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Draft Genome Sequence of the Freshwater Diatom Fragilaria

crotonensis SAG 28.96
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ABSTRACT Here, we report the assembled and annotated genome of the fresh-
water diatom Fragilaria crotonensis SAG 28.96. The 61.85-Mb nuclear genome was
assembled into 879 contigs, has a GC content of 47.40%, contains 26,015 predicted
genes, and shows completeness of 81%.

ragilaria crotonensis is broadly distributed in freshwater systems, including both oli-

gotrophic and hypereutrophic lakes, and serves as a biological indicator of eutrophica-
tion (1-5). F. crotonensis is an important member of Lake Erie’'s phytoplankton because it
has historically bloomed in summer (6) and remains a dominant member seasonally
(7-11). To facilitate diatom-focused omics studies of Lake Erie and other lakes, we report
the assembled and annotated F. crotonensis SAG 28.96 genome. The 61.85-Mb genome
was assembled into 879 contigs, with 26,015 predicted genes and a GC content of
47.40%. The genome is predicted to be 81% complete (Table 1).

Nonaxenic unialgal cultures of F. crotonensis SAG 28.96 (Culture Collection of Algae at
the University of Gottingen, Gottingen, Germany) were cultured and collected as
reported previously (8). DNA was extracted using standard phenol-chloroform methods
with ethanol precipitation (12) and was quantified using the Qubit double-stranded DNA
(dsDNA) HS assay kit (Invitrogen). Short-read sequencing was performed using an lllumina
NovaSeq 6000 system (65 million paired-end 250-bp reads) at the Clinical Genomics
Center (Oklahoma Medical Research Foundation, Oklahoma City, OK) with libraries pre-
pared using the lllumina TruSeq PCR-free LT kit (350-bp insert). Long-read sequencing was
performed in-house using a MinlON MK1B R9.4.1 flow cell (Ns,, 17.815 kb; total number of
reads, 642,517; total read length, 5.38 Gb) with high-molecular-weight DNA prepared with
the ligation sequencing kit SQK-LSK109 (Oxford Nanopore Technologies) (13).

TABLE 1 General features of the F. crotonensis SAG 28.96 nuclear genome

Parameter? Finding for Fragilaria crotonensis
Genome size (Mb) 61.85
GC content (%) 47.40
No. of contigs 879

Nqo (bp) 89,148
L., (contigs) 206
Total no. of predicted genes 26,015
No. of annotated genes 11,422
No. of unannotated genes 14,593
Avg gene length (bp) 1,283.73
Coding density 0.54
Completeness (%) 81
Sequencing depth (x) 58

a Genome size, GC content, number of contigs, and N, and L, values were determined via tQUAST-LG (v5.0.2).
Genome completeness was assessed via BUSCO (v5.2.2) using the Stramenopile markers data set. Coding
density is defined as follows: ([average gene length [bp] x total number of genesl/genome size [bp]).
Sequencing depth is defined as follows: (total number of pooled reads [bp]/genome size [bp]).
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FIG 1 Variability of genome size and GC content of 21 Bacillariophyta genomes sequenced, annotated,
and available to date in the NCBI taxonomy database, in addition to the newly sequenced F.
crotonensis genome. Diatoms classified as estuarine/marine are indicated by filled symbols (n = 15),
while freshwater diatoms are indicated by open symbols (n = 7). Centric diatoms are indicated by
circles (n = 6), while pennate diatoms are indicated by squares (n = 16). The genome of F. crotonensis
SAG 28.96 is indicated in green. An unclassified Bacillariophyta genome and a Licmophora abbreviata
(environmentally assembled sample) genome are not included in this graph.

Assembly and gene prediction were performed using a previously established pipeline
(14). Briefly, bases were called for Nanopore reads with Guppy (v4.0.15) (15). Adapters were
trimmed using Porechop (v0.2.4) (16) with reads trimmed for quality (Q scores of 9) and
length (500 bp) using NanoFilt (v2.7.1) (17). lllumina reads were trimmed using CLC
Genomics Workbench (v20.0, with default settings). The assembly was performed using
Canu (v2.1) (18). Contigs were polished using Pilon (v1.23) (19) with read mappings gener-
ated using Bowtie2 (v2.2.3) (20). Redundant contigs due to heterogeneity in diploid
genomes were removed using Redundans (v0.14a) (21). Removal of bacterial contamina-
tion was performed using the Kaiju web server (22). Genome completeness was assessed
by BUSCO (v5.2.2) using the Stramenopile database (23). Genes were called using BRAKER
(24) with F. crotonensis transcriptomic data (25) that were assembled in CLC Genomics
Workbench and mapped to the assembly using Hisat2 (26). Translated amino acid sequen-
ces were uploaded to the eggNOG-mapper web server to predict function (27). Contigs
lacking coding sequences or those containing only bacterial genes were removed, along
with the organellular genomes. tRNAs were predicted using tRNA-scan-SE (v2.0.6) (28).
Genome statistics were determined using QUAST-LG (v5.0.2) (29).

Until recently, diatom research primarily relied on two model marine diatom
genomes (30, 31). There are now 22 fully characterized Bacillariophyta genomes avail-
able, but only 6 are freshwater (Fig. 1). A lack of representative freshwater diatom
genomes is a gap in the field because differences in physiology exist. There are further
morphological distinctions stemming from evolutionary divergence. As a result, there
is a need to sequence not only freshwater diatom taxa but also a greater variety of
morphologically and evolutionarily distinct diatoms to facilitate future diatom omics
studies.

Data availability. The annotated nuclear genome was deposited in GenBank under
the accession number JAKSYS000000000. Data are available under BioProject accession
number PRINA807324 and BioSample accession number SAMN25978007.
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