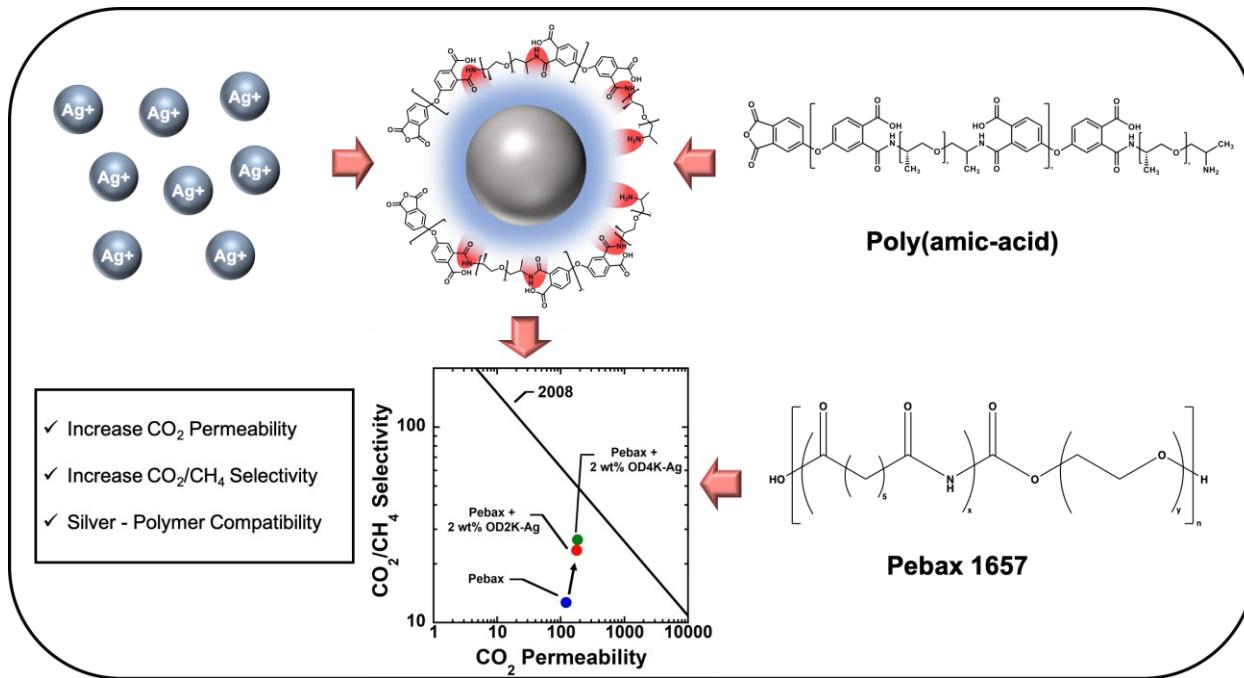


1
2
3
4 **Rational Design, Synthesis, and Characterization of Facilitated Transport**
5 **Membranes Exhibiting Enhanced Permeability, Selectivity and Stability**
6

7 Matthew T. Webb¹, Lucas C. Condes¹, Harold G. Ly^{1,2},
8 Michele Galizia^{1*}, Sepideh Razavi^{1*}
9

10
11 *¹ School of Sustainable Chemical, Biological and Materials Engineering,*
12 *University of Oklahoma, 100 E. Boyd Street, Norman 73019, OK, USA*


13 *² Oklahoma School of Science and Mathematics (OSSM), 1141 N. Lincoln Blvd,*
14 *Oklahoma City 73104, OK, USA*
15
16
17
18
19
20
21
22
23
24

25 *Submission to the Journal of Membrane Science*

26 **REVISED MANUSCRIPT**
27
28

29 * Corresponding Authors: S. Razavi, srazavi@ou.edu; M. Galizia, mgalizia@ou.edu
30
31
32

33 **GRAPHICAL ABSTRACT**

34

35

36 **HIGHLIGHTS:**

37 • Silver nanoparticles stabilized with ether containing poly(amic-acid)s
38 exhibit excellent stability.

39 • Silver nanoparticles stabilized with ether containing poly(amic-acid)s
40 increase Pebax CO_2 permeability by 50% and CO_2/CH_4 selectivity by 100%.

41 • Tunable CO_2 solubility and diffusivity can be achieved using silver
42 nanoparticles with varying ether groups.

43

44

45

46 **ABSTRACT**

47 Despite outperforming conventional polymer membranes in the short time frame,
48 facilitated transport membranes (FTMs) are prone to photo/chemical aging, which causes
49 a rapid decay of their performance. Moreover, when embedded in polymer materials to
50 fabricate mixed matrix membranes, structural defects may form at the metal-polymer
51 interface, causing a selectivity loss. To overcome these issues, a series of poly(amic
52 acid)s (PAAs) have been synthesized using 4,4'-oxydiphenyl anhydride (ODPA) and
53 Jeffamine monomers of varying molecular weight, and used to fabricate silver
54 nanoparticles via the chelating reaction with silver ions, in attempts to simultaneously *i*)
55 achieve defect-free mixed matrix membranes (MMMs), *ii*) target CO₂ selective transport,
56 and *iii*) enhance long-term stability. The occurrence of the chelating reaction between
57 silver and the PAA was confirmed, and as a result, individual and un-aggregated PAA-
58 coated silver nanoparticles were obtained and incorporated into a commercial polymer,
59 Pebax 1657, to fabricate defect-free mixed matrix membranes. The effect of the PAA
60 length and ether functional group concentration on the structure and performance of the
61 resulting mixed matrix membranes was systematically investigated. Remarkably,
62 inclusion of only 2 wt% nanoparticles in Pebax enhances the CO₂ permeability by 50%
63 and CO₂ selectivity by 100% relative to neat polymer. A detailed analysis of the sorption
64 and diffusion coefficients was performed to elucidate the molecular origin of the observed
65 membrane performance. Finally, preliminary data show that the newly synthesized
66 materials exhibit high chemical stability upon exposure to pure H₂.

67

68 **Keywords:**

69 Facilitated transport membranes; CO₂ capture; diffusivity-selectivity; solubility-selectivity;
70 stability.

71 **1. INTRODUCTION**

72

73 Nanoparticles (NPs) are of utmost interest due to their unique chemical-physical
74 properties, which substantially differ from those of bulk materials. The tunable nature of
75 NP properties enables their use in a variety of applications such as optics [1,2,3],
76 electronics [4,5,6], nanomedicine [7,8,9], drug delivery [10], and molecular separations
77 [11,12]. In this last regard, nanoparticles can be embedded in polymer materials to tune
78 their transport properties and achieve superior selectivity/permeability performance in a
79 variety of industrially relevant separations [13,14,15,16,17,18]. Specifically, silver
80 ions/NPs have traditionally been used as facilitated transport carriers for specific gasses,
81 such as carbon dioxide and ethylene [19,20,21]. As recommended by the 2019 NAS
82 report “*A Research Agenda for Transforming Separation Sciences*”, achieving high
83 selectivity is the crucial factor to debottleneck membrane-based separations and make
84 them competitive with conventional processes [22]. More in general, current research
85 efforts in the membrane field are oriented towards enhancing selectivity and long-term
86 durability [23,24,25,26,27,28,29,30]. This paper aims at proposing a novel strategy to
87 simultaneously enhance selectivity, permeability and stability in CO₂ separation systems.

88 Facilitated transport membranes (FTM) have been an active area of research in
89 membrane science, providing materials that far exceed the separation performance of
90 conventional polymer materials and position in the upper-right side of the Robeson upper
91 bound [13,19,31,32]. As shown by Eriksen et al., an ethylene permeability of 26,800
92 Barrer and a corresponding ethylene/ethane (C₂H₄/C₂H₆) selectivity of 1930 (i.e., > 99.9
93 wt% ethane purity) was achieved by soaking glycerin-swollen Nafion membranes into an
94 aqueous solution of silver tetrafluoroborate (AgBF₄) [33]. By comparison, most

95 membranes have an ethylene permeability between 1 to 1000 Barrer, with a C₂H₄/C₂H₆
96 selectivity less than 10 [34]. However, due to the instability of the facilitated transport
97 carrier (e.g., reduction of ions), as well as non-selective interfacial polymer-filler defects,
98 these films fall short of commercial viability [13]. As an example, AgBF₄ incorporated into
99 poly(2-oxazoline) suffered a 100% decrease in the C₂H₄/C₂H₆ selectivity in as little as 4
100 hours [35].

101 Solid-state configurations with fixed carrier sites, which function based on a
102 chained-carrier mechanism, are one avenue towards improving FTMs [36,37,38,39]. In
103 2015, Zhou et. al. doped Pebax polymer membranes with nanospheres formed by silver
104 NPs chelated with polydopamine, observing a simultaneous increase in CO₂ permeability
105 and CO₂/CH₄ selectivity relative to neat Pebax. Using a 15 wt% loading, the enhanced
106 selectivity experienced an 8% decrease over the span of 7 days [40]. Although these
107 pioneering results look promising, the individual and synergistic contributions from the
108 silver and polymer ligand remain largely unknown. Furthermore, the exploration of
109 different ligands and their effects on the long-term stability and performance of FTMs are
110 crucially important in attempts to further enhance the performance and long-term stability
111 of these systems.

112 To address the downsides associated with FTMs by use of NPs, it is necessary to
113 carefully consider the design of the particle and its capping agents. Poly(amic-acid)s
114 (PAAs) show favorable carbonyl-silver coordination interactions that ultimately are
115 responsible for the formation of stable silver NPs via the chelating mechanism [41].
116 Secondly, electron acceptors within PAAs (e.g., carboxylic acids) polarize the particle
117 surface, which helps tune selectivity and offers particle protection from photo/chemical

118 degradation [36]. Additionally, by applying the solution-diffusion separation principles
119 [42], incorporation of functional groups (i.e., ethers) that interact with target solutes (e.g.,
120 CO₂) can further benefit the separation performance of existing membrane systems
121 [43,44,45,46,47]. Finally, improving the NPs compatibility with polymer matrices is
122 expected to inhibit the formation of non-selective defects, thus providing an additional
123 opportunity to enhance selectivity in membrane applications [48,49].

124 In this study, rationally designed nanoparticles targeting CO₂ separation were
125 synthesized by chelating silver NPs with PAAs. Each PAA was molecularly designed to
126 include polyether segments to target CO₂ transport and achieve particle compatibility in
127 polyether-based membranes. Using a variety of physical, chemical, and structural
128 characterizations, the effect of the PAA on the structure and properties of NPs was
129 systematically investigated. NPs were then incorporated, in the amount of 2 wt%, in
130 Pebax 1657, a commercial polymer of practical interest for CO₂ separation, showing that
131 CO₂ permeability can be enhanced by 50% and CO₂/CH₄ selectivity by 100%. The
132 molecular origin of this behavior was elucidated by breaking permeability into its sorption
133 and diffusion contributions. Finally, the stability of the newly synthesized materials was
134 tested by exposing them to pure H₂ for 24h, after which CO₂ and CH₄ permeability and
135 CO₂/CH₄ selectivity were re-measured. Therefore, the approach proposed in this study
136 provides a unique avenue to achieve high CO₂ selectivity and permeability, while
137 simultaneously prolonging the long-term durability of the ensuing systems.

138

139

140

141 **2. MATERIALS AND METHODS**

142 **2.1. Materials.** 4,4'-Oxydipthalic anhydride (ODPA) was purchased from Sigma-

143 Aldrich (97 wt % purity), and two Jeffamine D-series grades, exhibiting molecular weight

144 of 2000 (D2K) and 4000 g/mol (D4K), were generously donated by Huntsman corporation

145 (cf. Table 1). Prior to use, all monomers (i.e., Jeffamine and ODPA) were dried under

146 vacuum for 24 hours at room temperature and stored in a desiccator. The PAA reaction

147 medium, tetrahydrofuran (THF), was purchased from Fisher chemical with a water

148 content of 0.02 %. The water content was further reduced using 3Å molecular sieves

149 purchased from Sigma-Aldrich, for at least 24 hours. Methanol (>99 %), which was used

150 to remove monomer/oligomers from the synthesized polymers, was purchased from

151 Acros Organics. Deuterated chloroform, CDCl_3 , to be used for nuclear magnetic

152 resonance (NMR) characterization, was purchased from Cambridge Isotope

153 Laboratories, Inc. (99.8%). Ethylene glycol (EG), to be used as the reducing agent in the

154 NP synthesis, was purchased from Fisher chemical. The NP precursor, silver nitrate

155 (AgNO_3), was purchased from Acros Organics with a purity >99 %. Chloroform (CHCl_3)

156 was purchased from Sigma-Aldrich to extract the NPs from EG and to dissolve Pebax

157 1657 for membrane fabrication. Ultrapure water with an in-line resistivity of 18.2 $\text{M}\Omega\text{-cm}$,

158 used throughout the study, was produced via a MilliQ7000 purification system. White

159 mineral oil with a flash point of 360-400 °F, to be used to control the reaction temperature,

160 was obtained from Fischer Scientific. Pebax 1657 was purchased from Arkema to serve

161 as the membrane bulk material. 200 proof ethanol (ETOH) was purchased from Fisher

162 Chemical to dissolve Pebax for membrane fabrication via solution casting.

163

164 **2.2 Synthesis Techniques**

165 **2.2.1 Synthesis of Poly(amic-acid).** The PAAs were synthesized through a
 166 nucleophilic substitution reaction by Jeffamine's amine group at one of ODPA's anhydride
 167 carbonyl carbons (cf. Figure 1). This reaction was performed in a 100 ml three-neck flask,
 168 manufactured by Chemglass, equipped with a Lab Fish mechanical stirrer and a water
 169 jacketed reflux column. A nitrogen blanket was first provided to the flask to remove any
 170 traces of humidity. The flask was then charged with 30 ml of THF and 15 mmol of
 171 Jeffamine [50]. The same procedure was used for both Jeffamines, D2K or D4K.

172

173 **Table 1: Summary of Diamines Used in This Study.**

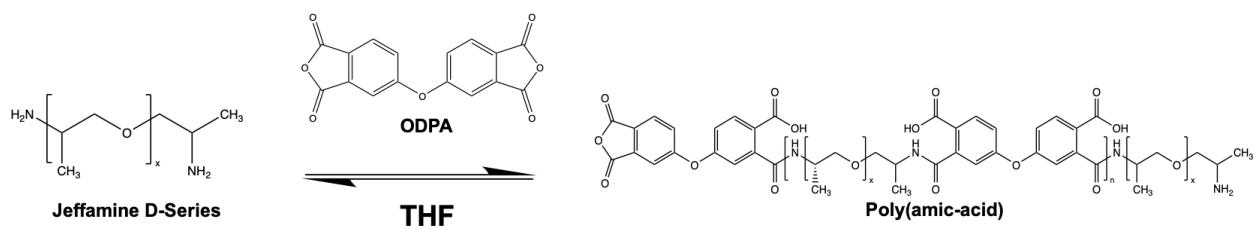
174

Name	Abbreviation	Molecular Weight (g/mol)	Chemical Structure	X	Resultant Polymer Abbreviation
Jeffamine D2000	D2K	2000		33	OD2K
Jeffamine D4000	D4K	4000		68	OD4K

175 Listed is the diamine commercial name, its abbreviation, molecular weight, structure, the
 176 number of internal repeated units (X), and the abbreviations used for the PAA resulting
 177 from the reaction between ODPA and each diamine.

178

179


180

181 The mixture was stirred at room temperature until homogeneous. Then, the solution
 182 was cooled to 0 °C using an ice bath before adding 15 mmol of ODPA. The purpose of
 183 the ice bath during the initial monomer consumption was to improve the molecular weight
 184 of the resulting PAA, given the exothermic nature of the reaction [51]. The initial attack of
 185 the amine on the anhydride carbonyl occurs rapidly, within the first few minutes of the
 186 reaction. After 10 minutes, the flask was heated on a hot plate to 30 °C using a bath of
 187 white mineral oil. The mixture was allowed to react for three hours to ensure a high

188 molecular weight polymer was formed, capable of passivating the silver surface quickly
189 in the NP synthesis. Following this step, the PAA was precipitated using a methanol/water
190 (10/90 vol%) mixture and subsequently rinsed using this mixture over a vacuum filtration
191 device. This step was done to remove any unreacted monomers and oligomers. The
192 resulting PAAs (OD2K/OD4K) (cf. Figure 1 and Figure S1, Supporting Information) were
193 dried under vacuum for 24 hours at room temperature and stored in a chemical
194 refrigerator at 4 °C. The PAA derived from ODPA and D2K will be abbreviated by OD2K,
195 while the PAA derived from ODPA and D4K will be abbreviated by OD4K.

196

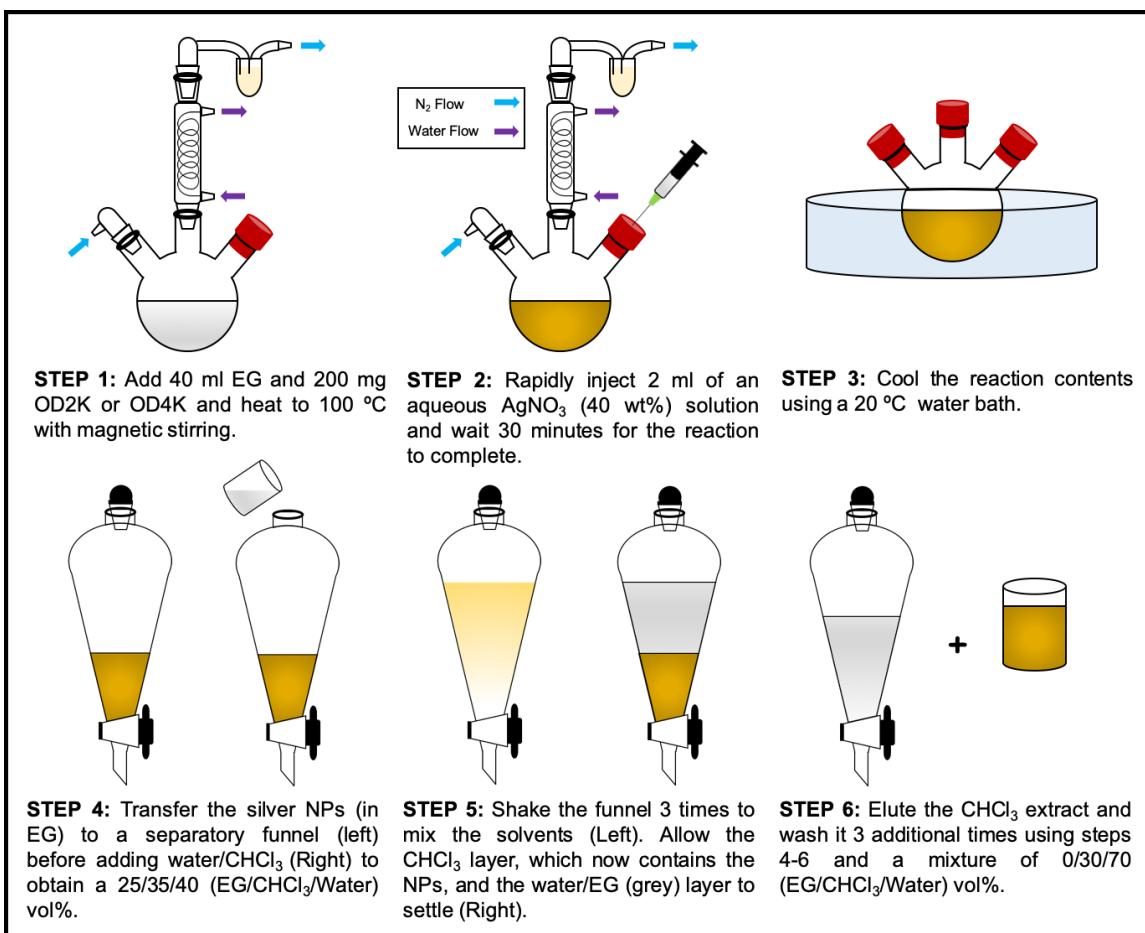
197

198 **Figure 1: Reaction between Jeffamine and ODPA for the synthesis of Poly(amic-acid)**
199 (**PAA**) in THF. The resulting PAA structure is shown. X denotes the number of repeating
200 segments within each Jeffamine molecule (cf. Table 1). N denotes the number of
201 repeating segments within the overall PAA.

202

203

204


205

2.2.2 Synthesis of Silver Nanoparticles.

The NP synthesis was performed in a 100 ml three-neck flask from Chemglass equipped with a magnetic stirrer, water jacketed reflux column, and a nitrogen blanketed atmosphere. First, 200 mg of either OD2K or OD4K was added to the flask and completely dissolved in 40 ml of EG (cf. Figure 2, Step 1) This mixture was heated to 100 °C on a hot plate using a mineral oil bath. AgNO₃ was dissolved in a separate beaker using ultrapure water at a concentration of 40 wt%, following the procedure by Kim *et al* [52]. 2 ml of this aqueous solution was rapidly injected into the flask using a syringe to induce particle nucleation (cf. Figure 2, Step 2). The

213 resulting concentration of AgNO_3 after addition to the reaction volume was 0.5 M. The
214 reaction was maintained at 100 °C for 30 minutes, allowing time for particle growth. At
215 this time, the solution was quickly cooled down to room temperature using a water bath
216 at 20 °C (cf. Figure 2, Step 3). To denote the particle type in an abbreviated manner, Ag
217 is added to the end of the PAA that was used in the synthesis (e.g., OD2K-Ag are silver
218 NPs synthesized using OD2K).

219

220

221 **Figure 2:** Schematic of the silver nanoparticle synthesis.

222

223 The nascent particles, still in EG, were then transferred to a 500 ml separatory
224 funnel and mixed with CHCl₃ at a 40/60 (EG/CHCl₃) vol% ratio (cf. Figure 2, Step 4). The
225 particles were pushed from EG into the CHCl₃ layer upon adding ultrapure water, at a
226 vol% ratio of ~25/35/40 for EG/CHCl₃/H₂O, respectively. Likewise, EG was selectively
227 removed by the aqueous layer. NPs were placed in chloroform, rather than remaining in
228 EG, to facilitate their subsequent dispersion in polymers to fabricate the mixed matrix
229 membranes. Such choice is based on: *i*) chloroform's immiscibility with the aqueous
230 phase to facilitate the extraction process, *ii*) chloroform's similarity of solubility parameter
231 to the silver NP's steric polymer layer (CHCl₃ – 19 MPa^{0.5}, EG – 32.9 MPa^{0.5}, and
232 OD2K/OD4K ~ 20.2/19.7 MPa^{0.5}, cf. SI section 1 and 6) and *iii*) the lower boiling point of
233 CHCl₃ (61 °C) relative to EG (197 °C). The funnel was shaken several times before
234 allowing the solvent layers to settle (cf. Figure 2, Step 5). The CHCl₃ phase was removed,
235 and the funnel was cleaned before adding the CHCl₃ extract back into the funnel (cf.
236 Figure 2, Step 6). The CHCl₃ phase was then rinsed 3 additional times in the separatory
237 funnel using ultrapure water at a 30/70 (CHCl₃/H₂O) vol % ratio. Between each wash, the
238 CHCl₃ extract was removed, and the funnel was cleaned. The final particle suspension in
239 CHCl₃ was placed in PTFE lined amber vials and stored in a refrigerator at 4 °C.
240

241 **2.2.3 Mixed Matrix Membranes Fabrication**

242 Neat Pebax membranes were fabricated via the solution-casting of a 2.5 wt%
243 solution in ETOH/CHCl₃ (50/50 vol%), which was dissolved at 50 °C. Both OD2K-Ag and
244 OD4K-Ag were used to fabricate composite materials with Pebax by adding a prescribed
245 amount of particles to the polymer solution. The final silver concentration in these

246 materials was targeted around 2 wt%. Since the particles are also suspended in
247 chloroform, the solvent composition used to dissolve Pebax was slightly altered, so as to
248 obtain a final mixture of Pebax and particles that was 50/50 vol% (ETOH/CHCl₃). This
249 was done to ensure that the total volume and composition of the mixture remained
250 constant. Each mixture was sonicated for 5 minutes before being poured onto a leveled
251 glass dish at room temperature and inside a nitrogen filled glove bag, to prevent samples
252 oxidation. The samples were allowed to dry for 3 days prior to use. The membrane
253 thickness was measured using a Mitutoyo micrometer ten times, with values ranging
254 between 80-100 μ m. Membranes containing 2 wt% OD2K-Ag and OD4K-Ag are referred
255 to as Pebax+2OD2K-Ag and Pebax+2OD4K-Ag respectively.

256

257 **2.3. Characterization Methods**

258 **2.3.1 Nuclear Magnetic Resonance (NMR).** OD2K and OD4K were characterized
259 by ¹H NMR analysis using a VNMRS 500MHz-NMR spectrometer. Prior to the synthesis
260 of OD2K and OD4K, D2K, D4K, and ODPA were examined using NMR to ensure that no
261 impurities were present. Deuterated chloroform (CDCl₃) (99.8%, Cambridge Isotope
262 Laboratories) was used as the solvent with a polymer concentration of 2 wt%. ¹H NMR
263 spectra were referenced internally to CDCl₃ (δ = 7.26 ppm).

264 **2.3.2 Fourier Transform Infrared Spectroscopy (FTIR).** OD2K, OD4K, OD2K-Ag,
265 and OD4K-Ag were analyzed using a Nicolet iS50R Fourier Transform Infrared
266 Spectroscope (FT-IR) in the iS50 attenuated total reflectance (ATR) mode using 64 scans
267 with a resolution of 0.4821 cm⁻¹ (cf. Supporting Information, Section 2).

268 **2.3.3 Dynamic light scattering (DLS).** was used to measure the effective
269 hydrodynamic diameter of OD2K and OD4K in various solvents, in attempt to corroborate
270 the solubility parameter calculated using the group contribution method (cf. Section 1 in
271 the Supporting Information). These measurements were performed on a NanoBrook
272 Series Particle Analyzer using backscattered detection. For more information, cf. Section
273 6 of the Supporting Information.

274 **2.3.4 Transmission Electron Microscopy (TEM).** Micrographs of the OD2K-Ag and
275 OD4K-Ag were obtained using a JEOL 2000FX transmission electron microscope (TEM)
276 at 200kV with LaB₆ electron source. 20 μ L of a silver NP suspension in CHCl₃ (~500 PPM)
277 was dropped onto a 3mm copper grid with a carbon support film. The particle size
278 distribution and morphology were determined based on 160 NPs, using Fiji image
279 analysis [53].

280 **2.3.5 Ubbelohde Viscometer.** The intrinsic viscosity of OD2K and OD4K was found
281 using a size 0C Ubbelohde viscometer purchased from Cannon Instruments, calibrated
282 with a viscometer constant of 0.003309 cSt/s². The intrinsic viscosity was used to
283 compare relative molecular sizes. OD2K and OD4K were prepared at concentrations
284 ranging from 0.3 to 1 g dL⁻¹ in CHCl₃ and tested at 35 °C. The reduced viscosity (η_{red})
285 and inherent viscosity (η_{inh}) were measured at each concentration five times (cf. Figure
286 S4 Supporting Information). The intrinsic viscosity for OD2K and OD4K were determined
287 by averaging the extrapolated value for the η_{red} and η_{inh} at a concentration of 0 g dL⁻¹
288 (cf. section 3 of the Supporting Information). This relative trend was then compared to
289 molecular weight estimates obtained from gel permeation chromatography
290 measurements.

291 **2.3.6 Gel Permeation Chromatography (GPC).** Using a Waters 717 plus auto
292 sampler, 30 μ L of a 0.1 w/w% polymer solution in CHCl_3 was injected into a 7.5 x 250 mm
293 Agilent polypore column at a flowrate of 1 ml/min and at 40 °C. The eluent was detected
294 using a Waters 490E programmable multi-wavelength detector, set to 260 nm. Details
295 surrounding the weight calculations, as well as the overall molecular weight distribution
296 of OD2K and OD4K is available in section 4 of the Supporting Information.

297 **2.3.7 Thermogravimetric Analysis (TGA).** TGA was used to individuate mass
298 losses for OD2K, OD4K, OD2K-Ag, OD4K-Ag, Pebax, Pebax+2OD2KAg, and
299 Pebax+2OD4K-Ag. About 10-20 mg (dry mass) of each sample was placed into a TA
300 Instruments TGA Q500 under nitrogen gas, flowing at 10 ml/min. In the case of the silver
301 NPs (OD2K-Ag and OD4K-Ag), which are suspended in CHCl_3 , the TGA pan was first
302 filled dropwise with the liquid. The CHCl_3 was allowed to evaporate, and the addition was
303 repeated until sufficient particle dry mass was obtained. The samples were heated at a
304 rate of $10\text{ }^{\circ}\text{C}/\text{min}$ from $28\text{ }^{\circ}\text{C}$ to $800\text{ }^{\circ}\text{C}$, and any mass losses were recorded. First and
305 second derivative analysis was used to determine temperature ranges of individual mass
306 loss events (cf. Figure S6-S8, Supporting Information). TGA was coupled with GPC and
307 TEM information to calculate the polymer surface grafting density (σ) as follows [54]:

$$\sigma = \frac{N_A \left(\frac{g_{pol}}{g_{Ag}} \right) \rho_{Ag} r}{3M_n} \quad (\text{Eq. 1})$$

309 where N_A is Avogadro's number (6.022×10^{23} chains mol $^{-1}$), g_{pol} is the polymer mass, g_{Ag}
 310 is the silver mass, r is the equivalent radius of the nanoparticle (based on TEM
 311 measurements, cf. Figure 6 and Table 3), and ρ_{Ag} is the density of the silver

312 nanoparticles, which was assumed to be nearly identical to that of bulk silver (i.e., 10.5 g
313 cm³). Each TGA measurement exhibited an uncertainty of 5 %.

314 **2.3.8 Scanning Electron Microscopy (SEM).** Scanning electron micrographs of
315 Pebax, Pebax+2OD2K-Ag, and Pebax+2OD4K-Ag's cross-section were used to
316 characterize structure morphology. Cross-sections were prepared by fracturing each
317 sample after immersion in liquid nitrogen. Prior to imaging, each sample was sputter
318 coated with iridium. Images were taken using a ThermoFisher Quattro device at 10 kx,
319 with an accelerating voltage of 10 KeV.

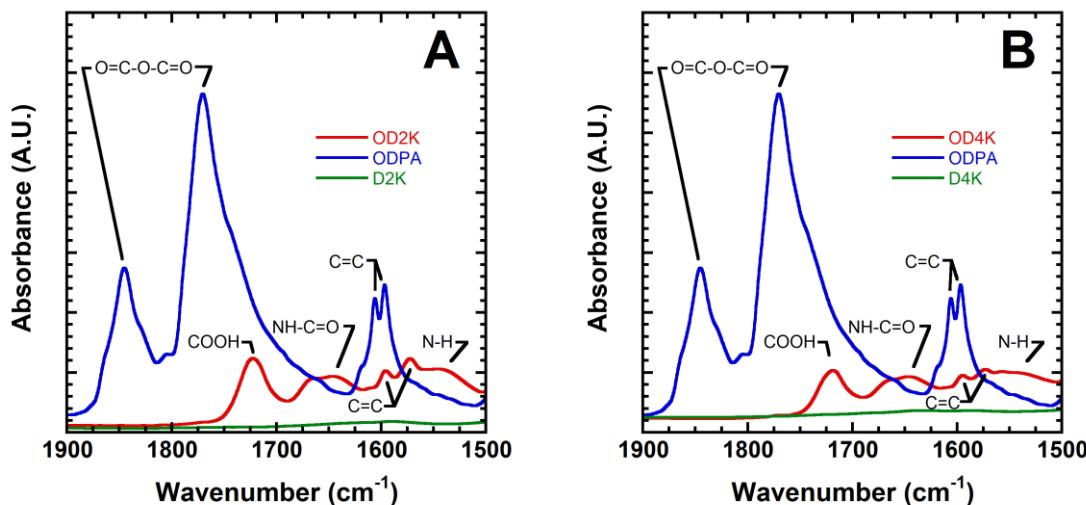
320 **2.3.9 Pure gas sorption and permeability measurements.** Pure gas (CH₄ and CO₂)
321 permeability was measured at 1 bar and 35 °C and pure gas solubility (CH₄ and CO₂) was
322 measured from 5 to 20 bar at 35 °C. Details about these measurements are provided in
323 section 7 of the Supporting Information. Gas diffusivities were estimated using the
324 solution diffusion model:

325
$$\bar{D} = \frac{P}{S} \quad (\text{Eq. 2})$$

326 where P is the permeability, S is the solubility coefficient, and \bar{D} is the concentration
327 averaged diffusion coefficient. The ideal (i.e., pure-gas) CO₂/CH₄ selectivity (α^P) was
328 estimated as shown in Eq. 3 and broken into its sorption (α^S) and diffusion (α^D)
329 contributions:

330
$$\alpha^P = \frac{P_{CO_2}}{P_{CH_4}} = \frac{S_{CO_2}}{S_{CH_4}} \times \frac{D_{CO_2}}{D_{CH_4}} = \alpha^S \times \alpha^D \quad (\text{Eq. 3})$$

331
332 **2.3.10 Stability Testing.** Both Pebax+2OD2K-Ag and Pebax+2OD4K-Ag, were
333 exposed to 1 atm H₂ at 35 °C for 24 hours. Pure gas CH₄ and CO₂ permeability were
334 measured at 1 atm and 35 °C before and after exposure to H₂. Changes in CO₂


335 permeability and CO_2/CH_4 selectivity as a result of H_2 exposure are shown and compared
336 in Table 4.

337

338 3. RESULTS AND DISCUSSION

339 **3.1. Poly(amic-acid) Characterizations.** FTIR was used to provide evidence that the
340 PAA was formed. Figure 3A shows the FTIR spectra of the synthesized OD2K compared
341 to ODPA and D2K, while Figure 3B shows the FTIR spectra of the synthesized OD4K
342 compared to ODPA and D4K in the wavelength range 1500 and 1900 cm^{-1} . The spectral
343 features in this region show key changes in the carbonyl groups during the reaction,
344 providing insight to the polymerization.

345

346

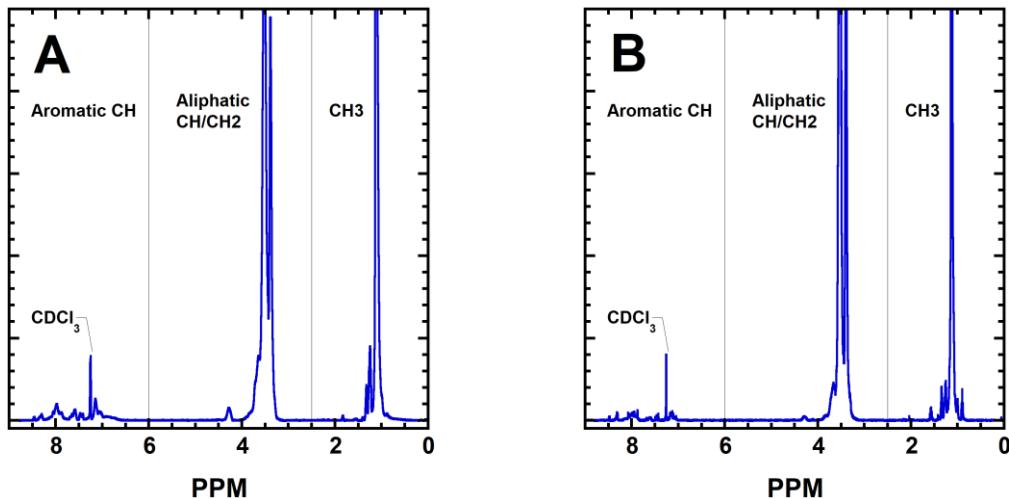
347 **Figure 3:** A) ATR-FTIR spectra of the synthesized OD2K sample compared with the
348 ODPA and D2K reactants, between 1500 and 1900 cm^{-1} wavenumbers. B) ATR-FTIR
349 spectra of the synthesized OD4K sample compared with the ODPA and D4K reactants,
350 between 1500 and 1900 cm^{-1} wavenumbers.

351

352

353 The D2K and D4K samples exhibited low absorption in this region in contrast to the
354 spectrum obtained for ODPA. ODPA has characteristic peaks at 1770 and 1846 cm⁻¹,
355 which are representative of the symmetric and asymmetric stretching of the anhydride
356 carbonyl, respectively [55]. The loss of these peaks in both OD2K and OD4K's spectra
357 indicates that the reactants are being mostly consumed by the reaction and removed by
358 subsequent washings. The formation of the amic-acid group is supported by the
359 appearance of peaks at 1655 and 1545 cm⁻¹ that correspond to the Amide I (C=O
360 stretching) and II (N-H bending) bands for a secondary amide [56]. Additionally, a peak
361 at 1723 cm⁻¹ shows the simultaneous appearance of the carboxylic acid carbonyl [55].
362 Finally, there is a clear red shift (i.e., a shift of around 10 cm⁻¹ towards lower
363 wavenumbers) in the aromatic alkene bonds from ODPA to its incorporation into the
364 polymer due to the mesomeric effect [56].

365 ¹H NMR can further describe the results of the reaction by confirming the retention
366 of basic reactant structures. In the ¹H NMR spectra of both OD2K (cf. Figure 4A) and
367 OD4K (cf. Figure 4B), the main chain proton signals for aromatic protons of the
368 dianhydride, aliphatic protons of the diamine, and terminating/side chain methyl groups
369 appeared around 7-8, 3-4.5, and 1-1.5 ppm, respectively [57]. This is an indication that
370 each of the three groups are retained from the reactants after the synthesis.


371

372

373

374

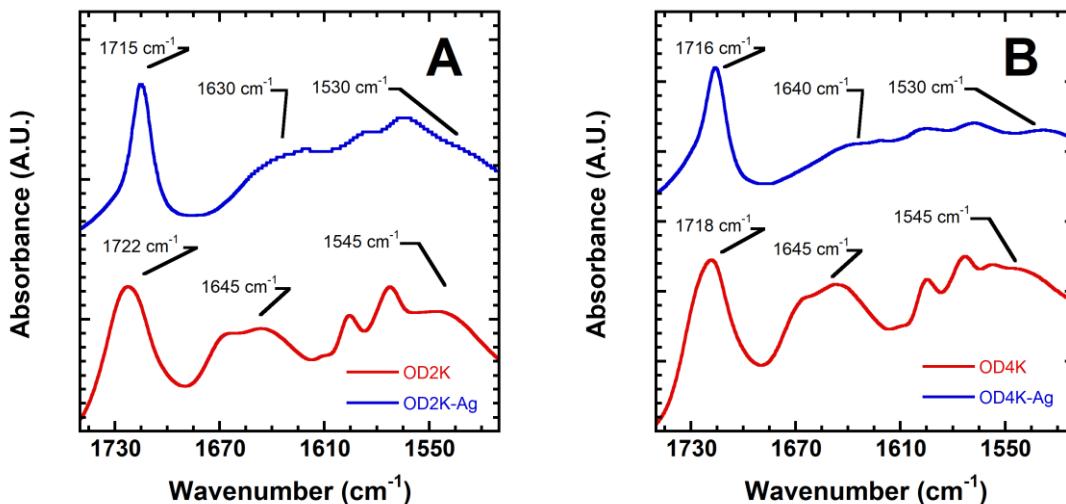
375

378 **Figure 4:** A) ^1H NMR Spectra of OD2K at 2 wt% in CDCl_3 . B) ^1H NMR Spectra of OD4K
379 at 2 wt% in CDCl_3 .

382 The intrinsic viscosities of OD2K and OD4K in CHCl_3 at 35 °C were 0.232 ± 0.001
383 and 0.255 ± 0.001 dL g $^{-1}$, respectively (cf. Table 2). The higher value of intrinsic viscosity
384 exhibited by OD4K highlights its larger molecular weight relative to OD2K [58]. These
385 results were corroborated with GPC data, which provided number average molecular
386 weights of 20800 ± 4310 and 42800 ± 8890 g/mol for OD2K and OD4K, respectively (cf.
387 Table 2). Although it appears that, on average, OD4K is nearly twice the projected (i.e.,
388 linear) length of OD2K, the two polymers are chemically similar. This is also shown via
389 their solubility parameter, which was calculated using group contribution methods (cf.
390 Section 1 of the Supporting Information) [59]. Based on this method, the solubility
391 parameter of OD2K is 20.2 ± 0.3 MPa $^{0.5}$ and of OD4K is 19.7 ± 0.3 MPa $^{0.5}$. This similarity
392 was also observed by DLS measurements of OD2K and OD4K in a variety of organic
393 solvents, which suggested that both OD2K and OD4K has a solubility parameter around

394 20 MPa^{0.5}, as shown in Figure S9, Supporting Information. Therefore, the two
395 independent measurements provide, within the experimental uncertainty, consistent
396 results. Polymers should experience the greatest swelling in a solvent they are most
397 similar to, and both polymers' hydrodynamic radii experienced a maximum in acetone,
398 whilst OD4K was larger (2.5 nm) compared to OD2K (1.7 nm) (cf. Figure S9, Supporting
399 Information) [58].

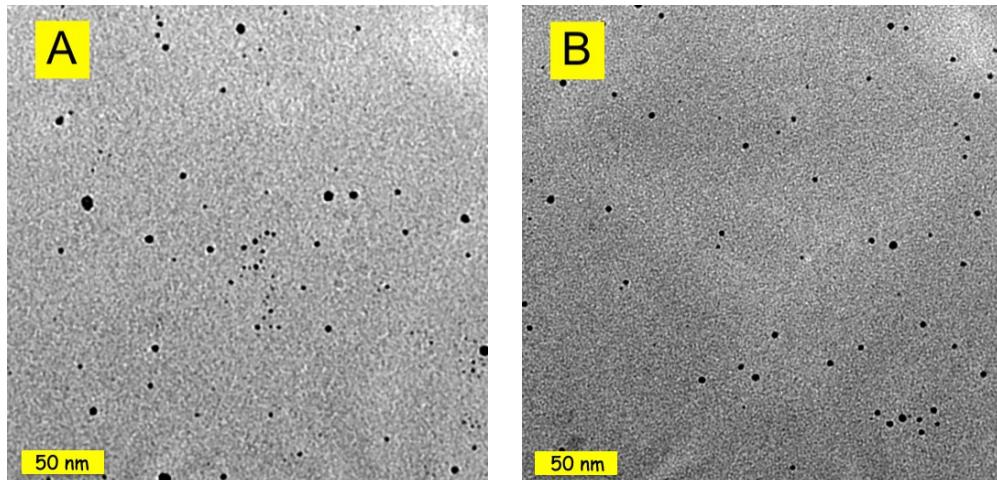
400
401 **Table 2: Summary of OD2K/OD4K Intrinsic Viscosity, Molecular Weight, and**
402 **Solubility Parameter.**
403


Name	Intrinsic Viscosity (dL/g)	Number Average Molecular Weight (g/mol)	Solubility Parameter (MPa ^{0.5})
OD2K	0.232 ± 0.001	20800 ± 4310	20.2 ± 0.3
OD4K	0.255 ± 0.001	42800 ± 8890	19.7 ± 0.3

404 Listed for OD2K and OD4K is the Intrinsic Viscosity (dL g⁻¹), measured in CHCl₃ at 35°C,
405 the number average molecular weight (g mol⁻¹) obtained from GPC experiments, and the
406 solubility parameter based on the group contribution method [34].
407

409 **3.2. Silver Nanoparticles Characterizations.** The formation of PAA-stabilized silver
410 NPs was first verified by examining the FTIR absorption spectra of the NPs. To investigate
411 the interaction that leads to stabilized silver NPs, FTIR was compared between the neat
412 OD2K and the silver nanoparticles modified using OD2K (i.e., OD2K-Ag). As shown in
413 Figure 5A, there is a clear red shift for the carboxylic acid carbonyl stretch from 1722 to
414 1715 cm⁻¹ and for the amide carbonyl peak from 1645 to 1630 cm⁻¹. The red shifting of
415 both carbonyls suggests that they are interacting with the silver surface.

416
417


421 **Figure 5:** A) ATR-FTIR spectra of OD2K and the silver nanoparticles stabilized by OD2K
 422 (OD2K-Ag) between 1510 and 1750 cm^{-1} wavenumbers. B) ATR-FTIR spectra of OD4K
 423 and the silver nanoparticles stabilized by OD4K (OD4K-Ag) between 1510 and 1750 cm^{-1}
 424 wavenumbers.

427 This is likely due to the ability of the carbonyl lone electron pairs to complex with cationic
 428 silver ions located on the NP surface [60]. The amide, in its neutral state, is capable of
 429 forming adducts with metal ions at the carbonyl oxygen, but the amide nitrogen is
 430 incapable of coordinating with the NP surface without first substituting its hydrogen by
 431 deprotonating [61]. Given the poor acidity of secondary amides, this seems unlikely.
 432 Instead, shifting in the amide N-H bending from 1545 to 1530 cm^{-1} is more likely due to
 433 the positive charge placed on the nitrogen atom as a result of the chelation occurring at
 434 the amide carbonyl [61]. Thus, the shifting would be due to the strengthening of
 435 mesomeric effects. All other peaks do not experience shifts upon stabilization of silver
 436 NPs. A similar comparison was done for OD4K and OD4K-Ag with analogous results (cf.

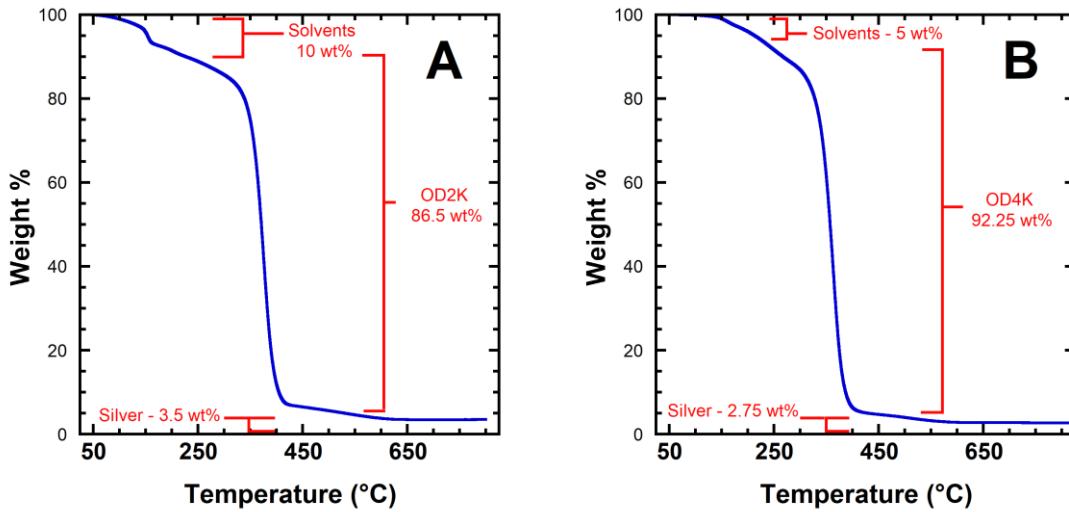
437 Figure 5B). Through this mechanism, OD2K and OD4K coordinate with the silver NPs to
438 form a protective layer that sterically hinders the NP aggregation. This picture was
439 confirmed by the TEM analysis, as shown in Figure 6.

440

441

442

443 **Figure 6:** TEM micrographs (A) OD2K-Ag and (B) OD4K-Ag, imaged at 250kX
444 magnification.


445

446

447 The OD2K-Ag and OD4K-Ag particles are well dispersed and mainly spherical in shape,
448 with equivalent diameters of 6.2 ± 2.9 nm and 4.5 ± 2.5 nm, respectively (cf. Figure 6 and
449 Table 3). Previous studies featuring facilitated transport of olefins, used NPs with
450 diameters less than 30 nm [62]. The much lower NPs size obtained in this study, which
451 leads to an increased particle surface-to-volume ratio, is expected to benefit the
452 transport/separation properties, as shown later in this paper. Even though the molecular
453 weight of OD2K and OD4K were different, stable nanoparticles exhibiting similar size and
454 morphology were achieved. To further investigate any potential differences between the

455 surface properties of the resulting nanoparticles, thermogravimetric analysis (TGA) was
456 used (cf. Figure 7A/B).

457

458 **Figure 7: TGA analysis illustrating the mass loss of A) OD2K-Ag and B) OD4K-Ag,**

459 between 28 and 800 °C.

460
461

462 Two main mass loss events occur for both particle types. Using first and second derivative
463 analysis (cf. Section 5, Supporting Information), the first mass loss on both curves occurs
464 between 100 and 200 °C. This is most likely from residual solvents, such as ethylene
465 glycol. The second mass loss occurs between 300 and 450 °C, which corresponds to the
466 main chain degradation in OD2K and OD4K. The residual mass at 800 °C is attributed to
467 silver. The overall silver to polymer mass ratio was 4 and 2.9% for OD2K-Ag and OD4K-
468 Ag, respectively (cf. Table 3). The similar mass ratios are consistent within the limit of
469 increasingly smaller particles, whereas the amount of polymer mass needed to surround
470 each particle becomes near constant [63]. Using these values and Eq. 1, the surface
471 grafting density of OD2K-Ag particles is calculated to be 7.6 chains/nm², which is
472 approximately twice the estimated value of 4.2 chains/nm² for OD4K-Ag particles. Using

473 the surface grafting density and polymer molecular weights, OD4K-Ag nanoparticles
474 contain ~10% more ether groups relative to OD2K-Ag nanoparticles.

475 Despite the similarity in the particle silver/PAA mass ratio (4 for OD2K-Ag and 2.9 for
476 OD4K-Ag), the grafting density of OD2K-Ag (7.6 chains/nm²) is almost twice that of
477 OD4K-Ag (4.2 chains/nm²). Mathematically, the shift from a similar mass ratio to different
478 grafting density is based on the molecular weights, which also differ by a factor of ~2
479 (OD4K – M_w = 42800 g/mol; OD2K – M_w = 20200 g/mol). However, a more detailed
480 explanation can be found from Benoit et al. [54]. In that paper, the surface grafting of
481 thiolated polyethylene glycol (PEG) on the surface of gold nanoparticles was analyzed as
482 a function of the PEG molecular weight. When polymer molecular weight increases, the
483 probability of entanglement and chain overlap increases. As a result, when attempting to
484 graft longer chains onto a particle surface, entanglements and added steric hindrance
485 may hamper the efficient packing of polymer chains to the nanoparticle, thus lowering the
486 effective surface grafting density [54]. It should also be noted that particle surface
487 curvature plays a role. On highly curved surfaces (i.e., smaller particles), confinement
488 impacts surface grafting by limiting attachment sites, while also influencing polymer chain
489 conformation and orientation on the particle surface. For both these reasons, it is
490 reasonable to expect a lower grafting density for OD4K-Ag, relative to OD2K-Ag.

491

492

493

494

495

496

497
498 **Table 3: Summary of Silver Nanoparticle Size, Composition, and Surface Grafting
Density**

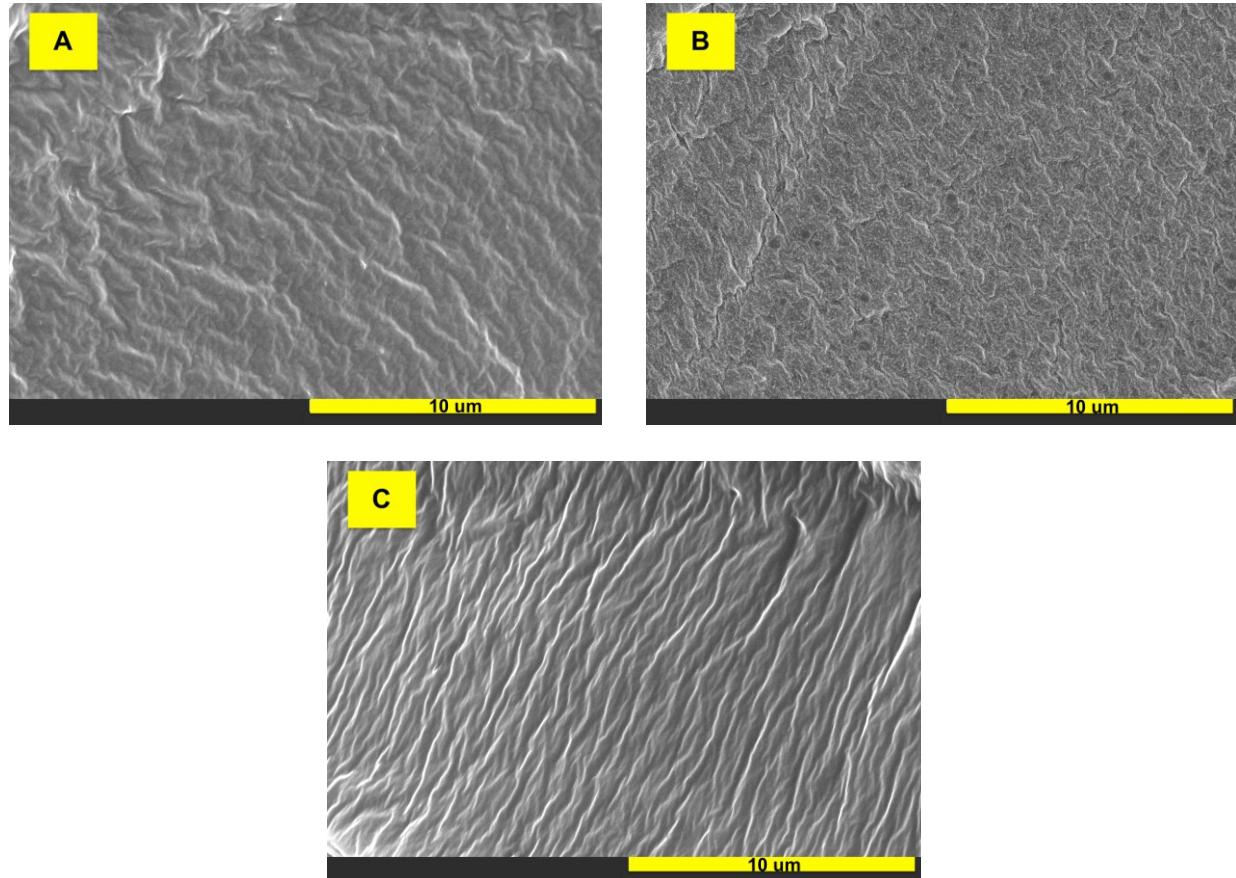
Name	Equivalent Diameter (nm)	Ag/Polymer Mass Ratio (%)	Grafting Density (Chains nm ⁻²)
OD2K-Ag	6.2 ± 2.9	4.0 ± 0.2	7.6 ± 2.0
OD4K-Ag	4.5 ± 2.5	2.9 ± 0.2	4.2 ± 0.9

499 Listed for each NP is the equivalent diameter (nm), silver (Ag) to polymer mass ratio (%),
500 and PAA polymer surface grafting density (chains/nm²)
501
502503 **3.3. Mixed Matrix Membrane Structural Characterization.** Both OD2K-Ag and
504 OD4K-Ag were incorporated in Pebax at a loading of 1.73 ± 0.09 and 2.06 ± 0.10 wt%
505 silver, respectively, as calculated via TGA measurements (cf. Figures S11 and S12,
506 Supporting Information). Neat Pebax 1657 and its mixed matrix membranes (i.e.,
507 Pebax+2OD2K-Ag and Pebax+2OD4K-Ag) exhibit similar thermal stability, with a
508 degradation onset starting at about 300 °C (cf. Figures S11 and S12, Supporting
509 Information). This finding is consistent with the very low NPs loading.510 Scanning electron micrographs showed no signs of structural defects in the Pebax-
511 NPs mixed matrix membranes, thus demonstrating excellent Pebax-NPs compatibility at
512 this loading (cf. Figures 8A-C).

513

514

515


516

517

518

519

520

521

522

523

524

525

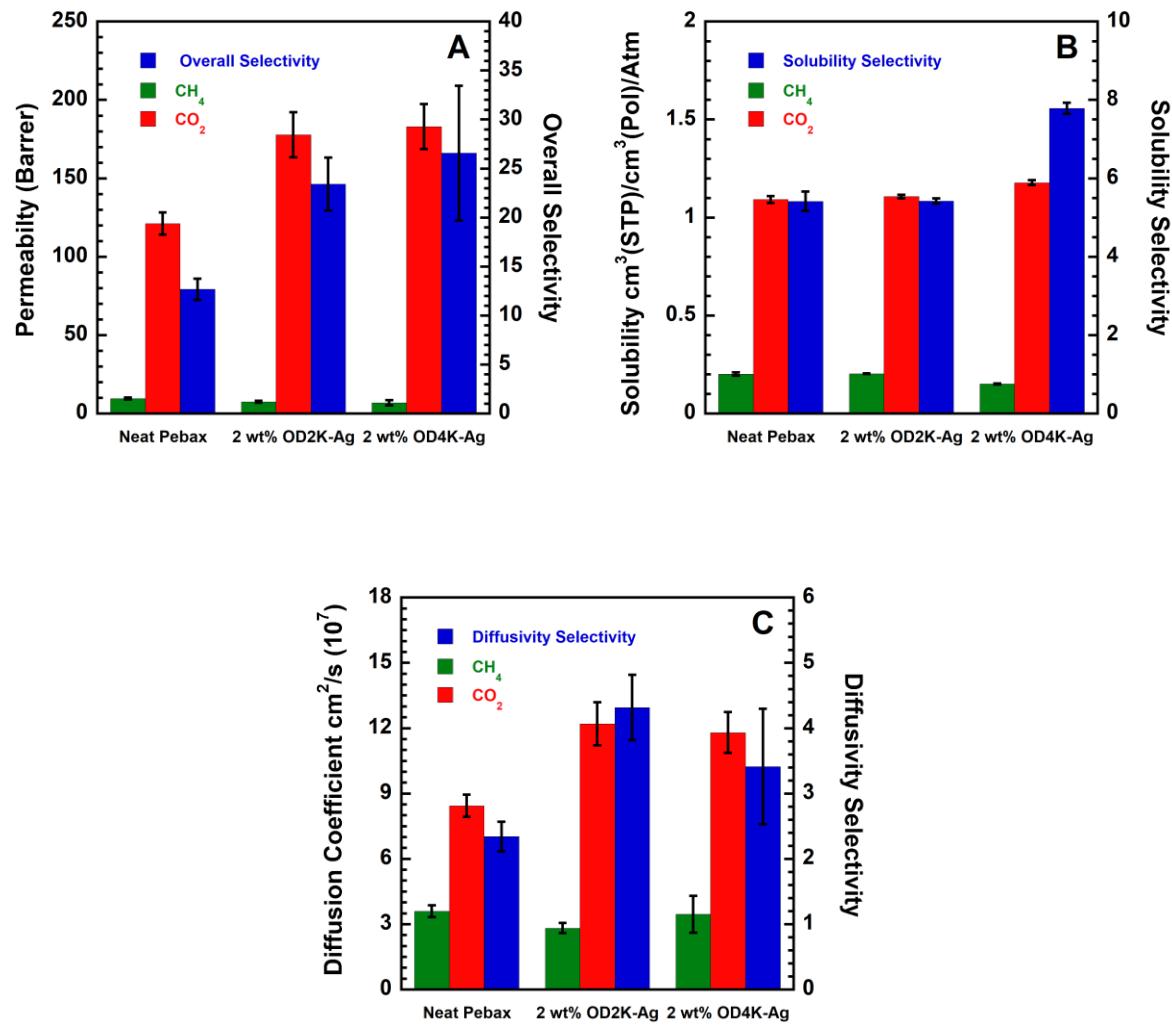
526

Figure 8: SEM micrographs for the cross-section of a) Pebax, b) Pebax+2OD2K-Ag, c) Pebax+2OD4K-Ag at 10 kx and 10KeV.

527

528

529


3.4. Membrane Transport Properties.

CO₂ and CH₄ sorption and permeability data in neat Pebax, which were collected to serve as a baseline in this study, exhibit good agreement with literature data [64, 65]. Pure gas sorption isotherms, as well as diffusion and permeability coefficients, are shown in section 7 of the Supporting Information. Experimental uncertainties were estimated via the error propagation method [66]. Upon incorporating OD2K-Ag in Pebax 1657, CO₂ permeability at 35°C and 1 atm increased by 46.8% while CO₂/CH₄ ideal selectivity increased by 84.8% relative to the neat Pebax (cf.

536 Figure 9A). Similarly, incorporation of OD4K-Ag in Pebax 1657 increased CO_2
 537 permeability by 51.1% and CO_2/CH_4 ideal selectivity by 109.6% relative to neat Pebax
 538 (cf. Figure 9A).

539

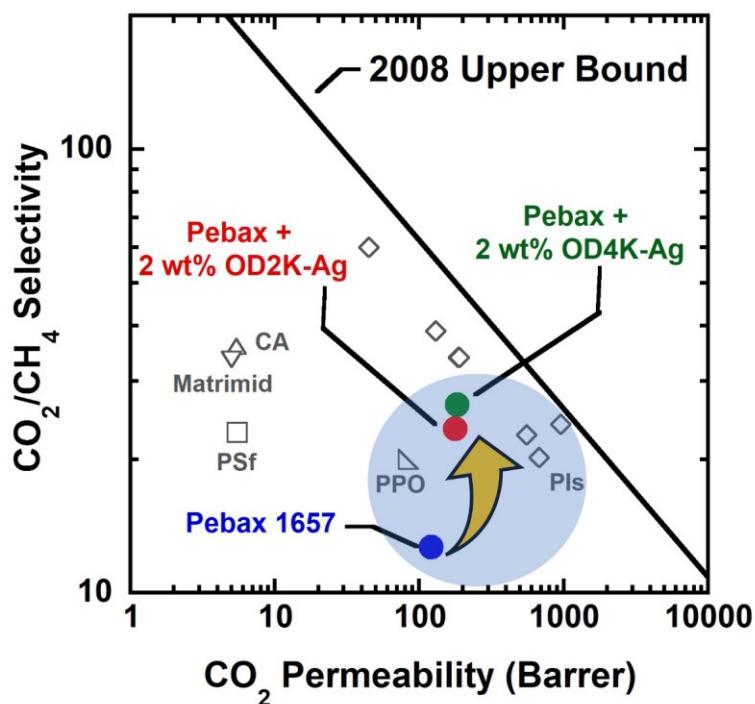
540

541

542

543 **Figure 9.** A) Permeability and CO_2/CH_4 ideal selectivity, B) solubility and CO_2/CH_4
 544 solubility-selectivity, and C) diffusivity and CO_2/CH_4 diffusivity-selectivity in Pebax 1657,

545 *Pebax + 2OD2K-Ag, and Pebax + 2OD4K-Ag. Data are at 35°C and 1 atm. Error bars*
546 *were estimated via the error propagation method [66].*


547

548 To elucidate the molecular origin of the resulting transport behavior, the overall
549 permeability coefficient and selectivity were deconvoluted into their elementary sorption
550 and diffusion contributions. Solubility and solubility-selectivity showed no significant
551 change in Pebax+2OD2K-Ag compared to neat Pebax 1657 (cf. Figure 9B). However, in
552 the case of Pebax+2OD4K-Ag, CO₂ solubility increased by around 8%, whereas
553 solubility-selectivity increased 43.8% compared to neat Pebax 1657 (cf. Figure 9B). This
554 result suggests that the higher ether concentration in OD4K-Ag particles, about 10%
555 above that of OD2K-Ag, could be playing a role in dictating CO₂ solubility changes. Both
556 mixed matrix membranes experienced an impressive increase in CO₂ diffusivity (~40%)
557 and CO₂/CH₄ diffusivity-selectivity (>50%) relative to neat Pebax 1657 (cf. Figure 9C).
558 This physical picture is compatible with CO₂ transport being facilitated by the NPs, while
559 the diffusion of CH₄ occurs via the standard solution-diffusion mechanism. Interestingly,
560 the CH₄ diffusion coefficient slightly decreases upon incorporation of silver NPs with
561 respect to neat Pebax, suggesting that the NPs might increase the tortuosity of the
562 diffusion pathway travelled by CH₄ in the mixed matrix membrane. This effect, however,
563 is within the experimental uncertainty. A summary of transport data at 1 atm and 35°C is
564 shown in Table S4, Supporting Information.

565 To put the performance of Pebax+2OD2K-Ag and Pebax+2OD4K-Ag in broad
566 perspective, the ideal CO₂/CH₄ selectivity was plotted in a Robeson-type plot as a function
567 of CO₂ permeability and compared with other materials [67-70] (cf. Figure 10), as well as

568 the 2008 upper bound [67]. The simultaneous increase in CO_2 permeability and CO_2/CH_4
 569 selectivity shifts both Pebax+2OD2K-Ag and Pebax+2OD4K-Ag closer to the upper
 570 bound, relative to the neat Pebax. For example, Pebax+2OD2K-Ag and Pebax+2OD4K-
 571 Ag possess similar pure-gas selectivity as Matrimid, cellulose acetate and polysulfone,
 572 while its pure-gas CO_2 permeability is about 35 times larger. This enhancement is quite
 573 impressive, considering that it can be achieved with a NPs loading of 2% or less.

574
 575 **Figure 10:** Comparison among the CO_2/CH_4 separation performance of Pebax,
 576 Pebax+2OD2K-Ag, and Pebax+2OD4K-Ag with state-of-the-art materials and the 2008
 577 upper bound [67]. Data are from pure-gas permeation measurements at 35 °C with a feed
 578 pressure of 1-10 atm. PSf stands for polysulfone [68], CA stand for cellulose acetate [69],
 579 PIs stands for polyimides [67], and PPO stands for poly(2,4-dimethyl-1,4-phenylene
 580 oxide) [70].

581 Obviously, an important question concerns the long-term stability of these membranes. It
582 is well known, indeed, that silver is prone to reduction/oxidation processes in the presence
583 of UV light and poisoning gasses, such as H₂ and H₂S, which are common contaminants
584 in natural gas. This very important aspect is discussed in detail in section 3.5.

585

586 **3.5 Membrane Stability.** Despite their high performance in the short time-frame,
587 metal ion carriers usually experience photo/chemical ageing, which causes a decay of
588 their performance within a few hours [14,19]. To evaluate the stability of the newly
589 synthesized materials, CO₂ and CH₄ permeability, and CO₂/CH₄ selectivity in
590 Pebax+2OD2K-Ag and Pebax+2OD4K-Ag was measured before and after exposure to
591 H₂ at 1 atm and 35 °C for 24 hours (cf. Table 4).

592

593 **Table 4: CO₂ permeability and CO₂/CH₄ selectivity before and after 24-hour
594 hydrogen exposure.**

sample	CO ₂ permeability Pre-H ₂ (Barrett)	CO ₂ /CH ₄ Selectivity	CO ₂ permeability Post-H ₂ (Barrett)	CO ₂ /CH ₄ Selectivity	% Change in CO ₂ Permeability	% Change in CO ₂ /CH ₄ Selectivity
Pebax+2OD2K-Ag	177.7 ± 9.0	25.8 ± 1.9	163.3 ± 8.3	24.3 ± 1.05	-8.8 %	-6.0 %
Pebax+2OD4K-Ag	187.6 ± 6.5	27.6 ± 1.8	171.9 ± 6.9	25.4 ± 2.9	-9.1 %	-8.5 %

595 *Listed for each MMM is the CO₂ permeability (Barrett) and CO₂/CH₄ selectivity, measured
596 at 1 atm and 35 °C, before and after a 24-hour H₂ exposure at 1 atm and 35 °C. The
597 percent change in both permeability and selectivity values is included.*

598

599 The CO₂ permeability in Pebax+2OD2K-Ag before and after H₂ treatment are 177.7 ± 9.0
600 and 163.3 ± 8.3 Barrer, respectively. Upon exposure to H₂, CO₂ permeability apparently
601 dropped by nearly 9%, with a subsequent drop in CO₂/CH₄ selectivity of 6% (cf. Table 4).
602 However, if we consider the experimental uncertainty affecting these measurements,
603 these drops are negligible; therefore, permeability and selectivity remained essentially

604 unchanged, pointing out the superb stability of the mixed matrix membranes under study
605 to H₂. Similarly, CO₂ permeability and CO₂/CH₄ selectivity in Pebax+2OD4K-Ag
606 experienced an apparent drop of 9.1% and 8.5%, respectively. Again, if we consider the
607 experimental uncertainty (cf. Table 4), this drop is negligible, indicating a very good
608 stability also in the case of Pebax+2OD4K-Ag.

609 Remarkably, after exposure to pure H₂, the overall CO₂ permeability and CO₂/CH₄
610 selectivity remained 40% and 95% higher, respectively, relative to neat Pebax. For the
611 sake of comparison, previously reported Pebax-based facilitated transport membranes
612 containing 80 wt% AgBF₄ have experienced a loss in selectivity of higher than 10% after
613 24 hours of H₂ exposure, with a complete loss in selectivity after 30 days [71], indicating
614 that our approach offers not only a simultaneous increase in permeability and selectivity,
615 but also a good stability enhancement. Moreover, the possibility to achieve such
616 enhancement with a very modest NPs loading, only 2% instead of 80% wt, would benefit
617 the economics of the process and, specifically, the investment costs.

618 The analysis of the individual and synergistic effects of the NPs composition, surface
619 grafting density, and weight loading on i) long-term (i.e., >30 days) NP photochemical
620 stability under various conditions (i.e., H₂ and UV), ii) compatibility with the bulk
621 membrane matrix, iii) CO₂ solubility-selectivity and iv) facilitated transport are underway
622 and will be reported in detail in a forthcoming contribution.

623

624 **4. CONCLUSIONS**

625 Silver NPs were rationally designed using an appropriate polymeric ligand (i.e.,
626 capping agent) to be incorporated in polymers and fabricate novel facilitated transport

627 membranes (FTMs) exhibiting enhanced CO₂ permeability, CO₂ selectivity and long-term
628 stability. The synthesis of the capping agent, poly(amic-acid, PAAs) was performed
629 through the polycondensation reaction of 4,4'-Oxydipthalic anhydride (ODPA) and
630 Jeffamines exhibiting systematically varied molecular weight (i.e., ether concentration).
631 The polymer structures were confirmed using NMR and ATR-FTIR. The degree of
632 polymerization was similar in polymers containing each diamine, and the impact of the
633 resulting differences in the overall molecular weight with respect to the silver NP synthesis
634 showed little dependence [63]. The particles exhibited clear coordination interactions (i.e.,
635 chelation) with the PAAs carbonyl moieties, which produced individual spherical NPs.
636 Micrographs revealed that particles with similar size/morphology were achievable despite
637 the differences in polymer molecular weight. Though, there exist clear differences in the
638 surface grafting density. Once incorporated into Pebax 1657, both NPs produced an
639 impressive increase in overall CO₂ permeability (+50%) and CO₂/CH₄ selectivity (+100%),
640 with increases, in the case of Pebax+2OD4K-Ag, in both CO₂ solubility and diffusivity.
641 These improvements are remarkable, as they were achieved with a very low NPs loading,
642 just 2% or less. Similar or even lower improvements were previously achieved with
643 loadings as high as 80%wt. Equally important, preliminary results indicate that our
644 membranes exhibit high stability upon exposure to H₂, highlighting the importance of
645 rational molecular design of the capping agent. The impact of surface grafting
646 composition, weight loading, as well as the stability of these materials in a variety of
647 environments will be the subject of a forthcoming dedicated contribution.

648

649

650 ■ **ACKNOWLEDGEMENTS**

651 This work was supported by the Nation Science Foundation through Awards CBET-
652 2005282 (Interfacial Engineering). Partial support from the FIP program (Faculty
653 Investment Program, University of Oklahoma) is also acknowledged. The authors thank
654 Dr. Susan Nimmo, Dr. Julian Sabisch, and Dr. Preston Larson for their training for NMR
655 and microscopy analyses. The authors also thank undergraduate students Ryan Crist,
656 Jordan Vetal, Matthew Casey and Emily Michalak for their experimental collaboration.
657 Finally, Huntsman corporation is acknowledged for generously donating the Jeffamine
658 monomers.

■ REFERENCES

[1] L. Wang, M. Hasanzadeh Kafshgari, M. Meunier, Optical Properties and Applications of Plasmonic-Metal Nanoparticles, *Advanced Functional Materials*. 30 (2020) 2005400. <https://doi.org/10.1002/adfm.202005400>.

[2] Y.-X. Zhang, Y.-H. Wang, Nonlinear optical properties of metal nanoparticles: a review, *RSC Advances*. 7 (2017) 45129–45144. <https://doi.org/10.1039/c7ra07551k>.

[3] A.N. Shipway, E. Katz, I. Willner, Nanoparticle Arrays on Surfaces for Electronic, Optical, and Sensor Applications, *Chemphyschem*. 1 (2000) 18–52. [https://doi.org/10.1002/1439-7641\(20000804\)1:1<18::aid-cphc18>3.0.co;2-1](https://doi.org/10.1002/1439-7641(20000804)1:1<18::aid-cphc18>3.0.co;2-1).

[4] Y. Li, Y. Wu, B.S. Ong, Facile Synthesis of Silver Nanoparticles Useful for Fabrication of High-Conductivity Elements for Printed Electronics, *Journal of the American Chemical Society*. 127 (2005) 3266–3267. <https://doi.org/10.1021/ja043425k>.

[5] L. Nayak, S. Mohanty, S.K. Nayak, A. Ramadoss, A review on inkjet printing of nanoparticle inks for flexible electronics, *Journal of Materials Chemistry C*. 7 (2019) 8771–8795. <https://doi.org/10.1039/c9tc01630a>.

[6] A. Kamyshny, S. Magdassi, Conductive Nanomaterials for Printed Electronics, *Small*. 10 (2014) 3515–3535. <https://doi.org/10.1002/smll.201303000>.

[7] M. Murphy, K. Ting, X. Zhang, C. Soo, Z. Zheng, Current Development of Silver Nanoparticle Preparation, Investigation, and Application in the Field of Medicine, *Journal of Nanomaterials*. 2015 (2015) 1–12. <https://doi.org/10.1155/2015/696918>.

[8] M. Hofmann-Amtenbrink, D. W. Grainger, H. Hofmann, Nanoparticles in medicine: Current challenges facing inorganic nanoparticle toxicity assessments and standardizations, *Nanomedicine: Nanotechnology, Biology and Medicine*. 11 (2015) 1689–1694. <https://doi.org/10.1016/j.nano.2105.05.005>.

[9] L. Zhang, F. Gu, J. Chan, A. Wang, R. Langer, O. Farokhzad, Nanoparticles in Medicine: Therapeutic Applications and Developments, *Clinical Pharmacology & Therapeutics*. 83 (2008) 761–769. <https://doi.org/10.1038/sj.cpt.6100400>.

[10] De Jong, Drug delivery and nanoparticles: Applications and hazards, *International Journal of Nanomedicine*. (2008) 133. <https://doi.org/10.2147/ijn.s596>.

[11] D. Sýkora, V. Kašička, I. Mikšík, P. Řezanka, K. Záruba, P. Matějka, V. Král, Application of gold nanoparticles in separation sciences, *Journal of Separation Science*. 33 (2010) 372–387. <https://doi.org/10.1002/jssc.200900677>.

[12] Y. Liu, J. Zhang, X. Tan, High Performance of PIM-1/ZIF-8 Composite Membranes for O₂/N₂ Separation, *ACS Omega.* 4 (2019) 16572–16577. <https://doi.org/10.1021/acsomega.9b02363>.

[13] Y. Yampolskii, I. Pinna, B. Freeman, *Materials Science of Membranes for Gas and Vapor Separation*, Wiley, 2006.

[14] M. Rezakazemi, A. E. Amooghin, M. M. Montzer-Rahmati, A. F. Ismail, T. Matsuura, State-of-the-art membrane based CO₂ separation using mixed matrix membranes (MMMs): An overview on current status and future directions. *Progress in Polymer Science.* 39 (2014) 817-861. <https://doi.org/10.1016/j.progpolymsci.2014.01.003>

[15] M. Moaddeb, W. J. Koros, Gas transport properties of thin polymeric membranes in the presence of silicon dioxide particles. *Journal of Membrane Science.* 125 (1997) 143-163. [https://doi.org/10.1016/S0376-7388\(96\)00251-7](https://doi.org/10.1016/S0376-7388(96)00251-7)

[16] J. A. Thompson, K. W. Chapman, W. J. Koros, C. W. Jones, S. Nair, Sonication-induced Ostwald ripening of ZIF-8 nanoparticles and formation of ZIF-8/polymer composite membranes. *Microporous and Mesoporous Materials.* 158 (2012) 292-299. <https://doi.org/10.1016/j.micromeso.2012.03.052>

[17] T.C. Merkel, Z. He, I. Pinna, B.D. Freeman, P. Meakin, A.J. Hill, Effect of Nanoparticles on Gas Sorption and Transport in Poly(1-trimethylsilyl-1-propyne), *Macromolecules.* 36 (2003) 6844–6855. <https://doi.org/10.1021/ma0341566>.

[18] S. Matteucci, V. A. Kusuma, D. Sanders, S. Swinnea, B. D. Freeman, Gas transport in TiO₂ nanoparticle-filled poly(1-trimethylsilyl-1-propyne). *Journal of Membrane Science.* 307 (2008) 196-217. <https://doi.org/10.1016/j.memsci.2007.09.035>

[19] L. Cheng, G. Liu, W. Jin, Recent advances in facilitated transport membranes for olefin/paraffin separation, *Discover Chemical Engineering.* 1 (2021). <https://doi.org/10.1007/s43938-020-00001-4>.

[20] M. N. Davenport, C. L. Bentley, J.F. Brennecke, B. D. Freeman. Ethylene and ethane transport properties of hydrogen-stable Ag⁺-based facilitated transport membranes, *Journal of Membrane Science.* 647 (2022) Article 120300. <https://doi.org/10.1016/j.memsci.2022.120300>

[21] W.S. Ho, D.C. Dalrymple, Facilitated transport of olefins in Ag⁺-containing polymer membranes, *Journal of Membrane Science.* 91 (1994) 13-25. [https://doi.org/10.1016/0376-7388\(94\)00008-5](https://doi.org/10.1016/0376-7388(94)00008-5)

[22] National Academics of Science, Engineering, and Medicine, Division on Earth and Life Sciences, Board on Chemical Sciences and Technology, Committee on a Research

Agenda for a New Era in Separation Science, *A Research Agenda for Transforming Separation Science*, National Academies Press, 2019.

[23] L. M. Robeson, Z. P. Smith, B. D. Freeman, D. R. Paul, Contributions of diffusion and solubility selectivity to the upper bound analysis for glassy gas separation membranes. *Journal of Membrane Science*. 453 (2014) 71-83.
<https://doi.org/10.1016/j.memsci.2013.10.066>

[24] J. Deng, Z. Huang, B. J. Sundell, D. J. Harrigan, S. A. Sharber, K. Zhang, R. Guo, M. Galizia, State of the art and prospects of chemically and thermally aggressive membrane gas separations: Insights from polymer science. *Polymer*. 229 (2021) Article 123988. <https://doi.org/10.1016/j.polymer.2021.123988>

[25] M. Galizia, W.S. Chi, Z.P. Smith, T.C. Merkel, R.W. Baker, B.D. Freeman, 50th Anniversary Perspective: Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities, *Macromolecules*. 50 (2017) 7809–7843. <https://doi.org/10.1021/acs.macromol.7b01718>.

[26] E.-S. Jang, J. Kamcev, K. Kobayashi, N. Yan, R. Sujanani, S.J. Talley, R.B. Moore, D.R. Paul, B.D. Freeman, Effect of Water Content on Sodium Chloride Sorption in Cross-Linked Cation Exchange Membranes, *Macromolecules*. 52 (2019) 2569–2579. <https://doi.org/10.1021/acs.macromol.8b02550>.

[27] W. J. Box, Z. Huang, R. Guo, M. Galizia, The mechanism of light gas transport through configurational free volume in glassy polymers, *Journal of Membrane Science*. 656 (2022) 12608. <https://doi.org/10.1016/j.memsci.2022.12608>

[28] S. Luo, Q. Zhang, L. Zhu, H. Lin, B.A. Kazanowska, C.M. Doherty, A.J. Hill, P. Gao, R. Guo, Highly Selective and Permeable Microporous Polymer Membranes for Hydrogen Purification and CO₂ Removal from Natural Gas, *Chemistry of Materials*. 30 (2018) 5322–5332. <https://doi.org/10.1021/acs.chemmater.8b02102>.

[29] M. Omidvar, C.M. Stafford, H. Lin, Thermally stable cross-linked P84 with superior membrane H₂/CO₂ separation properties at 100 °C, *Journal of Membrane Science*. 575 (2019) 118–125. <https://doi.org/10.1016/j.memsci.2019.01.003>.

[30] B. Comesáñ-Gáñdara, J. Chen, C.G. Bezzu, M. Carta, I. Rose, M.-C. Ferrari, E. Esposito, A. Fuoco, J.C. Jansen, N.B. McKeown, Redefining the Robeson upper bounds for CO₂/CH₄ and CO₂/N₂ separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity, *Energy & Environmental Science*. 12 (2019) 2733–2740. <https://doi.org/10.1039/c9ee01384a>.

[31] L. Robeson, Correlation of separation factor versus permeability for polymeric membranes. *Journal of Membrane Science*. 62 (1991) 165-185.
[https://doi.org/10.1016/037-7388\(91\)80060-J](https://doi.org/10.1016/037-7388(91)80060-J)

[32] Y. Han, W.S. Winston Ho, Facilitated transport membranes for H₂ purification from coal-derived syngas: A techno-economic analysis. *Journal of Membrane Science*. 636 (2021) Article 119549. <https://doi.org/10.1016/j.memsci.2021.119549>

[33] O.I. Eriksen, E. Aksnes, I. M. Dahl, Facilitated transport of ethene through Nafion membranes. Part II. Glycerine treated, water swollen membranes. *Journal of Membrane Science*, 85 (1993) 99–106. [https://doi.org/10.1016/0376-7388\(93\)85009-L](https://doi.org/10.1016/0376-7388(93)85009-L)

[34] M. Rungta, C. Zhang, W.J. Koros, L. Xu, Membrane-based ethylene/ethane separation: The upper bound and beyond, *Aiche Journal*. 59 (2013) 3475–3489. <https://doi.org/10.1002/aic.14105>.

[35] J. H. Kim, B. R. Min, H. S. Kim, J. Won, Y. S. Kang, Facilitated transport of ethylene across polymer membranes containing silver salt: effect of HBF4 on the photoreduction of silver ions. *Journal of Membrane Science*, 212 (2003) 283–288. [https://doi.org/10.1016/S0376-7388\(02\)00451-9](https://doi.org/10.1016/S0376-7388(02)00451-9).

[36] A.C.C. Campos, R.A. Dos Reis, A. Ortiz, D. Gorri, I. Ortiz, A Perspective of Solutions for Membrane Instabilities in Olefin/Paraffin Separations: A Review, *Industrial & Engineering Chemistry Research*. 57 (2018) 10071–10085. <https://doi.org/10.1021/acs.iecr.8b02013>.

[37] J.P. Jung, C.H. Park, J.H. Lee, J.T. Park, J.-H. Kim, J.H. Kim, Facilitated olefin transport through membranes consisting of partially polarized silver nanoparticles and PEMA-g-PPG graft copolymer, *Journal of Membrane Science*. 548 (2018) 149-156. <https://doi.org/10.1016/j.memsci.2017.11.020>.

[38] Y. Zhao, W.S. Winston Ho, Steric hindrance effect on amine demonstrated in solid polymer membranes for CO₂ transport, *Journal of Membrane Science*. 415-416 (2012) 132-138. <https://doi.org/10.1016/j.memsci.2012.04.044>

[39] Y.R. Kim, J.H. Lee, H. Choi, W. Cho, Y.S. Kang, Chemical stability of olefin carrier based on silver cations and metallic silver nanoparticles against the formation of silver acetylide for facilitated transport membranes, *Journal of Membrane Science*. 463 (2014) 11-16. <https://doi.org/10.1016/j.memsci.2014.03.057>

[40] Y. Liu, X. Li, Y. Qin, R. Guo, J. Zhang, Pebax-polydopamine microsphere mixed-matrix membranes for efficient CO₂separation, *Journal of Applied Polymer Science*. 134 (2017). <https://doi.org/10.1002/app.44564>.

[41] V.M. Kariuki, I. Yazgan, A. Akgul, A. Kowal, M. Parlinska, O.A. Sadik, Synthesis and catalytic, antimicrobial and cytotoxicity evaluation of gold and silver nanoparticles using biodegradable, Π -conjugated polyamic acid, *Environmental Science: Nano*. 2 (2015) 518–527. <https://doi.org/10.1039/c5en00053j>.

[42] J.G. Wijmans, R.W. Baker, The solution-diffusion model: a review, *Journal of Membrane Science*. 107 (1995) 1-21. [https://doi.org/10.1016/0376-7388\(95\)00102-I](https://doi.org/10.1016/0376-7388(95)00102-I)

[43] W. Guo, T.N. Tran, H. Mondal, S. Schaefer, L. Huang, H. Lin, Superior CO₂/N₂ separation performance of highly branched Poly(1,3 dioxolane) plasticized by polyethylene glycol, *Journal of Membrane Science*. 648 (2022) 120352. <https://doi.org/10.1016/j.memsci.2022.120352>.

[44] L. Huang, J. Liu, H. Lin, Thermally stable, homogeneous blends of cross-linked poly(ethylene oxide) and crown ethers with enhance CO₂ permeability. *Journal of Membrane Science*. 610 (2020) Article 118252. <https://doi.org/10.1016/j.memsci.2020.118253>

[45] H. Lin, B. D. Freeman, Gas solubility, diffusivity, and permeability in poly(ethylene oxide). *Journal of Membrane Science*. 239 (2004) 105-117. <https://doi.org/10.1016/j.memsci.2003.08.031>

[46] J. Liu, G. Zhang, K. Clark, H. Lin, Maximizing Ether Oxygen Content in Polymers for Membrane CO₂ Removal from Natural Gas, *ACS Applied Materials & Interfaces*. 11 (2019) 10933–10940. <https://doi.org/10.1021/acsami.9b01079>.

[47] Y. Li, M. Yavari, A. Baldanza, E. Di Maio, Y. Okamoto, H. Lin, M. Galizia, Volumetric Properties and Sorption Behavior of Perfluoropolymers with Dioxolane Pendant Rings, *Industrial & Engineering Chemistry Research*. 59 (2020) 5276–5286. <https://doi.org/10.1021/acs.iecr.9b03411>.

[48] M. van Essen, R. Thür, M. Houben, I. F.J. Vankelecom, Z. Borneman, K. Nijmeijer, Torturous mixed matrix membranes: A subtle balance between microporosity and compatibility, *Journal of Membrane Science*. 635 (2021) 119517. <https://doi.org/10.1016/j.memsci.2021.119517>

[49] S. Shahid, K. Nijmeijer, S. Nehache, I. Vankelecom, A. Deratani, D. Quemener, MOF-mixed matrix membranes: Precise dispersion of MOF particles with better compatibility via a particle fusion approach for enhanced gas separation properties, *Journal of Membrane Science*. 492 (2015) 21-31. <https://doi.org/10.1016/j.memsci.2015.05.015>

[50] J.-J. Lin, W.-C. Tsai, Y.-C. Hsu, W.-H. Chang, Polymeric polyamines and method for stabilizing silver nanoparticle by employing the same, U.S. Patent 8013048B2, 2011.

[51] D.M. Muñoz, J.G. De La Campa, J. De Abajo, A.E. Lozano, Experimental and Theoretical Study of an Improved Activated Polycondensation Method for Aromatic Polyimides, *Macromolecules*. 40 (2007) 8225–8232. <https://doi.org/10.1021/ma070842j>.

[52] D. Kim, S. Jeong, J. Moon, Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection, *Nanotechnology*. 17 (2006) 4019–4024. <https://doi.org/10.1088/0957-4484/17/16/004>.

[53] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona, Fiji: an open-source platform for biological-image analysis, *Nature Methods*. 9 (2012) 676–682. <https://doi.org/10.1038/nmeth.2019>.

[54] D.N. Benoit, H. Zhu, M.H. Lilierose, R.A. Verm, N. Ali, A.N. Morrison, J.D. Fortner, C. Avendano, V.L. Colvin, Measuring the Grafting Density of Nanoparticles in Solution by Analytical Ultracentrifugation and Total Organic Carbon Analysis, *Analytical Chemistry*. 84 (2012) 9238–9245. <https://doi.org/10.1021/ac301980a>.

[55] P. Larkin, *Infrared and Raman Spectroscopy: Principles and Spectral Interpretation*, Elsevier, 2017.

[56] R. M. Silverstein, F. X. Webster, D. J. Kiemle, *Spectrometric Identification of Organic Compounds, 7th Edition*, Wiley, 2005.

[57] H. Günther, NMR Spectroscopy: Basic Principles, Concepts, and Applications in Chemistry, 3rd Edition, Wiley-VCH, 2013.

[58] B. A. Miller-Chou, J. L. Koenig, A review of polymer dissolution, *Prog. Polym. Sci.* 28 (2003) 1223–1270. [https://doi.org/10.1016/S0079-6700\(03\)00045-5](https://doi.org/10.1016/S0079-6700(03)00045-5)

[59] R.F. Fedors, A method for estimating both the solubility parameters and molar volumes of liquids, *Polymer Engineering & Science*. 14 (1974) 147–154. <https://doi.org/10.1002/pen.760140211>.

[60] B. Buszewski, K. Rafińska, P. Pomastowski, J. Walczak, A. Rogowska, Novel aspects of silver nanoparticles functionalization, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*. 506 (2016) 170–178. <https://doi.org/10.1016/j.colsurfa.2016.05.058>.

[61] H. Sigel, R.B. Martin, Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands, *Chemical Reviews*. 82 (1982) 385–426. <https://doi.org/10.1021/cr00050a003>.

[62] J.H. Lee, S.W. Kang, M.S. Yeom, Y.R. Kim, H. Choi, D. Song, J. Won, Y.S. Kang, A strong linear correlation between the surface charge density on Ag nanoparticles and the amount of propylene adsorbed, *Journal of Materials Chemistry A*. 2 (2014) 6987. <https://doi.org/10.1039/c4ta00026a>.

[63] R.G. Shimmin, A.B. Schoch, P.V. Braun, Polymer Size and Concentration Effects on the Size of Gold Nanoparticles Capped by Polymeric Thiols, *Langmuir*. 20 (2004) 5613–5620. <https://doi.org/10.1021/la036365p>.

[64] Z. Farashi, S. Azizi, M. Rezaei-Dasht Arzhandi, Z. Noroozi, N. Azizi, Improving CO₂/CH₄ separation efficiency of Pebax-1657 membrane by adding Al₂O₃ nanoparticles in its matrix, *Journal of Natural Gas Science and Engineering*. 72 (2019) Article 10319. <https://doi.org/10.1016/j.jngse.2019.103019>

[65] M. Isanejad, N. Azizi, T. Mohammadi, Pebax membrane for CO₂ /CH₄ separation: Effects of various solvents on morphology and performance, *Journal of Applied Polymer Science*. 134 (2017). <https://doi.org/10.1002/app.44531>.

[66] W.J. Box, M.T. Webb, M. Galizia, Evaluating the Experimental Uncertainty in Gas and Vapor Sorption/Adsorption Measurements: Fundamental Considerations and Experimental Design Implications, *Industrial & Engineering Chemistry Research*. 61 (2022) 9856–9868. <https://doi.org/10.1021/acs.iecr.2c01414>.

[67] L. M. Robeson, The upper bound revisited, *Journal of Membrane Science*, 320 (2008), 390-400. <https://doi.org/10.1016/j.memsci.2008.04.030>

[68] K. Ghosal, R.T. Chern, B.D. Freeman, W.H. Daly, I.I. Negulescu, Effect of Basic Substituents on Gas Sorption and Permeation in Polysulfone, *Macromolecules*. 29 (1996) 4360–4369. <https://doi.org/10.1021/ma951310i>.

[69] C.S.K. Achoundong, N. Bhuwania, S.K. Burgess, O. Karvan, J.R. Johnson, W.J. Koros, Silane Modification of Cellulose Acetate Dense Films as Materials for Acid Gas Removal, *Macromolecules*. 46 (2013) 5584–5594. <https://doi.org/10.1021/ma4010583>.

[70] C.T. Wright, D.R. Paul, Gas sorption and transport in UV-irradiated poly(2,6-dimethyl-1,4-phenylene oxide) films, *J. Appl. Polym. Sci.* 67(5) (1998) 875-883. [https://doi.org/10.1002/\(SICI\)1097-4628\(19980131\)67:5<875::AID-APP13>3.0.CO;2-N](https://doi.org/10.1002/(SICI)1097-4628(19980131)67:5<875::AID-APP13>3.0.CO;2-N)

[71] T. C. Merkel, R. Blanc, I. Ciobanu, B. Firat, A. Suwarlim, J. Zeid, Silver salt facilitated transport membranes for olefin/paraffin separation: Carrier instability and a novel regeneration method, *Journal of Membrane Science*, 447 (2013) 177-189. <https://doi.org/10.1016/j.memsci.2013.07.010>

