2022 IEEE International Conference on Big Data (Big Data) | 978-1-6654-8045-1/22/$31.00 ©2022 IEEE | DOI: 10.1109/BigData55660.2022.10020767

2022 IEEE International Conference on Big Data (Big Data)

An Empirical Study of Domain Adaptation: Are We
Really Learning Transferable Representations?

Nicholas Josselyn', Biao Yin', Ziming Zhang'-}, and Elke Rundensteiner

1

1.2

Department of Data Science, Worcester Polytechnic Institute, Worcester, MA

2Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA
3Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA

Abstract—Deep learning often relies on the availability of a
large amount of high-quality labeled data, which can be very
limited in novel domains. To address such data scarcity, domain
adaptation is one promising approach that allows for deep
networks to leverage large amounts of available data from a
source domain to enhance the model’s efficacy on the target
domain of interest. However, while there is a plethora of alternate
models for domain adaptation proposed over many years in the
literature, there is a dearth of studies that objectively compare
the relative effectiveness of these models in a rigorous, empirical
study. To fill this gap, we provide a thorough, unbiased, empirical
study of five state-of-the-art (SOTA) deep domain adaptation
models proposed over the past 6 years whose codes are publicly
available. Models are evaluated on the complex and diverse
domain adaptation tasks featured in the DomainNet benchmark
dataset as well as the popular Office-31 dataset. Our results
suggest that (1) all 5 models perform similarly, on average, and
do not even significantly beat the oldest model, and (2) counter
to their intended purpose, the transfer loss functions in the
literature do not contribute significantly to learning transferable
representations. Our observations suggest that domain adapta-
tion research needs to more thoroughly compare newly proposed
models against existing works, along with assessing their loss
functions’ utility thoroughly. Our code and data splits are made
public for reproducibility of results by the community.

Index Terms—Domain Adaptation, Transfer Learning

I. INTRODUCTION

Background. A primary influence on the effectiveness of deep
learning is the availability of data, specifically high quality
labeled data. It could be relatively simple for many industries
or organizations to generate a lot of unorganized or unlabeled
data, but providing labels for large quantities of data requires
costly, both in time and money, human intervention. Worse
yet, such human-generated labels are subject to human bias
and errors. For each new problem, one would expect that a
new model needs to be trained with new data for each task
due to dataset bias between the distribution of data used for
training vs. testing. Over the past few years, transfer learning
approaches have thus been developed to exploit large labeled
datasets (such as ImageNet) to learn high-level features of
images and thereafter fine-tune models for new problems
by additional training on new targeted task-specific datasets.
However, it is often difficult to have enough data to properly
tune a model for specific tasks [1], [2].

Domain adaptation (DA), a subfield in transfer learning,
primarily assumes that there are two or more similar but
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distinct sets of data (domains) called source domain and
target domain. Generally, the task for each of these datasets
is the same (e.g. classification of planes) but there exists a
domain shift between the domains (e.g. photos of planes v.s.
drawings of planes). A domain shift can exist for several
reasons: the data is captured via different modalities (infrared
vs visual spectrum images), changes in pose, changes in object
background, variations in color, dimensionality differences,
or any combination, and more. The goal of DA is two-fold,
namely, to learn a model that can both perform a task on
the source data well and simultaneously learn a transferable
representation of the data such that the source and target
domains are indistinguishable. This then would allow for good
performance of the task on the target domain as well.

Within the field of DA, we distinguish between different
approaches depending on the availability of data: supervised,
semi-supervised, and unsupervised. In this work, we focus
on unsupervised DA (UDA), arguably the most popular in
literature. In UDA, during training, both labeled source exam-
ples and unlabeled target examples are utilized. We focus on
five core models spanning the 6 recent years in the literature.
These models all have two core loss components, namely, a
classification loss and a transfer loss. The latter is introduced
to align the source and target domains.

Applications. Domain adaptation has potential utility in many
application areas, with two important ones being self-driving
cars [3]-[5] and medical imaging [6]—[8], as described below.

For self-driving cars, unforeseen environmental factors, dif-
ferent road layouts, and robust pedestrian identification are
some of the many hurdles to overcome. Training data for
self-driving cars may not be able to capture every potential
environmental scenario, roads from one country may differ
from another, and pedestrians being in unforeseen, dangerous
scenarios in the real-world. All these are examples of domain
shifts between training and testing and ultimately deployment.
Thus, domain adaptation may be a potential solution.

For medical imaging, consensus for diagnoses across pa-
tients’ anatomy and medical devices (scanners, MRI, CT) is
critical. Depending on the cohort of training data, identifying
anatomical structures is complicated due to the variety of
anatomy present in each dataset. Further, depending on a
hospital’s scanning parameters and device choices, model
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predictions are subject to variability across devices. Finally,
if a model is trained on data from one modality (MRI), but
it is desired to then perform a diagnosis on another (CT), it
is difficult to achieve reliable results. These challenges could
potentially be addressed with domain adaptation.

Our Approach and Contributions. We note that a plethora
of UDA models have been proposed in the literature, each
making claims of better performance than the previous and
proposing alternate variations of transfer loss functions to align
domains. While categorizations of these DA models have been
provided in survey papers [7], [9]-[12], there is a scarcity of
unbiased, comprehensive analyses of DA models needed to
gain an objective understanding of their relative effectiveness.
Given the importance of this task for the community at large,
both future model developers and practitioners, we provide an
in-depth evaluation in this work. In particular, we conduct a
comprehensive experimental study of 5 SOTA UDA models.

Our empirical evaluation study rests upon several important
pillars. First, we conduct an unbiased, thorough experimental
study of popular UDA models on varying amounts of training
data (from big to small, more limited data sets) and for a
diverse set of domain types and tasks. Second, we utilize
open-source, benchmark datasets to assure open access to our
models and experimental data. Third, we provide an analysis
of the utility of the proposed transfer loss functions in the DA
literature, assessing their relative contribution (or lack thereof)
to learning an effective classifier. Our results are two-fold. (/)
All 5 models, regardless of when they were released, perform
similarly, on average. Interestingly, we find that none of the
newer models significantly beats even the oldest model. (2)
Surprisingly, the proposed transfer loss functions across these
models do not significantly contribute to learning transferable
representations. This result is in contradiction to their pro-
posed functionality. Given our findings, we recommend to the
DA research community that a more careful and fair compar-
ison of newly proposed models against the existing literature
be conducted, and in particular, proof of domain alignment is
shown. Further, we suggest to practitioners looking to adopt
DA models that well-established older models are worth to
consider and try out on their applications, as they may be
more robust to different data scenarios.

II. RELATED WORK

Domain Adaptation Models. There exists a large body
of literature on domain adaptation models — all proposing
new ways in which we can tackle the problem of domain
shift via learning similar representations between domains
with new loss functions. These works reflect several areas
of domain adaptation, namely, single-source closed-set DA
[13]-[25], multi-source DA [26]-[29], multi-target DA [30],
open-set DA [31], partial DA [32], [33], and other subset
fields of domain adaptation. In our work, we focus on one of
the foundational settings of domain adaptation: unsupervised,
single-source, single-target, closed-set domain adaptation with
two loss components. When a new model is proposed in the
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literature and compared against baselines, they are subject to
unintentional bias. In our work, we have no preference to any
one model and thus can be fully objective in our analysis.

Survey Papers. This work is similar to survey-style work
[7], [9]-[12] as it discusses existing models. However, in
these works, they only catalogue a large history of domain
adaptation and transfer learning models. Results reported in
these works are generally taken from existing manuscripts, are
not thorough model investigations under varied data scenarios,
nor are comparative in nature. In this work, we take an in-
depth, empirical approach and provide a thorough evaluation
of a set of SOTA domain adaptation models on a diverse set
of adaptation tasks. We further deeply investigate the effec-
tiveness of transfer loss functions proposed in the literature.

Experimental Analysis. Other than survey work, there is one
notable work that compares UDA models [34]. However, a
large portion of this work is spent on the design of a new
model and a new dataset, with evaluation on their new dataset.
Further, they do not explicitly compare UDA models in the
literature. Instead, they restrict their comparison to shallow
and deep DA models under different weight sharing strategies.

III. EVALUATED MODELS

In this section, we introduce the 5 UDA models investigated
in this study and point out their respective uniqueness as well
as commonalities between them. The 5 models, introduced
over the past 6 years, were selected based on the following
criteria: (1) highly cited, recent or established models in
literature, (2) models that have been compared against in a
large majority of the domain adaptation literature, and (3)
models that match our foundational scenario of being single-
source, single-target, closed-set DA with two primary loss
components. To implement these models, we use a public DA
library [35]. We utilize this framework and 5 of its models and
update codes according to the datasets we use and metrics we
record. Code for the models we have updated is provided along
with access to data for reproducibility '.

DANN. Domain-Adversarial Training of Neural Networks [15]
is a highly cited UDA model introduced in 2016 that is
commonly used as a representative baseline. DANN introduces
a gradient reversal layer to promote alignment of the source
and target domain representations with respect to a domain
discriminator. DANN consists of a label predictor that predicts
the class label of the source data during training and subse-
quently target data during testing. Further, DANN incorporates
a domain discriminator that discriminates between source and
target data during training. The training procedure aims to
minimize the loss of the label predictor and maximize the
domain confusion loss of the discriminator via an adversarial
approach with the gradient reversal layer. With this, there are
two main loss components: a classification loss for the label
predictor and a transfer loss for the domain discriminator.

JAN. Deep Transfer Learning with Joint Adaptation Networks
[13], a UDA model introduced in 2017, aims to reduce the

Thttps://github.com/njosselyn13/Empirical-Study-Domain- Adaptation
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Figure 1: Images from the DomainNet dataset. Airplane class for all 6 domains shown.
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Figure 2: Images from the Office-31 dataset. Backpack class
for all 3 domains shown.

shifts in joint distributions across domains. Typically, the
Maximum Mean Discrepancy [36] is used to measure the dis-
crepancy in marginal distributions between domains. For this,
JAN formulates a function to measure the discrepancy between
the joint distributions between domains across multiple CNN
layers. In measuring the discrepancy of the joint distributions,
the authors argue that they can overcome the residual joint
distribution shifts not addressed in other domain adaptation
models. In this model, a classification loss for assessing the
labeled source data remains. The proposed joint distribution
alignment corresponds to their metric for transfer loss.

CDAN. Conditional Adversarial Domain Adaptation [18], a
UDA model introduced in 2017, was inspired by the advances
in conditional generative adversarial networks (CGANS).
CGANSs make use of discriminative features between real and
fake data and incorporate them in a conditional manner into
the generator and discriminator networks. In CDAN, a similar
approach is taken by conditioning the domain discriminator
with the cross-covariance of domain-specific feature represen-
tations and classifier predictions. Additionally, the discrimi-
nator is conditioned based on the uncertainty of the classifier
predictions — thus allowing the discriminator to prioritize easy-
to-transfer examples. In this model, there is still a classification
loss for assessing the labeled source data. Also, the proposed
transfer loss is fairly similar to DANN and its discriminator,
simply now with the inclusion of conditioning.

AFN. Larger Norm More Transferable: An Adaptive Feature
Norm Approach for Unsupervised Domain Adaptation [14], a
UDA model introduced in 2019, proposes a novel method for
aligning domains based on statistical criterion different from
the literature. That is, they suggest that a better way to align
domains is via finding a shared, average feature norm (length
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of the feature vector) between the two domains. They note that
the target domain feature norms are typically much smaller
than the source feature norms. They conjecture that this may
complicate the adaptation. By adapting the feature norms of
both domains to a large range of scalars, they expect they can
achieve better adaptation. There is again a classification loss,
while transfer loss is the feature norm loss.

MCC. Minimum Class Confusion for Versatile Domain Adap-
tation [37], a UDA model introduced in 2020, does not aim
to explicitly align two domain feature spaces, but instead
it aims to reduce class confusion in the label space. MCC
is versatile because its approach is suitable for a variety of
DA settings such as: closed-set, partial-set, multi-source, and
multi-target DA. In our work focused on comparing single-
source/single-target solutions, we leverage MCC just for this
particular single-source and single-target setup. MCC claims to
outperform prior models including the models we study here,
namely, DANN, JAN, CDAN, and AFN. In MCC, there are
two main loss components, classification loss for the source
data and transfer loss designed to minimize the number of
misclassifications in the target domain.

IV. DATASET AND EXPERIMENTAL PROTOCOL

In this section, we provide details on the experimen-
tal methodology to compare the 5 UDA models, including
datasets, data preparation, training setup, and more.

A. Datasets and Preparation

In this work, we focus on two benchmark domain adaptation
image datasets: the popular Office-31 dataset [38], and the
largest, most diverse and complex dataset, DomainNet [26].

DomainNet. Published in 2019, it is the largest domain adap-
tation benchmark dataset containing 586,575 images across 6
distinct and uniquely challenging domains with 345 classes
in each domain. The 6 domains are: clipart, infograph, paint-
ing, quickdraw, real, and sketch images. This allows for 30
adaptation tasks to be evaluated (single-source, single-target
DA setup). In each domain, diverse classes such as airplane,
toothpaste, dragon, rabbit, ear, etc. exist. An example of
images for each domain are shown in Figure 1.

In our study, we distinguish between 3 training scenarios
based on the amount of training data provided, namely, large,
medium, and small datasets. We investigate varying training
data scenarios in order to assess the robustness of each model
to data availability. Using the original split for DomainNet
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I [[ Clipart [ Infograph [ Painting [| Quickdraw [[ Real [[ Sketch [[ Total |
Subset-20 5,516 5,953 8,286 19,320 19,455 7,851 66,381
Subset-50 13,485 14,483 20,270 48,300 48,432 19,354 164,324

Full 26,820 28,818 40,358 96,600 96,725 38,570 327,891

Table I: Amount of training data for each of the 6 domains in DomainNet for each of the 3 data subsets used.

defined in [26] and the VisDA-2019 competition (with small
modifications due to some classes not being assigned images
in the original release), 30% of the data is partitioned into
a held-out test set. The remaining 70% of data is designated
for training (and validation). We break this remaining 70%
of data into 3 distinct datasets: the full amount of data (full),
50% of the data per class per domain (subset-50), and 20% of
the data per class per domain (subset-20). For this data sub-
setting, a hard minimum of 6 images per class was enforced to
allow for cross-validation to be performed. Then, for each of
the 3 subsets of training data, 5 stratified cross-validated folds
of training and validation data are generated with 20% being
held for validation and 80% for training. In Table I we provide
statistics on how many images are available for training for
each of the 6 domains over all 345 classes. All data subsets
are released to assure reproducibility.

Office-31. This dataset consists of 3 domains of office-space
image data taken from Amazon, a DSLR camera, and a
webcam camera, allowing for 6 adaptation tasks (single-
source, single-target DA setup). There are a total of 4,110
images across all 3 domains. In each domain, there are
31 classes, including, back packs, scissors, trash cans, etc.
Examples can be seen in Figure 2. In the Amazon domain,
there are 2,817 images. The Amazon domain provides images
with clean backgrounds and a uniform scale. In the DSLR
domain, there is a total of 498 images. The DSLR domain
provides images with low noise and high resolution. The
webcam domain, with a total of 795 images, presents images
with low resolution, significant noise, and color and white
balance artifacts. The Office-31 dataset is considered a small-
scale domain adaptation dataset with small domain shifts,
particularly between webcam and DSLR domains.

To assure a comprehensive analysis of model performance,
we assess all 5 models on the full Office-31 dataset, which
differs widely in tasks and data types from DomainNet. Unlike
DomainNet, we do not subset the Office-31 dataset to smaller
training scenarios as it is already a smaller-scale dataset.

We split the Office-31 dataset into training, validation, and
testing sets. We split 15% of the data to a held-out test set with
the remaining 85% of data being split into 5 cross-validated
folds; 70% held for training and 30% held for validation.

B. Experimental Protocols

In this section, we first outline our methodology for es-
tablishing a lower bound for domain adaptation performance,
i.e., the performance of models without domain adaptation on
a set of transfer tasks. Then, using the 3 subsets of DomainNet
data and the Office-31 dataset, we describe our experimental
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methodology for comparing and tuning the 5 UDA models and
for the assessment of the impact transfer loss has on learning.

Baseline Transfer Tasks. As a first step, we conduct baseline
experiments to confirm that indeed a classifier trained on one
domain of data with no domain adaptation, when applied to a
similar but different domain of data, will perform poorer than
when using domain adaptation models.

For this, we train 6 classifiers on the full DomainNet dataset
using classical single-domain models. That is, no domain
adaptation is used. This is repeated for all 6 domains. For
each of these classifiers, we tune the learning rate and weight
decay and select the model with highest validation accuracy.
We sample learning rate and weight decay values of 0.1, 0.01,
and 0.001. Once an optimal model for each classifier is chosen,
it is then applied to the 5 other target domain fest data sets.

Model Comparison. For each of the 5 UDA models, 5-fold
cross-validation experiments are conducted on the Office-31
dataset and each of the 3 subsets of the DomainNet dataset.
Experiments are conducted for all 30 domain adaptation tasks
in the DomainNet dataset and all 6 adaptation tasks in the
Office-31 dataset. When a domain (e.g. clipart) is selected as
the source domain for a model and dataset pair (e.g. JAN
and full DomainNet dataset), the labels are made available to
the model at train time. When a domain (e.g. infograph) is
selected as the target domain for a model and dataset pair,
the labels are not available to the model during training. The
target domain data for the corresponding validation and test
sets are then used to be tuned and evaluated on, respectively.

For each model and dataset experiment pair, and each adap-
tation task, test set accuracies are reported over the 5 cross-
validation folds. Additionally, we compute for each model and
dataset pair an average test accuracy over all adaptation tasks.
Code and data for reproducibility are made available.

Hyperparameter Tuning. Extensive hyperparameter tuning
was conducted to give each model a fair chance at maximizing
their performance on the DomainNet or Office-31 datasets.
All experiments run for 30 epochs. The test accuracy where
the max validation accuracy is observed is reported, thus
implementing an early stopping approach. We experimented
with longer training times (100 epochs) with a subset of 5
adaptation tasks from DomainNet (clipart as source). But we
did not observe significant improvement in accuracy to warrant
running longer than 30 epochs. Additionally, we tuned each
model’s learning rate, weight decay, and the loss trade-off
hyperparameters. The loss trade-off weighs how much to focus
on classification loss vs each model’s respective transfer loss.
This trade-off is seen in Equation 1.

(D

loss = cls_loss + transfer_loss x trade_of f
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DANN [15] clp inf pnt qdr rel skt JAN [13] clp inf pnt qdr rel skt
clp - 27.0 | 37.3 | 18.7 | 47.6 | 50.8 clp - 28.1 38.5 153 | 46.6 | 48.5
inf 19.1 - 18.6 | 3.9 | 227 | 193 inf 17.2 - 17.3 24 | 206 | 16.5
pnt 343 | 259 - 79 | 477 | 414 pnt 339 26.6 - 6.7 | 46.6 | 39.2
qdr 127 | 55 5.8 - 6.5 | 124 qdr 11.4 4.7 4.8 - 46 | 10.1
rel 504 | 369 | 51.8 | 12.7 - 50.8 rel 49.5 394 51.5 11.7 - 47.0
skt 40.7 | 22.6 | 335 | 13.0 | 374 - skt 40.2 24.0 35.7 10.9 | 36.5 -

CDAN [18] | clp inf pnt qdr rel skt AFN [14] | clp inf pnt qdr rel skt
clp - 26.6 | 37.2 | 199 | 493 | 51.0 clp - 29.1 38.9 17.3 | 439 | 49.6
inf 18.7 - 184 | 4.0 | 22.7 | 188 inf 15.8 - 16.5 28 | 176 | 15.6
pnt 350 | 252 - 7.1 | 49.0 | 42.0 pnt 36.0 325 - 6.6 | 46.6 | 42.6
qdr 10.1 | 4.7 4.7 - 4.5 9.3 qdr 11.3 3.1 4.7 - 48 | 11.1
rel 52.6 | 37.0 | 51.6 | 144 - 51.1 rel 51.9 45.7 53.9 11.8 - 51.9
skt 409 | 22.0 | 34.8 | 13.8 | 38.7 - skt 41.2 25.0 36.4 93 | 344 -

\ MCC [37] clp inf pnt qdr rel skt Averages:

clp - 31.1 | 43.0 | 11.6 | 51.2 | 53.6 DANN (2016) | 27.2
inf 13.5 - 148 [ 1.1 17.7 | 138 CDAN (2017) | 27.2
pnt 334 | 28.7 - 26 | 46.1 | 39.8 AFN (2019) 26.9
qdr 129 | 2.7 3.7 - 4.0 | 11.7 JAN (2017) 26.2
rel 49.0 | 437 | 525 | 7.0 - 49.1 MCC (2020) 26.0
skt 393 | 227 | 36.1 | 79 | 35.1 -

Table II: Mean target domain test accuracy over 5-cross-val folds for all models for all 30 adaptation tasks on the full dataset.
Average test accuracies over all 30 tasks reported in bottom right. (Columns = source domain, rows = target domain)

clp inf pnt | qdr | rel skt
clp - 29.2 1297 | 81 | 444 | 463
inf | 15.9 - 157 1 0.6 | 19.0 | 134
pnt | 353 | 274 - 1.0 | 45.1 | 324
qdr | 9.1 2.6 2.9 - 4.1 | 11.1
rel | 49.6 | 439 | 444 | 24 - 453
skt | 37.0 | 22.8 | 27.2 | 59 | 32.0 -

Table III: Baseline transfer task test accuracies on the full
DomainNet dataset. (Columns = source, rows = target)

For each model, we tune hyperparameters on the full Do-
mainNet dataset, for a subset of 5 adaptation tasks (clipart as
source). For the Office-31 dataset, we perform tuning for each
model over all 6 adaptation tasks. Learning rate and weight
decay combinations explored for each model were: 0.1, 0.01,
0.001, 0.0001, and original code defaults. Loss trade-off values
explored for each model were: 0.25, 0.5, 0.75, 2, 5, 10, 20,
50, and original code defaults. Larger values mean giving more
relative weight to the transfer loss. All final hyperparameters
are available in the released code repository.

Finally, for the most recent MCC model, after much exper-
imentation, we found it to be one of the poorer performing
models on DomainNet. Thus, we reached out to the MCC
authors and took their advice to tune the temperature hyper-
parameter with suggested values of 0.25, 0.5, 1, 2, and 3.

Transfer Loss Analysis. To assess the utility of proposed
transfer loss functions in DA models and their contribution
to learning an effective target domain classifier, we examine
training loss curves for each model for each loss trade-
off hyperparameter we worked with. We observe how the
classification and transfer losses evolve over the 30 training
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epochs independently. We then conclude whether any amount
of weighting for the transfer loss (via the loss trade-off
hyperparameter) leads to significant learning during training
with respect to the transfer loss. We show, for each model,
the lack of learning occurring with respect to the transfer loss
and discuss potential reasons for this observation.

For these experiments, we use optimal hyperparameters
determined previously on the DomainNet dataset. We only
vary the loss trade-off value. We observe loss curves for the
full DomainNet dataset and the first cross validation fold.

Next, we use the trained models with optimal hyperpa-
rameters, from the first cross-validation fold, to generate T-
SNE plots. These plots show the learned distributions of each
model-adaptation task pair for one class (airplane). We extract
the features before the final classification layer for either the
source or target data and reduce them to 2 dimensions via T-
SNE. This allows us to visualize how much the representations
between two domains have been transformed to be similar.

V. EXPERIMENTAL RESULTS

In this section, we establish a lower bound baseline (no
domain adaptation) for the DomainNet dataset transfer tasks.
Then, we discuss results for our two proposed contributions in
Section I: (1) model comparisons and robustness, and (2) the
utility of transfer loss functions proposed in the DA literature.

A. Baseline Transfer Tasks

Results using the full DomainNet dataset with no domain
adaptation are presented in Table III. On average, over all 30
adaptation tasks, this baseline approach achieves only 23.4%
test accuracy. We see later in Table II (test results also using
the full DomainNet dataset) that this performance is lower
than that for all 5 domain adaptation models. In fact, this

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on July 10,2023 at 13:13:11 UTC from |IEEE Xplore. Restrictions apply.



DANN [15] clp inf pnt qdr rel skt JAN [13] clp inf pnt qdr rel skt
clp - 229 | 341 | 179 | 453 | 459 clp - 24.0 354 14.8 | 44.6 | 444
inf 17.1 - 170 | 39 | 21.6 | 175 inf 15.4 - 16.0 26 | 195 | 147
pnt 32.0 | 23.0 - 7.5 | 46.2 | 387 pnt 31.5 233 - 69 | 455 | 36.2
qdr 11.8 | 5.2 53 - 6.6 | 11.2 qdr 10.5 4.3 42 - 4.6 9.5
rel 46.8 | 33.6 | 49.7 | 12.8 - 48.1 rel 46.6 352 50.1 12.1 - 44.6
skt 373 | 19.8 | 309 | 125 | 354 - skt 36.5 20.0 33.1 11.2 | 34.6 -
CDAN [18] | clp inf pnt qdr rel skt AFN [14] | clp inf pnt qdr rel skt
clp - 224 | 347 | 19.1 | 47.1 | 46.2 clp - 27.0 36.5 173 | 432 | 47.2
inf 16.9 - 17.1 | 40 | 21.8 | 17.1 inf 14.8 - 15.8 2.8 | 172 | 15.0
pnt 322 | 21.7 - 69 | 47.8 | 39.0 pnt 342 29.6 - 6.7 | 459 | 41.0
qdr 8.4 4.3 3.9 - 3.6 8.5 qdr 10.5 32 4.2 - 4.5 | 10.6
rel 49.1 | 339 | 503 | 13.8 - 48.5 rel 49.9 42.5 52.8 12.2 - 50.3
skt 37.1 | 187 | 31.8 | 13.4 | 36.4 - skt 38.2 22.0 343 9.2 | 337 -
MCC [37] clp inf pnt qdr rel skt Averages:
clp - 264 | 38.1 | 119 | 472 | 494 AFN (2019) 25.7
inf 11.7 - 132 1.2 | 168 | 124 DANN (2016) | 252
pnt 29.6 | 24.5 - 29 [ 433 | 37.0 CDAN (2017) | 25.2
qdr 120 | 2.7 4.0 - 47 | 11.2 JAN (2017) 244
rel 45.1 | 386 | 49.0 | 6.6 - 46.1 MCC (2020) 23.8
skt 349 | 190 | 325 | 74 | 332 -

Table IV: Mean target domain test accuracy over 5-cross-val folds for all models for all 30 adaptation tasks on the subset-50
dataset. Average test accuracies over all 30 tasks reported in bottom right. (Columns = source domain, rows = target domain)

performance is lower than all 5 models when only 50% of the
training data is used. This confirms what has been observed
in the literature: domain adaptation outperforms the simple
application of trained models to related but different domains.

B. Model Comparison Analysis

We present results obtained on the DomainNet dataset for
all 5 UDA models, followed by results on Office-31.

DomainNet. Addressing the first objective of model robust-
ness in our work, we first present 5-fold cross-validation
results on the test dataset (for each target domain) for all 5
UDA models for a diverse set of 30 adaptation tasks from
the DomainNet dataset in Tables II, IV, and V. Each column
designates a source domain and each row a target domain.
Table II reports results on the full dataset, Table IV on
the subset-50 dataset, and Table V on the subset-20 dataset.
Additionally, each table presents the average accuracy over all
adaptation tasks for each model as is typically done in the DA
literature to provide a summary of model performance overall.

In Table II, results for all models on the full dataset are
shown. We observe that for 9/30 adaptation tasks, DANN
performs best, for 9/30 tasks AFN performs best, for 8/30
tasks CDAN performs best, for 5/30 tasks MCC performs
best, and for O tasks JAN performs best. Note that for the
real-to-infograph task, DANN and CDAN tie. Over all 30
adaptation tasks, for all models, the standard deviations over
the 5 cross-validation folds ranges from 0.1 to 1.1. With
respect to averages over all 30 adaptation tasks, DANN and
CDAN beat the other 3 models with 27.2% test accuracy,
with AFN as a close second with 26.9%. We note that the
oldest method (DANN) is performing best for a diverse set of
challenging adaptation tasks; with the most recently published
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method (MCC) performing the poorest. This is of particular
interest as it raises concerns over the current trend in proposing
new domain adaptation methods, and the rigor with which
new models should be tested against baselines to assure their
robustness in performance in practice.

In Table IV, results for all models on the subset-50 dataset
are shown. We observe that for 7/30 adaptation tasks DANN
performs best, for 11/30 tasks AFN performs best, for 8/30
tasks CDAN performs best, for 5/30 tasks MCC performs best
(tied with DANN for sketch to quickdraw task), and for O
tasks JAN performs best. Over all 30 adaptation tasks, for
all models, the standard deviations over the 5 cross-validation
folds ranges from 0.0 to 0.9. With respect to averages over
all 30 adaptation tasks, AFN just slightly wins with 25.7%
test accuracy, but is closely followed by DANN and CDAN
with 25.2%. Again we observe that the oldest of the methods
(DANN) is performing near the top, and the newest of the
methods (MCC) is performing at the bottom. We begin to
observe a trend of model robustness across training data
availability; DANN, CDAN, and AFN perform well with the
full amount of training data and with 50% of the training data.

In Table V, results for all models on the subset-20 dataset
are shown. We observe that for 10/30 adaptation tasks, DANN
performs best, for 15/30 tasks, AFN performs best, for 1
task, MCC performs best, and JAN and CDAN never perform
best. For the painting-to-infograph task, DANN and CDAN
tie. Over all 30 adaptation tasks, for all models, the standard
deviation over the 5 cross-validation folds ranges from 0.1 to
0.9. With respect to averages over all 30 adaptation tasks, AFN
performs best with 23.2% test accuracy, with DANN coming in
second again with 22.1%. Again we see MCC perform towards
the bottom of the model list. We further observe the same trend
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DANN [15] clp inf pnt qdr rel skt JAN [13] clp inf pnt qdr rel skt
clp - 17.5 | 29.0 | 164 | 41.0 | 39.0 clp - 18.5 30.5 13.7 | 40.3 | 37.6
inf 14.1 - 149 | 3.8 | 199 | 148 inf 12.8 - 14.0 26 | 17.8 | 12.3
pnt 27.1 | 183 - 7.2 | 43.0 | 342 pnt 26.7 19.9 - 6.6 | 43.0 | 31.6
qdr 9.9 3.9 5.0 - 6.1 9.6 qdr 7.9 3.1 4.1 - 3.9 7.7
rel 422 | 283 | 463 | 124 - 43.5 rel 40.8 31.0 473 11.3 - 39.5
skt 30.8 | 15.0 | 27.1 | 11.2 | 32.7 - skt 29.7 15.4 28.4 9.9 | 30.8 -
CDAN [18] | clp inf pnt qdr rel skt AFN [14] | clp inf pnt qdr rel skt
clp - 16.7 | 30.3 | 16.1 | 42.3 | 389 clp - 214 32.7 17.0 | 40.7 | 41.2
inf 13.7 - 149 | 3.6 | 20.0 | 14.0 inf 13.2 - 14.7 2.8 | 16.7 | 13.0
pnt 253 | 189 - 6.2 | 446 | 34.1 pnt 30.3 24.8 - 6.2 | 447 | 36.8
qdr 4.8 2.2 2.5 - 33 54 qdr 8.9 2.4 3.3 - 3.8 9.5
rel 42.1 | 29.8 | 47.8 | 12.2 - 44.1 rel 45.3 35.9 50.7 11.8 - 45.9
skt 28.1 | 123 | 274 | 11.7 | 33.0 - skt 325 17.5 304 8.7 | 31.8 -
MCC [37] clp inf pnt qdr rel skt Averages:
clp - 19.0 | 30.6 | 11.6 | 40.6 | 40.3 AFN (2019) 23.2
inf 8.7 - 107 | 1.2 | 150 | 9.6 DANN (2016) | 22.1
pnt 225 | 184 - 3.1 | 39.6 | 31.0 CDAN (2017) | 21.6
qdr 9.6 2.9 4.3 - 4.9 9.8 JAN (2017) 21.3
rel 37.8 | 30.6 | 443 | 7.2 - 39.6 MCC (2020) 19.8
skt 264 | 135 | 26.1 | 79 | 279 -

Table V: Mean target domain test accuracy over 5-cross-val folds for all models for all 30 adaptation tasks on the subset-20
dataset. Average test accuracies over all 30 tasks reported in bottom right. (Columns = source domain, rows = target domain)

DANN [15] | Amazon | DSLR | Webcam JAN [13] | Amazon | DSLR | Webcam | Averages:
Amazon - 69.8 70.0 Amazon - 70.1 68.6 MCC (2020) | 89.5
DSLR 91.7 - 99.7 DSLR 92.5 - 100.0 AFN (2019) 86.8
Webcam 89.2 97.5 - Webcam 90.0 97.5 - JAN (2017) 86.5
CDAN [18] | Amazon | DSLR | Webcam || AFN [14] | Amazon | DSLR | Webcam DANN (2016) | 86.3
Amazon - 69.9 65.9 Amazon - 70.3 70.2 CDAN (2017) | 85.8
DSLR 91.7 - 100.0 DSLR 93.1 - 100.0
Webcam 89.7 97.3 - Webcam 89.2 98.2 -
MCC [37] | Amazon | DSLR | Webcam
Amazon - 74.7 772
DSLR 94.7 - 100.0
Webcam 92.2 98.3 -

Table VI: Mean target domain test accuracy over 5-cross-val folds for all models for all 6 adaptation tasks on the Office-31
dataset. Average test accuracies over all 6 tasks reported in far right. (Columns = source domain, rows = target domain)

that AFN and the oldest model DANN perform best for a wide
variety of adaptation tasks and for all 3 sizes of training data.

Office-31. To further evaluate model robustness, we present re-
sults on the Office-31 dataset. We show 5-fold cross-validation
results on the test set (for each target domain) for all 5 models
for all 6 adaptation tasks in Table VI. Each column denotes
a source domain, and each row a target domain. We present
the average performance over all 6 tasks for each model to
provide a summary of the model performance.

In Table VI we observe that for all 6 adaptation tasks,
the MCC model performs best and has the highest overall
average performance of 89.5%. For all 5 models and for all
6 adaptation tasks, the standard deviations over the 5 cross-
validation folds range from 0.0 to 2.9. We observe that with
Office-31, MCC is now the top performing model and DANN
is toward the bottom. However, all 5 models still perform close
on average, with the AFN model still a top performing model.

This relative change in model performance order points
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at the importance of needing to tune the MCC model sig-
nificantly. As another set of experiments, we also run all 5
models for all 6 adaptation tasks from the Office-31 dataset
without any tuning of hyperparameters. Instead, we simply
take the best hyperparameters from the DomainNet tuning and
apply them when using the Office-31 dataset. When doing this,
we observe that the DANN, JAN, CDAN, and AFN models
still obtain fairly comparable average test performances of:
86.9%, 86.5%, 88.1%, and 86.4%, respectively. However, the
MCC model only achieved an average test accuracy of 24.1%;
drastically less than the tuned average test accuracy.

Additionally, over all learning rates and weight decay
combinations explored for each model and all 6 adaptation
tasks, we observe that for 4 out of 6 of the tasks, the
MCC model has the highest variability in performance when
varying learning rates and weight decays. These two pieces
of evidence lead us to conclude that the MCC model is fairly
unstable across datasets and requires careful, time-consuming
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Figure 4: Transfer loss curves for varied loss trade-off values (y-axis log-scale). Clipart to painting task for full dataset.

hyperparameter tuning for each new dataset in order to assure
that it outperforms other models in the case of Office-31.
However, in the case of DomainNet as previously noted,
even with careful hyperparameter tuning, MCC performs the
poorest in our study.

C. Transfer Loss Analysis

Next, we present results on classification loss, transfer loss,
and classification accuracy curves for all 5 models. Then, we
visualize learned feature spaces for a set of adaptation tasks.

Loss Curve Analysis. Addressing the second objective of
transfer loss utility in our work, we present classification and
transfer loss curves in Figures 3 and 4, respectively, for a
variety of loss trade-off hyperparameter values as mentioned
in Section IV-B. Loss curves are shown for just the clipart-
to-painting adaptation task for the full dataset. The default
trade-off value for all models except AFN is 1.0, AFN had a
default value of 0.05. All default values are plotted in magenta
in Figures 3 and 4. Loss values are plotted on a log-scale. In
Figure 4, for the AFN model, the y-axis is all 0.693 as changes
in the transfer loss vary only to the seventh decimal place
over the 30 epochs; meaning, very little learning occurring.
In Figure 5, we also present the target domain (painting) test
accuracy plots for each model for each loss trade-off value.

In Figure 3, across all 5 models, we generally see the
classification loss steadily decreasing and flattening out during
training. The exception is with trade-off value of 50 (heavily
weighting transfer loss) for JAN and CDAN where the classi-
fication loss increases or stays flat. For AFN, for the majority
of trade-off values, the classification loss increases except for
the default trade-off value and small trade-off values. Even
for larger trade-off values that weigh transfer loss more of
10.0 and 20.0 for DANN, JAN, CDAN, and MCC and 50.0
for MCC, we still observe a decreasing classification loss,
indicating learning with respect to the classification loss.

An interesting observation we make is with respect to the
transfer loss curves for each model depicted in Figure 4.
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For JAN, CDAN, AFN, and DANN we observe little to no
learning occurring with respect to the transfer losses proposed
for each model. Each model claims that their transfer loss
function would be aligning domains. We should observe this
as an improvement in learning via the transfer loss curve.
However, even though we vary the weighting of the two
losses during training, we consistently observe that transfer
loss changes are minimal and sometimes even experience
increases, even when heavily weighting it with values up to
50. Given this observation, for a variety of loss trade-off values
and models, the utility of DA transfer loss functions may not
be achieving the goal they are designed for: a full alignment
of domains. Given that the inclusion of transfer loss functions
in domain adaptation models leads to improvement over tra-
ditional transfer learning, we speculate that these transfer loss
functions may be simply acting as a regularization technique
to generalize better to the target domain data.

The only model whose transfer loss curves appear to be
decreasing to some degree is the MCC model. However, the
actual decrease over 30 epochs is approximately 0.08, a small
fraction of the overall loss decrease that occurs during training.
Although, even with the transfer loss decreasing only slightly
for MCC, we have consistently seen MCC perform the poorest.

In Figures 3 and 4 we demonstrate that classification loss
is the dominating factor in learning, while transfer loss is not
contributing to learning during training. This raises concern
over the utility of the proposed transfer loss functions in that
they are not helping much to learn a transferable representa-
tion between source and target domains.

Further, when we compare the loss curves to what we
observe with respect to the target domain test accuracy curves
in Figure 5, we see that for a majority of trade-off values,
the test accuracies continue to increase even when the cor-
responding transfer loss curves remain unchanged or even
start to increase. This further supports the observation that
the classification loss, regardless of trade-off weight, is the
dominating factor in learning. To summarize, given that the
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Figure 6: T-SNE plots for the airplane class. Top: DANN, Bottom: MCC. Red is the clipart source domain, blue is the target
domain. a-e are 5 of 30 adaptation tasks. (C=clipart, I=infograph, P=painting, Q=quickdraw, R=real, S=sketch)

inclusion of a transfer loss has been shown to still improve
target domain classification over traditional transfer learning,
this leads us to suggest that these transfer loss functions may
be acting simply as regularization techniques.

Feature space alignment. We present T-SNE plots showing
feature distributions for 5 adaptation tasks for 2 models in
Figure 6. Due to space constraints, we select the DANN model,
a consistently top performing model, and the MCC model,
the newest albeit poorest performing model. We show the 5
adaptation tasks with clipart used as the source domain and all
other domains used as target. Additional plots for other models
are available in our Github repository. For each adaptation
task, we plot the learned representations of data for each
domain, with red indicating source domain, and blue the target
domain, for a single class (airplane).

When transferring knowledge between domains, we antic-
ipate overlapping distributions of data representations for the
same class. With Figure 6, we can check on the effectiveness
of each transfer loss function for a variety of transfer tasks by
observing if the two domains have overlapping distributions.
For a majority of the tasks we see a visual separation of the
source (red) and target (blue) domain representations. The
test accuracies for these 5 tasks, left to right, for DANN
were: 19.1%, 34.3%, 12.7%, 50.4%, and 40.7%. And for MCC
they were: 13.5%, 33.4%, 12.9%, 49.0%, and 39.3%. We see
in particular that for the clipart-to-quickdraw (C2Q) transfer
task, a fairly noticeable separation between domains remains.
Correspondingly, we see fairly low accuracies of ~ 12%. For
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the clipart-to-infograph (C2I) task, DANN has a higher perfor-
mance of 19.1% compared to MCC’s 13.5%. Correspondingly
in Figure 6 there is a slightly larger overlap of distributions
for DANN than observed for MCC for the C2I task. With this
separation of domains remaining even after applying domain
adaptation, this is further evidence that supports that the
transfer loss functions are not necessarily achieving their goal
of aligning domains. However, since accuracies are boosted
with domain adaptation, transfer loss functions are indeed
having some impact, possibly as regularization.

VI. DISCUSSION AND CONCLUSION

In this work, we provide a detailed, unbiased, empirical
evaluation of 5 state-of-the-art deep unsupervised DA models
to assess model robustness across different benchmark domain
adaptation tasks and datasets. This work provides a valuable
objective empirical analysis for model choice for a variety
of data scenarios. Surprisingly, we observe that AFN and
DANN, the oldest model, are consistently top performers for
all 3 training data availability scenarios on the DomainNet
benchmark. Interestingly, one of the oldest UDA methods,
DANN, outperforms newer models; most notably the 2020
MCC model, with the latter performing at or near the bottom
for a majority of adaptation tasks. This observation suggests
that future DA research thoroughly evaluate baseline models
under a rich variety of conditions when comparing them to
newly proposed models.

Furthermore, we show that for Office-31, while MCC be-
comes the top-performing model, all 5 models on average
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remain close in performance to one another. We observe, how-
ever, that the MCC model is more sensitive to hyperparameter
choice across datasets, requires careful tuning for new datasets,
and is not guaranteed to be the best model even when tuned
(i.e. on DomainNet). This suggests that the newest model is
not the most robust choice for practitioners and more careful
analysis needs to be done when proposing new models.

Another important take-away of our study is that the domi-
nating factor for learning is the classification loss, even when
weighting the two losses (classification and transfer loss) with
a wide range of weight values. The transfer loss curves indicate
that little to no learning occurs during training. We thus
speculate that their effectiveness in target domain classification
is due more to them acting as a regularizer instead of truly
aligning domains. Future work is thus needed to confirm the
usefulness of the proposed transfer loss functions.

Further, as illustrated by visual inspection of T-SNE plots,
the learned representations for a (source, target) pair of do-
mains are not mapped to a significantly overlapping feature
space - as would have been expected from DA models.

Lastly, in the future, newer approaches, such as, two-staged
training where classification and transfer loss are optimized
separately and not concurrently, should be compared against
alternate approaches, such as, the ones studied by our work.
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