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Abstract—Several deep neural network (DNN) accelerators
have been designed to exploit the sparsity exhibited by DNN
activations and weights. State-of-the-art sparse accelerators can
be described as either Pixel-first or Channel-first accelerators,
each with its unique dataflow and compression format aiding
its dataflow. The former expends significant energy updating
neuron partial sums, while the latter expends significant energy
in handling the index metadata. This work introduces a novel
microarchitecture and dataflow that reconciles these trade-
offs by adopting a Pixel-first compression and Channel-first
dataflow. The proposed microarchitecture has a simpler index-
generation logic combined with an accumulator buffer hierar-
chy and crossbar with low wiring overhead. The compression
format and dataflow promote high temporal locality in neuron
updates, further lowering energy. Finally, we introduce work
partitions across processing elements that naturally lead to
load balance without offline analysis. Compared to four state-
of-the-art baselines, the proposed architecture, CANDLES,
significantly outperforms three and matches the performance
of the fourth. In terms of energy, CANDLES is between 2.5×
and 5.6× more energy-efficient than these four baselines.

Keywords-Convolutional neural networks, Sparse tensors,
Microarchitecture-Dataflow co-design, Hardware Accelerators

I. INTRODUCTION

Several deep neural network (DNN) accelerators [39],

[25], [3], [2], [46], [34], [10], [18], [11], [9], [49], [38],

[12], [15], [31], [41] have been introduced in recent years,

including several commercial implementations [24], [48],

[17], [8], [32], [52], [43], [5], [1]. One of the most promising

opportunities to improve the energy efficiency of these accel-

erators is the high level of sparsity exhibited by weights [40]

and activations [4]. However, exploiting sparsity in both

activations and weights, referred to as two-sided sparse [16],

has resulted in architectures that are complex and/or under-

utilized.

A second key opportunity is to identify a loop order-

ing, tiling, and partitioning (referred to as dataflow) that

maximizes data reuse and minimizes data movement. While

some prior works [54], [30], [7] have developed compiler

methodologies to discover the ideal ordering, tiling, parti-

tioning for generic dense accelerators and sparse accelerators

with only sparse weights, similar tools for two-sided sparse

accelerators do not yet exist. Not only are sparse accelerators

Figure 1: Examples of (a) outer-product in Pixel-first archi-

tectures and (b) inner-product in Channel-first architectures.

Strips: Partial sums; Solids: Fully accumulated neuron
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still evolving, they exhibit non-uniform sparsity behavior and

load imbalance [16] at runtime that varies by layer and by

input.

In this work, we design a new complexity-effective mi-

croarchitecture that captures the best elements of prior sparse

accelerators, and define a dataflow that leads to high reuse

and high utilization. We show that such microarchitecture-

dataflow co-design can unearth new efficiency opportunities.

The opportunities stemming from weight and activation

sparsity have spawned several DNN accelerators [4], [39],

[26], [60], [34], [16], [57], [50], [58], [28], [35], [61], [14],

[27], [20], [42], [3], [9], [53], [51]. These architectures im-

prove power, throughput, and area by compressing the input

activations and weights, followed by computation on this

compressed data using different dataflow strategies. Depend-

ing on the compression format and dataflow choice, two-

sided sparse accelerators can be split into two categories:

Pixel-first architectures and Channel-first architectures.

Algorithm 1: Pixel-first Pseudo code

for c = 0 to C − 1 do

for k = 0 to K − 1 do

for a = 0 to (W ∗H)non zero do
out[a][k] += in[a][c] * wt[c][k]

Pixel-first architectures employ an outer-product strategy

for computations (see Figure 1a1). It compresses the sparse

data such that the non-zero activations and kernels are

ordered in pixel dimension2 for each channel (observe kernel

representation in (ii) of Figure 1a). Algorithm 1 shows a

simplified pseudo code used by Pixel-first architectures. A

vector of non-zero activations and a vector of non-zero

weights corresponding to a channel are read to perform a

cartesian product. Here, any activation can be multiplied

with any weight resulting in partial sums corresponding

to several output neurons. The addresses of partial sums

are obtained simply by replacing the row index with the

row index of activations and column index with the column

index of the kernel. Hence, Pixel-first architectures lead to

high activation/kernel reuse and simple indexing schemes.

However, such dataflows result in little to no partial sum

reduction/reuse before writeback leading to high energy

consumption. Besides, a cartesian product results in partial

sums destined to unrelated output neurons requiring the need

for large accumulator buffers and routing logic. For example,

SCNN [34] and STICKER [56] are Pixel-first architectures

and dissipate over 80% of total on-chip energy in accessing

the crossbars and/or the multi-banked accumulator buffers.

Most of this high energy is because of frequent traversal

over the long wires connecting the crossbar to each bank and

1Pixels in a 2D-fmap are linearized and shown as one of the dimensions
(similar to a GeMM representation).

2Pixel dimension: all dimensions orthogonal to the channel dimension.

accessing those respective banks. Also, intra-PE and inter-

PE underutilization are prevalent in Pixel-first architectures.

Intra-PE underutilization is caused at feature map and kernel

boundaries when the weight or activation vector are not fully

populated. Inter-PE underutilization is caused by load im-

balance stemming from variance in sparsity levels and work

assigned to each PE. In addition, the outer-product model

artificially induces nonexistent multiplications at feature

map boundaries that cannot be evaded even with padding.

These architecturally wasted computations can contribute

upto 6.5% of the total computations for two-sided sparse

models.

Algorithm 2: Channel-first Pseudo code

for k = 0 to K − 1 do

for a = 0 to (W ∗H) do

for c = 0 to C − 1 do
/* Check for channel-index matching

*/

if (in[a][c] �= 0) ∧ (wt[c][k] �= 0) then
out[a][k] += in[a][c] * wt[c][k]

Channel-first architectures employ an inner-product strat-

egy for computations (see Figure 1b). It compresses the

sparse data structure such that the non-zero activations and

weights are ordered in channel dimension for each pixel

(see activations (orange) and weights (green) in (ii) of Fig-

ure 1b). Algorithm 2 shows a simplified pseudo code used by

Channel-first architectures. A vector of non-zero activations

and a vector of non-zero kernels corresponding to a pixel

are read to perform an inner product operation. Examples of

this approach include SparTen [16], SNAP [58], [59], and

StitchX [29]. Within each processing element (PE), Channel-

first architectures employ output-stationary dataflow to aid

the inner product operation. Hence, a significant number

of partial sums corresponding to an output neuron can be

reduced locally before writing it back to the accumulator

buffer, thus avoiding the overheads of crossbars and multi-

banked accumulator buffers prevalent in Pixel-first architec-

tures. Since the data structures are compressed in channel

dimension, an auxiliary condition is required to find match-

ing activation and kernel index pairs corresponding to the

same channel (if-condition in Algorithm 2). Failure of the if-

condition adds extra cycles to the execution time leading to

intra-PE underutilization. To prevent these wasted cycles and

improve intra-PE utilization, typical Channel-first architec-

tures use auxiliary index-matching logic to prefetch only the

operands that satisfy the if-condition.This if-condition makes

Channel-first index generation/matching logic more complex

than for Pixel-first architectures. For example, the index-

matching logic in SparTen [16] consumes nearly 46% of on-

chip power and 63% of on-chip area. Hence, while Channel-

first architectures improve buffer energy consumption and
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throughput over Pixel-first architectures, the channel index

matching logic’s power and area introduce a non-trivial

overhead. Additionally, inter-PE underutilization due to load

imbalance continues to be problematic. While techniques

have been proposed to improve load balance [16], they

require offline preprocessing techniques to rearrange kernels.

Since computations are only performed on matching non-

zero values, Channel-first architectures do not suffer from

architecturally wasted computations.

We thus observe a significant trade-off between Pixel-

first and Channel-first architectures, with the former enabling

simpler index-matching logic and the latter enabling efficient

aggregation. We propose CANDLES, a microarchitecture

and dataflow co-design that combines the best of these two

approaches. Specifically, it makes the following contribu-

tions.

1) CANDLES employs a Pixel-first compression and

Channel-first dataflow to achieve efficient inner join us-

ing simple crossbars while circumventing the auxiliary

index-matching logic.

2) We propose a 2-level organization for the accumulation

buffer with a small set of low energy register files in

the first level (L1) and a 6 KB multibanked accumulator

buffer in the second level (L2).

3) We introduce a Tiled Pixel-first (TP) compression pol-

icy to promote high temporal locality in partial sum

updates and, consequently, a higher L1 hit rate.

4) We experiment with different work partitions across

PEs and identify regular partitions that achieve a high

level of load balance with no offline preprocessing.

5) We explore the design space to identify the network and

buffer hierarchy that best matches the capacity/reuse

needs of the new microarchitecture and dataflow.

We evaluate the architecture with a synthesized imple-

mentation and by simulating the execution of a diverse set

of image-based DNNs. We show that CANDLES is up to

5.6× more energy-efficient than state-of-the-art architectures

while simultaneously performing at 86-99% of the peak

throughput.

II. BACKGROUND

In this section, we describe details of our baselines: Pixel-

first architectures SCNN [34], STICKER [56] and Channel-

first architectures, SparTen [16], SNAP [58], [59].

A. Pixel-First Architectures

SCNN: SCNN [34] has 64 PEs with connections to neigh-

bors. Each PE has a 4×4 grid of multiplier units. An input

activation buffer and a weight buffer each provide four non-

zero activations at a time to perform a Cartesian product.

Accordingly, these products are routed through a 16×32

crossbar to 16 of 32 banks that form the Accumulation

Buffer. SCNN employs activation stationary dataflow on

a subset tile of input activations per PE at a time. The

accumulation buffer handles reads and writes to 16 partial

sums at a time, each destined to a separate 384-byte bank,

thus having a large footprint of engaged circuits. The accu-

mulation buffer is a dominant energy contributor, accounting

for over 80% of total accelerator energy. The crossbar

and the MAC operations are other non-trivial and roughly

equal contributors. Additionally, SCNN exhibits high PE

load imbalance stemming from its choice of dataflow and

parallelization by assigning different Planar Tiles to each PE.

Because each PE may display different activation sparsities

in their Planar Tiles, the load assigned to each PE varies

significantly. This load imbalance leads to a high level of

PE under-utilization and higher latency.

STICKER: STICKER [56] employs nine different modes

of operation to handle varying sparsities of activations and

kernels across layers. Second, due to the Pixel-first nature

of STICKER, the short-term reuse of partial sums is not

exploited. Instead, all the partial sums are directed to a

large accumulator buffer. Instead of using a multi-banked

accumulator buffer like SCNN, STICKER uses a 2-way set-

associative PE to handle irregular data. It preprocesses and

reorganizes input activations to reduce the conflict for accu-

mulator buffer resources. STICKER saves significant storage

area by avoiding the multi-banked accumulator buffer in

SCNN. However, the large accumulator buffer remains a

dominant energy contributor. Further, due to the conflict

for accumulator buffer resources, there is an 8% drop in

performance compared to SCNN.

B. Channel-First Architectures

SparTen: SparTen [16] is composed of several PEs, each

of which performs an Inner Join operation. Kernels are

partitioned and pre-assigned to PEs, while activations are

broadcast to all PEs. The inner join performed within a

PE corresponds to a single output neuron, thus avoiding a

crossbar and multiple partial sum updates within the PE.

However, A non-trivial circuit is required to identify match-

ing non-zero entries for the inner join. SparTen’s primary

benefit is that it outperforms SCNN by roughly 4× with

better load balancing. SparTen relies on an offline analysis to

sort kernels by sparsity and map them to PEs with a greedy

algorithm that balances the load per PE. Because kernels are

permuted across PEs, the output neurons undergo a shuffle

before they can be represented as compressed output feature

maps.

SNAP: SNAP [58], [59] has four cores, a 7×3 PE array

per core, and each PE has 3 MAC units. SNAP processes

activation and kernels in bundles. An associative index

matching (AIM) circuit processes bundles of activations and

kernels to find matching non-zero activation kernel pairs.

Unlike SparTen, the computations performed by a PE can

correspond to more than a single output neuron. SNAP

employs a two-level partial sum reduction (PE- and Core-

level) to process all the output neurons. The first is PE
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level (or intra-PE) channel dimension reduction. The second

level of reduction is core-level (or inter-PE) pixel-dimension

reduction by moving data over the interconnect network.

This two-level reduction technique reduces the write-back

traffic. AIM unit is the tradeoff – a large comparator size

in the AIM unit negatively impacts the area and power

but results in efficient index-matching thereby improving

the intra-PE utilization. SNAP does not, however, solve the

inter-PE underutilization overhead like SparTen.

III. CANDLES

A. Motivation

There are three main challenges in designing an efficient

sparse accelerator:

1) Efficient PSUM aggregation

2) Simple indexing logic

3) Load balancing

State-of-the-art sparse CNN accelerators fall short in

addressing one or more of these challenges. Load balancing

has been addressed by using a combination of software

and hardware techniques in Channel-first architectures. As

discussed in Section I, Pixel-first architectures facilitate

simple index-matching logic at the cost of inefficient PSUM

aggregation, with the opposite being true for Channel-first

architectures. PSUM aggregation efficiency is attributed to

the presence of temporal locality in partial sums (outlined

in the next paragraph). CANDLES uses microarchitecture-

dataflow co-design to adopt the best of both architecture

styles and address all three challenges.

Role of Temporal Locality: To explain the locality effect

in various strategies, consider the illustrative example in

Figure 2. The colored dots show the cycles when each

entry in the accumulation buffer is updated. Each block in

Figure 2: PSUM access pattern in consecutive cycles for (a)

Accumulation Buffer banks in Pixel-first architecture, (b) RF

in Channel-first architectures, and (c) CANDLES.

bank and register file (RF) represents a partial sum entry.

In Pixel-first approach, within a cycle, updates are scattered

to multiple accumulation banks (or buffers). As a result,

the partial sums updated in consecutive cycles are often

different requiring large accumulator buffers. Larger buffers

lead to higher energy per access. This partial sum update

pattern with little temporal locality is shown in Figure 2a

and is a key factor in the accumulation buffer’s dominant

energy contribution. In Channel-first approach, since we

first traverse through the channel dimension, partial sums

in consecutive cycles correspond to the same output neuron,

requiring only a small entry accumulator (a register file)

to capture this pattern (see Figure 2b). In CANDLES, we

retain the Pixel-first compression strategy. However, the

dataflow is modified to be closer to output-stationary similar

to Channel-first architectures, i.e., we traverse the activations

and weights such that partial sum updates in consecutive

cycles exhibit much higher temporal locality. This allows us

to decompose the accumulation buffer into a 2-level structure

with a high hit rate in the L1. As shown in Figure 2c, most

of the updates in the first six cycles are localized to each

bank/buffer’s few entry L1 register file.

B. High-Level Overview

We introduce a synergistic combination of four key in-

novations. First, a Pixel-first compression and Channel-first

dataflow architecture (PFCF) is implemented to achieve effi-

cient inner join without the need for complex index matching

logic. Second, a two-level accumulator buffer captures the

reuse of partial sums; and third, a novel compression algo-

rithm ensures high locality among consecutive partial sums.

Fourth, a memory partitioning scheme ensures load balance

without the need for software optimizations.

Figure 3 shows the microarchitecture of CANDLES. It

consists of a central buffer and an 8x8 grid of PEs connected

via the mesh network. The central buffer is responsible for

distributing activations of each layer to individual PEs over

the mesh network. The central buffer is also equipped with

pool and ReLU modules.

Each PE consists of 3 buffers to store activations, weights,

partial sums, a 4x4 multiplier array, a PSUM filter, a simple

crossbar structure, and an index-generation logic. The heart

of CANDLES PE is the PSUM filter that captures the reuse

of partial sums for an energy-efficient accumulation. To re-

duce write-back traffic, we also support cross-PE reduction.

In a cycle, the activation and weight buffers provide input

data structures to the 4x4 multiplier generating 16 partial

sums. The index-generation logic computes the output neu-

rons’ addresses for these partial sums in parallel with the

cartesian product. The resultant partial sums are stored in

either the PSUM filter or the accumulator buffer. Individual

PEs are populated with weights from off-chip DRAM. Once

loaded, a set of weights are fully exhausted with all the

available activations before fetching the next set (weight-
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Figure 3: CANDLES Microarchitecture.

stationary dataflow at a high level). Activations, in contrast,

are accessed to/from the central buffer.

C. Pixel-first Compression and Channel-first Dataflow

We now discuss the impact of dataflow on temporal

locality. Please note that the proposed dataflow is tailored

specifically for a microarchitecture with hierarchical accu-

mulator buffers. To reduce the common-case reuse distance,

we introduce the following dataflow in CANDLES, with

code and examples shown in Figure 4. Each PE processes

four non-zero activations corresponding to Ct channels in

consecutive cycles. Hence PE0 is allocated four non-zero

activations from the first Ct channels (green and violet),

while PE1 is allocated four non-zero activations from the

next Ct channels (orange and light-brown). In the first cycle

(Figure 4), the multiplier array (say PE0) is fed with the

first four (green) activations and the (red) first weights of

the first four kernels (again, all from one input channel).

These products correspond to four partial sums for each of

four different output channels. In the next cycle, we switch

to a different input channel and similarly fetch the first four

(purple) activations and first (light green) weights from the

first four kernels. Thus, the partial sums touched in the first

two cycles belong to the same four output channels.

Further, as we rotate through several channels in consec-

utive cycles, the generated products all pertain to a localized

region of four output channels, thus concentrating most

updates to a small set of elements in the accumulation buffer.

After rotating through all (Ct) input channels assigned to

this PE, we rotate back to (green) activations from the first

channel and move to (blue) weights from the next set of

four kernels, thus producing partial sums for a localized

region in the next four output channels. Thus, a new set of

activations and weights are fetched from their buffers every

cycle, increasing the (low) energy expended in the activation

and weight buffers.

Once all the PEs finish performing local reduction of Ct-

channels, every alternate PE transfers its partial sums to the

neighboring PE via the grid network for inter-PE reduction.

The receiving PE uses the adders to aggregate the received

partial sums with the ones in its accumulation buffer. Note

that the receiving PE does not perform multiplication oper-

ations during inter-PE reduction.

Cacheability: With the CANDLES dataflow, we observe

a significant overlap between the partial sums touched in

consecutive cycles. Therefore, even a small cache of partial

sums can yield a very high hit rate with a single entry per

bank. Figure 2c provides a specific example. In practice, the

positions of non-zero activations in each channel will not

line up perfectly, thus generating more misses or requiring

more entries per bank to yield a high hit rate. Further,

once weight sparsity is included, the partial sum updates

are more scattered, again requiring multiple entries per

bank to yield a high hit rate. We propose tiled-compression

techniques to limit the scattering of partial sums to a small

set (Section III-E).

D. The PSUM Filter

By revisiting the partial sums for the same output neurons

in consecutive cycles, the above dataflow is most similar

to an output-stationary dataflow. It therefore presents an

opportunity to partition the accumulation buffer into two

levels. The most recently accessed partial sums are moved

into a small tagged cache, the PSUM Filter, to service the

expected high temporal locality while other partial sums

with a longer reuse distance are placed in a 6 KB second-

level buffer similar to the accumulation buffer in baseline

SCNN (see Figure 3). As we show in Section V, the PSUM

Filter yields high hit rates even with 16 or fewer entries

per bank. It is implemented as a set of registers along with

accompanying tags. We layout the PSUM Filter adjacent

to the crossbar’s output ports (Figure 3). This reduces long

interconnect traversal for PSUM Filter access.

Implementation Details: The PSUM Filter for each bank

is fully associative. Each entry is associated with a 6-bit

tag that points to one of the 64 entries in the L2 bank.

The index generation logic produces a 11-bit tag for each

generated product – five of these bits identify the bank,

and six identify the entry within the bank. The tag check

is performed along with output neuron index generation.

Recall that index-generation is performed in parallel with the

longer latency Cartesian Product. Therefore, by the time the

product emerges from the crossbar, the hit/miss information

is available. The partial sum proceeds with either accessing

the Filter or the L2. Both structures are accessible in a

single cycle, so a Filter miss does not impose a performance
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Figure 4: Code and example of proposed dataflow with higher temporal locality. In each cycle for multipliers PE0, PE1,

operands in left denote values from input activations, and operands in right denote values from weights.

penalty. On a Filter miss, the Filter and L2 both perform

parallel read-modify-writes while swapping entries in the

Filter and L2. As shown later, hit rates are not sensitive to

replacement policy parameters.

E. Tiled Pixel-first Compression

We make the case that the conventional Pixel-first com-

pression approach can significantly impact the PSUM Filter

hit rate. In a typical kernel or feature map, the distribution

of zeros is non-uniform. This non-uniformity can result in

non-zero outlier values substantially impacting the PSUM

Filter hit rate when using the CANDLES dataflow.

Consider an example feature map shown in Figure 5a

using the conventional implementation of Pixel-first com-

pression (Figure 5b) in state-of-the-art architectures. The

non-zero values are stored in an array along with an index

vector (not shown in the figure) that encodes metadata.

The numbers in each cell indicate the coordinates in pixel

dimension, whereas the color indicates different channels.

Assume that we have a single dense 1×1 kernel with the

same number of channels as the example input feature

map. We walk through this sample benchmark using the

CANDLES microarchitecture and dataflow to highlight the

overheads incurred when compressed using the conventional

implementation.

Recall that CANDLES dataflow traverses across the chan-

nel dimension four non-zero values at a time. In two cycles,

four non-zero values from both the channels are processed.

We can observe that as we traverse through the channel

dimension, pixels 11 and 14 are touched in both cycles.

Note that we assume that the pixels stored in the PSUM

Figure 5: A sample feature map and kernel (a) compressed

using conventional Pixel-first compression (b), and the pro-

posed Tiled Pixel-first compression strategies (c). Grey color

denotes the non-zero values in channel-1, Yellow color

denotes the non-zero values in channel-2, and white denotes

the zero values in both the channels
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filter during the first iteration are evicted before the second

iteration begins. This is because, in a typical deployment

scenario, we traverse across 64 channels at once, and there

is a very low probability for the value to remain in the cache

due to the bimodal reuse distances we observed. During the

second iteration, pixels 31 and 43 are touched, resulting in

a total PSUM Filter hit rate of 50% to execute the feature

map fully. Note that while pixel-24 also has a matching

non-zero value in both channels, its locality is not being

captured by this compression strategy. This is the result of

the non-zero value in pixel-23 of the first channel. While

both the channels have the same number of non-zero values,

they are not evenly distributed across the pixel dimension.

Since we only take four non-zero values at a time, the

non-uniform density distribution results in the dataflow not

capturing the locality of pixel 24. This gap is exacerbated

in real applications, leading to under 40% hit rates.

We observe that grouping the pixels before compressing

can significantly reduce the non-uniformity in distribution,

thereby yielding a higher PSUM Filter hit rate (> 85%).

This is the motivation for our Tiled Pixel-first (TP) com-

pression. We tile the feature map into multiple groups before

compressing them. During compression, the non-zero values

are stored one tile at a time. Consider tiling the previously

discussed example feature map into two equal parts, with

each part having only two of the four columns. Figure 5c

shows the compressed data structure with only the non-zero

values using the TP compression strategy. Implementing the

CANDLES dataflow on this new data structure results in

a higher (62.5%) PSUM Filter hit rate. This is because the

placement of a bounding box on the pixels limits the scatter-

ing of non-zero values in the compressed data structure. We

observe that the PSUM Filter hit rate is directly proportional

to the number of tile partitions. However, an extremely small

tile size can result in intra-PE underutilization (discussed

later in Section V). Experimental analysis shows that a tile

size of 7× 4 ensures high hit rate without sacrificing much

of intra-PE utilization.

Additionally, while traversing through the channel di-

mension, the computations can be skipped entirely for the

respective channel if we encounter an empty feature map or

kernel. This is acheived by allocating a valid bit for each

channel of the feature map and kernel.

F. Load Balancing across PEs

We now discuss how work is partitioned across multiple

PEs to promote load balance. CANDLES allocates the same

number of non-zero activations (in the common case) and an

N ×N partition of weights to each PE. The load imbalance

is primarily determined by the sparsity variation in kernel

partitions across individual PEs. This is different from Pixel-

first architectures like SCNN where each PE has a duplicate

copy of the weights, and where load imbalance is determined

by the sparsity variation in activation partitions. While

Figure 6: Load-imbalance (between most and least busy

PEs) across layers of ResNet50 as N is varied (lower is

better).

both approaches may seem equivalent, unlike weights, the

sparsity of activations change dynamically across different

layers of the network for each image. This makes it hard

to determine the ideal distribution of activations across PEs

during run time. On the other hand, the sparsity of weights

does not change during inference, allowing us to perform

offline analysis.

Partition Design Space: Returning to the example in Fig-

ure 4, we see that PE0 and PE1 are both assigned just

2 (input) channels each and 8 kernels each. We refer to

this partition as “2 × 8”. The computations required for

a convolutional layer can be expressed as inputchannels×

kernels× A ×W, where A is the set of non-zero activations

in a 2D input channel and W is the set of non-zero weights

in a 2D kernel channel. That total computation must be

split across 64 PEs in our architecture. For now, we will

assume that the weights in one channel of one kernel are

not partitioned across PEs, i.e., we are not partitioning W.

In a typical convolutional layer with many channels and

kernels, adopting a “2 × 8” partition would imply that each

PE receives a small share of channels and kernels but a large

share of each input feature map channel. On the other hand,

adopting a “64 × 64” partition would imply that each PE

receives a large share of channels and kernels but a small

share of each input feature map channel.

Empirical Analysis: We are trying to estimate the partition

of work across PEs that minimizes load imbalance. To sim-

plify the control logic and avoid any offline analysis, we are

attempting a partition by drawing lines at regular intervals.

Figure 6 quantifies this load imbalance for a number of “N

× N” partitions. We see that it is clearly beneficial to use

large N; for N = 64, the load imbalance is under 10%.

This partition is consistently balanced across different layers,

unlike SCNN that sees higher load imbalance when feature

maps shrink in later layers. Multiple factors play a role in

this empirical observation. There is indeed a large variation

in sparsity across individual kernel channels. For example,
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suppose we assume that a convolutional layer has 3 × 3

× 128 × 128 weights. In that case, the number of non-

zero weights in each channel in each kernel will be a list of

16,384 integers ranging from 0-9 with high variation: 3, 7,

2, 4, 7, 0, 5, 9, ... . If each PE is assigned a small consecutive

subset of this list, the variation in load across PEs will be

higher than if we assigned a large consecutive subset of

this list. In other words, a large sample averages out the

high variation across kernel channels, favoring a large N.

Second, by using large N, each PE is assigned a smaller

fraction of the input feature maps. It can be argued that

smaller feature map samples may lead to higher variation

in non-zero activation tuples per PE – however, this effect

is alleviated because these activations are spread across N

channels, making the sample more diverse than if those

activations were from a few channels.

G. Microarchitecture Design Choices

We now discuss the impact of our new PFCF dataflow

and new work partition on the proposed microarchitecture.

Weight and Activation Buffers: CANDLES reads a new

tuple of weights and activations every cycle and exhibits

activation and weight reuse with varying reuse distances. We

therefore size the weight and activation buffers to capture

the resulting reuse pattern. Given our choice of a “64×64”

partition for most layers, a PE is assigned 4K weights per

layer at a time. Including the index metadata, we allocate

a 10 KB buffer to store these weights. These weights are

fetched from DRAM, reused completely, then evicted to

make room for the subsequent 4K weights from DRAM.

An activation is re-visited after cycling through 64 different

channels assigned to the PE; the activation buffer is therefore

large enough to store 256 activations (648 B, including index

metadata).

Accumulator Buffer: The design choice for accumulator

buffer size captures the worst-case partial sum scattering

scenario. Since we use a 7x4 (=28) tile size for activations

and 64 unique kernels in the weight buffer, the worst-

case scenario accommodates a maximum scattering of 1792

partial sums (28x64). With 24-bit PSUMs, a 5.25 KB

accumulator buffer is required, which we round up to 6 KB

because of limitations in our memory compiler.

Central Buffer: Once a set of weights is brought into the

weight buffer, it has to be consumed by all the activations

assigned to that PE. Since the activation buffer only handles

256 entries at a time, it has to be re-filled periodically. To

accommodate this reuse pattern for activations, the activation

buffer is organized as a two-level hierarchy. The 640 B first

level captures most of the reuse. The second level is a 640

KB central buffer that all the PEs share; it is responsible

for the periodic re-fill of the first level, and it captures

the longer-distance reuse pattern in the activations. The

central buffer is preceded by a pre-processing unit (PPU)

responsible for applying the activation function and creat-

ing the compressed output feature map. While aggregation

across channels take place at PE-level, aggregation across

convolution filters (ex: 3×3) is usually performed at Central-

Buffer. Since the final aggregated PSUM is only present

in the central buffer, we just place pool/ReLU units next

to it. Further, support for much larger batch sizes can be

accomplished by simply increasing the central buffer size

with no modifications to PE micro-architecture.

Simpler Crossbar: A natural consequence of our dataflow

is that the 16 partial sums generated in a cycle are split into

four parts, each corresponding to a different output channel.

The four partial sums in each part are split across 8 PSUM

filters using a small 4×8 crossbar. This is significantly

smaller than the 16×32 crossbar implemented by SCNN.

The four PSUMs entering each of the 4×8 Xbar correspond

to a multiplication between four different input pixels and

a single kernel entry. This results in PSUMs corresponding

to four unique indices. Hence no two PSUMs computed in

the same cycle will have the same output index.

Activation Metadata: Since the feature maps of initial lay-

ers are large, the metadata overhead can be non-trivial with

a naive approach that stores w and h indices. For activations,

we adopt a slightly different indexing mechanism than prior

works. We use a hybrid RLE approach where for every

four non-zero activations, we use a combination of absolute

indices and RLE style zero indices. The index of the first

activation stores its w and h indices, while the remaining

three store the number of zero occurrences since the last

non-zero activation. Since each tile is only 7x4, a 5-bit value

is used to store the absolute indices for one of every four

non-zero activations in the tile. The rest of the non-zero

activations in the tile use a 4-bit zero index similar to RLE.

Since PEs process one tile at a time, we have to store a 2-

byte tile index in the index-generation logic to account for

the tile offset.

Kernel Metadata: Since typical kernels are usually small

(1 × 1 or 3 × 3), we store the absolute indices of all

the non-zero weights. 4-bit metadata for each non-zero

weight is sufficient to store the absolute indices for all our

benchmarks.

Wasted Computations: When performing outer-product

computations, some multiplications involving feature map

boundary elements do not contribute to output neurons

and are therefore wasted. This reduces effective throughput

and wastes energy for all Pixel-first architectures, including

CANDLES. As we show later, this impact is relatively

minor, especially given recent trends towards small kernel

dimensions.

IV. METHODOLOGY

We compare the CANDLES architecture against four

state-of-the-art sparse neural network accelerators: SCNN,

STICKER, SparTen, and SNAP. We primarily report iso-

resource (same number of MAC units) comparisons.

883

Authorized licensed use limited to: The University of Utah. Downloaded on July 10,2023 at 13:16:50 UTC from IEEE Xplore.  Restrictions apply. 



Energy and area modeling: To get accurate estimates of

energy and area, we modeled CANDLES and other base-

line Pixel-first architectures in Verilog, implemented them

using industry-standard synthesis, place-and-route tools in a

65 nm CMOS process. SRAM memories with the targeted

dimensions were compiled using a vendor-provided memory

compiler. The energy dissipation numbers obtained from

the place-and-route tool’s power report are combined with

memory access energy (read and write) to get the average

power dissipation. To accurately estimate the multi-banked

accumulator buffers’ overheads in both CANDLES and

SCNN, we first modeled a single accumulator bank using

the memory compiler. We later placed 32 instances of the

bank in a grid structure during layout, with each column

having the same number of banks required to match the

crossbar’s height. We placed 64 instances of the modeled PE

next to the central buffer during layout. To model the mesh

interconnect, we have estimated the wire length required to

move data across PEs from the obtained layout. We used a

conservative estimate of 0.1 fF/micrometer wire capacitance

from the technology library and estimated the wire energy

and delay based on the wire length. We did not model the

synthesized implementation of Channel-first architectures as

the index-matching logic complexities are hard to model in

enough detail to get meaningful energy and area numbers.

Instead, we have directly used the power and area numbers

reported in those respective works. Note that each baseline

architecture uses different datawidths for computation and

storage. To have a fair comparison against other accelerators,

we have modeled three CANDLES variations based on the

datawidth – an 8-bit MAC with 24-bit partial sums, a 16-bit

MAC with 24-bit partial sums, and an 8-bit MAC with 8-bit

partial sums.

Simulator modeling: We built a combination of a cycle-

accurate simulator and analytical simulator to accurately

estimate performance. For SCNN, we explored a range of

feature map partitioning schemes. We observed that while

SCNN’s proposed partitioning scheme is the most energy-

efficient version, it is not ideal for performance. For that

reason, we have considered two variations of SCNN: SCNN-

E and SCNN-EP as baselines. SCNN-E is the most energy-

efficient variation, while SCNN-EP obtains the best energy-

delay product. STICKER uses different compression formats

depending on the level of sparsity. To ensure an apples-to-

apples comparison and isolate the impact of CANDLES,

we assume that all layers are compressed using CSR for

STICKER. For all the architectures, the simulator accurately

captures both intra-PE and inter-PE underutilization. We

have configured CANDLES to handle two-sided sparsity

and scenarios where only one of the two data structures

(activations or weights) is sparse.

Benchmarks: We executed four CNN workloads:

VGG16 [44], ResNet-50 [19] (ResNet50-A), Inception-

v1 [47], and MobileNet-v1 [23]. We use VGG-16 as a

proxy for large input data. While experiments on the above

four workloads were carried out with dense kernels, we also

consider a fifth workload with sparse kernels: a publicly

available pruned checkpoint of ResNet-50 (ResNet50-AW)

trained on ImageNet [22]. Since we do not have more

pruned networks at our disposal, we have synthetically

pruned the top 50% weights closer to zero of MobileNet

(MobileNet-v1-AW*) for our evaluation of two-sided

sparsity. Note that we only pruned weights extremely close

to zero (−0.03 ≤ 0 ≤ 0.03). Note that prior works [39],

[40] have used iterative pruning and training to achieve a

range of sparsity and accuracy levels.

We execute the above workloads on 2000 images from the

Imagenet [22] dataset, feeding the dynamically generated

activations to simulated models of SCNN-E, SCNN-EP,

STICKER, SNAP, SparTen, and CANDLES. These sample

images were collected from diverse image classes.

V. RESULTS

A. Energy

We first quantify the energy per inference. We use an

LRU replacement policy, a 16 entry PSUM Filter per bank,

and a tile size of 7×4 for most of our experiments. Table I

summarizes the energy consumed by individual components

in all three variants of CANDLES.

16/24-b 8/24-b Energy 8/8-b
Component Energy Energy Energy

per access per access per access

Weight buffer 24.5 17.1 17.1

Activation buffer 19.6 13.1 13.1

MAC 1.94 0.24 0.24

Crossbar 8.09 1.62 1.62

Accumulator buffer 8.7 8.7 5.85
energy / bank access

PSUM Filter 1 1 0.33

Tag lookup 0.114 0.114 0.114

Central Buffer 41.6 41.6 41.6
(80-bit datawidth)

PPU 0.285 0.285 0.285
(80-bit datawidth)

Interconnect- 0.0216 0.0216 0.0216
Energy/nanometer/bit

Table I: Energy per access for each component in all 3

variations of CANDLES in pJ at 65 nm CMOS technology.

Importance of Microarchitecture-Dataflow Codesign

To isolate the impact of each contribution and highlight

the importance of microarchitecture-dataflow codesign, we

consider several variants of CANDLES with one or more

primitives – dataflow, PSUM Filter, and TP-Compression.

Figure 7a plots the impact of each variation on energy

consumption normalized to SparTen’s energy.

The first variant only considers CANDLES with the

proposed Pixel-first compression and Channel-first (PFCF)

dataflow. CANDLES is up to 57% more energy-consuming

than SparTen. This is because of two reasons. First, as
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Figure 8: Energy consumption for CANDLES and baseline SCNN-E, SCNN-EP, STICKER, SparTen, and SNAP.

Figure 7: Energy breakdown in CANDLES.

discussed previously, the PSUM reuse is under 40% for

most layers without the TP-compression. Second, since there

is no PSUM Filter to capture the available reuse, all the

partial sums are redirected to the large accumulator buffer

resulting in high energy per access. However, this variant is

1.2× more energy-efficient than SCNN-E, and 1.45× more

energy-efficient than SCNN-EP when executing the bench-

marks. This is because of better crossbar structures, higher

MAC utilization, and efficient dataflow of CANDLES.

The second variant considers CANDLES with the PFCF

dataflow and the PSUM Filter but without TP-compression.

This limits the reuse captured by the PSUM Filter as the

initial layers suffer with lower hit-rates (see Figure 10b).

Variant-2 is between 1.3 – 2.6× more energy-efficient than

variant-1.

The third variant considers CANDLES with the PFCF

dataflow and TP-compression but without the PSUM Filter.

While the PSUM reuse is increased to >85% with TP-

compression, the energy consumed is similar to variant-1

because of the lack of a PSUM filter to capture this reuse.

The final variant considers all three primitives. We see

that CANDLES is 2.6× more energy-efficient than SparTen.

This is because the PSUM Filter now captures all the partial

sum reuse enabled by TP-compression. As the PSUM-Filter

energy is 8.7× smaller than accessing the accumulation

buffer, high reuse leads to reduced energy consumption.

CANDLES Energy Analysis

Figure 7b shows a breakdown of energy dissipation for

each component in the proposed architecture for Resnet50

benchmark with two-sided sparsity. The rest of the bench-

marks also observe a similar breakdown of energy. Because

of the new dataflow, CANDLES dissipates more energy

in its activation buffer despite its smaller size. However,

this energy consumption increase is offset by the much

lower energy in the accumulation buffer and crossbar. The

more compact crossbar in CANDLES consumes nearly 3×

less energy compared to the baseline SCNN crossbar. Both

interconnect and PPU consume less than 1% of the total

energy (NoC in Figure 7b). This is because, except to

execute depthwise convolutions, the only purpose of PPU is

to compress the output neurons before processing the next

layer. Each neuron is only read once. Since the number of

computations is orders of magnitude higher than the number

of activations, the PPU’s share of energy is low. The same

argument is applied for interconnect to the central buffer;

it is only used for a single exchange of data between the

PE and central buffer, whereas the number of PE operations

initiated by that exchange are orders of magnitude higher.

Wasted Computations: CANDLES due to its Pixel-first

compression incurs architecturally wasted computations like

other Pixel first architectures. However, these wasted com-

putations contribute to less than 6.5% of the total energy

consumed by CANDLES across all the benchmarks. Modern

benchmarks with kernels of dimension 1x1 incur no wasted

computations.

Figure 8 shows the energy consumed by CANDLES

and baseline architectures (SCNN-E, SCNN-EP, STICKER,

SparTen, and SNAP) when executing the benchmark ap-

plications. We denote the datawidth for MAC and partial
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sums next to the respective architecture to understand the

energy benefits of CANDLES better. For example, an 8/24-

bit denotes an architecture with 8-bit MAC units and 24-bit

partial sums. In SCNN, every new partial sum generated

should access the crossbar and the accumulator buffer. This

frequent access to these large structures is a significant

contributor to SCNN’s energy. SCNN-EP ensures better

parallelism by choosing the appropriate tile size to distribute

the load. This results in increased writes of data structures

and hence more energy compared to SCNN-E. STICKER

benefits from the reduced area by replacing the crossbar with

a set-associative PE and using smaller accumulator buffers.

However, this does not aid with saving significant energy

compared to SCNN. The partial sums are still written to an

accumulator buffer with a similar size as a single bank in

SCNN’s accumulator buffer. Additionally, similar to SCNN,

the partial sums are scattered, and no reuse is captured

locally next to the MAC units. All these factors contribute

to the energy in STICKER.

SparTen, on the other hand, uses Channel-first dataflow

and hence completely captures the reuse of partial sums

into a small register near the MAC units. Additionally, it

replaces the large crossbar in SCNN with a simple permuter,

saving energy. However, this benefit is offset by the use of

complex index-matching logic. In SparTen, nearly 46% of

on-chip power is consumed by the priority encoder and the

prefix-sum circuits. SNAP, similar to SparTen, is a Channel-

first architecture with a high share of power and area

consumed by the index-matching logic. Additionally, SNAP

does not capture the reuse of partial sums as efficiently as

SparTen. This is because the intra-PE utilization efficiency

depends on the comparator’s size in the index-matching

logic (associative index matching unit). Increasing the size

of the comparator increases the area and power quadratically,

which is not desirable. Alternatively, not capturing the reuse

of partial sums locally will result in accessing the larger

buffer in the next level of hierarchy. All these factors

contribute to high energy consumption in SNAP. Overall,

CANDLES is up to 3.3×, 4×, 3.2×, 2.5×, and 5.6×

more energy-efficient than SCNN-E, SCNN-EP, STICKER,

SparTen, and SNAP architectures. Note that we assumed

similar datawidths for CANDLES as its respective baseline

for this comparison.

B. Performance

We next compare the performance for CANDLES and

the baselines. Figure 9 shows the throughput (Tera Oper-

ations per Second) of CANDLES for all the benchmark

applications, relative to SCNN-E, SCNN-EP, STICKER,

SparTen, and SNAP. We consider two variants of CAN-

DLES (CANDLES-A and CANDLES-U) for this analy-

sis. CANDLES-A shows the absolute TOPS for all the

computations performed by CANDLES, which includes the

architecturally wasted computations, whereas CANDLES-

Figure 9: Performance comparison. Performance is ex-

pressed as TOPS (higher is better).

U only considers the useful computations for measuring

TOPS. The share of architecturally wasted computations is

between 0-6.5% of the total computations. Both variants of

CANDLES are over 4× faster than SCNN-EP on benchmark

applications with only sparse activations and over 2.5× and

2× faster over ResNet-AW and MobileNet-AW*, which

have both sparse activations and weights. A vital reason

for this gap is the presence of intra-PE and inter-PE under-

utilization in SCNN. SCNN-E is an additional 8% slower

than SCNN-EP. On the other hand, CANDLES achieves a

high load balance due to its efficient work partitioning and

buffer size choices. STICKER uses a 2-way set-associative

PE for partial sum accumulation. When there’s a conflict, it

takes two cycles to update the partial sums. While STICKER

proposes shuffling of data to avoid conflicts, it does not

fully solve the problem. Our STICKER analysis showed that

the conflict rate can be between 1-15% across the layers of

the benchmark applications. Overall, STICKER is up to 5×

slower than CANDLES.

SNAP’s channel-first dataflow ensures that partial sums

are reduced before they are written back to the output

activation buffer. This partial sum reduction results in a

significant drop in congested writeback traffic and contention

at the output activation buffers, thus improving performance.

While SNAP eliminates a large fraction of intra-PE under-

utilization, it does not address the load imbalance across PEs

due to the implicit barriers imposed by the broadcast bus.

This inter-PE underutilization is resolved by SparTen using

greedy-balancing techniques and hardware co-optimizations.

In contrast, CANDLES is not limited by the implicit barriers

and achieves load balance by using sufficiently large weight

buffers, as discussed before. CANDLES is up to 68% and

15% faster than SNAP and SparTen. However, when sparse

activations with dense kernels are considered, SparTen can

perform up to 1.1× faster than CANDLES. This is because

SparTen broadcasts the activations allowing all the PEs to

finish computations at the same time. Hence for sparse

activations alone, SparTen’s performance is very close to

an ideal peak throughput. However, our analysis shows

that CANDLES consumes 10% less area than SparTen.
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Figure 10: For each CONV layer of VGG-16, (a) plots the variation of PSUM Filter Hit-rate w.r.t. PSUM Filter size, whereas

(b),(c) plots the variation of PSUM Filter Hit-rate and intra-PE utilization w.r.t. Tile size. (c) also plots sparsity.

CANDLES would therefore out-perform SparTen in an iso-

area comparison (note that most reported results are for an

iso-MAC comparison). Overall, CANDLES runs at 86-99%

of peak throughput across all the benchmark applications.

The performance improvement observed is the result of

both microarchitecture and tiling optimizations. Inter-PE

utilization is improved due to better load balancing (which

depends on weight buffer size), and intra-PE utilization or

compute utilization is improved by efficient tiling (which

depends on tile size). A larger weight buffer results in a large

sample of weights per PE which averages out the high vari-

ation across kernels promoting inter-PE load balance (Sec-

tion III-F). An ideal tile size ensures high MAC utilization

in each PE promoting intra-PE load balance. Additionally,

by using a grid network, CANDLES avoids implicit barriers

imposed by the broadcast network in baselines.

We have also explored the impact of tile size on baseline

SCNN. In Figure 9, SCNN-E represents the performance of

baseline SCNN, and SCNN-EP represents SCNN with tile

size obtained by our proposed approach. We observe that

the performance of SCNN is increased by 2.5−7× over the

baseline SCNN. This is due to the increased PE-utilization

from better tiling. While tiling can help improve intra-

PE utilization in baselines, the choice of microarchitecture

limits them from getting better load balance across the PEs.

CANDLES, due to its microarchitecture and tiling, is at least

2× faster than SCNN-EP.

C. PSUM-Filter Sensitivity Analysis

We next examine how PSUM Filter hit rates vary as a

function of various parameters.

Replacement Policy: We explore many replacement poli-

cies, including LRU, Second chance, LRU Insertion policy

(LIP), and Bimodal insertion policy (BIP with ε ranging

from 1/2 to 1/64) [36]. We observe that the replacement

policy negligibly impacts the hit rate because of the bimodal

reuse distance nature of partial sums. The very short reuse

distances are always captured, and the very long reuse

distances are not captured by the PSUM Filter, regardless

of replacement policy.

PSUM Filter Size: Figure 10(a) plots the average hit rate

across our set of images while executing each CONV layer

of VGG16 with various PSUM filter sizes. It shows that

the hit rate drops as we transition to deeper layers. The

improvement in hit rate saturates beyond 16 entries per bank.

Tile size for TP-Compression: Figure 10(b) plots the

variation of PSUM Filter hit rate with varying tile sizes.

A tile size of Ix ∗ Iy represents CANDLES without the

tiled Pixel-first compression. There is an inverse correlation

between the tile size of the TP-compression strategy and

the PSUM Filter hit rate. Small tiles limit the scattering

of partial sums to a small range, thereby ensuring better

locality of partial sums. In addition, grouping the pixels

before compression can reduce the non-uniformity in the

distribution of output neurons further improving the locality

of partial sums.

However, reducing the size of the tile leads to fewer

non-zero values present in each tile. Reducing the tile size

beyond a threshold will result in not having four non-

zero activations to feed the cartesian product each cycle

catalyzing intra-PE underutilization. Figure 10(c) shows the

impact on intra-PE utilization with the variation in tile size.

We observe that a 7×4 tile ensures higher PSUM Filter hit

rates (>85%) while simultaneously having minimal impact

on intra-PE utilization.

Space and Complexity of Loop Tiling: Choosing the

ideal tile size is straightforward. While there is an inverse

correlation between tile size and PSUM Filter hit rate,

extremely small tile sizes lead to intra-PE underutilization.

We also observed that the PSUM filter hit rate in each

layer has a direct correlation with the number of zeros in

activations of that layer. From this, we deduced that tile

size has a inverse correlation to the number of zeros in

activations. Based on this observation, we define tile size as

the ratio of the minimum number of non-zero values required

for maximum intra-PE utilization and the fraction of non-

zero values in the layer. Since we read four activations each

cycle, we need at least four non-zero values per tile to ensure
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Figure 11: (a) Number of non-zero computations normalized to the total number of computations, (b) Mbs of data moved

from buffers directly to compute unit (8/24-bit), (c) Mbs of data moved from buffers directly to compute unit (4/8-bit). V:

VGG-16, I: Inception, R-A: ResNet-A, M-PW: MobileNet-v1, R-AW: ResNet-AW, M-PW-AW: MobileNet-v1-AW

maximum intra-PE utilization. We observed that more than

99% of the images have a minimum of 14% non-zero values

in each layer. Since we need at least four non-zero values

per tile, the minimum tile size is 4/0.14 = 28. Hence we

choose a tile size of 7x4.

Note that a future design can have dynamic tile sizes

for each layer depending on the sparsity distribution. For

example, a layer with 50% non-zero values can probably

get away with 4/0.5 = 8 entries per tile.

D. Broader Context Discussion

Dense & Quantized Dense Accelerators:

While the metadata is a non-trivial overhead, the benefits

from CANDLES far outweigh the cost of additional meta-

data. By only accessing non-zero operands and perform-

ing non-zero computations, CANDLES greatly reduces the

amount of compute and data movement overhead compared

to a dense accelerator. As shown in Figure 11-a, CANDLES

performs as little as 26% of the total dense computations

with just sparse activations and up to 20% of the total dense

computations with both sparse activations and weights. This

has two major benefits. First, skipping the cycles of pro-

cessing MACs that have zero activations or weights helps

improve throughput significantly. Second, in addition to

saving the energy consumed in performing MAC, the large

share of energy in moving data across the buffer is also

significantly reduced.

Figure 11-b,c shows the MBs of data transferred from

buffers directly to the MACs to execute a benchmark in

both dense and sparse situations. For CANDLES, we also

consider the additional index metadata in data movement.

At 8/24-bit precision, CANDLES performs up to 4x less

data movement. As the metadata size remains unchanged,

the MBs of data movement for sparse models increases with

reduced precision relative to a dense model. However, this is

still less than using a dense model due to the reduction in the

number of MACs. CANDLES performs up to 3x less data

movement compared to a dense model at 4-bit quantized

precision. While a 2-bit quantized dense architecture might

further reduce this gap, a dense architecture will likely not

match the sparse accelerator on other relevant metrics like

throughput and accuracy. While the design space of dense,

quantized, and sparse platforms continues to evolve, a sparse

platform is proven enough to form the basis for commercial

designs like Cerebras, and this work helps advance the state-

of-the-art in sparse acceleration.

VI. RELATED WORK

A. Similarities with the Baselines

The CANDLES PE microarchitecture is similar to SCNN

given the use of cartesian products, similar total SRAM

buffer size, and crossbars to route partial sums. The intra-

and inter-PE reduction employed in CANDLES also shares

similarities with the two-level PE reduction in SNAP, a

Channel-first architecture. CANDLES exceeds the baselines

with key changes, including the dataflow, the crossbar, buffer

hierarchy and sizes, and work partitions. In addition, other

microarchitecture components like the grid network, index-

generation logic befitting our metadata format, and PSUM

filter are introduced to further improve efficiency.

B. Other Related Work

OuterSPACE [33] is a Pixel-first architecture that uses

an outer-product-based matrix multiplication technique with

decoupled multiply and merge phases to eliminate redun-

dant memory accesses to non-zero operands. Since PSUMs

are not reduced and OuterSPACE uses comparatively large

shared caches, the energy consumed is significantly higher.

While OuterSPACE claims performance improvement over

inner-product-based matrix multiplication due to channel

index mismatch (if-condition in Algorithm 2), modern

Channel-first architectures easily avoid this by implementing

additional index-matching logic. Eyeriss-v2’s row-stationary

dataflow is another example of a Pixel-first architecture.

While row-stationary dataflow performs compression dif-

ferently from other Pixel-first architectures, Eyeriss-v2 im-

plements an outer product strategy, and similar to SCNN,

each activation is reused sequentially with multiple weights

resulting in scattering of partial sums to a large 32 entry

scratchpad. This results in significant energy consumption

to access the partial sums like other Pixel-first architectures.

888

Authorized licensed use limited to: The University of Utah. Downloaded on July 10,2023 at 13:16:50 UTC from IEEE Xplore.  Restrictions apply. 



CANDLES efficiently reduces the partial sums before writ-

ing back, thereby reducing access to large buffers.

ExTensor [21] is another Channel-first architecture that

finds the intersection of coordinates of non-zero elements.

ExTensor uses parallel comparators to find matching inter-

sections. Like other Channel-first architectures, this auxiliary

index matching circuit has a non-trivial impact on on-chip

power and area. CANDLES avoids this comparator overhead

by using pixel-first compression and channel-first dataflow.

That being said, the hierarchical elimination of ineffectuals

proposed in ExTensor is orthogonal to our contributions and

can further improve the benefits offered by CANDLES.

Stitch-X [29] is another Channel-first architecture similar

to SNAP that employs a novel dataflow that leverages both

spatial and temporal reduction to balance energy efficiency

and dataflow control complexity. Bit-Tactical [28] aims to

reduce bandwidth and energy costs of memory accesses in

sparse DNN accelerators by utilizing a lightweight sparse in-

terconnect, and a novel static scheduling scheme for weights.

Cambricon-S [61], PermDNN [14], and Packed Systolic [27]

aim to efficiently address the irregularity of sparse neural

networks. Scalpel [55] proposes coarse-grained pruning to

maintain regularity. Other designs like UCNN [20] exploit

sparsity and weight repetition by reusing dot products.

Laconic [42], Bit-Pragmatic [3], and Bit-Tactical [28] target

bit sparsity in DNN networks by leveraging Booth encoding

to elide zeroes. Eyeriss v2 [9] uses a specialized NoC to

handle sparsity, but is optimized for small mobile models.

Meanwhile, Sparse ReRAM Engine [53] and SNrram [51]

explore ReRAM-based DNN accelerators. While in-memory

accelerators [6], [13], [38], [45] provide large benefits with

analog logic, exploiting sparsity on them is difficult. Some

efforts [62], [37] investigate techniques to accelerate sparse

neural networks on GPUs.

VII. CONCLUSIONS

State-of-the-art sparse accelerators exhibit inherent trade-

offs – Pixel-first architectures require onerous neuron up-

dates while Channel-first architectures require complex in-

dexing logic. We show that this trade-off can be recon-

ciled by adoping a Pixel-first compression and Channel-first

dataflow. This approach leads to simple indexing and high

temporal locality in neuron updates, which can further be ex-

ploited with a 2-level accumulation buffer. We also introduce

a work partition strategy that matches the performance of the

fastest sparse accelerator (SparTen) without requiring offline

analysis. CANDLES achieves low energy for indexing and

neuron updates, thus consuming 2.5× to 5.6× lower energy

than four state-of-the-art baselines.
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