Pure and Applied Mathematics Quarterly
Volume 18, Number 4, 1599-1619, 2022

Enumerative geometry of the mirror quintic

SHELDON KATZ AND DAVID R. MORRISON

Abstract: We evaluate the enumerative invariants of low degree
on the mirror quintic threefold.

Mirror symmetry burst upon the mathematical scene with the famous compu-
tation made by Candelas, de la Ossa, Green, and Parkes [4] which in modern
language proposed to count the number of rational curves of fixed degree on
the quintic threefold using a technique from physics. In current language the
“counts” are evaluations of Gromov—Witten invariants or Gopakumar—Vafa
invariants, and the technique for counting these invariants has been expanded
and extended in numerous ways. From the physics point of view, the compu-
tation was made on a closely related algebraic variety — the mirror quintic.

In a recent physics paper [10], a new technique was proposed for explicitly
evaluating the Gromov—Witten or Gopakumar—Vafa invariants of the mirror
quintic itself, not just the quintic. Such explicit evaluations seem rather daunt-
ing, since the answer will be a function of 101 variables. One aspect of [10] is
to use two variables only and arrive at a more reasonable count.

Upon request of the authors of [10], the present authors worked out the
enumerative geometry of the mirror quintic. We have made a conjecture about
the Mori cone which comes with a plausibility argument rather than a proof.
However, independent of the truth of that conjecture, we are able to explicitly
evaluate the Gromov-Witten or Gopakumar—Vafa invariants of low degree for
the mirror quintic, involving all 101 variables.

It gives us great pleasure to dedicate this paper to our mentor and friend
Herb Clemens. Herb’s work on rational curves on Calabi-Yau threefolds [5, 6,
7] gave an inspiration and a foundation to much of our own work, including
this paper.

1. The mirror quintic, its curves, and its divisors

The standard description of the mirror quintic is as a quotient of a quintic
hypersurface in P*. Let ti,...,t5 be homogeneous coordinates. The standard
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equation is then
(1) 15 415 F 15 15 + 13 = Sutytotstyts.

We are taking the quotient of P* by the coordinate-wise action of
5
(2) (Zs)* = {(C1, G, G G0, G5) € (Z6)° | TT ¢y =13
j=1

The diagonal subgroup acts trivially on P*, so the effective action is by (Zs)?3.
We will employ an alternate description (due to Batyrev [3]) of the mirror
quintic as a singular complete intersection in P°. For this purpose we begin by
describing a basis for monomials invariant under the finite group action. Our
choice of notation may appear awkward at first, but its utility will become
apparent later on.
Let

u = titotstyts v =1
(3) w=t5 T =t}

y =1t z= tg.
Then the equations defining the mirror quintic can be written

(4) v+w+x+y+z=5u

(5) vwryz = u®,

which describes the mirror quintic as a (5,1) complete intersection in P?.
We denote this singular model of the mirror quintic by Yy, and refer to the
coordinates appearing in (4) and (5) as Batyrev coordinates. In fact, this
expresses the mirror quintic as a hypersurface (described by (4)) inside a
singular toric variety (described by (5)).

There are singularities along lines defined by the simultaneous vanishing
of w and two out of {v, w,z,y, 2z} (as well as eq. (4)); there are ten such lines.
The transverse singularity at a general point of such a line is Ay.

There are more complicated singularities at the points defined by the si-
multaneous vanishing of u and three out of {v, w, z,y, z} (and again imposing
eq. (4)); there are ten such points. The singularity at each such point takes
the local form C3/(Zs)?, with non-isolated singularities propagating along the
coordinate axes in C3 having transverse singularity of the form C?/Zs = Aj,.
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Figure 1: A triangulation specifying a crepant resolution of C3?/(Zs)?, and the
corresponding dual graph.

We also observe the feature of five P?’s contained within the mirror quin-
tic: each is given by the simultaneous vanishing of u and one of the coordinates
{v,w,z,y, 2z}, as well as eq. (4).

A concrete procedure for blowing up the singularities was given in [13, Ap-
pendix BJ, but we will use a different birational model described in [14, Section
4].* The singularity C3/(Zs)? can be described torically, and we display the
toric data for the resolution we use in the left half of Figure 1. We will denote
the resulting Calabi-Yau threefold by X,. The fully-resolved mirror quintic
family is parametrized by z = 7%, and is smooth for z € P! — {0, 1, c0}.
The large radius point is given by z = 0, while z = 1 is the conifold point
and z = oo is the orbifold point. There is a birational contraction map
p Xw — Yw.

The toric data is “dual” to a more geometric description involving curves
and surfaces, and we display the corresponding dual graph in the right half of
Figure 1. There are six complete divisors within the resolution, represented by
hexagons in the dual graph. There are also four incomplete divisors along each
edge which represent components of the resolutions of the one-dimensional
singular loci, and three incomplete divisors at the vertices of the figure which
represent the P?’s identified above.

There are also 30 compact curves within the resolution, represented by
segments in the dual graph which have both ends meeting a divisor. We can
also see portions of other curves which we will describe later.

I'Note that our use of the term “the mirror quintic” is not quite correct — we must
specify the birational model, and different models will have different Kéahler cones.
In this paper, we use the model corresponding to the resolution of singularities
specified in [14, Section 4].
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Figure 2: Labeling the divisors with monomials.

In order to keep track of all of the divisors and curves, we introduce the
following notation. Each point with stabilizer C°/(Zs)? is associated with
three of the variables {v,w,z,y, 2} and we will use quintic monomials in
those three variables to label the corresponding divisors. This is illustrated
in Figure 2 for the variables x, y, z. For a given monomial m, we call the
corresponding divisor Dyy,.

Note that every monomial which involves at most three of {v, w, x,y, z}
corresponds to a divisor, and monomials involving fewer than three of those
variables will show up in more than one of the toric diagrams. There are 105
divisors of this form.

Each compact curve in our diagram is the intersection of precisely two
compact divisors Dy, and Dy, and we label the curve by? vm . In addition
for each variable s from our set of variables {v, w, z,y, z}, we let {5 denote a
line in Dgs = P2. (Note that £ is also represented by the curve Dgs N Dgaq for
any variable t distinct from s.) Finally, given two variables s and t from the
set {v,w,z,y, 2z}, we let og¢ be the intersection of Dgst2 and Dgzgs. We will
conjecture below that the 315 curve classes of the form [Ymn], [¢s], and [og ]
are precisely the generators of all extremal rays and collectively generate the
Mori cone of the mirror quintic.

There are a few more curves which should be discussed. For each pair of
variables such as {y, z}, resolving the corresponding one-dimensional singular
locus produces four divisors which in the example are Dy, Dys 2, D23, and
D,.+. Each divisor appears over three of the C?/(Zs)? points (corresponding

20ur convention is to only use the notation Ymn i case the two divisors Dp,
and D,, are both compact in the inverse image of some C°/(Zs)? point.
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Figure 3: A general dPs, and a particular dPs.

to the triples of variables which contain {y, z}) and they are labeled the same
way in each instance. These divisors are all ruled (by the exceptional curves
resolving the non-isolated singularities), and we label the fiber ¢ of the ruling
with the same monomial as that of the divisor (e.g., the ruling on Dy, is
©y41-). There are also curves of intersection of adjacent pairs of such divisors,
labeled by a pair of monomials, e.g., the intersection of Dys, and Dys.>. The
only extremal curves among those are the lines /g, /¢ and the “middle” sections
Os.t-

We determine the relations among the various curve classes by analyzing
the structure of the divisors. Each compact divisor of the form Dy, where the
monomial m involves three variables (which is represented by a hexagon in the
dual graph) is isomorphic to dPs, i.e., the blowup of P? in three non-collinear
points. Each of the six toric curves on the divisor has self-intersection —1, as
illustrated in the left half of Figure 3. In the right half of that same figure, we
have chosen a particular example so as to provide notation for the relations
on curve classes that we are about to describe.

A dP; has three rulings, each having two singular fibers. Each singular
fiber in one of these rulings is the union of two adjacent —1 curves. For
example, the ruling whose general fibers run from southwest to northeast in
the right side of Figure 3 has special fibers 7,1y 43, U7Yz3y2 234> and yys,. 43,2 U
Vadyza2yz2- This leads to a relation among the curve classes which we denote
by Rﬁ;, namely

(6) Rig;z = [7$4y,x3yz} + [713y2,m3yz] - [’7303yz,:c3z2] - [7x3yz,ac2yz2]~

The subscript on R denotes the divisor which generated the relation. The
superscript identifies the ruling in the following way: the parameter space for
the ruling proceeds from the xy edge of the toric diagram to the z vertex
of the toric diagram. In this way, we can list all such relations in the xy, z
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direction, as follows:

R = [Votyasye] + [Vasy2 asyz] — [Vasyza922] — [Vadyz a2yz]
R, = Masyzaryez) + [Varsys a2yz] — Datyezayz] — [Va2y2z my222]
@ Ros, = [Va2gd eyea] + oyt enes] — [agpzayzee] — [Vayszgsa2]
R2 2 = [Masyzaryze] + [Yaryeza2ye] — [Varye o228] — [Vo2ye2 ayes]
Rigy/’222 [Va2 292z my2z2] + ['7:cy3z,acy2z2] - [%y"’zz,xyz?’] - hmyZzQ,sz?’]
ROV = [Vazyz2 ayzs] + Day2e2 oyes] — ozt azt] — [Vayzs yat]

Similarly, we can relate the fiber in the ruling on one of the “edge” divisors
to a degenerate fiber within the toric diagram. The ones in the same zy, z
direction are:

BT = [paey] — Matyats] — [Vatyasys]

N T [ R R
nyz [pa2ys] — [Yazys,a2y22] — [Va2y2 wyo2]
Rizil = [Payt] = eyt ay3z) — eyt yte]

Other relations of the same type as in egs. (7) and (8) can be generated by

substituting any three variables for x, y, z. This gives 30 versions of eq. (7).
The compact divisor D,s,, also allows us to exhibit a relation among

relations, since the three specified relations among six —1 curves are not

linearly independent. The “syzygy” is easily seen to be

(9) Risy. + Ris,. + Res)l =

A similar syzygy exists for each compact divisor. We thus conclude that of

the 180 relations of type (7) among the 300 « curves, only 120 are linearly

independent.

We can implement these relations as illustrated in Figure 4. In that fig-
ure, we have selected a subset of the compact curves (marked with a purple
dash) which constitute 4 curves on each compact divisor. In addition, for the
unmarked compact curves, we have used a green arrow to designate which
divisor’s relations should be used to eliminate that curve from the spanning
set. Each compact divisor has two green arrows within it, indicating that two
of the relations belonging to that divisor are used in this elimination process.
Those relations are linearly independent.
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Figure 4: Basis for compact curves.

The divisors on the edges, such as D4, also give rise to relations among
the v curves, since three expressions for [p,4,] are derived from relations of
the type in eq. (8). The ones for ¢ 4, are

Riélyizl’u — [s@a:zly] — [’Yw‘*y,:z:“v} — [’yx4y’$3yv]
(10) R = [pgiy] — Paotyata] — Dotyatyol

R;y; = [(px4y] - [’723411,:542] - [’7x4y,ac3yz]

and by subtraction we obtain two independent relations among the v curves.
Since this can be done for each of 4 divisors along each of 10 edges, there are
80 relations in total of this type. These relations are independent.

Thus, we find a total of 200 linear relations among the 300 compact
curves, leaving 100 independent classes.

We now consider the divisors on the edges of the toric diagram, which
form the resolution of the A4 loci. We take as an example the sequence of
divisors Dy, Dys,2, Dy2.s, D,.4. The first two divisors in any such sequence
are illustrated in Figure 5, in other words, the divisor on the left is D4, and
the divisor on the right is Dys.2. To the left of D, is D,s and to the right
of Dys,2 is Dy2,s. (There is also a third singular fiber in the ruling on each
divisor; these are indicated with narrow lines.)

As we mentioned earlier, the divisors D,s and Dy, meet on £, which has
self-intersection 1 on Dys. By the adjunction formula, the self-intersection of
this curve on Dy, (where it is a section of the ruling) must be —3. It follows
that D4, is a blowup of the Hirzebruch surface IF3, and since there are three
singular fibers, the disjoint section Dys, N Dys.» must have self-intersection
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AN

1 —1

Figure 5: Two adjacent components of the resolution of the A4 locus.

0 on Dys,. In fact, we can say more: by the description as a blowup of a
Hirzebruch surface®

(11) [Dy4z M Dy3z2] = [Ky] + 3[(py4z] — ['7vy3z,y4z] — [7wy3z,y4z] — [’nyi*z,y“z]v
which can also be written
(12) [Dy4z N Dy3z2] = [Ey] + [%}y‘l,y“z] + [’wa”‘,y‘*z} + [sz‘*,y‘*z]-

Using adjunction again, the self-intersection of Dys, N Dys,2 on Dys.,»
must be —2, which tells us that D,s.2 is the blowup of a Hirzebruch surface
[Fy in three points. The disjoint section oy, . = Dys.> N D,2,3 must thus have
self-intersection —1 on D32, and again we get a relation among curve classes:

(13) [Uy,z] = [Dy4ZﬂDy322] +2[g0y322] - [’Yvy2z2,y3z2] - [wa2z2,y3z2] - [’Yzsz?,y%Q]v
which can also be written
(14) [Uy,z} = [Dy4z N Dy322] + [7vy3z,y322] + [’7wy3z7y322] - [’7xy2z27y322]

(a little less naturally this time, since we must single out one of the three
singular fibers). Combining these two gives

(15) [0y,2] = [by] + [Yoyt y1z] + [yt o] + [Vays yo2]

+ [7’[}y3z7y322] -+ {wa327y3z2} — {’yzy2z2,y3z2]-

3If we blowup the Hirzebruch surface F,, at k points which are contained in a
section @ of the P!-fibration (with fiber ) having () =n > 0, then the blowup
contains the proper transform ¢ of ©, the proper transform ., of the section
Too With (@)]%n = —n < 0, the proper transform o of 7, and the exceptional
divisors ey, ..., er. The basic homology relation [¢] = [65] + n[®] on F,, pulls back
to a homology relation [o] + [e1] + -+ + [ex] = [0s0] + n[p] on the blowup. Note
that [¢] — [e;] is represented by an effective (—1)-curve €, and that [e;] + [€]] is
homologous to [g].
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We thus get 20 additional relations among our 315 curves. However, at
most 14 of the 20 relations can be linearly independent, which can be seen
from Batyrev’s calculation of by of the quintic mirror [3].

The conclusion (from Batyrev’s calculation) is that there are precisely
101 independent curve classes generated by our explicit set of 315 curves.

We now consider relations among the divisors. First, for the divisors whose
monomials are chosen from {z,y, z}, we can determine some linear combina-~
tions which have intersection number 0 with all 30 compact curves lying over
the corresponding singular point. There are three linearly independent combi-
nations, which we label as D®¥* D¥%%% and D*%*¥, and which are described by

means of coefficient arrays whose shape matches that of Figure 2, as follows:

0
10
2 1 0
Y, xz __
b= 3 2 1 0 ’
4 3 2 1 0
5 4 3 2 1 0
0
0 1
0o 1 2
zZ,xYy __
b= o 1 2 3 ’
o 1 2 3 4
0o 1 2 3 4 5
5
4 4
e 3 3 3

0 0 0 0 0 0

Note that £, meets D,s with intersection number —3, and also meets D,
and Dg4,, each with intersection number 1. It follows that D*Y? meets £,
with intersection number —7, meets ¢, once, and meets £, once.

This calculation suggests how to find a divisor which has intersection
number 0 with all curves Ym; m,. Let

(16) D* = > Ve(m) Dy,

monomials m with
at most three variables
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where v, (m) denotes the exponent of the variable z in the monomial m. Since
the coefficients of D* in any triangle containing x have the same pattern as
D*%¥% the intersection with all of the compact curves over such a point is 0.
And since the coefficients of D® are all zero in any triangle not containing x,
the intersection number with each of the compact curves over such a point is
also 0.

Also, D* meets £, at the components D,s and D,4,, so the total inter-
section number is

D¥ ly=5-(-3)+4-4-1=1.

On the other hand, for any other variable such as y, the only component of
D?* with a nonzero coefficient which meets ¢, is Dya,. Thus, D* - ¢, =1 as
well (and similarly for ¢, ¢,,, and ().

It follows that D*-v = 0, D*-£ = 1 for all  curves and lines ¢, respectively.

Now, the same thing happens for DY, D¥, DY and D?, so the difference
of any two is numerically trivial. This produces four linear relations among
the 105 divisors Dy, giving a space of dimension 101.

Note that D? (and the others) can be identified with a hyperplane section
H of the original singular model of the mirror quintic.

We would like to write down one more divisor, which has intersection
number 1 with all v curves, and intersection number 0 with all lines ¢. To
this end, we consider the following coefficient array

16
12 12
10 9 10
10 8 8 10
12 9 8 9 12
16 12 10 10 12 16

The corresponding divisor has intersection number 1 with each compact vy,
where m involves the variables {x,y, z}. This is verified by checking total
intersection number in various sub-diamonds of the coefficient array, such as
16 +9 — 12 — 12 which corresponds to intersections with 4, 1.

To make a global version of this, we define a function a on monomials as
follows. The nonzero exponents in the monomial m determine a partition of
5 into at most three elements, and the value of the function only depends on
the partition, as follows:

Partition | 5 | 441|342 [3+1+1[2+2+1
am) [16] 12 [ 10 | 9 | 8




Enumerative geometry of the mirror quintic 1609

Then the divisor

D= Z a(m) Dy,

monomials m with
at most three variables
has the property that D-~ = 1 for all v. Note that ¢, meets D,s of coefficient
16 with intersection number —3, and meets 4 divisors of the form D4, each
of coefficient 12 and with intersection number 1. Thus,

D-l,=16-(—3)+4-12-1=0

and similarly for any of the D - £.

Having identified the curves ¢y and ogy for s,t € {w,v,z,y, 2}, and the
CUrves Ym,; m, above, we conjecture that these generate the Mori cone of
numerical equivalence classes of effective curves on X.

Conjecture 1. The Mori cone M of Xy is generated by the classes of the
curves Uy, 0st, and Ym; ms-

In the rest of this paper, we assume this conjecture whenever necessary.

If C'is a curve on Xy, we define the degree of C' to be the degree of its
image C' := p(C) C Yy C P°. We will show presently in Lemma 2 that if
C' C Xy has degree zero, then its class [C] is in the cone generated by the
classes of the curves ym, m,. Furthermore, in Section 2 we will show that if
C' C Xy has degree 1, then its class [C] is in the cone generated by the classes
of the curves ¢, os¢, and Ym; m,. In other words, the conjecture is true for
curves of degree at most 1.

Lemma 2. The class of any curve in an exceptional divisor for the birational
contraction p is in the cone generated by the classes of the curves Uy, osy, and

Ymi,mg-
In particular, the conjecture is true for curves of degree 0.

Proof. We give separate arguments for the exceptional divisors which contract
to a point and to a curve.

The exceptional divisors contracting to a point are all dPss. It is well-
known that the Mori cone of dPs is generated by the classes of its six excep-
tional curves of the first kind. But these exceptional curves are precisely the
~ curves contained in that dPsj.

The exceptional divisors contracting to a curve are the components of one
of the A4 resolutions. By symmetry we need only analyze the curves in Dy,
and Dy322.
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Now D, is identified with the blow up of the Hirzebruch surface F3 at
three general points, the exceptional curves being identified with the curves
Yyrzyizs for s € {v,w,x}. Using the blowup description, the Mori cone is
generated by the —3 section, the proper transform of any +3 section contain-
ing the points being blown up, the proper transform of the fibers, and the
exceptional curves. We need only check each curve in turn. The —3 section
is identified with the curve £,. We have already noted that the exceptional
curves are all 7y curves. The proper transform of the fiber which meets 4, ys.¢
is just 7,4, 445, also a 7y curve. The proper transform of a particular +3 section
is identified with Dy, N Dys.2, which is in the cone generated by /, and ~y
curves by (12).

Next, we observe that Dys.» is similarly identified with the blow up of
the Hirzebruch surface o at three points on a +2 section, the exceptional
curves being identified with the curves v,s,2 2.2 for s € {v,w,x}. Using the
blowup description, the Mori cone is generated by the —2 section, the proper
transform of the unique 42 section containing the points being blown up, the
proper transform of the fibers, and the exceptional curves. We need only check
each curve in turn. The —2 section is identified with the curve Dys, N Dys -
already considered above. We have already noted that the exceptional curves
are all v curves. The proper transform of the fiber which meets 7,4, 3.5 is just
Vytzytss also a 7y curve. The proper transform of the +2 section is identified
with oy ..

We can give a plausibility argument in favor of our conjecture for arbitrary
degree as follows. Let C' be any irreducible curve on the mirror quintic, and
let C' be its image on the singular model as above. If C' is contained in the
singular locus, then C must lie in one or more of the exceptional divisors
of the blowup. This case is handled by Lemma 2. If C' is not contained in
the singular locus then it meets the singular locus in finitely many points.
We want to claim — and this is the gap in the argument — that C' can be
deformed away from the singular locus. The family C}, when lifted to the
smooth model, will have a limit Cjy consisting of C' together with some curves
which are contained in exceptional divisors. As mentioned earlier, those latter
curves are in the cone generated by known curves.

We next let H= 72 =Z-{ ® Z -~ and project curve classes to H via

(17) m: M —H, m(C)=(C-D*) L+ (C-D)~.

The notation for the basis for H has been chosen so that 7(f) = ¢ and
T(Ymi,mz) = 7. We also observe that if 7(3) = ml + nv, then p,.(3) is the
class of a degree m curve in Y,, C P°.
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We compute and record the following curve classes, which are computed
from (17) and the definitions of D* and D.

(18) W(/Yt5,t4u) - e
(19) 7-‘-(’)/154u,1‘/3u2) = (+3y
(20) (o) = (+4y

where ¢ and w are distinct elements of {v,w, z,y, z}.
Our interest is in defining and computing Gopakumar-Vafa invariants of
classes in H in order to compare to the calculations of [10]. g

Lemma 3. Fiz § € Z2. Then the set of curve classes 3 € M with ©(8) = &
1s finite.

Proof. We write § = m{ + ny and may assume m > 0, n > 0, and (m,n) #
(0,0), otherwise the statement of the lemma is trivial. We can write

(21) B = Z TrLtEt + Z N4, Ymy,my T+ Zps,tas,t

with mg,n; 5, ps¢ > 0, suppressing from the notation the implicit set of 3
variables needed to define ym, m,. In writing (21), we have adopted the con-
vention that we always use ¢ in place of a class of the form s 44,,. Then
m(B) = 0 implies > mg + > nij + > psg = m and 3> n,;; +4> psy = n,
which has only finitely many solutions for mg, n; ; and ps .

Lemma 3 ensures that the two parameter projection of [10] makes mathe-
matical sense: their invariants are simply a sum of finitely many Gopakumar-
Vafa invariants.

For § € H we define

— g
(22) n%z,n - Z nﬁa

n(B)=ml+ny

which is a finite sum by Lemma 3. In (22), n is the genus g GV invariant
associated with the curve class § € Hy(Xy,Z). The GV invariants will be
discussed in more detail in Section 2. O

2. Enumerative geometry
In this section, we calculate some genus 0 Gromov-Witten invariants. In prin-

ciple we can algorithmically compute the genus 0 Gromov-Witten invariants
for the full 101 parameter model using the toric mirror theorem [8], but we
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leave that for future work. It is conceivable that there may be a way to modify
the toric mirror theorem to apply directly to our two-parameter family. That
would certainly be worth doing.

2.1. Generalities

In lieu of calculating genus 0 Gromov-Witten invariants, we calculate the
genus 0 Gopakumar-Vafa invariants [9], which is easier in examples. Let
B € H*(Xy,Z). Mathematically, we follow [11] by defining the genus 0
Gopakumar-Vafa invariant ng as the Donaldson-Thomas invariant of the
moduli space of stable sheaves F' with [F'] = § (which is known to be indepen-
dent of the choice of polarization used to define stability). This definition is
consistent with the mathematical definition of higher genus Gopakumar-Vafa
invariants 7} given later in [12].

The Gromov-Witten invariants NV, g are related to the n% by the Aspinwall-
Morrison formula [2, 15]*

"k

0 _

(23) NS =25
k|B

so we content ourselves with the calculation of the n%.

Furthermore, in all of our cases, the stable sheaves are of the form O¢
for rational curves C' and so the moduli spaces of sheaves is just the moduli
space of curves. Even better, these moduli spaces Mg are smooth, and the
Donaldson-Thomas invariant is simply

(24) nfy = (1) e (M),
where e (Mp) is the topological euler characteristic.

2.2. Degrees 0 and 1

We now record our results for Gopakumar-Vafa invariants in the classes mf+
ny, with m = 0,1. These are the classes which project to points or lines in

4A proof of the multiple cover formula has only been written down for isolated
curves. However, in our cases, it can be shown by symplectic techniques that the
0 operator can be deformed so that there are only finitely many embedded pseu-
doholomorphic curves, all isolated, and the number is given by the associated GV
invariant, with signed counts corresponding to orientation choices. This is easy for
primitive curve classes since the moduli spaces are smooth and projective, but with
more care the case of 2 below can also be handled.
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the singular model Y.

(25) nd = 300
(26) ny, = —440
(27) ny = 15

(28) ng,, = —60
(29) Ngyo, = 155

We begin with the classes of the form nvy. By Lemma 2 and its proof, these
curves can be constructed from the v curves and the fibers of the divisors of
the A, resolution.

~. The curves of class v contained in each rational ruled surface are just
the components of the reducible fibers. The curves of class v contained in
each dP3 are the 6 curves depicted in Figure 3. So we simply count all of
these curves.

Each 2-simplex depicted in Figure 1 corresponds to one of the 10 singular
points. We count 30 curves of class v corresponding to each 2-simplex. Thus
ng =10 - 30 = 300.

2. Again inspecting Figure 3, we see that any intersecting conifiguration
of two curves of type v must lie in exactly one of the d Pss or the ruled surfaces
lying over a singular curve. Since each curve v has self-intersection —1 in the
surface just described, the union 1 4+ is a rational curve of self-intersection
0 in a rational surface, hence it moves in a pencil. The corresponding contri-
bution to the GV invariant is (—1)e(P!) = —2 by (24).

There are 3 such pairs of intersecting —1 curves for each of the 6 dPs’s
over each of the 10 singular points.

There are 4 ruled surfaces over each to the 10 singular curves.

Thus, n9, = (—2)(10 -3 -6+ 10 - 4) = —440.

We now turn to the curves of the form £ + ny. Since all of these project
to lines in Yy, we start by identifiying the lines in Y.

Lemma 4. Any line in Yy is contained in one of the five P?’s defined by the
simultaneous vanishing of u and one of the coordinates {v,w,x,y, z}, as well
as eq. (4).

Proof. The proof is inspired by an argument in [1]. Let ¢ C Y}, be a line and
suppose that ¢ is not contained in any of these P?’s. If ¢ is not contained in
the hyperplane u = 0, then it intersects that hyperplane at a point p € £. It
follows from (5) that each of the five hypersurfaces t = 0 must also contain p.
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This is a contradiction, since it would imply that 6 hyperplanes with empty
intersection all contain p.

Since u is identically 0 on ¢, it follows from (5) that at least one of the t
must vanish identically on ¢, which proves the lemma. O

Now let C' be any irreducible curve of degree 1, and we claim that its class
is in the cone generated by the classes of the curves f¢, 0g ¢, and Ym, m,- In this
case C' = p(C) C Yy is a line. It follows that C' must either be contained in
one of the exceptional divisors forming an A4 resolution or one of the divisors
Dgs. We have already shown the claim in the first case. In the second case,
[C] = [6s].

{. The classes 3 which contribute to ny project to a line in Yy, which must
lie in at least one of the five P?’s described in Lemma 4. The divisor D,s is
the proper transform of one such P?, and the lines in such a P? have class /.
The lines are parametrized by a dual P? and so contribute +3. There are five
such P2, giving 5 - 3 = 15.

We claim that there are no other contributions. The only remaining pos-
sibility is for the projection to lie in more than one P? and thus be a singular
line. In this case one component of the curve must be a section of one of the
4 ruled surfaces over the singular line. But from (18) and (19) we infer that
the Mori cone of D4, is generated by £ and -y, while the only curve of class
0in Dgay IS Y5 44, which we have already considered as a line in D,s ~ P2.
Similarly, the Mori cone of D,s,2 is generated by ¢ + 3y and v by (19) and
(20), s0 Dys,2 contains no curves of class £. Hence, the final answer is nd = 15.

{+~. As above, we must have a component which is a line in one of the 5
P?’s, and we look for all ways to attach a curve . A typically way is to take
the line in D, passing through the point DN Dga, N Dya, (there is a pencil of
such lines) and attach 7,4, ,4,. All other cases are obtained by permutations
of the underlying data. Such curves are associated with a partial flag p € P2,
where p is one of the 10 singular points and P? is one of the 3 P?’s containing
a given singular point. This gives n2+,y =10-3-(—2) = —60.

¢+ 2v. Again, we must have a component which is a line in one of the
5 P¥’s. We look for all ways to attach two curves of class v or one curve of
class 2v. For the first case, we choose one of the five P?’s which we identify
with some Dygs and a pair of the 6 singular points contained in that P2. This
specifies a line in Dys containing the two singular points. Then we glue the
curves of type v which meet each of the singular points. This contributes
5-15=T75.

We have already seen how the fibers of the ruled surfaces have class 2.
A typical example is to glue a line £ C D,s containing a point p € 7,5 44,
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to a fiber ¢g4,. All other cases are given by permutation. The data p € £ is

parametrized by the blowup of the dual P? at the point Va5 2ty Of this dual

P2. This blowup has euler characteristic 4 and contributes +4 to the GV

invariant. We have such a pencil for each choice of one of the 5 P?’s and one

of the 4 singular lines contained in each P2?. This contributes 5 -4 - 4 = 80.
Combining these cases, we get n? 42y = 75+ 80 = 155.

2.3. Degree 2

Here we only have partial results, but we note that they already agree with
parallel calculations in [10]. We compute the invariants of those curves of
class 2¢ + ny which lie inside the union of the toric divisors Dy, and denote
the contribution of these curves by ng;j:gg However, since we do not have an
analogue of Lemma 4 at our disposal, it is possible that ng’;i;i; # nY, Sty

We record our results.

(30) ng,@toric - 30

31 nO,toric — 150
20+

(32) ngyyes = —500

20. In this class, we clearly have the conics in any of the five toric di-
visors Dgs, each of which is a P?. Since conics are parametrized by P°, the
contribution is 5(—6) = —30.

The argument that we used in the case § = ¢ shows that there are no
other curves in UDy, representing 5 = 2/.

20 + ~. Analogous to the case of ¢ + ~, our curve must be a connected
union of one of the conics of class 2¢ and a curve ~, to which is associated
to one of 30 possible partial flags p € P2. The linear system of conics in P?
containing a point p is a P4. So the invariant is 30 - 5 = 150.

20+ 27. As in the situation of £+ 2+, we must have a conic C' C Dgs as a
component. There are then two possibilities. Either C' is glued to two distinct
~ curves, each meeting Dgs in one of the 6 singular points that it contains, or
C'is glued to a fiber of a ruled surface Dgag.

In the first case, we choose one of the five P? and one of the 15 pairs of
the 6 singular points in that P? at which we glue a v curve. The linear system
of plane conics through a pair of points is a P3. So the net contribution is
5-15-(—4) = —300.

In the second case, for each of the 5 divisors Dgs, we pick one of the 4
singular lines g5 g1 contained in it. We get a curve of class 2042+ by choosing
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a point p € g g1¢, taking a conic C' C Dgs containing p, and gluing it to the
fiber ¢guq containing p. This moduli space is a P* bundle over P!, contributing
—10. So the total contribution is 5 - 4 - (—10) = —200.

Combining these two cases, we get ng;igs = —300 — 200 = —500.

3. Five parameter projection

In this section, we prove Conjecture 1 in a five-parameter projection. Let us
first explain what this means.

It follows from Batyrev’s calculation [3] (which used toric constructions to
represent curve classes, as we have done) that the curves l¢, og ¢, and Ym; m,
identified in Conjecture 1 span Hy(Xy, Q). Furthermore, the curves o are
not needed by (15).

We let V' be the Q-vector space with generators ¢;, 05, and v, m,. Then
there is a natural surjective map r : V. — Hy(Xy, Q). The kernel of r is
spanned by the relations (7)—(15) together with the analogous relations ob-
tained by substitutions of the variables, described in Section 1.

The group S5 acts on Yy, by permuting the coordinates, and this action
lifts naturally to an action on Xy. Let W be the Q-vector space generated
by the set of Ss-orbits of the ¢, 044, and 7y, m,. There is a natural map
n : V. — W. Since the set of relations spanning ker(r) just described is
invariant under S5, we deduce a natural map

(33) p: Hy(Xy,Q) = N:=W/(n(kerr)).

Let M C N ® R be the cone spanned by the classes p(¢), p(ost), and
P(Ym1,ms ). Recall the Mori cone M C Ha(Xy, R).
Lemma 5. dim(N) = 5.
Proof. As noted above, we can ignore the p(ogy). Clearly, all of the curves (g
are identified by the S5 action. There are six S5 orbits of curves Ym, m,:
(34) Vs4t,s4us Vstt,s3tur Vs3t2,s3tus Vs3t2,s2t2uy Vs3tu,s2t2us Vs2tu2,s2t2u-

However, the third relation in (7) gives p(Vsat s3tu) = P(Vs3tu,s2t2u) Since
the first and last terms cancel in the projection, and similarly the fifth relation
in (7) gives 7s3¢2 s2¢2u = Vs2tu2 s2t2u, Since the second and third terms cancel
in the projection. Thus the p(Ym;,m,) span a 4-dimensional space. Including
the p(ls), we get dim(N) = 5. O

Proposition 6. p(M) =M.
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Proof. Let 7 C M be the simplicial cone spanned by the p(Ym; m,) and p(ls).
We compute the dual cone 7V, expressing the edges in terms of Ss-invariant
divisors on Xy.

Claim. Each of these five Ss-invariant divisors can be chosen to be effective.
We defer the calculation and complete the proof. O

Let C be an irreducible curve in the mirror quintic. If C' is contained in a
toric divisor, we already know that [C] is contained in the semigroup spanned
by 4, 0st, and Ym, .m, by our previous calculation of the Mori cone of these
toric surfaces. So p([C]) € M.

If C' is not contained in any toric divisor, then its intersection with each
toric divisor is nonnegative, and in particular its intersection with each of the
five Ss-invariant divisors is nonnegative. But these intersection numbers are
simply the coefficients of p(C') as it is expressed as a linear combination of
the edges of 7. Therefore p(C') € 7 C M.

It remains to compute the edges of 7. We can express the five generators
of T as

(35) p(£5>7 p('Vs“t,s‘lu)a p(’Ys4t,s3tu)7 p(7s3t2,s3tu)a p(753t2,52t2U)

We have already constructed an effective toric divisor D* with D* - - - {5 =
1 and having intersection number zero with each v curve. Therefore, sym-
metrizing D® gives an Ss-invariant divisor which spans the edge of 7V dual
to the face of 7 which does not contain p({s).

4. Conclusions

We have studied the curves on the quintic mirror threefold, using toric con-
structions to obtain curves, and using toric surfaces to see the relations among
them. Those same toric surfaces allowed us to isolate some of these curves
as potentially extremal: they are extremal on the surface that contains them,
but not (yet) known to be extremal on the threefold itself. We hope that this
approach to studying curves will be useful in other contexts as well.
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