D-CRITICAL LOCI FOR LOCAL TORIC CALABI-YAU 3-FOLDS

SHELDON KATZ AND YUN SHI

ABSTRACT. The notion of a d-critical locus is an ingredient in the definition of motivic Donaldson-
Thomas invariants by [BJM19]. There is a canonical d-critical locus structure on the Hilbert scheme
of dimension zero subschemes on local toric Calabi-Yau 3-folds. This is obtained by truncating the
—1-shifted symplectic structure on the derived moduli stack [BBBBJ15]. In this paper we show the
canonical d-critical locus structure has critical charts consistent with the description of Hilbert scheme
as a degeneracy locus [BBS13]. In particular, the canonical d-critical locus structure is isomorphic to
the one constructed in [KS21] for local IP2 and local F,,.

1. INTRODUCTION

Donaldson-Thomas (DT) theory was introduced in [Tho00] as an enumerative theory which
gives a virtual count of stable coherent sheaves with fixed topological invariants on certain 3-
folds, including Calabi-Yau threefolds. Motivic DT theory was introduced in [KS], and it pro-
duces an invariant in the monodromic Grothendieck ring which categorifies the classical DT
invariant. Later, a general formalism for motivic DT invariants was developed in [BJM19].

A d-critical locus structure is a main ingredient in the definition of motivic DT invariant in
[BJM19]. In general there is a canonical d-critical locus structure on the moduli stack of coherent
sheaves/perfect complexes on a Calabi-Yau 3-fold. This follows from the fact that the derived
moduli stacks of coherent sheaves/perfect complexes on a Calabi-Yau 3-fold has a —1-shifted
symplectic structure. See [PTVV13] for the case of compact Calabi-Yau 3-folds, and [BD19] for
noncompact Calabi-Yau 3-folds. Then [BB]], [BBBBJ15] show that there is a d-critical locus struc-
ture obtained by truncating the —1-shifted symplectic structure from derived geometry.

Now let X be a local toric Calabi-Yau 3-fold wyg, the total space of the canonical bundle of a
smooth, complete toric surface S. In [KS21], we constructed an explicit d-critical locus structure
on Hilb" (ws) for S = P2 or S = FF,,. Our construction was based on the presentation of Hilb" (C3)
as a degeneracy locus [BBS13], and explicitly checking the compatibility of local sections on
intersections of critical charts. We also asked whether our d-critical locus structure agrees with
the canonical one obtained from derived geometry.

In this paper, we show that the canonical d-critical locus structure on Hilb"(X) has critical
charts isomorphic to the charts (Hilb"(C?), NHilb" (C3), W, i) described in Section 2.2. In partic-
ular, the canonical d-critical locus structure on Hilb" (ws) is equivalent to the one constructed in
[KS21] for S = P2 or S = FF,,.

While we were finishing up this work, we became aware of the recent preprint [RS], in which
our main result of Section 3 was proven by direct construction. Our approach uses the Whitehead
theorem in derived geometry (Theorem 3). We construct an explicit model for the derived stack
together with a map to the derived moduli stack constructed in [TV07], and check that this map
induces an isomorphism of cotangent complexes. We expect that our strategy will be applicable
more generally to produce other explicit constructions of derived moduli stacks.
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1.1. Outline of the paper. In Section 2 we review material used in this paper on derived geom-
etry and d-critical locus structures. In Section 3 we give an explicit description of the derived
structure on the moduli stack of zero dimensional sheaves on C3. In Section 4 we deduce the
superpotential from the —1-shifted sympletic structure of the derived moduli stack, and use it to
prove the main result for local toric Calabi-Yau 3-folds.

1.2. Notation. All schemes in this paper are assumed to be separated and of finite type over
C. We use X to denote a smooth quasi-projective Calabi-Yau 3-fold. For a smooth surface S,
we denote the total space of its canonical bundle by wg, and the projection from ws to S by
T ws =+ S. We use C to denote a dg-category. Our typical example is the dg-category of
complexes of coherent sheaves on X. We denote by C¢ the subcategory of pseudo-perfect objects
of C. Given an algebra B, we denote the homotopy category of the dg category of B-modules by

Cig(B).
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2. BACKGROUND

2.1. Background on derived geometry. In this section, we review the materials on derived ge-
ometry which we will use in this paper. We start with the notion of derived moduli stacks. We
use the notion of derived stacks defined in [TV06] and [GR10a].

Let k be a fixed base ring. Fix the base model category R to be the symmetric monoidal model
category of simplicial commutative k-modules. Denote the affine objects in the opposite category
R°P by k — D~ Aff. One endows k — D~ Aff with its étale model topology. Then for the model
site (k — D~ Aff,et), [TV06] defines the model category k — D~ Aff~*! of stacks on the model
site.

Definition 1. (Definition 2.2.2.14 [TV06]) A D~ stack is an object F € k — D~ Af f~*! which is a stack
in the sense of Definition 1.3.2.1 [TV06].

Let C be a dg-category. There is a notion of moduli of objects in C defined in [TV07].
Definition 2. ([TV07]) Define a simplicial presheaf: M : cdgay — sSet by
Mc(A) = M”Pdg—Cut(COPrgpe)/

where Map g, cqt is the mapping space of model categories, and Epe is the subcategory of Int(A — Mod)
consisting of perfect objects. Here Int(A — Mod) as usual denotes the dg category whose objects are the
fibrant and cofibrant objects of the model category of A-modules.

By Lemma 3.1 in [TV07], M is a D~ stack.
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In this paper we work with dg-categories of complexes of coherent sheaves with compact
support on local Calabi-Yau 3-folds. In particular we work with moduli of pseudo-perfect objects
in a Calabi-Yau 3-category. We recall the relevant definition given in [BD19].

Definition 3. ([BD19]) A non-commutative Calabi-Yau of dimension d is a (very) smooth dg category C
equipped with a Calabi-Yau structure of dimension d.

Here, a Calabi-Yau structure of dimension d is a negative cyclic chain 6 : k[d] — HC (C)
satisfying a certain non-degeneracy condition, see [BD19]. Given such a non-commutative Calabi-
Yau C, the moduli of pseudo-perfect objects in C is defined in the following definition.

Definition 4 (Example 3.7, [BD19]). The moduli space of objects M in a compactly generated dg-
category C is the prestack given on every affine U by

Mec(U) = Mapdg—Cat(CC/ Perf(U)),

where C€ is the subcategory of pseudo-perfect objects of C, and Per f (U) is the category of perfect complexes
on U.

This definition of the functor M is equivalent to the one given in Definition 2 ([BD19, Remark
3.9]). By Proposition 3.4 in [TV07] and Example 3.7 in [BD19], the moduli space M has the
following universal property:

Proposition 1. (Proposition 3.4, [TV07])
Map(F, MC) = M“Pdgf(:ato,, (Lpe(F)/ C)
for Fek—DAff~*, and

o~

Lpe(SpecA) ~ Ape.

If we write
F ~ Hocolim;hy,,

—

then Ly (F) is defined by Lpe(F) := (Holim;A;,)°" € Ho(dg — Cat). The mapping space in
the above proposition can be realized as a bimodule over the dg-categories Ly.(F) and C by the
following theorem:

Theorem 2 ([Toe06b]). Let Dy and D, be two dg-categories, and let M(Dy, Dy) be the category of right
quasi-representable D1 ® D;p modules and quasi-isomorphisms between them. Then there exists a natural
weak equivalence of simplicial sets:

Map(Dy,D;) = N(M(D1, D)),
where N(M(D1, D)) is the nerve of the category M(D1, Dy).

Finally we recall the Whitehead theorem for derived stacks, the main tool we will use from
derived geometry. We follow the formalism of Gaitsgory-Rozenblyum. Following the notions
in [GR10a] and [GR10b], let PreStk be the (co,1) category of all prestacks defined in [GR10b].
The objects are all admissible functors from the category of derived affine schemes to the oco-
category of spaces. Let PreStk;.r C PreStk be the full subcategory spanned by objects that admit
a deformation theory. Denote the categories of classical affine schemes and classical prestacks by
ISchff and ! PreStk.
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Theorem 3 ([GR10b], Proposition 8.3.2). Let f : X1 — X3 be a map between objects of PreStkr. Let
Xo,c1 be an object in I PreStk. Let g; : Xo,c1 — X; be pseudo-nilpotent embeddings such that f o g1 = go.
Suppose also that for any S € Sch™f, and any map xo : S — X0, the induced map
Ty, (X2) — Ty, (X1)
is an isomorphism, where x; = g; o xo. Then f is an isomorphism.
Pseudo-nilpotent embeddings have been defined in [GR10b, Definition 8.1.3].

2.2. Background on d-critical locus structures. D-critical locus structures are a main ingredient
in the definition of motivic DT invariants [BJM19]. In this section, we recall the definition of a
d-critical locus structure in [Joy15].

Let Y be a C-scheme locally of finite type.

Theorem 4. ([Joyl5], Theorem 2.1) There exists a sheaf Sy of C vector spaces, uniquely characterized by
two properties.

(i) Suppose R C Y is a Zariski open subset of Y, and i : R — U a closed embedding in some smooth
scheme U. Define the sheaf of ideals Ig 11 by the following exact sequence of vector spaces on R.

0— IR,U — iil(Ou) — Oy|R — 0.

Then there is an exact sequence of sheaves of vector spaces on R:

Ou) 4, TN (T*U)
Ipu (T’

0— Sy|R li{) ! 2
RU
where 1R 11 is a morphism of sheaves of vector spaces, and d is induced by the exterior derivative.

(ii) Let R C S C Y be Zariski open inclusions, and i : R — U, j : S — V closed embeddings in smooth
schemes U and V. Let ® : U — V be a morphism satisfying ® oi = j|g. Then the following diagram
commautes:

tsvlr  j71(0y) d YTV
0 SY|R 2 |R ISV-]"l(T*V)|R

A

idl J{i‘l(‘bj) Jifl(d‘b)

Ru i~Yoy) d i~1(T*U)
0—— & U . .
vIR Z, Tru-i L(T*U)

Let S be the kernel of the composition
Sy = Oy = Oy

red 7
where the map Sy — Oy is locally defined by composing (g ;; with i1 (Oy;) — Oy|g.
Then the sheaf Sy has a canonical decomposition

SyﬁCy@Sg.

Definition 5. ([Joy15] Definition 2.5) An algebraic d-critical locus over C is a pair (Y,s), where Y
is a C-scheme and s € H°(SY) such that the following is satisfied: for every point y € Y, there is a
Zariski open neighborhood R of y with a closed embedding i : R — U into a smooth scheme U, such that
i(R) = {df =0} C U for f : U — C a regular function on U. Furthermore, ig ;;(s|r) =i ' (f) + II%,U.

Using the notation in the definition, the charts (R, U, f,i)’s are called critical charts of (Y,s).
For the similar definition of a d-critical stack, see Section 3.2 in [BBBBJ15].
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Example 1 (Presentation of Hilb" (C?) as a degeneracy locus [BBS13]). To a subscheme Q C C3 with
Hilbert polynomial Pg = n we can associate an n-dimensional vector space V,, = HO(OQ), three pairwise
commuting linear maps
XY, Z:Vy =V,
defined as multiplication by x, y, z € C|x,y,z|, and a vector v € V,, corresponding to 1 € H°(Og). The
vector v is cyclic for the action of C[X,Y,Z] on Vy: C[X,Y,Z] - v = V.
Now consider the space of triples of n X n matrices and a vector in Vy,:

Hom(Vy, V)3 x V.

This space is a quasiprojective variety and admits a GL,, action induced from the action of GL, on V,,. The
character x : GL, — C* defined by x(g) = det(g) defines a linearization of the trivial bundle. Let U be
the stable locus of the linearization. It turns out that U consists of the points (X,Y,Z,v) where v is cyclic
for the action of X, Y, Z. Consider the GIT quotient

NHilb"(C?) := Hom(Vy, Vy)® x Vyy ) GL, = U/GL,

with respect to this linearization. Let W : NHilb" (C3) — C be the function on NHilb" (C3) defined by
W(X,Y,Z,v) = tr([X,Y]Z). The condition {dW = 0} is equivalent to the condition that X, Y and Z
pairwise commute. Then the locus {dW = 0} is isomorphic to Hilb" (C3). Then

(Hilb" (C?), NHilb" (C3), W, i)
itself is a critical chart for Hilb" (C3) which defines a d-critical locus structure on Hilb" (C3).

Note that a construction similar to Example 1 also gives a presentation of the moduli stack of
length n sheaves on C? as a degeneracy locus of a regular function on a smooth stack.

Using this description, in [KS21] we constructed a d-critical locus structure on Hilb" (wg) for
S=P2orS=F, In general, one obtains a d-critical locus structure if there is a —1-shifted
symplectic structure on the derived moduli stack.

Theorem 5. ([BBBBJ15], Theorem 3.18) Let (M, ww\p) be a —1-shifted symplectic derived Artin C-stack,
and M = to(M) the corresponding classical Artin C-stack. Then there exists a unique d-critical structure
s € HY(SY,) on M, making (M, s) into a d-critical stack with the property that:

(a) For each point p € M, there exists a smooth C-scheme U with dimension dimHO(]LX|p), a point
t € U, a reqular function f : U — Al with djzf|r = 0, so that T := Crit(f) C U is a closed C-
subscheme with t € T and a morphism ¢ : T — X which is smooth of relative dimension dimH"(LLx|,)
with P(t) = p.

(b) Let st be the unique section in HO(SY) with t7,y1(st) = i *(f) + I} ;, and (T, st) is an algebraic
d-critical locus. Then s(T, ) = st in H(S}.).

It is shown in [PTVV13] that there is a —1 shifted symplectic structure for the derived moduli
stack of perfect complexes on a compact Calabi-Yau 3-fold. For local toric Calabi-Yau 3-folds,

we need to use the analogous result for a Calabi-Yau 3-category following [BD19]. Recall the
definition of non-commutative Calabi-Yau given in Definition 3.

Theorem 6. ([BD19], Theorem 5.5) Given a non-commutative Calabi-Yau (C,0) of dimension d, the
moduli space of pseudo-perfect objects M¢ has an induced symplectic form of degree 2 — d.

We consider the case when d = 3, and denote this 2-form of degree —1 by w.



6 SHELDON KATZ AND YUN SHI

3. AN EXPLICIT DESCRIPTION OF THE MODULI STACK OF ZERO DIMENSIONAL SHEAVES ON C3

In this section, we give an explicit description of the derived moduli stack of zero dimensional
sheaves on C3. While we were finishing up this project, we became aware of the recent preprint
[RS], in which the main theorem of this section was proven by a direct construction.

Our approach is through the use of the Whitehead theorem for derived stacks reviewed in
the previous section. We first exhibit a derived stack with the right classical truncation and a
self-dual cotangent complex of the expected form. Then we construct a universal family on this
derived stack, and use it to construct a map to M. Finally we show that this map induces an
isomorphism on cotangent complexes.

3.1. The derived stack X and its cotangent complex. Let A, = k[X°(i, ), Y°(i,}), Z°(i,})] for
1<i<n1<j<n 1 Let W € A, be the potential defined by W = tr(XO [YO, ZO]). It is natural
to expect the Darboux form of [BBJ] associated to W to be relevant. Explicitly, W induces a
linear map from A;’I”Z to Ay, and we have the associated Koszul complex:
3n? a2 3 32,1732 3201721 a2 d-1—aW
0= AA) = .= ANAT) — ANAT) — A\N4)) —— A =0

Denote this complex by Aj. Following the notation in [BBJ], we denote the generators in degree i
by xi,..., xj,.. Then A}, is a cdga free over A} (0) = A, generated by 3n? generators in degree —1.
We write the generators of A;’[’z in the form of X~1(i,7), Y='(i,), Z7'(i,), where d(X~1(i,j)) =
(Y070 — Z20Y%)T (i, j) and similarly for Y~1(i,7), Z71(i, ;).

The module of Kéhler differentials Q}an(o) is generated by dz X°(i,), d;rY°(i, ), darZ°(i, j).
Then by Example 2.3 in [BB]J] we have Q! +[1] is generated by darX°(i, ), darY°(i, j), darZ°(i, ),
darX1(i,7), darY1(i,j), darZ71(i,j) as an Aj-module. The differential in Q}‘\fl is given by

d N dgrX 1) = (Y0durZ%)T + (dgrY°Z)T — (Z°d1Y°)T — (dgrZ°Y0)T. 1)

Now consider the cotangent complex of the derived stack X, = [Spec(A})/GL(n)]. This is

described in terms of
T o d°
LY, = Qi = 87 © Ospec(az).

where & : Spec(As) — X, is the canonical map. Here the map d° is induced by the GL(n) action
on Spec(Ap,). See Section 3.3 for more details. Note that O} » has generators in degree —1 and 0,
hence at this point L5 is generated by elements in degree —1,0 and 1, so L%, cannot be self-dual
with a shift of —1. It is natural to use the Darboux form for Artin stacks from [BBBBJ15], making
the cotangent complex self-dual by adding an additional n> generators z; 2, ...,2;22 in degree —2

to As. The map d—2 is again induced by the action of GL(n), and it is the dual of dy. After this
fix, we have

o . An? 3n2 3n? n?
x, 2 0%, = 0%, — O — Ox,. (2

concentrated in degree —2, —1, 0 and 1 as a complex of Ox, -modules.

IWe are mostly concerned with the case k = C, but everything goes through for an arbitrary algebraically closed field
of characteristic zero.
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3.2. Universal family on X, and a map to Mcg 2))- To apply the Whitehead Theorem, we
3

(klxy,
need to provide a map X, — Mcgq(k[x,y,z]) and then check that it induces an isomorphism of
cotangent complexes. An A ® k|x, ]}, z] module of length n will induce such a map. One could
hope that endowing a projective A-module of length n with a k[x, y, z]-module structure would
suffice, but that turns out to be too optimistic. Let’s proceed naively at first and then modify the
argument. Since the following arguments do not depend on n, we will denote Aj, by A°®.

We could consider the A®* module F;, := A® ®; V;;,, where V}, is an n-dimensional vector space
and try to define a k[x, y, z]-module structure on F, by letting x, y, z be represented by X9,Y9, 70,
respectively. But that only works over ty(A®), since X°, Y%, Z do not pairwise commute. But we
only need to check this commutativity up to homotopy. The generators of A® in degree —1 pro-
vide the required homotopy, but then higher homotopies are required because the commutators
are not independent but satisfy the Jacobi identity. These are handled by the generators of A® in
degree —2. There are no higher homotopies.

More formally, we resolve k[x, y, z] by a (noncommutative) dga D*® which is free as an algebra.
The free generators we need are generators x,y,z in degree 0 (to map to the commuting x,v, z),
degree —1 generators u,v,w to map to the commutators, and a generator f in degree —2 to
implement the Jacobi identity. The differentials of D*® are given by

dx =dy =dz =0, du = yz — zy, dv = zx — xz, dw = xy — yx, 3
dt = (xu —ux) + (yv — vy) + (zw — wz). ®)
We replace k[x,y,z] by D*® and give F, the structure of a D*-module.
As before, we let x,y and z act on F; as X0 Y0 and 79, respectively. To describe the actions of
u,v, and w, we first let {¢;} denote a basis for V,, and then put

u-(1ee) =Y. X 1(ji)®ej, 4)
j

and extend the action of u to all of F, by A®-linearity. Here X (i, j) are the generators of A® in
degree —1 which were introduced in the previous section. We have an analogous definition for
the actions of v and w. By construction, the actions of #,v, and w commute with 4.

As for the action of ¢, we first identify the n? generators of A~2 with symbols T(i, ), so that

AT(i, ) = (X0, (XD + Y0, (00 )T+ (2% (Z7HT) G j)- 5)

We then put
t-(1®e) =Y T(i,j) ®e. (6)
]
and extend the action of ¢ to all of F,; by A®-linearity. By construction, the action of t commutes
with d.

This completes the description of the D*-module structure on F;.

To simplify notation, we denote Cg g(k[x, y,z]) by C, its subcategory of length n sheaves by C",
and the substack of M parametrizing length n sheaves by M. Next we use the universal family
F, to construct a 1-morphism in Map(X,, M}). By Proposition 1, we only need to construct a
1-morphism in Mape—cat,, (Lpe(Xn),C").

Let D; and D, in Theorem 2 be Lpg(%n) and C" respectively. Since the universal family F;
naturally carries a GL, action, it defines a right quasi-representable Ly.(X,) ® (C")°P-module,
hence defines a 1-morphism in the mapping space Map(X,, M}).
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We will compare the cotangent complexes in the next section.

3.3. Comparison of the cotangent complexes of X, and M. We first review a bimodule reso-
lution for the Jacobi algebra of a quiver which is Calabi-Yau constructed in [Gin]. This resolution
will be needed for computing the cotangent complex of M’. We omit 7 in the notation in this
section.

Recall that [Spec(A))/GL(n)] can be realized as the moduli stack of n-dimensional represen-

tations of the following quiver Q:
Z
& )/ Y
S() $_/

()

X

Now the path algebra kQ; is isomorphic to k < x,y,z >, and we let w = tr(x[y, z]) be the potential
in kQq. We denote kQ1/(dw) by C. Since C is a Calabi-Yau algebra, the following complex from
[Gin] gives a bimodule resolution of C:

2 -1 0
0= (CRCORESCREQCESCRERCSCRC—C =0, )

where E is the vector space of edges in the quiver, and all the tensors below are over the idem-
potent subring R C B.
We have

i 1erelmrel-1x, ®)
e rel-yRze1+10YRz-—2z0YR1-102z1y,
with similar formulae for a ! (1® y* ® 1) and ' (1 ® z* ® 1), and

2219l el -1 @x+yRy' el-1y ey+z82'®1-182" ®z.

Recall the following notion from [BD19], [GR10a]. Let A be a monoidal dg-category. Let B
be an A-module category. For any object b € B, denote the right adjoint to the the functor
_®b: A — Bby Homy(b,_). Let U be an affine derived scheme, and define the natural
transformation

Y : QCoh(—)* — IndCoh(—)"

by
Yy : — ®wy : QCoh(U) — IndCoh(U).

The functors QCoh(—)* and IndCoh(—)', and the natural transformation Y are described in more
detail in [BD19, Section 3.1]. Then one has:

Proposition 7 ([BD19], Proposition 3.3).
T(Mec)[—1] ~ Hom 4, (YF, YF).
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Denote GL,, by G. Take A to be
IndCoh(X) = IndCoh([Spec(A®)/G]),

and take B to be
IndCoh([Spec(A® ®y k[x,y,z])/G]).

Note that IndCoh([Spec(A®)/G]) ~ DS (A*®), where D(A®) is the equivariant derived infinity
category of A®-modules. Take the object b to be F. We denote the map induced by the universal
object F by f : X — M. We are trying to show ¢ : T% — f*T(M_) is an equivalence. Note that
g is an equivalence in DY (A®) if its projection as a morphism in its homotopy category [DC(A®)]
is an isomorphism. So we only need to work with [D¢(A®)]. Since we already have the map g,
we only need to show the isomorphism after pullback to [D(A®)], which is DY(A*®), the usual
derived category of A®*-modules. We use the same notation for the projection of every object in
the homotopy category and its lift in [D(A®)].

Since A*® is a cdga of standard form, we have wspecas =~ A*[l] for some I. Hence we can omit
the functor Y in Proposition 7. By Proposition 7, we have

F*T(Me)[~1] = RHom go 4y 21 (F, F)

X,Y,2)
as an isomorphism in D?(A® @y k[x,y,z]). We use Ginzburg’s bimodule resolution (7) to give an
explicit representative of RHoOM e, [x,y,2 (F, F)-

Tensoring the resolution (7) by B® := A® ® k[x,y, z| over k[x,y,z| on the left and on the right,
we get a bimodule resolution of A® ® k[x,y, z]:

-2 -1 0

0— (B*®B )R 5 B*QE*®B* “—> B*®E®B* 5 B*®B* = B* =0, )
Then we have the following quasi-isomorphism in D’(A® ® k[x,y,z]) (See an analogous discus-
sion in Section 2.1 in [Shil8]).

-2 -1 -1
RHOM pe iy, (F,F) ~ F*QF “= F*QE* @ F ~5 FQEQ F* “> FQ F*
, FexeF | Fx@F | (10)
~ FFQF X% oF @y ®F = oFQyeF % FQF*
Gr*z*®F OFrRz® F*

We denote this complex by L®. The generators of RHom gek(y,y -] (F,F) as an A® module are
in degrees 0, 1, 2, and 3.

Lemma 8.
(8] : T% — f*T(Mc) =~ RHom go gz, (F, F)[1]

is an isomorphism in DY (A®).

Proof. We can view F as an A®* ® D®*-module with a GL(#n)-action. We represent T%. by the dual

of (2). We describe the pullback of T to Spec(A*) as the cone of the map Og;ec (a%) T;pec( A%)

associated to the infinitesimal GL(#n)-action.

Since T*. is a complex of free modules, we can regard [¢] as an actual map between complexes.
We write down the definition of [g] on generators explicitly. Let A® and D* be the graded rings
underlying A® and D* respectively. We consider generators of T%. in degree 0, e.g. the vector field
d/dX°(i,j) on Spec(A*®). Viewing F as a A* ® D*-module F, this vector field defines a first-order
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deformation F of F, a module over A®* ® D*® @ k[e]/(€?), flat over k[e]/(€?). The action of D*® on
F is defined by letting t,u, v, w,y,z act on F exactly as they did for F, while the action of x is
replaced by matrix multiplication by X° + €E;;, where E ij is the matrix whose (i, j) entry is 1 with
all other entries vanishing.

We get an extension

ijs

0—+F—-F—=F—o. (11)
We resolve F by free G* = A® @ D*-modules
[*:0+F®G* - FRE*®G* - G*QE®F -+ G*®F - F—0. (12)

Let {f;}; be a set of basis elements for F. Using this resolution, the extension class of (11) is
represented by a map G* ® E ® F — F. This map associates to the generator X°(i,j) ® 1 of G* the
element f ® x* ® f; € F* ® E* @ F in the Ginzburg resolution, with similar formulas for other
generators.

We can perform a similar calculation for the other vector fields corresponding to the generators

"2
Spec(A®

find that d/dX~1(i,j) maps to f; ® x ® f]-*, cl/clzl-;2 maps to f; ® f]-*, and similarly for the vector
fields associated with Y and Z. By the definition of pushforward of vector fields and the Kodaira-
Spencer map to RHom peg(y,y,- (F, F), we see that the above calculation indeed is the map [g] on
generators.

Thus we have the following diagram:

of A®, as well as for the infinitesimal GL(n) corresponding to O ) mentioned above. We

2 d ! ( )3712 dO ( )3le dl ( )le
—_—
X X X

X
L |» | e
1 0 1

FQF * s FFQE*®QF * 3 FQEQF* - FQF*

where the top row is identified with T%, and [g] is explicitly given by the maps ¢'. It is obvious
that ¢'’s define an isomorphism between complexes. O

We immediately conclude the main result of this section.

Theorem 9. The universal family F induces an isomorphism of derived stacks
f:X— M.

Proof. By [Hel], we know that M admits a deformation theory in the sense of [GR10b], hence
both X and M are objects in PreStkg,r. Then the result follows from Lemma 8 and Theorem 3.
Indeed, Lemma 8 implies that [g] is an isomorphism in [D(A*)], hence g : TS — f*T (M) is an
equivalence. Then Theorem 3 implies the desired result. O

4. D-CRITICAL LOCUS STRUCTURE ON Hilb" (ws)

In this section we work with local toric Calabi-Yau 3-folds. Let S be a smooth and projec-
tive toric surface, and let wg be the total space of the canonical bundle of S. Consider the
dg-category of complexes of coherent sheaves with compact support on ws. We denote the stack
parametrizing length 1 sheaves on ws by My, , and its classical trunction fo(M¢,,) by M, . By
Theorem 5, there is a canonical d-critical structure on My, as a truncation of the —1-shifted
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symplectic structure on My, . We show that this d-critical locus structure has critical charts
(Hilb"(C3), NHilb" (C3), W, i) as in Example 1. Again, we omit 7 in the notation.
Remark. The authors of [RS] provided an analytic description of a d-critical locus structure

on quot schemes of a compact Calabi-Yau threefold. We have restricted attention to local toric
surfaces so that we can work algebraically.

By Theorem 2.10 and Corollary 2.11 in [BBBBJ15], a critical chart for the truncated d-critical
locus structure is constructed from a minimal standard form open neighbourhood
(R,7:U=Spec(R) — X,p)
of p, for p a point in M/, - Choosing H, ® and ¢ as in Theorem 2.10 [BBBBJ15], the critical chart
is defined by (Crit(H), Spec(R(0)), H, ).
The following Proposition shows that every point p € M, has a standard form open neigh-
bourhood equivalent to X, where X is defined in Section 3.1.

Proposition 10. The stack M, admits a cover by open substacks isomorphic to X.

Proof. Denote the projection map by 7 : wg — S. We recall our strategy employed in [KS21]. We
need only show that there exists an open cover of S by open subsets {V, } isomorphic to C? with
the property that for any finite subset of Z C S, Z is contained in one of our open subsets V.
Applying this to the projection to S of the support of a zero-dimensional sheaf G, we see that G
is contained in My , where U, = (V) ~ C3.

We describe such a cover {V, } by an inductive procedure. Recall that all toric surfaces can be
obtained by successively blowing up P2 or IF, at torus invariant points. We denote this process
by:

S =X &) Xm—1 = - f—1> Xo,
where X is IP? or F,, and fj represents the blowup of X; i at a torus invariant point q; 1. We

know from [KS21] that X admits a cover {V}}, such that the charts {Mm”_, (V,)} cover MZ,XO.
0
Now assume that X; ; admits such a cover. Let I be the index subset consisting of i such that
gj-1 € V}_;. Then we have f'(V/ ;) ~ C?fori ¢ I, and f;'(V/'}) ~ Bl ,C* for i’ € I.
Let V].i,’k be the open subset of fjfl(Vji/_l) obtained by removing the fiber over k € P1. Then
{fjfl(Vjifl)}iéI U {Vji/'k}i/d defines a cover of X; as required. O
Now we write down the pullback of the 2-form w to Spec(A*®) explicitly:
Lemma 11.
7w =tr(dgrX A (darXO)T + dgrY P A (darY0)T + dgrZ 7 A (dgrZ°)T)

=Y Y darX (0, ) Adgr X030, ) + Y ) darY (i, ) Adar Y0 (i, )
i i

+ Y darZ 1) A dar 200, )
r

Proof. By Corollary 2.5 and Proposition 5.3 in [BD19], the closed 2-form w is identified with the
Serre pairing:

o t
End g, (Fe)®® = Endagy_(Fe) = Op, -
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Hence 7" (w) is identitied with the Serre pairing on RHom ge iy, - (F, F). Consider the presen-
tation of RHoM ge g (x,y,- (F, F) by the bimodule resolution (10). Recall that we denoted the resolu-
tion of F in (12) by F*. We choose an element ¢ in Hom(F®, F*[1]), and write M = (Mx, My, Mz)T
with Mx (i, j) the matrix corresponding to the basis element f; ® X* ® f;, and similarly for My
and My. We choose another element N in Hom(F®, F*[2]), and write = (Nx, Ny, Nz) with
Nx(i,]) the matrix corresponding to the basis element f; ® X ® f;" and similarly for Ny and Nz.

Then the pairing can be identified with
tr(N o MT) = tr(NxM% + NyML + Nz MD).

We get —tr(MT o N) if we take the trace of composition of an element in Hom(F®, F*[2]) and
Hom(F*, F*[1]). We do not need to consider multiplication in degree 0 and 3 of RHom(F, F) since
the tangent complex of Spec(A*®) vanishes in degree —1. Using the isomorphisms ¢" and ¢! in
the commutative diagram, we obtain the 2-form in degree —1 as desired. O

By Theorem 2.10 (a) in [BBBBJ15], the critical chart is defined by (Crit(H), Spec(A(0)), H, i),
where H = —®, and

w ~ (d4r(¢),0,0,0...)

13
Lemma 12. We can choose the superpotential induced by w by ® = —trXo[Yo, Zo).

Proof. We will choose ¢ as in Theorem 2.10 in [BBBBJ15] and then check the relations (13). We
take ¢ € (QL.) 7 tobe

tr(X(dgrX°) T+ Y (dgrY") " + 27 (dgrZ%)T).

It is easy to see that w ~ (dr(¢),0,0...).
Take ® = —tr(X°[Y?, Z0]). Then

dar(®) = — tr((darX°)YOZ® — (darX")Z°Y°) — tr(X°(darY")Z° — X°Z%(d4r Y?))
— tr(X°YO(dgr2%) — X°(d% 2)Y?)
On the other hand,
d(g) = tr(YOZ° = Z°Y") T (dr X)T + (2°X° — X°Z%) T (darY*) " + (X°Y? = YOX°)T(dar2°)"))

As a result, we have
dgg(®) +dg = 0.

Taking the Hamiltonian H = —® = trX;[Y), Zo|, we have

Theorem 13. The d-critical locus structure truncated from the —1-shifted symplectic structure on Mg,
have critical charts all isomorphic to (Crit(H), Spec(Ap(0)), H,i) = (Spec(A,/(0W)), Spec(An), W, ).

In [KS21], we showed that there is a d-critical locus structure on Hilb"(wg) for S = IP? or
S =F,.

Theorem 14. [KS21] Suppose that S = P2 or S = F,,. Then Hilb" (ws) has a d-critical locus structure
with critical charts all isomorphic to (Hilb" (C3), N Hilb" (C3), W, i).
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This was done by explicitly checking that the local sections W;’s agree up to II%Iilb” (C3),NHilb" (C3)

on intersections. Thus for S = P2 or S = FF,,, we have

Corollary 15. The pullback of d-critical locus structure in Theorem 13 to Hilb" (ws) is equivalent to the
d-critical locus structure in Theorem 14.
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