2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA) | 978-1-6654-2027-3/22/$31.00 ©2022 IEEE | DOI: 10.1109/HPCA53966.2022.00069

2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

CANDLES: Channel-Aware Novel Dataflow-Microarchitecture Co-Design for Low
Energy Sparse Neural Network Acceleration

Sumanth Gudaparthi Sarabjeet Singh Surya Narayanan Rajeev Balasubramonian Visvesh Sathe
University of Utah University of Utah University of Utah University of Utah University of Washington
Utah, USA Utah, USA Utah, USA Utah, USA Seattle, Washington, USA

sgudapar@cs.utah.edu sarab@cs.utah.edu surya@cs.utah.edu rajeev@cs.utah.edu sathe @uw.edu

Abstract—Several deep neural network (DNN) accelerators
have been designed to exploit the sparsity exhibited by DNN
activations and weights. State-of-the-art sparse accelerators can
be described as either Pixel-first or Channel-first accelerators, (a) Outer Product
each with its unique dataflow and compression format aiding

its dataflow. The former expends significant energy updating s IFzMip . . ijjl . 2 OZ Mf P .
neuron partial sums, while the latter expends significant energy
in handling the index metadata. This work introduces a novel ! ! !
microarchitecture and dataflow that reconciles these trade- } 2 ‘:’c\ 7 - 2 \
offs by adopting a Pixel-first compression and Channel-first 3 3 3
dataflow. The proposed microarchitecture has a simpler index- WxH 4 4 4 WxH
generation logic combined with an accumulator buffer hierar- — —x —x
chy and crossbar with low wiring overhead. The compression) .
format and dataflow promote high temporal locality in neuron (i) Dense (ii) Compressed
updates, further lowering energy. Finally, we introduce work D% DE’
partitions across processing elements that naturally lead to 21 21
load balance without offline analysis. Compared to four state-
of-the-art baselines, the proposed architecture, CANDLES, o 13 oo
significantly outperforms three and matches the performance i i
of the fourth. In terms of energy, CANDLES is between 2.5x |:|:|:|:| |:|:|:|
and 5.6 x more energy-efficient than these four baselines. 21 22 23 24 21 23 24

Keywords-Convolutional neural networks, Sparse tensors, (b) Inner Product
Microarchitecture-Dataflow co-design, Hardware Accelerators

IF Map Kernel OF Map
I. INTRODUCTION e) — 1 L.)

Several deep neural network (DNN) accelerators [39], 2 o ? 2
[25]. [3]. [2]. [46], [34]. [10], [18]. [11], [9], [49]. [38]. S s = ;
[12], [15], [31], [41] have been introduced in recent years, WxH 4 4 4\WxH
including several commercial implementations [24], [48], —c - x —x
[17], [8], [32], [52], [43], [5], [1]. One of the most promising (i) Dense (ii) Compressed
opportunities to improve the energy efficiency of these accel- 11 13 14 1 13 14 mmmmmesessooee
erators is the high level of sparsity exhibited by weights [40] o tlafofe]1]:
and activations [4]. However, exploiting sparsity in both X X X X &8 & & &
activations and weights, referred to as two-sided sparse [16], LT] Hafafa]o]i
has resulted in architectures that are complex and/or under- 11 21 31 M 1 21 31 L bitmap |
utilized.] 1]
. A §e.c0nd key oppprtqnlty is to identify a loop order- D . I:I . I:I . D . D I:I . I:I - I:I
ing, tiling, and partitioning (referred to as dataflow) that N

x11 12x21 13x31 14x41 11 11x11 13x31 11

maximizes data reuse and minimizes data movement. While

some prior works [54], [30], [7] have developed compiler ~ Figure 1: Examples of (a) outer-product in Pixel-first archi-
methodologies to discover the ideal ordering, tiling, parti- fectures and (b) inner-product in Channel-first architectures.
tioning for generic dense accelerators and sparse accelerators Strips: Partial sums; Solids: Fully accumulated neuron
with only sparse weights, similar tools for two-sided sparse

accelerators do not yet exist. Not only are sparse accelerators

978-1-6654-2027-3/22/$31.00 ©2022 IEEE 876
DOI 10.1109/HPCA53966.2022.00069
Authorized licensed use limited to: The University of Utah. Downloaded on July 10,2023 at 13:16:50 UTC from IEEE Xplore. Restrictions apply.

still evolving, they exhibit non-uniform sparsity behavior and
load imbalance [16] at runtime that varies by layer and by
input.

In this work, we design a new complexity-effective mi-
croarchitecture that captures the best elements of prior sparse
accelerators, and define a dataflow that leads to high reuse
and high utilization. We show that such microarchitecture-
dataflow co-design can unearth new efficiency opportunities.

The opportunities stemming from weight and activation
sparsity have spawned several DNN accelerators [4], [39],
[26], [601, [34], [16], [57], [50], [58], [28], [35], [61], [14],
[27], [20], [42], [3], [9], [53], [51]. These architectures im-
prove power, throughput, and area by compressing the input
activations and weights, followed by computation on this
compressed data using different dataflow strategies. Depend-
ing on the compression format and dataflow choice, two-
sided sparse accelerators can be split into two categories:
Pixel-first architectures and Channel-first architectures.

Algorithm 1: Pixel-first Pseudo code

forc=0to C —1do
for k =0to K — 1 do
for a = 0 to (W * H)non_zero do
out[a][k] += in[a][c] * wt[c][k]

Pixel-first architectures employ an outer-product strategy
for computations (see Figure 1a'). It compresses the sparse
data such that the non-zero activations and kernels are
ordered in pixel dimension? for each channel (observe kernel
representation in (ii) of Figure la). Algorithm 1 shows a
simplified pseudo code used by Pixel-first architectures. A
vector of non-zero activations and a vector of non-zero
weights corresponding to a channel are read to perform a
cartesian product. Here, any activation can be multiplied
with any weight resulting in partial sums corresponding
to several output neurons. The addresses of partial sums
are obtained simply by replacing the row index with the
row index of activations and column index with the column
index of the kernel. Hence, Pixel-first architectures lead to
high activation/kernel reuse and simple indexing schemes.
However, such dataflows result in little to no partial sum
reduction/reuse before writeback leading to high energy
consumption. Besides, a cartesian product results in partial
sums destined to unrelated output neurons requiring the need
for large accumulator buffers and routing logic. For example,
SCNN [34] and STICKER [56] are Pixel-first architectures
and dissipate over 80% of total on-chip energy in accessing
the crossbars and/or the multi-banked accumulator buffers.
Most of this high energy is because of frequent traversal
over the long wires connecting the crossbar to each bank and

IPixels in a 2D-fmap are linearized and shown as one of the dimensions
(similar to a GeMM representation).
ZPixel dimension: all dimensions orthogonal to the channel dimension.

877

accessing those respective banks. Also, intra-PE and inter-
PE underutilization are prevalent in Pixel-first architectures.
Intra-PE underutilization is caused at feature map and kernel
boundaries when the weight or activation vector are not fully
populated. Inter-PE underutilization is caused by load im-
balance stemming from variance in sparsity levels and work
assigned to each PE. In addition, the outer-product model
artificially induces nonexistent multiplications at feature
map boundaries that cannot be evaded even with padding.
These architecturally wasted computations can contribute
upto 6.5% of the total computations for two-sided sparse
models.

Algorithm 2: Channel-first Pseudo code

for k =0to K —1do
fora =0to (W=« H) do
forc=0to C —1do

/+ Check for channel-index matching
*/

if (inlallc] # 0) A (wt[c][k] # 0) then
out[a][k] += in[a][c] * wt[c][Kk]

Channel-first architectures employ an inner-product strat-
egy for computations (see Figure 1b). It compresses the
sparse data structure such that the non-zero activations and
weights are ordered in channel dimension for each pixel
(see activations (orange) and weights (green) in (ii) of Fig-
ure 1b). Algorithm 2 shows a simplified pseudo code used by
Channel-first architectures. A vector of non-zero activations
and a vector of non-zero kernels corresponding to a pixel
are read to perform an inner product operation. Examples of
this approach include SparTen [16], SNAP [58], [59], and
StitchX [29]. Within each processing element (PE), Channel-
first architectures employ output-stationary dataflow to aid
the inner product operation. Hence, a significant number
of partial sums corresponding to an output neuron can be
reduced locally before writing it back to the accumulator
buffer, thus avoiding the overheads of crossbars and multi-
banked accumulator buffers prevalent in Pixel-first architec-
tures. Since the data structures are compressed in channel
dimension, an auxiliary condition is required to find match-
ing activation and kernel index pairs corresponding to the
same channel (if-condition in Algorithm 2). Failure of the if-
condition adds extra cycles to the execution time leading to
intra-PE underutilization. To prevent these wasted cycles and
improve intra-PE utilization, typical Channel-first architec-
tures use auxiliary index-matching logic to prefetch only the
operands that satisfy the if-condition.This if-condition makes
Channel-first index generation/matching logic more complex
than for Pixel-first architectures. For example, the index-
matching logic in SparTen [16] consumes nearly 46% of on-
chip power and 63% of on-chip area. Hence, while Channel-
first architectures improve buffer energy consumption and

Authorized licensed use limited to: The University of Utah. Downloaded on July 10,2023 at 13:16:50 UTC from IEEE Xplore. Restrictions apply.

throughput over Pixel-first architectures, the channel index
matching logic’s power and area introduce a non-trivial
overhead. Additionally, inter-PE underutilization due to load
imbalance continues to be problematic. While techniques
have been proposed to improve load balance [16], they
require offline preprocessing techniques to rearrange kernels.
Since computations are only performed on matching non-
zero values, Channel-first architectures do not suffer from
architecturally wasted computations.

We thus observe a significant trade-off between Pixel-
first and Channel-first architectures, with the former enabling
simpler index-matching logic and the latter enabling efficient
aggregation. We propose CANDLES, a microarchitecture
and dataflow co-design that combines the best of these two
approaches. Specifically, it makes the following contribu-
tions.

1) CANDLES employs a Pixel-first compression and

Channel-first dataflow to achieve efficient inner join us-

ing simple crossbars while circumventing the auxiliary

index-matching logic.

We propose a 2-level organization for the accumulation

buffer with a small set of low energy register files in

the first level (L1) and a 6 KB multibanked accumulator
buffer in the second level (L2).

We introduce a Tiled Pixel-first (TP) compression pol-

icy to promote high temporal locality in partial sum

updates and, consequently, a higher L1 hit rate.

4) We experiment with different work partitions across
PEs and identify regular partitions that achieve a high
level of load balance with no offline preprocessing.

5) We explore the design space to identify the network and
buffer hierarchy that best matches the capacity/reuse
needs of the new microarchitecture and dataflow.

2)

3)

We evaluate the architecture with a synthesized imple-
mentation and by simulating the execution of a diverse set
of image-based DNNs. We show that CANDLES is up to
5.6 x more energy-efficient than state-of-the-art architectures
while simultaneously performing at 86-99% of the peak
throughput.

II. BACKGROUND

In this section, we describe details of our baselines: Pixel-
first architectures SCNN [34], STICKER [56] and Channel-
first architectures, SparTen [16], SNAP [58], [59].

A. Pixel-First Architectures

SCNN: SCNN [34] has 64 PEs with connections to neigh-
bors. Each PE has a 4x4 grid of multiplier units. An input
activation buffer and a weight buffer each provide four non-
zero activations at a time to perform a Cartesian product.
Accordingly, these products are routed through a 16x32
crossbar to 16 of 32 banks that form the Accumulation
Buffer. SCNN employs activation stationary dataflow on
a subset tile of input activations per PE at a time. The

878

accumulation buffer handles reads and writes to 16 partial
sums at a time, each destined to a separate 384-byte bank,
thus having a large footprint of engaged circuits. The accu-
mulation buffer is a dominant energy contributor, accounting
for over 80% of total accelerator energy. The crossbar
and the MAC operations are other non-trivial and roughly
equal contributors. Additionally, SCNN exhibits high PE
load imbalance stemming from its choice of dataflow and
parallelization by assigning different Planar Tiles to each PE.
Because each PE may display different activation sparsities
in their Planar Tiles, the load assigned to each PE varies
significantly. This load imbalance leads to a high level of
PE under-utilization and higher latency.

STICKER: STICKER [56] employs nine different modes
of operation to handle varying sparsities of activations and
kernels across layers. Second, due to the Pixel-first nature
of STICKER, the short-term reuse of partial sums is not
exploited. Instead, all the partial sums are directed to a
large accumulator buffer. Instead of using a multi-banked
accumulator buffer like SCNN, STICKER uses a 2-way set-
associative PE to handle irregular data. It preprocesses and
reorganizes input activations to reduce the conflict for accu-
mulator buffer resources. STICKER saves significant storage
area by avoiding the multi-banked accumulator buffer in
SCNN. However, the large accumulator buffer remains a
dominant energy contributor. Further, due to the conflict
for accumulator buffer resources, there is an 8% drop in
performance compared to SCNN.

B. Channel-First Architectures

SparTen: SparTen [16] is composed of several PEs, each
of which performs an Inner Join operation. Kernels are
partitioned and pre-assigned to PEs, while activations are
broadcast to all PEs. The inner join performed within a
PE corresponds to a single output neuron, thus avoiding a
crossbar and multiple partial sum updates within the PE.
However, A non-trivial circuit is required to identify match-
ing non-zero entries for the inner join. SparTen’s primary
benefit is that it outperforms SCNN by roughly 4x with
better load balancing. SparTen relies on an offline analysis to
sort kernels by sparsity and map them to PEs with a greedy
algorithm that balances the load per PE. Because kernels are
permuted across PEs, the output neurons undergo a shuffle
before they can be represented as compressed output feature
maps.

SNAP: SNAP [58], [59] has four cores, a 7x3 PE array
per core, and each PE has 3 MAC units. SNAP processes
activation and kernels in bundles. An associative index
matching (AIM) circuit processes bundles of activations and
kernels to find matching non-zero activation kernel pairs.
Unlike SparTen, the computations performed by a PE can
correspond to more than a single output neuron. SNAP
employs a two-level partial sum reduction (PE- and Core-
level) to process all the output neurons. The first is PE

Authorized licensed use limited to: The University of Utah. Downloaded on July 10,2023 at 13:16:50 UTC from IEEE Xplore. Restrictions apply.

level (or intra-PE) channel dimension reduction. The second
level of reduction is core-level (or inter-PE) pixel-dimension
reduction by moving data over the interconnect network.
This two-level reduction technique reduces the write-back
traffic. AIM unit is the tradeoff — a large comparator size
in the AIM unit negatively impacts the area and power
but results in efficient index-matching thereby improving
the intra-PE utilization. SNAP does not, however, solve the
inter-PE underutilization overhead like SparTen.

III. CANDLES
A. Motivation

There are three main challenges in designing an efficient
sparse accelerator:

1) Efficient PSUM aggregation

2) Simple indexing logic

3) Load balancing

State-of-the-art sparse CNN accelerators fall short in
addressing one or more of these challenges. Load balancing
has been addressed by using a combination of software
and hardware techniques in Channel-first architectures. As
discussed in Section I, Pixel-first architectures facilitate
simple index-matching logic at the cost of inefficient PSUM
aggregation, with the opposite being true for Channel-first
architectures. PSUM aggregation efficiency is attributed to
the presence of temporal locality in partial sums (outlined
in the next paragraph). CANDLES uses microarchitecture-
dataflow co-design to adopt the best of both architecture
styles and address all three challenges.
Role of Temporal Locality: To explain the locality effect
in various strategies, consider the illustrative example in
Figure 2. The colored dots show the cycles when each
entry in the accumulation buffer is updated. Each block in

Entry touched in cycle: 1 2 3 4 5 6
e O
Bank 0 Bank1 Bank2 Bank3 RF 0 RF 1 RF 2 RF 3
® D [@® | | | [@9] []
0 0 [| (@8] | |1]

Bank 0 Bank1 Bank2 Bank3

(a) Pixel-first Architecture
Act/Wt-Stationary Dataflow

RFO RF1 RF 3 RF 4

(c) CANDLES
B3] (222 [252] [e%s) -

Output-Stationary Dataflow

(b) Channel-first Architecture
Output Stationary Dataflow

Figure 2: PSUM access pattern in consecutive cycles for (a)
Accumulation Buffer banks in Pixel-first architecture, (b) RF
in Channel-first architectures, and (c) CANDLES.

879

bank and register file (RF) represents a partial sum entry.
In Pixel-first approach, within a cycle, updates are scattered
to multiple accumulation banks (or buffers). As a result,
the partial sums updated in consecutive cycles are often
different requiring large accumulator buffers. Larger buffers
lead to higher energy per access. This partial sum update
pattern with little temporal locality is shown in Figure 2a
and is a key factor in the accumulation buffer’s dominant
energy contribution. In Channel-first approach, since we
first traverse through the channel dimension, partial sums
in consecutive cycles correspond to the same output neuron,
requiring only a small entry accumulator (a register file)
to capture this pattern (see Figure 2b). In CANDLES, we
retain the Pixel-first compression strategy. However, the
dataflow is modified to be closer to output-stationary similar
to Channel-first architectures, i.e., we traverse the activations
and weights such that partial sum updates in consecutive
cycles exhibit much higher temporal locality. This allows us
to decompose the accumulation buffer into a 2-level structure
with a high hit rate in the L1. As shown in Figure 2c, most
of the updates in the first six cycles are localized to each
bank/buffer’s few entry L1 register file.

B. High-Level Overview

We introduce a synergistic combination of four key in-
novations. First, a Pixel-first compression and Channel-first
dataflow architecture (PFCF) is implemented to achieve effi-
cient inner join without the need for complex index matching
logic. Second, a two-level accumulator buffer captures the
reuse of partial sums; and third, a novel compression algo-
rithm ensures high locality among consecutive partial sums.
Fourth, a memory partitioning scheme ensures load balance
without the need for software optimizations.

Figure 3 shows the microarchitecture of CANDLES. It
consists of a central buffer and an 8x8 grid of PEs connected
via the mesh network. The central buffer is responsible for
distributing activations of each layer to individual PEs over
the mesh network. The central buffer is also equipped with
pool and ReLU modules.

Each PE consists of 3 buffers to store activations, weights,
partial sums, a 4x4 multiplier array, a PSUM filter, a simple
crossbar structure, and an index-generation logic. The heart
of CANDLES PE is the PSUM filter that captures the reuse
of partial sums for an energy-efficient accumulation. To re-
duce write-back traffic, we also support cross-PE reduction.

In a cycle, the activation and weight buffers provide input
data structures to the 4x4 multiplier generating 16 partial
sums. The index-generation logic computes the output neu-
rons’ addresses for these partial sums in parallel with the
cartesian product. The resultant partial sums are stored in
either the PSUM filter or the accumulator buffer. Individual
PEs are populated with weights from off-chip DRAM. Once
loaded, a set of weights are fully exhausted with all the
available activations before fetching the next set (weight-

Authorized licensed use limited to: The University of Utah. Downloaded on July 10,2023 at 13:16:50 UTC from IEEE Xplore. Restrictions apply.

)
)

)
)

Central
Buffer

aaaaadn

(@) (640 kB)] : 8x8 PE Array :

/'-\\ :
’ \

~ (A0 EEEE668
S0 _A~=-

- R
’ ==a
s S =a
P == = Data path
- = |Index path

Index
Generation ‘ ‘ ‘

4x8
Looe o il
(b) Indices % % % g—'—{ 4x8 | : H
PSUM = o
®®®® __1 4x8 | e Acc Buffer
Weight —L
Buffer 4x4 { 4x8 | 63%‘ Bank 31
(10 KB) Multiplier
Array XBAR 32 PSUM filters, 4 each bank has

Indices

each with 16 tag
& 16 data entries

64 entries

Figure 3: CANDLES Microarchitecture.

stationary dataflow at a high level). Activations, in contrast,
are accessed to/from the central buffer.

C. Pixel-first Compression and Channel-first Dataflow

We now discuss the impact of dataflow on temporal
locality. Please note that the proposed dataflow is tailored
specifically for a microarchitecture with hierarchical accu-
mulator buffers. To reduce the common-case reuse distance,
we introduce the following dataflow in CANDLES, with
code and examples shown in Figure 4. Each PE processes
four non-zero activations corresponding to C; channels in
consecutive cycles. Hence PEOQ is allocated four non-zero
activations from the first C; channels (green and violet),
while PE1 is allocated four non-zero activations from the
next Cy channels (orange and light-brown). In the first cycle
(Figure 4), the multiplier array (say PEOQ) is fed with the
first four (green) activations and the (red) first weights of
the first four kernels (again, all from one input channel).
These products correspond to four partial sums for each of
four different output channels. In the next cycle, we switch
to a different input channel and similarly fetch the first four
(purple) activations and first (light green) weights from the
first four kernels. Thus, the partial sums touched in the first
two cycles belong to the same four output channels.

Further, as we rotate through several channels in consec-
utive cycles, the generated products all pertain to a localized
region of four output channels, thus concentrating most
updates to a small set of elements in the accumulation buffer.
After rotating through all (Ct) input channels assigned to
this PE, we rotate back to (green) activations from the first
channel and move to (blue) weights from the next set of
four kernels, thus producing partial sums for a localized

880

region in the next four output channels. Thus, a new set of
activations and weights are fetched from their buffers every
cycle, increasing the (low) energy expended in the activation
and weight buffers.

Once all the PEs finish performing local reduction of Ct-

channels, every alternate PE transfers its partial sums to the
neighboring PE via the grid network for inter-PE reduction.
The receiving PE uses the adders to aggregate the received
partial sums with the ones in its accumulation buffer. Note
that the receiving PE does not perform multiplication oper-
ations during inter-PE reduction.
Cacheability: With the CANDLES dataflow, we observe
a significant overlap between the partial sums touched in
consecutive cycles. Therefore, even a small cache of partial
sums can yield a very high hit rate with a single entry per
bank. Figure 2c provides a specific example. In practice, the
positions of non-zero activations in each channel will not
line up perfectly, thus generating more misses or requiring
more entries per bank to yield a high hit rate. Further,
once weight sparsity is included, the partial sum updates
are more scattered, again requiring multiple entries per
bank to yield a high hit rate. We propose tiled-compression
techniques to limit the scattering of partial sums to a small
set (Section III-E).

D. The PSUM Filter

By revisiting the partial sums for the same output neurons
in consecutive cycles, the above dataflow is most similar
to an output-stationary dataflow. It therefore presents an
opportunity to partition the accumulation buffer into two
levels. The most recently accessed partial sums are moved
into a small tagged cache, the PSUM Filter, to service the
expected high temporal locality while other partial sums
with a longer reuse distance are placed in a 6 KB second-
level buffer similar to the accumulation buffer in baseline
SCNN (see Figure 3). As we show in Section V, the PSUM
Filter yields high hit rates even with 16 or fewer entries
per bank. It is implemented as a set of registers along with
accompanying tags. We layout the PSUM Filter adjacent
to the crossbar’s output ports (Figure 3). This reduces long
interconnect traversal for PSUM Filter access.
Implementation Details: The PSUM Filter for each bank
is fully associative. Each entry is associated with a 6-bit
tag that points to one of the 64 entries in the L2 bank.
The index generation logic produces a 11-bit tag for each
generated product — five of these bits identify the bank,
and six identify the entry within the bank. The tag check
is performed along with output neuron index generation.
Recall that index-generation is performed in parallel with the
longer latency Cartesian Product. Therefore, by the time the
product emerges from the crossbar, the hit/miss information
is available. The partial sum proceeds with either accessing
the Filter or the L2. Both structures are accessible in a
single cycle, so a Filter miss does not impose a performance

Authorized licensed use limited to: The University of Utah. Downloaded on July 10,2023 at 13:16:50 UTC from IEEE Xplore. Restrictions apply.

PE loop-nesting code:
Overview: K/KK>R>S>N>W > H->K>C

BUFFER wt_buf [R*S*K/K][K/41[C][4]

BUFFER in_buf [N][W*H/4][C][4] Ll

BUFFER acc_buf [N][K,][W][H]
BUFFER central_buf [N][KJ[W*H]

fork’=0to K/Kt -1: # Iterate through non-zero values of the kernels

for w=0to R*S-1: #step over all weight values
forn=0to N-1:

Iterate over a batch of images

fora=0to W*H/4 -1: # reuse weights over all activations
for k=K,-1: #Acrossall kernels within the weight buffer

forc=0to C-1:

#Accumulate across all channels

wt[0:3] = wt_buf [w][k’+k*K/K,][c][0:3] # Get 4 non-zero weights,

1 from each kernel
parallel (i= 0 to 3) * (f=0to 3): #in each multiplier
k= KSpaI’SE_COOI’d(C,f) # get output coordinates of k
x = Xsparse_coord(a,i,w,f) # get output coordinates of x
y= Ysparse_coord(a,i,w,f) # get output coordinates of y
acc_buf[n][k][x] [y] += in[i] *Wt[f] # multiply & accumulate to
respective output neurons

}
central_buf [n][a][k'+k*K/K][0:W*H-1] =
acc_buf[n] [k'+k*K/Kt][0:W-1] [0:H-1] # push acc_buf to out_buf

s Index vector

{ % ﬁ
in[0:3] = in_buf [a][n][c][0:3] # Get 4 non-zero activations 1 !

Weights Inputs

Multiplier (PEQ)

(each 4x4 product)
i‘t/' Cycle 1 . X .
— Cycle 2 . X |:|
H Cycle 3 . X .
Cycle 4 . X .

Multiplier (PE1)

(each 4x4 product)

Cycle 1 .x|:|
Cycle 2 .x|:|
Cycle 3 .x.
Cycle 4 .x.

Coordinate
Computation

Data vector
— ndexvecor

*Data halos not considered in the figure

Figure 4: Code and example of proposed dataflow with higher temporal locality. In each cycle for multipliers PEO, PEI,
operands in left denote values from input activations, and operands in right denote values from weights.

penalty. On a Filter miss, the Filter and L2 both perform
parallel read-modify-writes while swapping entries in the
Filter and L2. As shown later, hit rates are not sensitive to
replacement policy parameters.

E. Tiled Pixel-first Compression

We make the case that the conventional Pixel-first com-
pression approach can significantly impact the PSUM Filter
hit rate. In a typical kernel or feature map, the distribution
of zeros is non-uniform. This non-uniformity can result in
non-zero outlier values substantially impacting the PSUM
Filter hit rate when using the CANDLES dataflow.

Consider an example feature map shown in Figure Sa
using the conventional implementation of Pixel-first com-
pression (Figure 5b) in state-of-the-art architectures. The
non-zero values are stored in an array along with an index
vector (not shown in the figure) that encodes metadata.
The numbers in each cell indicate the coordinates in pixel
dimension, whereas the color indicates different channels.
Assume that we have a single dense 1x1 kernel with the
same number of channels as the example input feature
map. We walk through this sample benchmark using the
CANDLES microarchitecture and dataflow to highlight the
overheads incurred when compressed using the conventional
implementation.

Recall that CANDLES dataflow traverses across the chan-
nel dimension four non-zero values at a time. In two cycles,
four non-zero values from both the channels are processed.
We can observe that as we traverse through the channel
dimension, pixels 11 and 14 are touched in both cycles.
Note that we assume that the pixels stored in the PSUM

Input Channel 1 Input Channel 2 Kernel
Channel 1
11 12 13 14 11 12 13 14
11
21 22 23 24 21 22 23 24
(a) Kernel
31 | 32 | 33| 34 31 | 32 | 33| 34 Channel 2
41 | 42 | 43 | 24 41 | 42 | 43 | 44 ‘ 11 ‘

(b) InputChanneIlI 11 I 12 I 14 I 23 24 I 31 I 32 I 43 I
Inputchannelzl 11 I 14 I 22 I 24 | 31 I 34 ‘ 41 I 43 I
Hit Rate: 50%
InputChannellI 11 I 12 I 31 I 32 | 14 I 23 I 24 I 43 I
(c)

IS

InputChanneIZI 11 I 22 I 31 I 41 § 1

|24|34|43|

Hit Rate: 62.5%

D Pixels that observed a PSUM Filter Hit D Pixel with PSUM Filter Miss

Figure 5: A sample feature map and kernel (a) compressed
using conventional Pixel-first compression (b), and the pro-
posed Tiled Pixel-first compression strategies (c). Grey color
denotes the non-zero values in channel-1, Yellow color
denotes the non-zero values in channel-2, and white denotes
the zero values in both the channels

881

Authorized licensed use limited to: The University of Utah. Downloaded on July 10,2023 at 13:16:50 UTC from IEEE Xplore. Restrictions apply.

filter during the first iteration are evicted before the second
iteration begins. This is because, in a typical deployment
scenario, we traverse across 64 channels at once, and there
is a very low probability for the value to remain in the cache
due to the bimodal reuse distances we observed. During the
second iteration, pixels 31 and 43 are touched, resulting in
a total PSUM Filter hit rate of 50% to execute the feature
map fully. Note that while pixel-24 also has a matching
non-zero value in both channels, its locality is not being
captured by this compression strategy. This is the result of
the non-zero value in pixel-23 of the first channel. While
both the channels have the same number of non-zero values,
they are not evenly distributed across the pixel dimension.
Since we only take four non-zero values at a time, the
non-uniform density distribution results in the dataflow not
capturing the locality of pixel 24. This gap is exacerbated
in real applications, leading to under 40% hit rates.

We observe that grouping the pixels before compressing
can significantly reduce the non-uniformity in distribution,
thereby yielding a higher PSUM Filter hit rate (> 85%).
This is the motivation for our Tiled Pixel-first (TP) com-
pression. We tile the feature map into multiple groups before
compressing them. During compression, the non-zero values
are stored one tile at a time. Consider tiling the previously
discussed example feature map into two equal parts, with
each part having only two of the four columns. Figure 5c
shows the compressed data structure with only the non-zero
values using the TP compression strategy. Implementing the
CANDLES dataflow on this new data structure results in
a higher (62.5%) PSUM Filter hit rate. This is because the
placement of a bounding box on the pixels limits the scatter-
ing of non-zero values in the compressed data structure. We
observe that the PSUM Filter hit rate is directly proportional
to the number of tile partitions. However, an extremely small
tile size can result in intra-PE underutilization (discussed
later in Section V). Experimental analysis shows that a tile
size of 7 x 4 ensures high hit rate without sacrificing much
of intra-PE utilization.

Additionally, while traversing through the channel di-
mension, the computations can be skipped entirely for the
respective channel if we encounter an empty feature map or
kernel. This is acheived by allocating a valid bit for each
channel of the feature map and kernel.

F. Load Balancing across PEs

We now discuss how work is partitioned across multiple
PEs to promote load balance. CANDLES allocates the same
number of non-zero activations (in the common case) and an
N x N partition of weights to each PE. The load imbalance
is primarily determined by the sparsity variation in kernel
partitions across individual PEs. This is different from Pixel-
first architectures like SCNN where each PE has a duplicate
copy of the weights, and where load imbalance is determined
by the sparsity variation in activation partitions. While

882

Load Imbalance Analysis

1 — 64x64
. 09 —32x32
.3 0.8 16x16
S 0.7 —8x8
('8
o 06 —4x4
g 2x2
5 o5
c 0.4
K-}
£ 03
5 02
- 0

ARG RN R N R 2R A G AN

CONV Layers

Figure 6: Load-imbalance (between most and least busy
PEs) across layers of ResNet50 as N is varied (lower is
better).

both approaches may seem equivalent, unlike weights, the
sparsity of activations change dynamically across different
layers of the network for each image. This makes it hard
to determine the ideal distribution of activations across PEs
during run time. On the other hand, the sparsity of weights
does not change during inference, allowing us to perform
offline analysis.

Partition Design Space: Returning to the example in Fig-
ure 4, we see that PEO and PE1 are both assigned just
2 (input) channels each and 8 kernels each. We refer to
this partition as “2 x 8”. The computations required for
a convolutional layer can be expressed as inputchannelsx
kernelsx A xW, where A is the set of non-zero activations
in a 2D input channel and W is the set of non-zero weights
in a 2D kernel channel. That total computation must be
split across 64 PEs in our architecture. For now, we will
assume that the weights in one channel of one kernel are
not partitioned across PEs, i.e., we are not partitioning W.
In a typical convolutional layer with many channels and
kernels, adopting a “2 x 8 partition would imply that each
PE receives a small share of channels and kernels but a large
share of each input feature map channel. On the other hand,
adopting a “64 x 64” partition would imply that each PE
receives a large share of channels and kernels but a small
share of each input feature map channel.

Empirical Analysis: We are trying to estimate the partition
of work across PEs that minimizes load imbalance. To sim-
plify the control logic and avoid any offline analysis, we are
attempting a partition by drawing lines at regular intervals.
Figure 6 quantifies this load imbalance for a number of “N
x N” partitions. We see that it is clearly beneficial to use
large N; for N = 64, the load imbalance is under 10%.
This partition is consistently balanced across different layers,
unlike SCNN that sees higher load imbalance when feature
maps shrink in later layers. Multiple factors play a role in
this empirical observation. There is indeed a large variation
in sparsity across individual kernel channels. For example,

Authorized licensed use limited to: The University of Utah. Downloaded on July 10,2023 at 13:16:50 UTC from IEEE Xplore. Restrictions apply.

suppose we assume that a convolutional layer has 3 x 3
x 128 x 128 weights. In that case, the number of non-
zero weights in each channel in each kernel will be a list of
16,384 integers ranging from 0-9 with high variation: 3, 7,
2,4,7,0,5,9, ... If each PE is assigned a small consecutive
subset of this list, the variation in load across PEs will be
higher than if we assigned a large consecutive subset of
this list. In other words, a large sample averages out the
high variation across kernel channels, favoring a large N.
Second, by using large N, each PE is assigned a smaller
fraction of the input feature maps. It can be argued that
smaller feature map samples may lead to higher variation
in non-zero activation tuples per PE — however, this effect
is alleviated because these activations are spread across N
channels, making the sample more diverse than if those
activations were from a few channels.

G. Microarchitecture Design Choices

We now discuss the impact of our new PFCF dataflow
and new work partition on the proposed microarchitecture.
Weight and Activation Buffers: CANDLES reads a new
tuple of weights and activations every cycle and exhibits
activation and weight reuse with varying reuse distances. We
therefore size the weight and activation buffers to capture
the resulting reuse pattern. Given our choice of a “64x64”
partition for most layers, a PE is assigned 4K weights per
layer at a time. Including the index metadata, we allocate
a 10 KB buffer to store these weights. These weights are
fetched from DRAM, reused completely, then evicted to
make room for the subsequent 4K weights from DRAM.
An activation is re-visited after cycling through 64 different
channels assigned to the PE; the activation buffer is therefore
large enough to store 256 activations (648 B, including index
metadata).

Accumulator Buffer: The design choice for accumulator
buffer size captures the worst-case partial sum scattering
scenario. Since we use a 7x4 (=28) tile size for activations
and 64 unique kernels in the weight buffer, the worst-
case scenario accommodates a maximum scattering of 1792
partial sums (28x64). With 24-bit PSUMs, a 5.25 KB
accumulator buffer is required, which we round up to 6 KB
because of limitations in our memory compiler.

Central Buffer: Once a set of weights is brought into the
weight buffer, it has to be consumed by all the activations
assigned to that PE. Since the activation buffer only handles
256 entries at a time, it has to be re-filled periodically. To
accommodate this reuse pattern for activations, the activation
buffer is organized as a two-level hierarchy. The 640 B first
level captures most of the reuse. The second level is a 640
KB central buffer that all the PEs share; it is responsible
for the periodic re-fill of the first level, and it captures
the longer-distance reuse pattern in the activations. The
central buffer is preceded by a pre-processing unit (PPU)
responsible for applying the activation function and creat-

883

ing the compressed output feature map. While aggregation
across channels take place at PE-level, aggregation across
convolution filters (ex: 3x 3) is usually performed at Central-
Buffer. Since the final aggregated PSUM is only present
in the central buffer, we just place pool/ReLU units next
to it. Further, support for much larger batch sizes can be
accomplished by simply increasing the central buffer size
with no modifications to PE micro-architecture.

Simpler Crossbar: A natural consequence of our dataflow
is that the 16 partial sums generated in a cycle are split into
four parts, each corresponding to a different output channel.
The four partial sums in each part are split across § PSUM
filters using a small 4x8 crossbar. This is significantly
smaller than the 16x32 crossbar implemented by SCNN.
The four PSUMs entering each of the 4 x 8 Xbar correspond
to a multiplication between four different input pixels and
a single kernel entry. This results in PSUMs corresponding
to four unique indices. Hence no two PSUMs computed in
the same cycle will have the same output index.
Activation Metadata: Since the feature maps of initial lay-
ers are large, the metadata overhead can be non-trivial with
a naive approach that stores w and h indices. For activations,
we adopt a slightly different indexing mechanism than prior
works. We use a hybrid RLE approach where for every
four non-zero activations, we use a combination of absolute
indices and RLE style zero indices. The index of the first
activation stores its w and h indices, while the remaining
three store the number of zero occurrences since the last
non-zero activation. Since each tile is only 7x4, a 5-bit value
is used to store the absolute indices for one of every four
non-zero activations in the tile. The rest of the non-zero
activations in the tile use a 4-bit zero index similar to RLE.
Since PEs process one tile at a time, we have to store a 2-
byte tile index in the index-generation logic to account for
the tile offset.

Kernel Metadata: Since typical kernels are usually small
(1 x 1 or 3 x 3), we store the absolute indices of all
the non-zero weights. 4-bit metadata for each non-zero
weight is sufficient to store the absolute indices for all our
benchmarks.

Wasted Computations: When performing outer-product
computations, some multiplications involving feature map
boundary elements do not contribute to output neurons
and are therefore wasted. This reduces effective throughput
and wastes energy for all Pixel-first architectures, including
CANDLES. As we show later, this impact is relatively
minor, especially given recent trends towards small kernel
dimensions.

IV. METHODOLOGY

We compare the CANDLES architecture against four
state-of-the-art sparse neural network accelerators: SCNN,
STICKER, SparTen, and SNAP. We primarily report iso-
resource (same number of MAC units) comparisons.

Authorized licensed use limited to: The University of Utah. Downloaded on July 10,2023 at 13:16:50 UTC from IEEE Xplore. Restrictions apply.

Energy and area modeling: To get accurate estimates of
energy and area, we modeled CANDLES and other base-
line Pixel-first architectures in Verilog, implemented them
using industry-standard synthesis, place-and-route tools in a
65 nm CMOS process. SRAM memories with the targeted
dimensions were compiled using a vendor-provided memory
compiler. The energy dissipation numbers obtained from
the place-and-route tool’s power report are combined with
memory access energy (read and write) to get the average
power dissipation. To accurately estimate the multi-banked
accumulator buffers’ overheads in both CANDLES and
SCNN, we first modeled a single accumulator bank using
the memory compiler. We later placed 32 instances of the
bank in a grid structure during layout, with each column
having the same number of banks required to match the
crossbar’s height. We placed 64 instances of the modeled PE
next to the central buffer during layout. To model the mesh
interconnect, we have estimated the wire length required to
move data across PEs from the obtained layout. We used a
conservative estimate of 0.1 fF/micrometer wire capacitance
from the technology library and estimated the wire energy
and delay based on the wire length. We did not model the
synthesized implementation of Channel-first architectures as
the index-matching logic complexities are hard to model in
enough detail to get meaningful energy and area numbers.
Instead, we have directly used the power and area numbers
reported in those respective works. Note that each baseline
architecture uses different datawidths for computation and
storage. To have a fair comparison against other accelerators,
we have modeled three CANDLES variations based on the
datawidth — an 8-bit MAC with 24-bit partial sums, a 16-bit
MAC with 24-bit partial sums, and an 8-bit MAC with 8-bit
partial sums.

Simulator modeling: We built a combination of a cycle-
accurate simulator and analytical simulator to accurately
estimate performance. For SCNN, we explored a range of
feature map partitioning schemes. We observed that while
SCNN’s proposed partitioning scheme is the most energy-
efficient version, it is not ideal for performance. For that
reason, we have considered two variations of SCNN: SCNN-
E and SCNN-EP as baselines. SCNN-E is the most energy-
efficient variation, while SCNN-EP obtains the best energy-
delay product. STICKER uses different compression formats
depending on the level of sparsity. To ensure an apples-to-
apples comparison and isolate the impact of CANDLES,
we assume that all layers are compressed using CSR for
STICKER. For all the architectures, the simulator accurately
captures both intra-PE and inter-PE underutilization. We
have configured CANDLES to handle two-sided sparsity
and scenarios where only one of the two data structures
(activations or weights) is sparse.

Benchmarks: We executed four CNN workloads:
VGG16 [44], ResNet-50 [19] (ResNet50-A), Inception-
vl [47], and MobileNet-vl [23]. We use VGG-16 as a

884

proxy for large input data. While experiments on the above
four workloads were carried out with dense kernels, we also
consider a fifth workload with sparse kernels: a publicly
available pruned checkpoint of ResNet-50 (ResNet50-AW)
trained on ImageNet [22]. Since we do not have more
pruned networks at our disposal, we have synthetically
pruned the top 50% weights closer to zero of MobileNet
(MobileNet-vI-AW#*) for our evaluation of two-sided
sparsity. Note that we only pruned weights extremely close
to zero (—0.03 < 0 < 0.03). Note that prior works [39],
[40] have used iterative pruning and training to achieve a
range of sparsity and accuracy levels.

We execute the above workloads on 2000 images from the
Imagenet [22] dataset, feeding the dynamically generated
activations to simulated models of SCNN-E, SCNN-EP,
STICKER, SNAP, SparTen, and CANDLES. These sample
images were collected from diverse image classes.

V. RESULTS
A. Energy

We first quantify the energy per inference. We use an
LRU replacement policy, a 16 entry PSUM Filter per bank,
and a tile size of 7x4 for most of our experiments. Table I
summarizes the energy consumed by individual components
in all three variants of CANDLES.

16/24-b 8/24-b Energy 8/8-b
Component Energy Energy Energy
per access per access per access
Weight buffer 24.5 17.1 17.1
Activation buffer 19.6 13.1 13.1
MAC 1.94 0.24 0.24
Crossbar 8.09 1.62 1.62
Accumulator buffer 8.7 8.7 5.85
energy / bank access
PSUM Filter 1 1 0.33
Tag lookup 0.114 0.114 0.114
Central Buffer 41.6 41.6 41.6
(80-bit datawidth)
PPU 0.285 0.285 0.285
(80-bit datawidth)
Interconnect- 0.0216 0.0216 0.0216
Energy/nanometer/bit

Table I: Energy per access for each component in all 3
variations of CANDLES in pJ at 65 nm CMOS technology.

Importance of Microarchitecture-Dataflow Codesign

To isolate the impact of each contribution and highlight
the importance of microarchitecture-dataflow codesign, we
consider several variants of CANDLES with one or more
primitives — dataflow, PSUM Filter, and TP-Compression.
Figure 7a plots the impact of each variation on energy
consumption normalized to SparTen’s energy.

The first variant only considers CANDLES with the
proposed Pixel-first compression and Channel-first (PFCF)
dataflow. CANDLES is up to 57% more energy-consuming
than SparTen. This is because of two reasons. First, as

Authorized licensed use limited to: The University of Utah. Downloaded on July 10,2023 at 13:16:50 UTC from IEEE Xplore. Restrictions apply.

VGG-16 (large input)
3500

«
=]
S

MW Inception MResNet-A E Mobilenet-vl

IS
S
S

2800

With only Sparse Activations

I
=

SCNN-E (16/24-bit)

Pixel-first Architectures Channel-first

(b)

With Sparse Activations and Weights

w
1=}
S)

OResNet-AW @ Mobilenet-v1-AW*

| ——
j—1
Energy (m))
)
a B & R
o & 8 &8 38

I H lHﬂ -Hm I Hm [e - [H Hﬂ Hr—\ H
= = = = = = = = = = = =
2 2 2 2 2 2 2 2 2 2 2 2
3 3 2 3 3 03 2 3 3 3 2 3
1N N < N [N [N < N N [N < [N
o 0 - o %) 0 ~ %) [} 0 -~)
4 = c]] 2 5] 4 = c =
s po S o o Y] 4 2 Z S =)
& I~ = 4 0 =1 a % & g = <

i ¥ 5 2 4 z 2 2 ¥ ¥ 5 £
= = o 2 =} = =3 z =z = 3 &
Z 5 v = < S S z & 4

=} b3 S) =}

A o @

CANDLES Variants Channel-first

Architectures

Pixel-first
Architectures

(c)

Architectures

Figure 8: Energy consumption for CANDLES and baseline SCNN-E, SCNN-EP, STICKER, SparTen, and SNAP.

E2100 £ 300
& &
@ 1400 2 200
S &
700 100
0 ﬂ N0 = ﬂ o IHV_\ |
= = = s T © . = = = =
5 & 5 & 3 3% B % 2 32 2
§ 3 g & 8 8 §8 & § 5§ =
S) = S ey < =) 9 < -
= = »n = = = c = = P a
— wn w — - «] —] =
P vt} = w a] = o] 4 a
£ 3 2 2 ¥ & § = g 2 =
& 2 3 5 2 g & & = %2 3
< o o 1)
§ ° 23 s ¢
CANDLES Variants Pixel-first Channel-first CANDLES Variants
Architectures Architectures
(a)
CANDLES Energy
Energy Normalized to SparTen Breakdown (%)
2 100
W Ta;
[JResNet-AW CIVGG-16 - &
lookup
M Central
1.5 — — 80 Buffer
W NoC
O Xbar
1 b= - - = e i 60
OMAC
05 40 O Activation
Buffer
O Weight
Buffer
0 20 O Accumula

tor Buffer
B PSUM
Filter

Variant-1: PFCF Variant-2: PFCF Variant-3: PFCF Variant-4: PFCF
Dataflow +PSUM Filter +TP- +PSUM Filter +
Compression TP-Compression

(@) (b)
Figure 7: Energy breakdown in CANDLES.

discussed previously, the PSUM reuse is under 40% for
most layers without the TP-compression. Second, since there
is no PSUM Filter to capture the available reuse, all the
partial sums are redirected to the large accumulator buffer
resulting in high energy per access. However, this variant is
1.2x more energy-efficient than SCNN-E, and 1.45x more
energy-efficient than SCNN-EP when executing the bench-
marks. This is because of better crossbar structures, higher
MAC utilization, and efficient dataflow of CANDLES.

The second variant considers CANDLES with the PFCF
dataflow and the PSUM Filter but without TP-compression.
This limits the reuse captured by the PSUM Filter as the
initial layers suffer with lower hit-rates (see Figure 10b).
Variant-2 is between 1.3 — 2.6 x more energy-efficient than
variant-1.

The third variant considers CANDLES with the PFCF
dataflow and TP-compression but without the PSUM Filter.
While the PSUM reuse is increased to >85% with TP-
compression, the energy consumed is similar to variant-1
because of the lack of a PSUM filter to capture this reuse.

The final variant considers all three primitives. We see
that CANDLES is 2.6 x more energy-efficient than SparTen.

885

This is because the PSUM Filter now captures all the partial
sum reuse enabled by TP-compression. As the PSUM-Filter
energy is 8.7x smaller than accessing the accumulation
buffer, high reuse leads to reduced energy consumption.

CANDLES Energy Analysis

Figure 7b shows a breakdown of energy dissipation for
each component in the proposed architecture for Resnet50
benchmark with two-sided sparsity. The rest of the bench-
marks also observe a similar breakdown of energy. Because
of the new dataflow, CANDLES dissipates more energy
in its activation buffer despite its smaller size. However,
this energy consumption increase is offset by the much
lower energy in the accumulation buffer and crossbar. The
more compact crossbar in CANDLES consumes nearly 3 x
less energy compared to the baseline SCNN crossbar. Both
interconnect and PPU consume less than 1% of the total
energy (NoC in Figure 7b). This is because, except to
execute depthwise convolutions, the only purpose of PPU is
to compress the output neurons before processing the next
layer. Each neuron is only read once. Since the number of
computations is orders of magnitude higher than the number
of activations, the PPU’s share of energy is low. The same
argument is applied for interconnect to the central buffer;
it is only used for a single exchange of data between the
PE and central buffer, whereas the number of PE operations
initiated by that exchange are orders of magnitude higher.
Wasted Computations: CANDLES due to its Pixel-first
compression incurs architecturally wasted computations like
other Pixel first architectures. However, these wasted com-
putations contribute to less than 6.5% of the total energy
consumed by CANDLES across all the benchmarks. Modern
benchmarks with kernels of dimension 1x1 incur no wasted
computations.

Figure 8 shows the energy consumed by CANDLES
and baseline architectures (SCNN-E, SCNN-EP, STICKER,
SparTen, and SNAP) when executing the benchmark ap-
plications. We denote the datawidth for MAC and partial

Authorized licensed use limited to: The University of Utah. Downloaded on July 10,2023 at 13:16:50 UTC from IEEE Xplore. Restrictions apply.

sums next to the respective architecture to understand the
energy benefits of CANDLES better. For example, an 8/24-
bit denotes an architecture with 8-bit MAC units and 24-bit
partial sums. In SCNN, every new partial sum generated
should access the crossbar and the accumulator buffer. This
frequent access to these large structures is a significant
contributor to SCNN’s energy. SCNN-EP ensures better
parallelism by choosing the appropriate tile size to distribute
the load. This results in increased writes of data structures
and hence more energy compared to SCNN-E. STICKER
benefits from the reduced area by replacing the crossbar with
a set-associative PE and using smaller accumulator buffers.
However, this does not aid with saving significant energy
compared to SCNN. The partial sums are still written to an
accumulator buffer with a similar size as a single bank in
SCNN’s accumulator buffer. Additionally, similar to SCNN,
the partial sums are scattered, and no reuse is captured
locally next to the MAC units. All these factors contribute
to the energy in STICKER.

SparTen, on the other hand, uses Channel-first dataflow
and hence completely captures the reuse of partial sums
into a small register near the MAC units. Additionally, it
replaces the large crossbar in SCNN with a simple permuter,
saving energy. However, this benefit is offset by the use of
complex index-matching logic. In SparTen, nearly 46% of
on-chip power is consumed by the priority encoder and the
prefix-sum circuits. SNAP, similar to SparTen, is a Channel-
first architecture with a high share of power and area
consumed by the index-matching logic. Additionally, SNAP
does not capture the reuse of partial sums as efficiently as
SparTen. This is because the intra-PE utilization efficiency
depends on the comparator’s size in the index-matching
logic (associative index matching unit). Increasing the size
of the comparator increases the area and power quadratically,
which is not desirable. Alternatively, not capturing the reuse
of partial sums locally will result in accessing the larger
buffer in the next level of hierarchy. All these factors
contribute to high energy consumption in SNAP. Overall,
CANDLES is up to 3.3x, 4x, 3.2x, 2.5x, and 5.6x
more energy-efficient than SCNN-E, SCNN-EP, STICKER,
SparTen, and SNAP architectures. Note that we assumed
similar datawidths for CANDLES as its respective baseline
for this comparison.

B. Performance

We next compare the performance for CANDLES and
the baselines. Figure 9 shows the throughput (Tera Oper-
ations per Second) of CANDLES for all the benchmark
applications, relative to SCNN-E, SCNN-EP, STICKER,
SparTen, and SNAP. We consider two variants of CAN-
DLES (CANDLES-A and CANDLES-U) for this analy-
sis. CANDLES-A shows the absolute TOPS for all the
computations performed by CANDLES, which includes the
architecturally wasted computations, whereas CANDLES-

886

Performance Comparison

04 ~—~ " @B "B " “ T e T T~
0.3
4
o 02
=
0.1
0
3 100 -~ Y W W
e 00 R ATURY T L \ N
N \oce® ‘?\er’N N\O\Q\\eNe v\es‘\\e\d\\eﬂe\’“&
WO
EEISCNN-E [ISCNN-EP COSTICKER EESparTen
EmSNAP B CANDLES-A B CANDLES-U - - Peak

Figure 9: Performance comparison. Performance is ex-
pressed as TOPS (higher is better).

U only considers the useful computations for measuring
TOPS. The share of architecturally wasted computations is
between 0-6.5% of the total computations. Both variants of
CANDLES are over 4x faster than SCNN-EP on benchmark
applications with only sparse activations and over 2.5x and
2x faster over ResNet-AW and MobileNet-AW*, which
have both sparse activations and weights. A vital reason
for this gap is the presence of intra-PE and inter-PE under-
utilization in SCNN. SCNN-E is an additional 8% slower
than SCNN-EP. On the other hand, CANDLES achieves a
high load balance due to its efficient work partitioning and
buffer size choices. STICKER uses a 2-way set-associative
PE for partial sum accumulation. When there’s a conflict, it
takes two cycles to update the partial sums. While STICKER
proposes shuffling of data to avoid conflicts, it does not
fully solve the problem. Our STICKER analysis showed that
the conflict rate can be between 1-15% across the layers of
the benchmark applications. Overall, STICKER is up to 5x
slower than CANDLES.

SNAP’s channel-first dataflow ensures that partial sums
are reduced before they are written back to the output
activation buffer. This partial sum reduction results in a
significant drop in congested writeback traffic and contention
at the output activation buffers, thus improving performance.
While SNAP eliminates a large fraction of intra-PE under-
utilization, it does not address the load imbalance across PEs
due to the implicit barriers imposed by the broadcast bus.
This inter-PE underutilization is resolved by SparTen using
greedy-balancing techniques and hardware co-optimizations.
In contrast, CANDLES is not limited by the implicit barriers
and achieves load balance by using sufficiently large weight
buffers, as discussed before. CANDLES is up to 68% and
15% faster than SNAP and SparTen. However, when sparse
activations with dense kernels are considered, SparTen can
perform up to 1.1x faster than CANDLES. This is because
SparTen broadcasts the activations allowing all the PEs to
finish computations at the same time. Hence for sparse
activations alone, SparTen’s performance is very close to
an ideal peak throughput. However, our analysis shows
that CANDLES consumes 10% less area than SparTen.

Authorized licensed use limited to: The University of Utah. Downloaded on July 10,2023 at 13:16:50 UTC from IEEE Xplore. Restrictions apply.

PSUM Filter Size vs PSUM Filter Hit-rate
1 1

_—

o o
=N o

o
IS

PSUM Filter Hit-rate
PSUM Filter Hit-rate

o
N

S}
S}

1 2 3 4 5 6 7 8 9
VGG16 CONV Layers

10 11 1 2 3 4

—1—2 —4 —8 —16 —32 —64 —128
(@)

—Ix*ly 14x14

Tile Size vs PSUM Filter Hit-rate

5

VGG16 CONV Layers

7x7
(b)

Tile Size vs Intra-PE Utilization

Intra-PE Utilization
)) o
= 2 ® -
A Y

e
)

12 3 4 5 6 7 8 9
VGG16 CONV Layers

10 11

6 7 8 9 10 11

= —# of non-zeros Ix*ly 14x14

7x7 Tx4 —4x4

x4 4x4 —2x2

2x2
(c)

Figure 10: For each CONV layer of VGG-16, (a) plots the variation of PSUM Filter Hit-rate w.r.t. PSUM Filter size, whereas
(b),(c) plots the variation of PSUM Filter Hit-rate and intra-PE utilization w.r.t. Tile size. (c) also plots sparsity.

CANDLES would therefore out-perform SparTen in an iso-
area comparison (note that most reported results are for an
is0-MAC comparison). Overall, CANDLES runs at 86-99%
of peak throughput across all the benchmark applications.

The performance improvement observed is the result of
both microarchitecture and tiling optimizations. Inter-PE
utilization is improved due to better load balancing (which
depends on weight buffer size), and intra-PE utilization or
compute utilization is improved by efficient tiling (which
depends on tile size). A larger weight buffer results in a large
sample of weights per PE which averages out the high vari-
ation across kernels promoting inter-PE load balance (Sec-
tion III-F). An ideal tile size ensures high MAC utilization
in each PE promoting intra-PE load balance. Additionally,
by using a grid network, CANDLES avoids implicit barriers
imposed by the broadcast network in baselines.

We have also explored the impact of tile size on baseline
SCNN. In Figure 9, SCNN-E represents the performance of
baseline SCNN, and SCNN-EP represents SCNN with tile
size obtained by our proposed approach. We observe that
the performance of SCNN is increased by 2.5 — 7 over the
baseline SCNN. This is due to the increased PE-utilization
from better tiling. While tiling can help improve intra-
PE utilization in baselines, the choice of microarchitecture
limits them from getting better load balance across the PEs.
CANDLES, due to its microarchitecture and tiling, is at least
2x faster than SCNN-EP.

C. PSUM-Filter Sensitivity Analysis

We next examine how PSUM Filter hit rates vary as a
function of various parameters.
Replacement Policy: We explore many replacement poli-
cies, including LRU, Second chance, LRU Insertion policy
(LIP), and Bimodal insertion policy (BIP with ¢ ranging
from 1/2 to 1/64) [36]. We observe that the replacement
policy negligibly impacts the hit rate because of the bimodal
reuse distance nature of partial sums. The very short reuse
distances are always captured, and the very long reuse
distances are not captured by the PSUM Filter, regardless

887

of replacement policy.

PSUM Filter Size: Figure 10(a) plots the average hit rate
across our set of images while executing each CONV layer
of VGG16 with various PSUM filter sizes. It shows that
the hit rate drops as we transition to deeper layers. The
improvement in hit rate saturates beyond 16 entries per bank.
Tile size for TP-Compression: Figure 10(b) plots the
variation of PSUM Filter hit rate with varying tile sizes.
A tile size of I, x I, represents CANDLES without the
tiled Pixel-first compression. There is an inverse correlation
between the tile size of the TP-compression strategy and
the PSUM Filter hit rate. Small tiles limit the scattering
of partial sums to a small range, thereby ensuring better
locality of partial sums. In addition, grouping the pixels
before compression can reduce the non-uniformity in the
distribution of output neurons further improving the locality
of partial sums.

However, reducing the size of the tile leads to fewer
non-zero values present in each tile. Reducing the tile size
beyond a threshold will result in not having four non-
zero activations to feed the cartesian product each cycle
catalyzing intra-PE underutilization. Figure 10(c) shows the
impact on intra-PE utilization with the variation in tile size.
We observe that a 7x4 tile ensures higher PSUM Filter hit
rates (>85%) while simultaneously having minimal impact
on intra-PE utilization.

Space and Complexity of Loop Tiling: Choosing the
ideal tile size is straightforward. While there is an inverse
correlation between tile size and PSUM Filter hit rate,
extremely small tile sizes lead to intra-PE underutilization.
We also observed that the PSUM filter hit rate in each
layer has a direct correlation with the number of zeros in
activations of that layer. From this, we deduced that tile
size has a inverse correlation to the number of zeros in
activations. Based on this observation, we define tile size as
the ratio of the minimum number of non-zero values required
for maximum intra-PE utilization and the fraction of non-
zero values in the layer. Since we read four activations each
cycle, we need at least four non-zero values per tile to ensure

Authorized licensed use limited to: The University of Utah. Downloaded on July 10,2023 at 13:16:50 UTC from IEEE Xplore. Restrictions apply.

oo

EN

@S -8
- - = 4 S
M-PW-AW I §§6 . ms m§3 HDense M Sparse
RAW =% ense parse ;_ .
-]
M-PW — 3 ° g 2
S
17} [
R-A I g 2 "g 1
= ©
| - 8 o — —_— - — =S = - — - —_—
© ©
V [=) Q N «V Q$ S S = Q N o Q$ ‘?~$ S
0 0.5 1 ~ ¥ ° ¥ ¢
(a) (b) X (c) ~

Figure 11: (a) Number of non-zero computations normalized to the total number of computations, (b) Mbs of data moved
Jfrom buffers directly to compute unit (8/24-bit), (c) Mbs of data moved from buffers directly to compute unit (4/8-bit). V:
VGG-16, I: Inception, R-A: ResNet-A, M-PW: MobileNet-vi, R-AW: ResNet-AW, M-PW-AW: MobileNet-vi-AW

maximum intra-PE utilization. We observed that more than
99% of the images have a minimum of 14% non-zero values
in each layer. Since we need at least four non-zero values
per tile, the minimum tile size is 4/0.14 = 28. Hence we
choose a tile size of 7x4.

Note that a future design can have dynamic tile sizes
for each layer depending on the sparsity distribution. For
example, a layer with 50% non-zero values can probably
get away with 4/0.5 = 8 entries per tile.

D. Broader Context Discussion

Dense & Quantized Dense Accelerators:

While the metadata is a non-trivial overhead, the benefits
from CANDLES far outweigh the cost of additional meta-
data. By only accessing non-zero operands and perform-
ing non-zero computations, CANDLES greatly reduces the
amount of compute and data movement overhead compared
to a dense accelerator. As shown in Figure 11-a, CANDLES
performs as little as 26% of the total dense computations
with just sparse activations and up to 20% of the total dense
computations with both sparse activations and weights. This
has two major benefits. First, skipping the cycles of pro-
cessing MACs that have zero activations or weights helps
improve throughput significantly. Second, in addition to
saving the energy consumed in performing MAC, the large
share of energy in moving data across the buffer is also
significantly reduced.

Figure 11-b,c shows the MBs of data transferred from
buffers directly to the MACs to execute a benchmark in
both dense and sparse situations. For CANDLES, we also
consider the additional index metadata in data movement.
At 8/24-bit precision, CANDLES performs up to 4x less
data movement. As the metadata size remains unchanged,
the MBs of data movement for sparse models increases with
reduced precision relative to a dense model. However, this is
still less than using a dense model due to the reduction in the
number of MACs. CANDLES performs up to 3x less data
movement compared to a dense model at 4-bit quantized
precision. While a 2-bit quantized dense architecture might
further reduce this gap, a dense architecture will likely not
match the sparse accelerator on other relevant metrics like

888

throughput and accuracy. While the design space of dense,
quantized, and sparse platforms continues to evolve, a sparse
platform is proven enough to form the basis for commercial
designs like Cerebras, and this work helps advance the state-
of-the-art in sparse acceleration.

VI. RELATED WORK

A. Similarities with the Baselines

The CANDLES PE microarchitecture is similar to SCNN
given the use of cartesian products, similar total SRAM
buffer size, and crossbars to route partial sums. The intra-
and inter-PE reduction employed in CANDLES also shares
similarities with the two-level PE reduction in SNAP, a
Channel-first architecture. CANDLES exceeds the baselines
with key changes, including the dataflow, the crossbar, buffer
hierarchy and sizes, and work partitions. In addition, other
microarchitecture components like the grid network, index-
generation logic befitting our metadata format, and PSUM
filter are introduced to further improve efficiency.

B. Other Related Work

OuterSPACE [33] is a Pixel-first architecture that uses
an outer-product-based matrix multiplication technique with
decoupled multiply and merge phases to eliminate redun-
dant memory accesses to non-zero operands. Since PSUMs
are not reduced and OuterSPACE uses comparatively large
shared caches, the energy consumed is significantly higher.
While OuterSPACE claims performance improvement over
inner-product-based matrix multiplication due to channel
index mismatch (if-condition in Algorithm 2), modern
Channel-first architectures easily avoid this by implementing
additional index-matching logic. Eyeriss-v2’s row-stationary
dataflow is another example of a Pixel-first architecture.
While row-stationary dataflow performs compression dif-
ferently from other Pixel-first architectures, Eyeriss-v2 im-
plements an outer product strategy, and similar to SCNN,
each activation is reused sequentially with multiple weights
resulting in scattering of partial sums to a large 32 entry
scratchpad. This results in significant energy consumption
to access the partial sums like other Pixel-first architectures.

Authorized licensed use limited to: The University of Utah. Downloaded on July 10,2023 at 13:16:50 UTC from IEEE Xplore. Restrictions apply.

CANDLES efficiently reduces the partial sums before writ-
ing back, thereby reducing access to large buffers.

ExTensor [21] is another Channel-first architecture that
finds the intersection of coordinates of non-zero elements.
ExTensor uses parallel comparators to find matching inter-
sections. Like other Channel-first architectures, this auxiliary
index matching circuit has a non-trivial impact on on-chip
power and area. CANDLES avoids this comparator overhead
by using pixel-first compression and channel-first dataflow.
That being said, the hierarchical elimination of ineffectuals
proposed in ExTensor is orthogonal to our contributions and
can further improve the benefits offered by CANDLES.

Stitch-X [29] is another Channel-first architecture similar
to SNAP that employs a novel dataflow that leverages both
spatial and temporal reduction to balance energy efficiency
and dataflow control complexity. Bit-Tactical [28] aims to
reduce bandwidth and energy costs of memory accesses in
sparse DNN accelerators by utilizing a lightweight sparse in-
terconnect, and a novel static scheduling scheme for weights.
Cambricon-S [61], PermDNN [14], and Packed Systolic [27]
aim to efficiently address the irregularity of sparse neural
networks. Scalpel [55] proposes coarse-grained pruning to
maintain regularity. Other designs like UCNN [20] exploit
sparsity and weight repetition by reusing dot products.
Laconic [42], Bit-Pragmatic [3], and Bit-Tactical [28] target
bit sparsity in DNN networks by leveraging Booth encoding
to elide zeroes. Eyeriss v2 [9] uses a specialized NoC to
handle sparsity, but is optimized for small mobile models.

Meanwhile, Sparse ReRAM Engine [53] and SNrram [51]
explore ReRAM-based DNN accelerators. While in-memory
accelerators [6], [13], [38], [45] provide large benefits with
analog logic, exploiting sparsity on them is difficult. Some
efforts [62], [37] investigate techniques to accelerate sparse
neural networks on GPUs.

VII. CONCLUSIONS

State-of-the-art sparse accelerators exhibit inherent trade-
offs — Pixel-first architectures require onerous neuron up-
dates while Channel-first architectures require complex in-
dexing logic. We show that this trade-off can be recon-
ciled by adoping a Pixel-first compression and Channel-first
dataflow. This approach leads to simple indexing and high
temporal locality in neuron updates, which can further be ex-
ploited with a 2-level accumulation buffer. We also introduce
a work partition strategy that matches the performance of the
fastest sparse accelerator (SparTen) without requiring offline
analysis. CANDLES achieves low energy for indexing and
neuron updates, thus consuming 2.5x to 5.6 x lower energy
than four state-of-the-art baselines.

VIII. ACKNOWLEDGMENTS

We thank the anonymous reviewers for many helpful
suggestions. This work was supported in parts by NSF grant
CCF 2119677, NSF CAREER grant 1844791, and Google.

889

REFERENCES

[1] D. Abts, J. Ross, J. Sparling, M. Wong-VanHaren, M. Baker,
T. Hawkins, A. Bell, J. Thompson, T. Kahsai, G. Kimmell,
J. Hwang, R. Leslie-Hurd, M. Bye, E. Creswick, M. Boyd,
M. Venigalla, E. Laforge, J. Purdy, P. Kamath, D. Ma-
heshwari, M. Beidler, G. Rosseel, O. Ahmad, G. Gagarin,
R. Czekalski, A. Rane, S. Parmar, J. Werner, J. Sproch,
A. Macias, and B. Kurtz, “Think fast: A tensor streaming
processor (tsp) for accelerating deep learning workloads,” in
2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), 2020.
[2] V. Akhlaghi, A. Yazdanbakhsh, K. Samadi, R. Gupta, and
H. Esmaeilzadeh, “SnaPEA: Predictive Early Activation for
Reducing Computation in Deep Convolutional Neural Net-
works,” in Proceedings of ISCA, 2018.
[3] J. Albericio, A. Delmas, P. Judd, S. Sharify, G. O’Leary,
R. Genov, and A. Moshovos, “Bit-pragmatic deep neural
network computing,” in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture.
ACM, 2017, pp. 382-394.
[4] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. Jerger,
and A. Moshovos, “Cnvlutin: Zero-Neuron-Free Deep Con-
volutional Neural Network Computing,” in Proceedings of
ISCA-43, 2016.
[S] Amazon, “AWS re:Invent: Deliver High Performance ML
Inference with AWS Inferentia,” 2019, https://www.youtube.
com/watch?v=17r1 EapAxpk.
[6] A. Ankit, I. Hajj, S. Chalamalasetti, G. Ndu, M. Foltin,
R. Williams, P. Faraboschi, W. Hwu, J. Strachan, K. Roy
et al., “PUMA: A programmable ultra-efficient memristor-
based accelerator for machine learning inference,” in Pro-
ceedings of ASPLOS, 2019.
[7]1 R. Baghdadi, A. N. Debbagh, K. Abdous, F. Benhamida,
A. Renda, J. E. Frankle, M. Carbin, and S. P. Amarasinghe,
“TIRAMISU: A polyhedral compiler for dense and sparse
deep learning,” CoRR, 2020. [Online]. Available: https:
//arxiv.org/abs/2005.04091
[8] Cerebras, “Cerebras Wafer Scale Engine: An Introduction,”
2019, https://www.cerebras.net/wp-content/uploads/2019/08/
Cerebras- Wafer-Scale- Engine- Whitepaper.pdf.
[9] Y. Chen, T. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile
devices,” IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, 2019.
[10] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architec-
ture for Energy-Efficient Dataflow for Convolutional Neural
Networks,” in Proceedings of ISCA-43, 2016.
[11] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang,
L. Li, T. Chen, Z. Xu, N. Sun, and O. Temam, “DaDian-
Nao: A Machine-Learning Supercomputer,” in Proceedings
of MICRO-47, 2014.

Authorized licensed use limited to: The University of Utah. Downloaded on July 10,2023 at 13:16:50 UTC from IEEE Xplore. Restrictions apply.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

(24]

P. Chi, S. Li, Z. Qi, P. Gu, C. Xu, T. Zhang, J. Zhao,
Y. Liu, Y. Wang, and Y. Xie, “PRIME: A Novel Processing-
In-Memory Architecture for Neural Network Computation in
ReRAM-based Main Memory,” in Proceedings of ISCA-43,
2016.

P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and
Y. Xie, “Prime: A novel processing-in-memory architecture
for neural network computation in reram-based main mem-
ory,” in Proceedings of the 43rd International Symposium on
Computer Architecture. 1EEE Press, 2016, pp. 27-39.

C. Deng, S. Liao, Y. Xie, K. Parhi, X. Qian, and B. Yuan,
“PermDNN: efficient compressed DNN architecture with per-
muted diagonal matrices,” in Proceedings of MICRO, 2018.

C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer,
D. Sylvester, D. Blaauw, and R. Das, “Neural Cache: Bit-
Serial In-Cache Acceleration of Deep Neural Networks,” in
Proceedings of ISCA-45, 2018.

A. Gondimalla, N. Chesnut, M. Thottethodi, and T. Vijayku-
mar, “SparTen: A Sparse Tensor Accelerator for Convolu-
tional Neural Networks,” in Proceedings of MICRO, 2019.

Graphcore, “Intelligence Processing ~ Unit,” 2017,
https://cdn2.hubspot.net/hubfs/729091/NIPS2017/NIPS\
%2017\ %20-\ %201PU.pdf.

S. Gudaparthi, S. Narayanan, R. Balasubramonian, E. Gi-
acomin, H. Kambalasubramanyam, and P.-E. Gaillardon,
“Wire-Aware Architecture and Dataflow for CNN Acceler-
ators,” in Proceedings of MICRO, 2019.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learn-
ing for Image Recognition,” arXiv preprint arXiv:1512.03385,
2015.

K. Hegde, J. Yu, R. Agrawal, M. Yan, M. Pellauer, and
C. Fletcher, “UCNN: Exploiting Computational Reuse in
Deep Neural Networks via Weight Repetition,” in Proceed-
ings of ISCA, 2018.

K. Hegde, H. Asghari-Moghaddam, M. Pellauer, N. Crago,
A. Jaleel, E. Solomonik, J. Emer, and C. W. Fletcher, “Exten-
sor: An accelerator for sparse tensor algebra,” in Proceedings
of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO ’52, 2019.

S. Hooker, A. Courville, Y. Dauphin, and A. Frome, “Selec-
tive Brain Damage: Measuring the Disparate Impact of Model
Pruning,” arXiv preprint arXiv:1911.05248, 2019.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Ef-
ficient Convolutional Neural Networks for Mobile Vision
Applications,” arXiv preprint arXiv:1704.04861, 2017.

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,
R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers,
R. Boyle, P.-1. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley,
M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati,
W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu,
R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan,
H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,

890

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

[33]

(34]

[35]

[36]

J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,
A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller,
R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie,
M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross,
A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham,
J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson,
B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter,
W. Wang, E. Wilcox, and D. H. Yoon, “In-Datacenter Perfor-
mance Analysis of a Tensor Processing Unit,” in Proceedings
of ISCA-44, 2017.

P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and
A. Moshovos, “Stripes: Bit-Serial Deep Neural Network
Computing,” in Proceedings of MICRO-49, 2016.

D. Kim, J. Ahn, and S. Yoo, “ZeNA: Zero-aware neural
network accelerator,” IEEE Design & Test, 2017.

H. Kung, B. McDanel, and S. Zhang, “Packing sparse con-
volutional neural networks for efficient systolic array imple-
mentations: Column combining under joint optimization,” in
Proceedings of ASPLOS, 2019.

A. Lascorz, P. Judd, D. Stuart, Z. Poulos, M. Mahmoud,
S. Sharify, M. Nikolic, K. Siu, and A. Moshovos, “Bit-
tactical: A software/hardware approach to exploiting value
and bit sparsity in neural networks,” in Proceedings of ASP-
LOS, 2019.

C.-E. Lee, Y. S. Shao, J.-F. Zhang, A. Parashar, J. Emer,
S. W. Keckler, and Z. Zhang, “Stitch-x: An Accelerator
Architecture for Exploiting Unstructured Sparsity in Deep
Neural Networks,” in SysML Conference, vol. 120, 2018.

R. Li, Y. Xu, A. Sukumaran-Rajan, A. Rountev, and P. Sa-
dayappan, “Analytical Characterization and Design Space
Exploration for Optimization of CNNs,” 2021.

S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and
Y. Xie, “Drisa: A dram-based reconfigurable in-situ acceler-
ator,” in Proceedings of MICRO-50, 2017.

NVIDIA, “NVIDIA TESLA V100 GPU Architecture,” re-
trieved 2018, white paper http://images.nvidia.com/content/
volta-architecture/pdf/volta-architecture- whitepaper.pdf.

S. Pal, J. Beaumont, D.-H. Park, A. Amarnath, S. Feng,
C. Chakrabarti, H.-S. Kim, D. Blaauw, T. Mudge, and
R. Dreslinski, “Outerspace: An outer product based sparse
matrix multiplication accelerator,” in 2018 IEEE International
Symposium on High Performance Computer Architecture
(HPCA), 2018.

A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkate-
san, B. Khailany, J. Emer, S. Keckler, and W. Dally, “SCNN:
An Accelerator for Compressed-Sparse Convolutional Neural
Networks,” 2017.

E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan,
D. Das, B. Kaul, and T. Krishna, “SIGMA: A Sparse and
Irregular GEMM Accelerator with Flexible Interconnects for
DNN Training,” in Proceeding of HPCA, 2020.

M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer,
“Adaptive Insertion Policies for High Performance Caching,”
in Proceedings of ISCA, 2007.

Authorized licensed use limited to: The University of Utah. Downloaded on July 10,2023 at 13:16:50 UTC from IEEE Xplore. Restrictions apply.

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

M. Rhu, M. O’Connor, N. Chatterjee, J. Pool, Y. Kwon,
and S. Keckler, “Compressing DMA Engine: Leveraging
Activation Sparsity for Training Deep Neural Networks,” in
Proceedings of HPCA, 2018.

A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian,
J. Strachan, M. Hu, R. Williams, and V. Srikumar, “ISAAC:
A Convolutional Neural Network Accelerator with In-Situ
Analog Arithmetic in Crossbars,” in Proceedings of ISCA,
2016.

S.Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. Horowitz, and
W. Dally, “EIE: Efficient Inference Engine on Compressed
Deep Neural Network,” in Proceedings of ISCA, 2016.

S.Han, H. Mao, and W. Dally, “Deep Compression: Com-
pressing Deep Neural Networks with Pruning, Trained Quan-
tization, and Huffman Coding,” in Proceedings of ICLR, 2016.

Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik,
N. Jiang, B. Keller, A. Klinefelter, N. Pinckney, P. Raina,
S. G. Tell, Y. Zhang, W. J. Dally, J. Emer, C. T. Gray,
B. Khailany, and S. W. Keckler, “Simba: Scaling Deep-
Learning Inference with Multi-Chip-Module-Based Architec-
ture,” in Proceedings of MICRO, 2019.

S. Sharify, A. Lascorz, M. Mahmoud, M. Nikolic, K. Siu,
D. Stuart, Z. Poulos, and A. Moshovos, “Laconic deep learn-
ing inference acceleration,” in Proceedings of ISCA, 2019.

F. Sijstermans, “The NVIDIA Deep Learning Accelerator,”
in Hot Chips, 2018.

K. Simonyan and A. Zisserman, “Very Deep Convolutional
Networks for Large-Scale Image Recognition,” arXiv preprint
arXiv:1409.1556, 2014.

L. Song, X. Qian, H. Li, and C. Yiran, “PipeLayer: A
Pipelined ReRAM-Based Accelerator for Deep Learning,” in
Proceedings of HPCA, 2017.

M. Song, J. Zhao, Y. Hu, J. Zhang, and T. Li, “Prediction
Based Execution on Deep Neural Networks,” in Proceedings
of ISCA, 2018.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going Deeper
with Convolutions,” arXiv preprint arXiv:1409.4842, 2014.

Tesla, “Tesla Autonomy Day,” 2019, https://www.youtube.
com/watch?v=UcpOTTmvqOE.

S. Venkataramani, A. Ranjan, S. Avancha, A. Jagannathan,
A. Raghunathan, S. Banerjee, D. Das, A. Durg, D. Nagaraj,
B. Kaul, and P. Dubey, “SCALEDEEP: A Scalable Compute
Architecture for Learning and Evaluating Deep Networks,”
2017.

J. Wang, Z. Yuan, R. Liu, H. Yang, and Y. Liu, “An N-way
group association architecture and sparse data group associa-
tion load balancing algorithm for sparse CNN accelerators,”
in Proceedings of ASPDAC, 2019.

P. Wang, Y. Ji, C. Hong, Y. Lyu, D. Wang, and Y. Xie,
“SNrram: an efficient sparse neural network computation
architecture based on resistive random-access memory,” in
Proceedings of DAC, 2018.

891

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

(60]

[61]

[62]

A. Yang, “Deep Learning Training At Scale: Spring Crest
Deep Learning Accelerator (Intel Nervana NNP-T),” in 2079
1IEEE Hot Chips 31 Symposium. IEEE, 2019, pp. 1-20.

T. Yang, H. Cheng, C. Yang, I. Tseng, H. Hu, H. Chang, and
H. Li, “Sparse ReRAM engine: joint exploration of activa-
tion and weight sparsity in compressed neural networks,” in
Proceedings of ISCA, 2019.

X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell,
K. Cao, H. Ha, P. Raina, C. Kozyrakis, and M. Horowitz,
“Interstellar: Using Halide’s Scheduling Language to An-
alyze DNN Accelerators,” in Proceedings of the Twenty-
Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2020, pp.
369-383.

J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and
S. Mahlke, “Scalpel: Customizing DNN Pruning to the Un-
derlying Hardware Parallelism,” ACM SIGARCH Computer
Architecture News, vol. 45, no. 2, pp. 548-560, 2017.

Z. Yuan, Y. Liu, J. Yue, Y. Yang, J. Wang, X. Feng, J. Zhao,
X. Li, and H. Yang, “STICKER: An Energy-Efficient Multi-
Sparsity Compatible Accelerator for Convolutional Neural
Networks in 65-nm CMOS,” IEEE Journal of Solid-State
Circuits, vol. 55(2), 2020.

Z. Yuan, J. Yue, H. Yang, Z. Wang, J. Li, Y. Yang, Q. Guo,
X. Li, M. Chang, H. Yang et al., “Sticker: A 0.41-62.1
TOPS/W 8Bit neural network processor with multi-sparsity
compatible convolution arrays and online tuning acceleration
for fully connected layers,” in 2018 IEEE Symposium on VLSI
Circuits, 2018.

J. Zhang, C. Lee, C. Liu, Y. Shao, S. Keckler, and Z. Zhang,
“SNAP: A 1.67-21.55 TOPS/W Sparse Neural Acceleration
Processor for Unstructured Sparse Deep Neural Network
Inference in 16nm CMOS,” in 2019 Symposium on VLSI
Circuits, 2019.

J.-F. Zhang, C.-E. Lee, C. Liu, Y. S. Shao, S. W. Keckler, and
Z. Zhang, “SNAP: An Efficient Sparse Neural Acceleration
Processor for Unstructured Sparse Deep [-1pt] Neural Net-
work Inference,” IEEE Journal of Solid-State Circuits, 2020.

S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo,
T. Chen, and Y. Chen, “Cambricon-X: An accelerator for
sparse neural networks,” in Microarchitecture (MICRO), 2016
49th Annual IEEE/ACM International Symposium on. 1EEE,
2016, pp. 1-12.

X. Zhou, Z. Du, Q. Guo, S. Liu, C. Liu, C. Wang, X. Zhou,
L. Li, T. Chen, and Y. Chen, “Cambricon-S: Addressing
irregularity in sparse neural networks through a coopera-
tive software/hardware approach,” in Proceedings of MICRO,
2018.

M. Zhu, T. Zhang, Z. Gu, and Y. Xie, “Sparse tensor core:
Algorithm and hardware co-design for vector-wise sparse
neural networks on modern gpus,” in Proceedings of MICRO,
2019.

Authorized licensed use limited to: The University of Utah. Downloaded on July 10,2023 at 13:16:50 UTC from IEEE Xplore. Restrictions apply.

