS at one.

. Performance studies

The performance of the NLKF as implemented in Section 4.3 is
evaluated using the Open Data Detector (ODD) [25]. The layout of
the ODD is shown in Fig. 3. It consists of a pixel detector and two
strip detectors with different intrinsic resolutions and uses a realistic
material model using the DD4hep [26] detector description tool. The
ODD is immersed in a solenoidal magnetic field of 2 Tesla centred on
the beam line.

A sample of 1 million simulated muons is used to study the perfor-
mance, as muons are insensitive to the detector material and because
the most probable use of the NLKF would be for high-precision track
reconstruction applications. The muons are generated with transverse
momentum6 𝑝𝑇 uniformly distributed in the range of 0.4 < 𝑝𝑇 <
100GeV and pseudorapidity 𝜂 uniformly distributed in the range of
|𝜂| < 3.0. The range in 𝑝𝑇 allows us to study the impact of multiple
scattering, which varies with 𝑝𝑇 and the range in 𝜂 allows us to study
muons that intersect the detector modules at a range of angles. The
intersection points of the muons with the detectors, the simulated
hits, are generated with the Fatras fast simulation engine within the
ACTS toolkit. The input measurements to the Kalman filter algorithm
are created by applying Gaussian smearing to the positions of the
simulated hits to emulate the impact of detector resolution. One- and
two-dimensional measurements in the local coordinate frames of the

6 Transverse momentum is the momentum in the transverse 𝑥–𝑦 plane,
=
√

𝑝2 + 𝑝2.
𝑇 𝑥 𝑦

6

Fig. 3. Schematic layout of the ODD silicon tracking detector projected into the 𝑧 − 𝑟
lane. The beam interaction would occur at 𝑧 = 0, 𝑟 = 0. The location of the pixel
etector is shown in blue, the two strip detectors with different intrinsic resolution are
hown in red and green, where the inner strip detector (red) has better resolution than
he outer strip detector (green).

Table 1
The width of Gaussian (with zero mean) used to smear the 𝑥 and 𝑦
coordinates of the truth hits in different sub-detectors of the ODD. The
𝑥 axes of the local coordinate frame of the strip detectors are parallel
to the global 𝑥–𝑦 plane.
Subdetectors 𝜎𝑥 [μm] 𝜎𝑦 [μm]

Pixel 15 15
Inner strip 43 –
Outer strip 72 –

Table 2
The parameters used to construct the width of the
Gaussian for smearing the generated vertex, mo-
mentum and 𝑡 to obtain the seed of the track
fit.
Track parameters Smearing parameters

𝑑0, 𝑧0
𝑎0 = 20 μm
𝑎1 = 30 μm
𝑎2 = 0.3 GeV−1

𝜙, 𝜃 𝜎 = 1◦

𝑞∕𝑝 𝑎0 = 0.01 GeV−1

𝑡 𝜎 =1 ns

detector planes are created in the strip and pixel detectors of ODD,
respectively, by smearing with Gaussian distributions with zero mean
and different width (𝜎) as in Table 1.

The reconstructed seed of the track fit is emulated by smearing
he vertex position, momentum and time of the generated muons
sing Gaussian distributions with zero mean and either momentum-
ependent or constant width. The production vertex is smeared to
btain the local coordinates 𝑑0 and 𝑧0 using Gaussian distributions with
= 𝑎0 + 𝑎1𝑒−𝑎2𝑝𝑇 , 𝑞∕𝑝 is smeared using a Gaussian distribution with

𝜎 = 𝑎0∕𝑝, and 𝜙, 𝜃 and 𝑡 are smeared using a Gaussian distributions with
constant 𝜎. Table 2 provides the parameters used to construct the width
of the Gaussian used for the smearing, which are of similar order to
the resolution of the tracking detectors in current nuclear and particle
physics experiments.

The physics and the computational performance of the EKF and
NLKF are studied. The non-linear correction for the NLKF is only
performed when the incidence angle of a track with a detector plane
is larger than 0.1 rad, a value chosen to balance between improved
physics performance in the most relevant cases and increased compu-
tation time when the correction is applied. With such a threshold, the
fraction of track states with the non-linear correction applied for the
tracks in the region |𝜂| < 1 is about 55% and increases to approximately
95% for the tracks in the region 2.5 < |𝜂| < 3.0. The NLKF performance
is found to be insensitive to the tuning parameter 𝛼 so a fixed value of
𝛼 = 0.1 is used.
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Fig. 4. The mean (top) and RMS (bottom) of the residual of fitted perigee track parameters 𝑑0 (left) and 𝑧0 (right) parameterized as a function of simulated particle 𝜂 (20
< 𝑝𝑇 <100GeV) for the ODD with the presence of a solenoidal magnetic field of 2 T and material effects. The blue dots and orange triangles show the results obtained using EKF
and NLKF, respectively. The dashed horizontal lines in the upper panel denote the expected mean of the residuals. The mean and RMS are calculated using the residual in the
range of [−0.5, 0.5] mm.
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5.1. Track parameter estimation

The mean and RMS of the residuals, defined as 𝑣fit − 𝑣truth, and the
pulls, defined in Eq. (28), of the perigee track parameters obtained by
propagating the smoothed track parameters at the first measurement
plane to the perigee plane are used to evaluate the performance.
The pull depends on the central value of the track parameter and its
uncertainty, but the residual depends only on the central value. Ideally,
a pull would have a mean of zero and an RMS of one and the residuals
would have means of zero and an RMS corresponding to the detector
resolution.

The mean and the RMS of the residuals and pulls are studied in
bins as a function of 𝜂. The degree of non-linear effects, the number
of detector layers and the amount of material that a charged particle
passes through vary with 𝜂. The impact of the non-linear effects on 𝑡 is
negligible and therefore only the RMS of its pull as a function of 𝜂 is
hown.
The mean of the residuals of the impact parameters, 𝑑0 and 𝑧0, as a

unction of 𝜂 for simulated particles with 𝑝𝑇 > 20GeV are shown in the
pper panel of Fig. 4. The mean estimated using the EKF is biased from
ero at higher |𝜂| bins due to non-linear effects in this region. No such
iases are observed when the NLKF is used. The mean of the pulls show
imilar biases to the residual means of the perigee track parameters.
The resolution of the impact parameters as a function of 𝜂 for

imulated particles with 𝑝𝑇 >20GeV is shown in the lower panel of
ig. 4. The resolution gets worse in the higher |𝜂| bins and the effect is
ost significant for the EKF. The NLKF improves the resolution by up
o 80% at higher |𝜂| bins compared to the EKF, given the resolution of
he seed track parameters7 in Table 2. All track parameters are studied,
nd similar improvements for 𝜙 and 𝜃 are observed, while there is

7 As discussed earlier, results are shown for a scenario consistent with
urrent experiments.
7

no improvement in the resolution of 𝑞∕𝑝. The impact of non-linear
effects depends on the resolution of the track parameters and hence, the
improvement of NLKF with respect to EKF also depends on this, i.e. the
worse the resolution of the initial track parameter estimate, the greater
the improvement. For example, if the width of the Gaussian used to
smear the 𝜙 and 𝜃 is changed from 1◦ to 0.5◦ and 2◦, the improvement
of the residual for 𝑑0 in the region 1.5 < |𝜂| < 2.5 changes from 79% to
58% and 84%, respectively.

Fig. 5 shows the RMS of the pulls of the perigee track parameters as
a function of 𝜂 for simulated particles with 𝑝𝑇 >20GeV. The parameter
𝑡 is unaffected by the non-linear effects and hence the RMS of its pulls
is approximately one. Non-linear effects cause the RMS to deviate from
one at higher |𝜂| for 𝑑0, 𝑧0, 𝜙, 𝜃 and 𝑞∕𝑝 when using the EKF. The
deviation is largest for 𝑧0 and 𝜃 where the RMS can reach up to 2.2 and
mallest for 𝑞∕𝑝. The deviation is significantly reduced using the NLKF,
.e. the RMS for all track parameters is below 1.2 in the entire 𝜂 range.
The NLKF improves the RMS of the pull for 𝑑0 in the 1.5 < |𝜂| < 2.5 by
5%, which becomes 45% and 58% if the width of the Gaussian used
o smear the 𝜙 and 𝜃 is changed to 0.5◦ and 2◦.
Fig. 6 shows the RMS of the pulls of the impact parameters for

imulated particles in the range of 1.0 < |𝜂| < 2.5 as a function of 𝑝𝑇 .
his 𝜂 range was selected because non-linear effects are significant for
hese values. The RMS of the pulls for 𝑑0 is smaller for lower 𝑝𝑇 tracks
sing the EKF. The NLKF achieves significantly better performance than
he EKF for 𝑧0. For 𝑑0, the NLKF improves the RMS of the pulls for
racks with 𝑝𝑇 > 3GeV and it corrects the bias of the mean of residual
nd pull for tracks in all values of 𝑝𝑇 . The performance differences
bserved between the NLKF and the EKF for 𝜙 are similar to 𝑑0 and
or 𝜃 are similar to 𝑧0. This is expected due to the correlations between
he pairs of track parameters. For NLKF, the dependence of the pulls on
rack 𝑝𝑇 is mainly driven by material effects, while for EKF, non-linear
ffects are dominant. As the material effects, modelled using Gaussian
istributions, are more significant at lower 𝑝 , the pull distributions of
𝑇
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Fig. 5. The RMS of the pull of fitted perigee track parameters 𝑑0, 𝑧0, 𝜙, 𝜃, 𝑞∕𝑝 and 𝑡 parameterized as a function of the simulated particle 𝜂 (20 < 𝑝𝑇 < 100GeV) for the ODD
with the presence of a solenoidal magnetic field of 2 T and material effects. The blue dots and orange triangles show the results obtained using EKF and NLKF, respectively. The
dashed horizontal lines denote the expected RMS of the pulls. The RMS is calculated using the pulls in the range of [−5, 5].
Fig. 6. The RMS of the pull of fitted perigee track parameters 𝑑0 (left) and 𝑧0 (right) parameterized as a function of simulated particle 𝑝𝑇 (1.0 < |𝜂| < 2.5) for the ODD with the
presence of a solenoidal magnetic field of 2 T and material effects. The blue dots and orange triangles show the results obtained using EKF and NLKF, respectively. The dashed
horizontal lines denote the expected RMS of the pulls. The RMS is calculated using the pulls in the range of [−5, 5].
EKF become closer to Gaussians. This can result in the pull RMS of EKF
being closer to 1 at lower 𝑝𝑇 .

5.2. Computational performance

Additional computational cost with the NLKF is expected due to the
additional evaluation points, which are key to improving the precision.
An estimate of this cost is obtained by comparing the track fitting time
of the NLKF to that of the EKF as a function of 𝜂 and 𝑝𝑇 . In each 𝜂 or 𝑝𝑇
bin, track fitting is performed five times per sample with 1,000 tracks.
The mean of the track fitting time per track from the five tests is shown
as the nominal value, and the RMS is shown as the uncertainty bar. The
tests are performed in a single thread using the Intel Core i7-8559U CPU
@2.70 GHz processor.

Fig. 7 shows the track fitting time in HS06 [27] ×ms per track as a
function of 𝜂 or 𝑝𝑇 of the simulated particles with EKF and NLKF. The
average fitting time per track with EKF is approximately 4.8 HS06 ×ms
8

and with NLKF it increases by a factor ranging from ∼ 1.6 in the barrel
region to ∼ 1.8 at higher 𝜂. In general, track parameter estimation is not
the most timing consuming step during track reconstruction, therefore
this can be expected to have a negligible impact on the total time for
track reconstruction in most applications.

6. Conclusion

The reconstruction of charged particle trajectories is a challenging
computational task for nuclear and particle physics experiments. The
Kalman Filter algorithm is currently widely used due to its excellent
performance, however, it is limited by its assumption of linear models
for the system and measurements as well as Gaussian distributions
for the noise. We have applied the principle of an Unscented Kalman
filter to implement a Non-linear Kalman filter for charged particle
reconstruction, which uses a set of discretely sampled points to account
for non-linear effects during the projection of the track parameters to
the measurement.
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Fig. 7. (Left) A comparison of the fitting time per track as a function of the simulated particle 𝜂 (20 < 𝑝𝑇 < 100GeV) between EKF and NLKF for the ODD at a solenoidal magnetic
field of 2 T. (Right) A comparison of the track fitting time per track as a function of simulated particle 𝑝𝑇 (1.0 < |𝜂| < 2.5) between EKF and NLKF for the ODD at a solenoidal
magnetic field of 2 T. (Top panels) The fitting time in HS06 ×ms per track. The blue dots and orange triangles show the results obtained using EKF and NLKF, respectively.
(Bottom panels) The ratio of fitting time per track between NLKF and EKF.
We tested the performance of our NLKF algorithm using the ODD.
The NLKF yields residuals for all track parameters with a mean of
zero for all values of 𝜂. In addition, the RMS of the residuals are
reduced for most track parameters. The level of improvement depends
on the resolution of the starting track parameters, but the results
obtained using NLKF are more stable, with a reduced dependence on
the resolution of the starting parameters. The improvement is most
pronounced in regions with larger incidence angle of the tracks on
the measurement planes, which are located at large values of |𝜂| in
the detector geometry we studied. Compared to the EKF, the NLKF
also provides a more accurate estimation of the uncertainty of the
parameters, which results in the RMS of the pulls being more consistent
with one for a larger range of 𝜂. The improvement is more pronounced
for tracks with larger 𝑝𝑇 .

The computational requirements for the NLKF increase due to the
additional evaluation points. We found that the time for track fitting
increases from a factor of 1.6 to 1.8 depending on the 𝑝𝑇 and 𝜂 of the
particle. However, track fitting is typically a small fraction of the total
track reconstruction time in most applications.

In conclusion, the NLKF shows promising performance in improv-
ing the estimation of the track parameters corresponding to charged
particle trajectories in high energy nuclear and particle physics experi-
ments by accounting for non-linear effects. Its use can be warranted in
applications where the precision of the track parameters is particularly
important. Other approaches [23,24] may also be appropriate for ad-
dressing these issues, and their suitability with respect to both the EKF
and NLKF could be investigated in future studies.
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