2022 21st IEEE International Conference on Machine Learning and Applications ICMLA) | 978-1-6654-6283-9/22/$31.00 ©2022 IEEE | DOI: 10.1109/ICMLA55696.2022.00219

2022 21st IEEE International Conference on Machine Learning and Applications ICMLA)

Transferring Indoor Corrosion Image Assessment
Models to Outdoor Images via Domain Adaptation

Nicholas Josselyn', Biao Yin!, Thomas Considine*, John Kelley*, Berend Rinderspacher®, Robert Jensen’, James
SnyderS, Ziming Zhang'-, Elke Rundensteiner!

1Depalrtment of Data Science, Worcester Polytechnic Institute, Worcester, MA
2Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA
3Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA
4ARD, DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD, USA
SARD, DEVCOM Army Research Laboratory, Northeast Regional Extended Site Burlington, MA, USA
6ARD, DEVCOM Army Research Laboratory, Adelphi, MD, USA

Abstract—Corrosion of materials impacts critical economic
sectors from infrastructure, transportation, defense, health, to the
environment. The development of safe anti-corrosive materials is
thus an important area of study in materials science. Corrosion
science of preparing materials and then monitoring their corro-
sion under adverse conditions is labor intensive, time consuming,
and extremely costly. While deep learning has become popular
in automating various engineering tasks, the development of
deep models for corrosion assessment is lacking. We are the
first to study deep domain adaptation (DA) models for the
automated assessment of the corrosion status of anti-corrosive
materials. Corrosion data, i.e., photographic images of treated
corroding materials, is abundant when produced in artificially
controlled laboratory settings, while corrosion image data sets
from rich natural outdoor environments are more challenging to
produce and thus much smaller. We leverage the more readily
available indoor corrosion data to train a classifier and then
transfer it via deep domain adaptation to also perform well
on the small yet more realistic outdoor corrosion image data
set — without requiring target labels. We empirically compare 5
popular domain adaptation models on real-world corrosion image
data sets. Our study finds that DA achieves 27% improvement in
test accuracy compared to the performance of the no-DA baseline
for classifying real-world outdoor corrosion data.

Index Terms—Materials Science, Domain Adaptation

I. INTRODUCTION

Corrosion is a High-Stake Problem. Corrosion is the gradual
degradation of a metal over time due to chemical interac-
tions with its environment. The economic burden corrosion
inflicts equates to over 4% of the gross domestic product
(GDP) loss in developed countries [1]. The risk associated
with corrosion is tremendous - resulting in major safety
implications in regards to infrastructure (bridges collapsing),
transportation (automobile durability and safety), household
appliances (washers, dryers, furnaces), the environment (leak-
age of chemicals into bodies of water), and even societal
health (cancer causing chemical side-products). There is thus
active, high-stake research in materials science focused on the
design and testing of new anti-corrosive materials that are both
effective and non-hazardous [2]-[5].

Figure 1: Corrosion test image panels. Top: Indoor laboratory
environment tests. Bottom: Outdoor natural environment tests.

Corrosion Assessment. Validation and subsequent assessment
of new materials for corrosion fall into 2 categories seen in
Figure 1: (1) indoor tests subject to an accelerated, controlled
laboratory setting, and (2) outdoor tests subject to the natural
elements of the environment (rain, sun, heat, etc). In both tests,
a stack-up of material coatings is created as a panel, placed
in a laboratory or outdoor environment, and rated according
to ASTM standards [4]. 12 equally spaced measurements are
made across the "X shape on the panels, averaged, divided
by 2, and then associated with a rating between 0 and 10; with
0 meaning heavily corroded, and 10 meaning no corrosion.

Corrosion Challenges. This corrosion assessment process
to research, develop, and validate these new anti-corrosive
materials is extremely challenging. It is difficult to observe
and assess corrosion progression in a quick, highly accurate,
practically relevant and financially feasible manner — impeding
the discovery of new materials. First, the costs to manufacture
and test new material samples with respect to labor, resources,
and validation can amount to 10s to 100s of millions of
dollars [6]. Second, testing may involve the use of hazardous
chemicals, resulting in additional environmental and safety
concerns. Third, skilled professionals are required to collect
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and analyze appropriate experimental testing materials, driving
up costs and exacerbating the human professional scarcity
issue. Fourth, observation times of corrosion progression may
be up to several years for material validation, especially,
in real-world environments. And finally fifth, more readily
available testing options in laboratory environments are also
not sufficient for final material validation [2], [3].

State-of-the-Art: Machine Learning for Corrosion Assess-
ment. To overcome some of the above challenges, machine
learning solutions have been applied to automate tedious en-
gineering tasks, such as defect detection [7]-[10] and corroded
pipe detection [11]. Recent works, one with corrosion sensor
data [12] and the other focused on indoor corrosion data
[13], show the promise of applying deep learning to support
corrosion assessment experimentation.

Our Proposed Approach. In this work, we observe that
the state-of-the-art in machine learning model development
is focused on indoor laboratory tests [13]. This is in part due
to limited access to and difficulty in obtaining outdoor data.
Thus, outdoor datasets tend to be small, while the training of
deep learning models typically requires a substantial volume
of labeled data. Therefore, we study the problem of how to
leverage the larger indoor experimental datasets to boost the
performance of models on the data we desire to assess, namely,
realistic outdoor data. In doing so, we aim to overcome the
challenges associated with changes across datasets such as
changes in image pose, background changes, lighting changes,
different image capture methods, and dimensionality changes
of the images. These changes between domains are known
as domains shifts. Given these domain shift challenges, we
investigate the utility of domain adaptation (DA), a subset of
transfer learning, for corrosion assessment.

Domain adaptation utilizes two or more similar but distinct
sets of data (domains) called source domain and farget domain,
where the task for each is the same (e.g. corrosion rating
classification) and the aim is to learn to jointly perform
this task well on both domains of data. Correspondingly, we
therefore frame our problem of corrosion assessment as a
domain adaptation problem where the more readily available
well-labeled indoor data is the source domain, and the more
scarce and typically missing-label outdoor data is the target
domain. In short, we utilize the information and availability
of data from the indoor domain to adapt a classifier to perform
well on the desirable outdoor domain.

Contributions. We make the following contributions:

e We are the first to formulate experimental corrosion
assessment as a domain adaptation problem.

o We design an experimental study for evaluating the ability
of five state-of-the-art (SOTA) DA models of transferring
knowledge from the indoor (source) to the outdoor (tar-
get) domain images in this application domain.

We conduct this study on real-world experimental data
sets produced and collected by materials scientists,
namely, on 600 images from indoor laboratory tests and
191 images from outdoor natural environment tests [13].
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o We derive interesting experimental findings with impli-
cations for next steps in corrosion assessment, namely,
DA shows performance improvement for domain transfer
from indoor to outdoor across several evaluation metrics —
calling for additional exploration into this line of research.

II. SCIENTIFIC CORROSION ASSESSMENT

Corrosion scientists follow material standards along the
entire manufacturing and assessment procedure. Material pan-
els are manufactured for assessment as a layered stack up
consisting of a topcoat, primer, pretreatment, surface profile,
and substrate layer. When assessing the panel, the scientists
consider the condition of the surface and the composition of
the five layers in the stack up. Commercial names of materials
are omitted in this paper and dataset for proprietary reasons.

Figure 2: Indoor (left) and outdoor (right) corrosion testing
environments.

Scientific corrosion experiments come from either indoor
laboratory-based tests or outdoor natural environment tests.
For each scenario, a panel that is exposed to these respective
environments (rain, sun, heat, etc.) is manually observed and
rated with respect to the amount of visual corrosion by
corrosion scientists at regular intervals throughout testing. The
example testing environments are depicted in Figure 2.

A. Indoor Laboratory Tests

Indoor corrosion tests are performed in a controlled labo-
ratory setting. They are primarily used as a quality control
element of sample production to reduce the labor investment
needed for outdoor tests. The advantage of conducting in-
door laboratory-based tests is that artificial conditions can
be introduced and corrosion can this way be accelerated.
Thus, panels can be evaluated on daily or weekly timescales,
resulting in easier collection of data and more rapid insights
about material performance. Images are collected on flatbed
scanners to provide high quality images. The images can
be easily traced in in-house labs. However, indoor tests are
expensive to operate. Also, laboratory experiments rely on
artificial standardized environments that may not have a direct
real-world equivalent. In that sense, it is a simulation and
not the real-world gold standard that the outdoor environment
offers for material evaluation. Since indoor scientific corrosion
assessment data for machine learning use has been released,
we leverage this open image data set [13].
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B. Outdoor Field Tests

Outdoor corrosion tests are conducted by placing panels
directly into natural environments. These sites are typically
selected as areas of “worst-case scenario expectation”, such
as coastal regions associated with an expected higher rate of
corrosion. Outdoor panels are observed and rated by corrosion
scientists at 3-month intervals. One major disadvantage to
outdoor tests is the difficulty and cost with obtaining data
from these remote environments. A large burden is placed on
corrosion scientists to go out into the field and collect data at
these remote sites. Panels are only observed every 3 months
(or longer), leading to rather small sample sizes in such data
collected. Further, as seen in Figure 1, the quality of outdoor
images as compared to indoor images can be worse. Outdoor
images are often taken using digital cameras or cellphones at
multiple angles, heights, and with various objects present in
the background of the images. However, outdoor experiments
are the gold standard experiments used by corrosion scientists
to evaluate realistic material performance. Thus they are a
vital means by which materials are evaluated, developed, and
produced for vendors. We work with outdoor corrosion data
from materials similar to those for the indoor corrosion data.

III. RELATED WORK

It is important to establish a strong relationship between in-
door and outdoor corrosion assessment for material scientists.
Although statistical methods were studied [14] and corrosion
sensor data has been used [12] [15], the capability of deep
learning to solve this domain adaptation task has not yet been
explored in the literature.

In the past several years, some deep learning models with
respect to the detection of material defects have been explored,
including LEDNet [7], Faster Region-based CNN [8] [9], fully
connected networks [10], and Texture CNN — with the latter
on 150 raw corroded pipe images [11]. However, these works
aim to detect defects on pipes or buildings. This however is
not the focus of materials discovery. Nor, do they tackle a
scenario where domain adaptation can be a potential solution.

Although a large body of literature on domain adaptation
techniques in general exists, to our best knowledge, domain
adaptation has not yet been applied to scientific corrosion
assessment. These works reflect diverse areas of domain
adaptation, such as single-source closed-set DA [16]-[19],
multi-source DA [20]-[23], multi-target DA [24], open-set
DA [25], and partial DA [26] [27]. In recent work [28] [29],
general transfer learning is studied to overcome the lack of
supervised corrosion information. They search for the best-fit
source models and transfer them by training on target data —
however without applying domain adaptation techniques.

IV. EVALUATED MODELS

In this section, we introduce the 5 domain adaptation models
we have carefully selected from the literature for this study. All
5 models are unsupervised domain adaptation (UDA) models,
meaning target data labels are notr made available to the model
during training. This is an active area of research in the
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DA field. It naturally applies to our problem of corrosion
assessment because labeled target data (outdoor images) is
difficult to obtain in our application. The 5 models have
been introduced over the past 6 years and are: (1) recent
or established models in the literature with high citation
counts, (2) models frequently evaluated against in a large
majority of the DA literature, and (3) models that match our
corrosion assessment scenario of being single-source, single-
target, closed-set DA where class labels match in both source
and target domains (the 5 corrosion ratings). To implement
these models, we use a public DA library [30] as a starting
code base. Updated codes are provided for reproducibility !.

DANN. Domain-Adversarial Training of Neural Networks [18]
is a highly cited UDA model introduced in 2016. DANN
famously incorporates a gradient reversal layer to promote
alignment of the source and target domains with respect to
a domain discriminator. DANN consists of a label predictor
that predicts the class label of the source data during training
and a domain discriminator that discriminates between source
and target data during training. The training procedure aims
to minimize the loss of the label predictor and maximize the
domain confusion loss of the discriminator via an adversarial
approach with the gradient reversal layer.

JAN. Deep Transfer Learning with Joint Adaptation Networks
[16], a UDA model introduced in 2017, aims to reduce the
shifts in joint distributions across domains. JAN advances its
discrepancy alignment-based predecessors that primarily use
only the Maximum Mean Discrepancy [32] to align source and
target domains by introducing a function which also aligns the
residual joint distributions between domains across multiple
CNN layers.

CDAN. Conditional Adversarial Domain Adaptation [19],
a UDA model introduced in 2017, was influenced by the
concurrent advances in conditional generative adversarial net-
works (CGANs). CGANs make use of discriminative features
between real and fake data and incorporate them into the
generator and discriminator networks. In CDAN, the authors
condition the domain discriminator with the cross-covariance
of domain-specific feature representations and classifier pre-
dictions. Additionally, the discriminator is conditioned based
on the uncertainty of the classifier predictions — thus allowing
the discriminator to prioritize easy-to-transfer examples.

AFN. Larger Norm More Transferable: An Adaptive Feature
Norm Approach for Unsupervised Domain Adaptation [17],
a UDA model introduced in 2019, proposes a novel method
for aligning domains based on statistical criterion different
from the literature. That is, they suggest finding a shared,
average feature norm (length of the feature vector) between the
two domains. They state that the target domain feature norms
are typically much smaller than the source feature norms and
hypothesize that this complicates adaptation. By adapting the
feature norms of both domains to a large range of scalars, they

Uhttps://github.com/njosselyn13/Empirical-Study-Domain- Adaptation
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[ Baseline || DANN [18] [[ JAN [16] || CDAN [19] [[ AFN [17] ]| MCC [31] ||

Learning Rate 0.001 0.1 0.1 0.1 0.01 0.1
Weight Decay 0.001 0.1 0.001 0.1 0.01 0.001
Loss Trade-off - 1.0 1.0 10.0 0.05 2.0

Table I: Tuned hyperparamters for baseline and the 5 DA models.

[ Corrosion Rating [5 J6 17 18 9 ]
No. Indoor Images 120 | 120 | 120 | 120 | 120
No. Outdoor Images 25 |39 | 39 | 31 57

Table II: Indoor and outdoor data summary table. Subdivided
for each corrosion rating class 5-9.

expect they can achieve better adaptation.

MCC. Minimum Class Confusion for Versatile Domain Adap-
tation [31], a UDA model introduced in 2020, differs from
other DA models as it does not aim to explicitly align two
domain feature spaces. Instead, it aims to reduce class confu-
sion in the label space. MCC is versatile because its approach
is suitable for a variety of DA settings such as: closed-set,
partial-set, multi-source, and multi-target DA. MCC claims to
outperform prior models, including the models we study here.

V. EXPERIMENTAL STUDY DESIGN
A. Experimental Corrosion Data

Corrosion assessment data is crucial to the verification
process of material reliability for use in production and also for
the discovery of new materials that are resistant to corrosion.
In this section we outline the data collection procedure for
indoor and outdoor corrosion image data.

Ground Truth Rating. The assessment and ground-truth rat-
ings, for both indoor and outdoor tests, are done by corrosion
scientists in accordance with standards defined in ASTM
D1654 [4]. These standards define the standard practice to
visually evaluate the amount of scribe corrosion for a panel.
Scribe corrosion is referred to as corrosion creep, which is
emanating out from a deliberately cut area in the panel.
Analysis is done using an optical magnifying tool to measure
the amount of corrosion emanating from the scribe at 12
equally spaced points along the ”X” cross-scribe; 6 points
along one scribe direction and 6 along the second direction
(6 points are used if the panel only has a single scribe), as
seen in Figure 1. The 12 measurements are averaged, divided
by 2, and correlated to a discrete rating label between 0 and
10. A rating of O signifies a large amount of corrosion, whereas
a rating of 10 signifies no corrosion present and is generally
only observed at the start of the testing process.

Indoor Data. For indoor tests, we directly utilize open data in
this field, including indoor corrosion panel images and ground-
truth ratings. The indoor test data set consists of 600 images of
corroded panels that underwent accelerated, indoor corrosion
experiments. Each panel received a rating from 5-9, and these
rating classes are balanced with 120 images in each class as
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seen in Table II [13]. This data had been split into 10 cross-
validation folds with a held-out test set of data. We use this
released split of data in our work.

Outdoor Data. Our outdoor tests consists of panels prepared
for the same materials as the indoor tests. Similarly, a cor-
rosion science expert annotated the images three times for
thorough verification. The outdoor corrosion data set contains
images of corroded panels with a rating from 0-10 using the
ASTM D1654 standard [33]. We focus on a subset of 191
images ranging from scribe corrosion ratings 5 to 9; as this
allows for simplicity in assessment performance comparison
between indoor and outdoor experiments as they both have a
similar distribution of samples in rating classes 5 to 9 (see
Table II). We split the 191 outdoor images into 20% test data.
The remaining 80% we split into 10 stratified, cross-validation
folds to be comparable to the publicly released indoor data.

B. Domain Adaptation Setup

Baseline. We first establish a baseline performance of outdoor
classification without involving domain adaptation. We train
a traditional classifier on labeled indoor data only but then
test it on only outdoor data. This scenario, with respect to the
application domain, is realistic as it is possible to collect larger
amounts of indoor data and we should be able to make use of
it in the assessment of outdoor data. The simplest approach
would be that a trained classifier on a labeled and larger indoor
dataset could be used for the similar task on outdoor data.
Therefore, we use this indoor to outdoor assessment as our
baseline. Note, we optimize learning rate and weight decay
hyperparameters, and experiment with values of: 0.1, 0.01,
and 0.001. See Table I for details on final hyperparameters.

Model Comparisons. We train each of the 5 domain adapta-
tion models on the same splits of data. We select the indoor
images as the source domain for each model. Labels are
made available to the model at train time. We select the
outdoor images as the target domain for each model, with the
labels not available to the model during training. The target
domain outdoor data for the corresponding validation and test
sets are used for tuning and testing, respectively. Code for
reproducibility is made available.

For each model we tune hyperparameters such as learning
rate, weight decay, and loss trade-off. The loss trade-off weighs
how much to focus on classification loss vs each model’s
respective transfer loss. This trade-off is seen in Equation 1.

loss = cls_loss + transfer_loss x trade_of f (1

We experiment with learning rate and weight decay values of:
0.1, 0.01, and 0.001. Loss trade-off values are: 0.05 (AFN
default), 0.25, 0.5, 1.0, 2.0, 5.0, and 10.0.
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[ [[ Baseline [ DANN[I8] [[ JANT[I6] [ CDAN [19] ]| AFN[17] [[ MCC [31] ]|
Accuracy 0.22 £ 0.05 0.17 £ 0.06 0.19 £+ 0.06 0.21 £+ 0.08 0.22 £ 0.06 0.28 £+ 0.09
F1 0.23 £+ 0.02 0.24 £ 0.05 0.21 £+ 0.06 0.26 + 0.04 0.25 £ 0.05 0.25 £+ 0.08
Balanced Accuracy 0.21 £ 0.03 0.2 £ 0.04 0.22 £ 0.08 0.19 £ 0.02 0.22 £+ 0.04 0.26 & 0.1
FI1 (relaxed) 0.58 £ 0.02 0.45 £ 0.07 0.55 + 0.07 0.47 £ 0.04 0.59 + 0.04 0.55 + 0.09
Balanced Acc. (relaxed) 0.61 £ 0.02 0.44 £+ 0.07 0.58 £+ 0.07 0.44 £ 0.06 0.62 £ 0.04 0.56 & 0.1

Table III: Mean and standard deviation values over 10 cross-validation folds. Test accuracy and normal and relaxed F1-score
and balanced accuracy metrics for classification of outdoor data for baseline and 5 DA models.

We then compare each domain adaptation model perfor-
mance against our baseline and discuss the utility of domain
adaptation models for the critical task of corrosion assessment.

Evaluation Metrics. We treat corrosion ratings as discrete
rating labels and therefore utilize classification loss. However,
the corrosion rating scale considered in this work is converted
from a continuous millimeter measurement [4], which leads us
to consider the evaluation under a less strict scenario where
neighboring rating labels may also be acceptable predictions.
To accomplish this less strict assessment, we not only evaluate
models by traditional classification metrics but also customize
them for a relaxed evaluation. Under this relaxed evaluation,
a prediction can be true even if it is within a range of 1 rating
higher or lower than its ground-truth rating (e.g. a ground truth
rating of 5 when predicted as 4 or 6 is acceptable).

We implement general metrics using Sklearn [34], and
further customize each to realize the relaxed evaluation. We
provide in Table III overall test accuracy along with FI-
score with micro-averaging and balanced accuracy — reported
under normal and relaxed classification settings. F1 with micro
averaging allows us to assess performance with respect to both
the number of false positives and false negatives with micro-
averaging addressing any data imbalance. Balanced accuracy
compliments this and takes into account the number of true
negatives and thus provides more information on model per-
formance. Since the outdoor assessment tends to be naturally
imbalanced, this balanced accuracy metric would be a more
trustworthy approach to evaluating model performance.

VI. RESULTS AND DISCUSSION

Next, we discuss our results presented in Table III and how
our work impacts the corrosion science domain.

Baseline. In Table III we observe that the baseline classifier
with no domain adaptation never, on average, beats any of the
domain adaptation models on any of the evaluation metrics.
However, we do note overlapping confidence intervals between
baseline and best performing DA models across evaluated
metrics, meaning there is uncertainty with respect to how much
DA improves outdoor classification. With this, however, DA
still shows some promise for improvement on outdoor data
classification by utilizing the indoor data.

Further, we note that random chance for our scenario is 0.20
given the 5 possible classes, and as shown, domain adaptation
(MCC) provides the greatest increase over this random chance.

In practice, this baseline is suitable as materials scientists
are able to more readily collect and label indoor data. However,
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they ideally want to assess material performance under outdoor
environmental conditions. Therefore, we use this baseline to
compare domain adaptation model performance against.

Model Comparisons. We observe all 5 DA models gen-
erally perform comparably across all metrics compared to
the baseline when considering standard deviations. Although,
at least one DA model, on average, beats the baseline on
every evaluation metric, as seen in Table III. In particular,
CDAN outperforms the baseline and all other models with
respect to Fl-score. AFN outperforms the baseline and all
other models with respect to relaxed F1 and relaxed balanced
accuracy. MCC outperforms the baseline and all other models
with respect to balanced accuracy and overall test accuracy.
Given these results, the MCC and AFN models appear to
be performing best for our corrosion assessment task, with
domain adaptation overall offering a promising future on the
assessment of the critical and challenging outdoor corrosion
data. All models were tuned for the corrosion data, optimized
for overall accuracy, and given a fair chance to perform their
best. Final hyperparameters for each model are in Table I.

We note that reported metric values show improvement over
baseline, yet are overall fairly low values. We attribute these
overall smaller values to the inherent difficulty of the task and
outdoor data. We have a small amount of outdoor data (and a
small amount of indoor data). Additionally, the outdoor data,
as seen in Figure 1, presents unique challenges such as being
captured via varying angles, different lighting scenarios, and
objects such as coffee cups present in the background.

To our knowledge, we are the first to attempt domain
adaptation in the scientific assessment of corrosion for material
discovery. The importance that DA models can have in the
corrosion science field is shown in this work to have a positive
impact. In this work we show the benefit DA models have
on boosting outdoor corrosion classification and motivate the
use and development of DA methods for corrosion science.
Demonstrating the utility of DA is a step towards bigger goals
for revolutionizing how new materials are discovered.

Vision for Material Discovery. As an ultimate objective in
corrosion science, it is desirable for one to reliably conduct
corrosion assessment exclusively on indoor tests only — ef-
fectively substituting the more expensive and extremely slow
outdoor tests by the rapid indoor tests. If material scientists
were able to determine how newly designed materials can be
expected to perform in natural environments without having to
actually conduct these longitudinal outdoor tests, this would
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be a game changer in the advancement of material discovery.
Deep learning methods such as DA explored by our work are
indeed based on leveraging indoor assessment, along with the
design of a “transfer” model that transfers this trained model
from indoor to outdoor assessment. Better yet, DA aims to
utilize only a small amount of outdoor data without requiring
labels for this outdoor data. In this sense, this work is a first
step into an exciting new direction for technological advances
in support of material discovery.

VII. CONCLUSION AND FUTURE WORK

We are the first to evaluate the utility of domain adaptation
for tackling the important materials science application of
corrosion assessment. We evaluate 5 SOTA domain adapta-
tion models on achieving the indoor to outdoor corrosion
assessment task. We compare them against a baseline indoor
to outdoor assessment task with no domain adaptation. We
observe that at least one domain adaptation model across
several evaluation metrics outperforms the baseline model. In
particular, we note the AFN and MCC models as promising
in this task. Given these initial results, our work has shown
that domain adaptation holds potential promise in addressing
this important problem.

However, future work is needed to explore optimization of
these methodologies to further enhance their performance for
this domain problem. Future work could also focus on other
advanced domain adaptation and deep learning models such
as few-shot learning to further address the limited data issue
present in this application context.
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