Check for
Updates

F3: Serving Files Efficiently in Serverless Computing

Alex Merenstein
Stony Brook University
Stony Brook, New York

mmerenstein@cs.stonybrook.edu

Ali Anwar
University of Minnesota
Minneapolis, Minnesota

aanwar@umn.edu

ABSTRACT

Serverless platforms offer on-demand computation and represent
a significant shift from previous platforms that typically required
resources to be pre-allocated (e.g., virtual machines). As serverless
platforms have evolved, they have become suitable for a much wider
range of applications than their original use cases. However, storage
access remains a pain point that holds serverless back from becoming
a completely generic computation platform.

Existing storage for serverless typically uses an object interface.
Although object APIs are simple to use, they lack the richness, ver-
satility, and performance of file based APIs. Additionally, there is a
large body of existing applications that relies on file-based interfaces.
The lack of file based storage options prevents these applications
from being ported to serverless environments.

In this paper, we present F3, a file system that offers features to
improve file access in serverless platforms: (1) efficient handling
of ephemeral data, by placing ephemeral and non-ephemeral data
on storage that exists at a different points along the durability-
performance tradeoff continuum, (2) locality-aware data scheduling,
and (3) efficient reading while writing. We modified OpenWhisk to
support attaching file-based storage and to leverage F3’s features
using hints. Our prototype evaluation of F3 shows improved perfor-
mance of up to 1.5-6.5X compared to existing storage systems.

CCS CONCEPTS

« Information systems — Information storage systems; Com-
puting platforms; Storage replication; Cloud based storage; Dis-
tributed storage; Computing platforms.

KEYWORDS

serverless storage, file systems, ephemeral data, performance opti-
mization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SYSTOR ’23, June 5-7, 2023, Haifa, Israel

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9962-3/23/06...$15.00

https:// doi.org/ 10.1145/3579370.3594771

Scott Guthridge
IBM Research - Almaden
San Jose, California
guthridg@us.ibm.com

Vasily Tarasov
IBM Research - Almaden
San Jose, California

vtarasov@us.ibm.com

Erez Zadok

Stony Brook University
Stony Brook, New York
ezk@cs.stonybrook.edu

1 INTRODUCTION

Serverless platforms have already proven their utility in running
small web-oriented tasks. They are approaching a turning point, how-
ever, where their on-demand computation is expanding to a wider
range of applications [16, 31, 52]—possibly any application. To this
end, serverless platforms have been relaxing constraints and adding
features, for instance, allowing users to run arbitrary containers and
increasing execution time limits to support longer-running actions.
Here, an “action” is a snippet of code or a standalone executable, and
a serverless application is made up of one or more actions [4, 7, 9].

Storage access, however, remains a pain point for generic
applications in serverless environments. Serverless platforms
typically support only object-based storage. Object is a natural
choice for the short, stateless, web-oriented tasks for which
serverless platforms were originally designed and used; but more
generic applications frequently need functionality not supported by
traditional object storage—for example file-based access to data, the
ability to perform in-place modifications, support for concurrent
writers, and the ability to read data as it is being written. The lack
of support for these features has held serverless computing back
from becoming a generic computational platform.

Although most serverless platforms still do not offer a way to
connect file based storage to serverless applications (e.g., IBM Cloud
Functions [28], Google Cloud Functions [25], OpenWhisk [53], or
Knative [36]); some (e.g., AWS Lambda) have recently added support
for file-based storage [5]. This is encouraging, as it indicates that
industry has recognized the need for file-based storage in serverless
applications. Existing file systems, however, were not designed
for serverless platforms and lack important features that would
benefit serverless applications. In particular, existing file systems
lack functionalities that could accelerate intermediate data transfer
between the individual actions that make up a serverless application.

Applications in serverless environments are often split into
multiple components forming pipelines, where one component
writes its output data sequentially to storage, the next component
reads the data as input, then the system discards the intermediate
data. By specifically facilitating this usage pattern, a storage system
can improve data access and transfer performance. We identified
three ways a storage system can aid this pattern: (1) storing the
intermediate data on less durable, lower-latency local storage,
(2) providing hints about the location of data to serverless schedulers
so that subsequent stages of a pipeline can be scheduled close to

https://doi.org/10.1145/3579370.3594771
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579370.3594771&domain=pdf&date_stamp=2023-06-22

SYSTOR ’23, June 5-7, 2023, Haifa, Israel

the data, and (3) making it possible for the next stage of a pipeline
to begin reading before the previous stage has finished writing.

Durability vs. performance tradeoff. Durability provided by
storage systems often comes at the cost of performance. For instance,
in our experiments, disabling durability features (e.g., erasure
coding) increased read/write bandwidth by 42-45%, and using
a local disk rather than networked file system further increased
read/write bandwidth by 39-86%.

The data transferred in serverless applications is usually
ephemeral (i.e., short lived) and is needed only until it has been
consumed by the reader. This enables a different durability-
performance tradeoff to be made. For example, ephemeral data does
not necessarily need strong durability features such as replication or
erasure coding that are provided by many storage systems. Although
durability features can sometimes be disabled in a given storage
system, they are typically configurable only at volume or file system
granularity. As a result, it is difficult to optimize for workloads that
store both ephemeral and non-ephemeral data: both must exist at
the same point along the durability-performance continuum.

Locality. For data to remain local to a server, the serverless
platform’s scheduler needs to know where the data a serverless
application will consume are located within the cluster. Current
storage systems either do not convey this information to serverless
platforms, or are designed such that the information is not even
applicable (e.g., if, for data protection, the data is distributed across
multiple nodes in the cluster). Either way, the result is that data
transfers between components within a serverless application
consume network bandwidth and incur the performance penalty
associated with transmitting data across the cluster’s network.

Reading while writing. Finally, it is often desirable to process
data in a streaming fashion, i.e., to read and process data while it is
written to a file. Doing so speeds up end-to-end processing because a
subsequent stage can begin without having to wait for the previous
stage to finish. In object storage, it is not possible for an object to
be open by a writer and reader at the same time. In distributed file
systems, however, it is possible but file systems often make the
conservative assumption that when a file is open for reading by one
client and for writing by another client, that both clients must use
unbuffered file accesses to ensure that readers and writers maintain
consistency [13].

Unbuffered access significantly slows both the reader and
the writer, negating any performance benefit of the read-while-
writeaccess pattern. For data transfer in serverless applications, this
is an overly conservative assumption since both reader and writer
access the data only sequentially (i.e., data is never modified once
written).

In this paper we address the storage access and data transfer prob-
lems for serverless environments. First, we added file system support
to a popular open-source serverless platform, OpenWhisk [53], to
demonstrate how existing file storage solutions can work with a
serverless platform. Next, we implemented a stackable file system, F3,
thatis designed to optimize the transfer of data between serverless ap-
plications and the individual components of a serverless application.
F3 distinguishes ephemeral data from that requiring high durability,
and transparently directs ephemeral data to node-local disks. This

A. Merenstein et al.

Serverless
Runtime
Interface

Action Container

Trigger -
= Faa$S Controller Containers

[Storage provider containers]

Container

Infrastructure Containers Storage

Figure 1: Blueprint architecture of edge serverless platform

enables F3 to perform up to 6.5X faster when writing data and 2.7x
faster when reading data compare to the traditional durable storage.

F3 further optimizes data transfer by tracking the location
of ephemeral files and exposing that information to serverless
schedulers. We modified OpenWhisk’s scheduler to use data
location information when selecting the server to run the function,
which in one experiment reduced network traffic used for data
transfer from 2GB down to zero.

We designed F3 to stack over existing durable storage systems
(e.g., Ceph [13], Lustre [42], and GPFS [26]), making F3 a flexible and
transparent extension to existing storage solutions. The resulting
file system namespace makes both durable and ephemeral files
visible to serverless applications.

Though F3 is generic and can be applied in different environ-
ments, we focused our empirical evaluation on a specific, rapidly
growing use case—Edge Computing. Industrial edge computing
is a new market that is predicted grow from $18B to $31B by
2025 [23]. Edge data centers are smaller facilities that range in
size from street-side cabinets to cargo container-like structures
that house a limited amount of server infrastructure. By having a
smaller form factor than typical data centers (typically only 3-10
servers), edge data centers are relatively easy to move and deploy,
making them a good fit for housing IT infrastructure at the edge.
Serverless computing enables higher resource usage efficiency in
these resource constrained environments through its fine-grained
sharing [22]. Our experimental platform, workloads, and evaluation
methodology are tailored to serverless computing at the edge.

This paper makes the following contributions:

(1) We describe the case for using file systems in serverless
computing and extended OpenWhisk to enable attaching

actions to file-based storage;
(2) We designed and implemented F3, a file system that extends

existing storage systems to enhance data transfers between

serverless actions;
(3) We evaluated F3 and several alternatives for edge computing;

and
(4) We have made F3 and our modifications to OpenWhisk avail-

able as open-source software: https://github.com/ filesystems- for-

serverless.

https://github.com/filesystems-for-serverless
https://github.com/filesystems-for-serverless

F3: Serving Files Efficiently in Serverless Computing

2 BACKGROUND

In this section we give an overview of how serverless platforms oper-
ate (e.g., AWS Lambda [3], Apache OpenWhisk [53]). Figure 1 depicts
a serverless platform running on top of a container orchestrator.

Operation. Serverless platforms run processing @) on demand
in a containerized environment [8]. Traditionally this processing
consisted of snippets of code referred to as “functions.” As serverless
platforms have become more generalized, more and more of
the processing is done by standalone executables (e.g., an entire
webserver or video processing utility). The term “function” seems
insufficient for these more generalized and complex workloads, so
we use the more generic term “action” to refer to both traditional
function-style processing and newer more generic processing.

Actions run when triggered @ by a request to an HTTP endpoint.
The trigger can be initiated in response to an event such as an upload
to an object store. Information related to the trigger is passed to the
action as parameters (e.g., uploaded object name).

Running actions. The containers that run actions @) are often
managed by a container-orchestration platform such as Kuber-
netes [59]. When an action is triggered, if there is an appropriate
container already running, then that container runs the action.
This is referred to as a warm start. If no suitable container exists,
the serverless platform creates a new container for the action by
making a request to the container orchestrator @; this is a cold
start. In either case, a scheduling decision has to be made. If there
are multiple warm containers suitable for an action, the serverless
platform’s scheduler must choose that container to run the action. If
a cold start is required, then the containers orchestrator’s scheduler
must decide the cluster node on which to start the container,
possibly using hints from the serverless platform’s scheduler.

To avoid the overhead of cold starts, serverless platforms keep
action containers running for some time after an action has executed.
If the container’s resources are needed for something else, however,
then the container can be stopped as soon as the action ends. In
either case, cluster resources are reserved and paid for only while
the action is actually running.

Building and deploying actions. In early serverless offerings,
actions were built by writing a snippet of code in a language such
as JavaScript or Python. When triggered, the code was run using
a container image built by the serverless platform. This approach
allowed developers to focus solely on their code, but was somewhat
restrictive in that it limited the languages supported. Also, because
the serverless platform provided the execution environment,
developers had little flexibility in the choice of libraries, runtimes,
and other external resources.

The simplicity inherent in this approach is still sometimes
desirable, and “Function as a Service” (FaaS) platforms continue to
offer this method of building and deploying actions. For many use
cases, however, more sophisticated actions are needed. These actions
might use external libraries, have multiple executables, or require
a specific execution environment (e.g., a specific Linux distribution).
To support these actions, most modern serverless platforms now
allow developers to run an arbitrary container image in response
to a trigger. On startup, these containers run a “Serverless Runtime
Interface” executable @) that interfaces with the serverless platform.

10

SYSTOR ’23, June 5-7, 2023, Haifa, Israel

When triggered, the container image runs the Serverless Runtime
Interface, which retrieves the action’s input parameters, executes
the action, and returns the results to the serverless platform. Thus,
any application that can be containerized can be run as an action
on a serverless platform. This approach opens serverless platforms
to many more use cases than were originally designed.

Storage. Early code snippet-based actions were completely
stateless, thus did not require access to persistent storage. When
stateful serverless actions were later introduced, object stores were
the recommended [15, 43] means to hold the state.

This made sense because (1) early serverless applications
appeared mainly in web environments where object storage has
been the norm, and (2) object stores are easy to access, requiring
only the ability to form an outbound HTTP connection.

Although there are a wide variety of file and block storage
options [33, 47] that container orchestrators can provision @) and
attach 0 to containers, current serverless platforms have not taken
advantage of them.

3 STORAGE FOR SERVERLESS COMPUTING

In this section we first discuss the differences between file and
object storage, then describe features existing file systems lack that
would improve efficiency for serverless applications.

3.1 Object Stores vs. File Systems

In most serverless platforms, the only storage option available to
actions is object storage. Object-based storage uses a key to identify
an item of data, is typically accessed using through HTML requests,
and supports operations PUT, GET, and DELETE. For many serverless
applications, this interface is completely adequate and appropriate.
We are not suggesting that the option of object storage in serverless
platforms should be taken away.

But many applications that run in generic container images
expect a file based interface, where files are identified by their names
in a hierarchical namespace, and are accessed using operations
such as open, read, and write. While file-to-object translation layers
that can be embedded with the application exist, they generally
do not support the richer functionality of files—including in-place
modification, read-after-write consistency and directory-level
operations—thus are not adequate for all applications.

Further, file systems typically provide higher performance than
object stores [29, 55, 56]. Although high performance object stores
could be implemented, applications that require high performance
today are mainly file based [51].

One of the commonly cited benefits of serverless platforms is their
near-limitless scalability. It might therefore seem counter-intuitive
to suggest bringing file systems, often regarded as having limited
scalability, to serverless platforms. Nevertheless, several major
cloud providers have added file system support to their serverless
platforms. This reinforces our belief that file system support is
necessary, and that if serverless platforms are to take the next step
toward becoming a generic computing platform, they must support
file in addition to object interfaces.

SYSTOR ’23, June 5-7, 2023, Haifa, Israel

3.2 Shortcomings of Existing File Systems

Existing shared file systems such as NFS and CephFS can provide
storage for serverless applications. However, these file systems
were not designed with serverless platforms in mind and lack
features that would benefit serverless environments. Three such
features are: (1) support for ephemeral (short-lived) data, (2) the
ability to schedule actions based on where their data is located, and
(3) support for reading files as they are being written.

Ephemeral data. Serverless applications make heavy use of
ephemeral data—one that is short lived and that can be easily
recreated. Ephemeral data comes from a variety of sources.
For example, pipelines that span multiple actions may produce
intermediate results generated by one action, consumed by another,
and then discarded. Sensor and other user data generated at the edge
is often filtered and pre-processed, with much of the original raw
data not retained. Moreover, resources such as machine-learning
models are frequently replaced with updated versions.

Many storage systems provide durability and reliability features
such as replication or erasure coding. These features come with a
performance cost. Since ephemeral data does not need these features,
there is an opportunity to trade off decreased data reliability for
increased performance.

In the case of node or disk failure, ephemeral data can be recreated
by rerunning the original actions that created it. Detecting an action
failure and rerunning the original actions requires a serverless
execution framework that is beyond the scope of this paper; but we
note that a file system could reasonably identify when a disk fails
(e.g., E10 errors) and inform the serverless execution framework.
This would allow the execution framework to differentiate between
regular action failures (e.g., due to an application error) and action
failures due to missing or corrupted data caused by disk failure. How
a serverless execution framework handles such errors is part of the
larger problem of serverless application orchestration (see Section 8).

Data locality-aware scheduling. When running an action, the
serverless platform must decide where to run that action. Assuming
the platform uses containers to run actions, this entails either (1) find-
ing an available already running container and assigning the action
to that container, or (2) starting a new container to run the action.

There has been a significant amount of work done in trying
to avoid cold starts, since starting up a new container to run the
action can significantly increase action latency and overall runtime.
However, another factor that must be taken into account is the
location of the data needed by the application. Running the action
close to the data avoids the delay and overhead of moving the data
to where the action runs.

Most existing storage systems do not provide the necessary
data-locality scheduling hints. Those that do, provide them only at a
volume granularity, too coarse for per-file-based scheduling. For ex-
ample, with volume-level scheduling hints, an application’s actions
cannot simply write their output to a common output directory.
Other systems that have incorporated data locality into serverless
action scheduling (i) require applications to be structured in a
specific way (e.g., as a DAG) [12] and (ii) require information about
the structure of the application before the application runs [12, 44].

11

A. Merenstein et al.

Reading-while-writing. Pipelines where one process generates
data as another process consumes it are common in Unix environ-
ments, especially in the form of Unix pipes (e.g., procA | procB).
Such a pipeline can reduce end-to-end application run times since
the second process does not need to wait for the first process to
finish before starting its processing.

This technique requires the two processes to share a kernel to
facilitate piping the output from one process to the input of the next,
and so porting such a pipeline to a serverless platform is not trivial.
Note that in Unix pipes, the pipe’s data is itself ephemeral and lives
temporarily in kernel buffers.

One workaround is to use a temporary file as an intermediary,
e.g.,procA >/tmp/f & procB </tmp/f. This solution can fail, however,
since procB may read all of /tmp/f and exit before procA has finished
writing, leaving some data unprocessed by procB.

A better workaround is to use an intermediary file, but to also
have procB wait to exit until after procA closes /tmp/f. This is easy
to do with the standard Unix utility tail: procA >/tmp/f & PID=$!;
tail —pid=$PID -f /tmp/f | procB. Here, tail waits for additional
data until procA exits.

This works on a single system where tail is able to test if procA
has exited. However, if procA and procB are running in different
serverless contexts, this workaround does not work.

Because pipelines are such a common idiom in serverless
workflows, a file system that optimizes this pattern and increases
parallelizablity between stages is highly desirable. When an
intermediate file is used to communicate data between two actions,
the file system is in a unique position to block the reader as necessary
to wait for a concurrently running writer to add additional data to
the file, returning end-of-file indication to the reader only after the
writer has finished and closed the file.

4 DESIGN

We have designed a proof of concept file system, F3, that has all of
the desired properties identified in Section 3. Figure 2 depicts F3’s
architecture. F3 is designed to layer on top of an existing durable file
system, extending it with features benefiting serverless applications.
F3 provides faster access to ephemeral data by storing it separately
from non-ephemeral data on local, less durable storage without
features like replication or erasure coding. Since ephemeral data
is stored on node-local devices, F3 interfaces with the serverless
platform to aid in scheduling actions on the nodes where their data
resides. In the event that this is not possible (e.g., because the load
on that node is too high), F3 transparently and efficiently handles
transferring the data between nodes.

We describe the design of the three serverless data transfer
features in more detail below.

Ephemeral data support. F3 provides a common file system
interface for both ephemeral and non-ephemeral data. To do this,
F3 merges (1) a distributed, reliable, networked file system with
(2) a file system on a fast local disk, and exposes a single mount
point. Applications use the mount point exposed by F3, and F3
transparently writes file contents to either the networked file system
or to the faster local file system.

The networked file system should be a file system that is
accessible by every node in the cluster, such as CephFS or NFS. Each

F3: Serving Files Efficiently in Serverless Computing

node should have its own local data store for ephemeral data. This,
for instance, is the case in a hyperconverged architecture, where
storage is provided by aggregating disks attached to each compute
node rather than using dedicated storage servers.

In our current implementation, users can mark a file or directory
as ephemeral by setting the appropriate extended attribute on the

file or directory or just use a special predefined file name extension.

All data under an ephemeral directory is automatically marked
ephemeral. In many workflows an application developer or user can
easily identify which files are intermediate hence contain ephemeral
data. In other cases some files (e.g., stored in /tmp) or opened with
O_TMPFILE, could be automatically designated as ephemeral. In
the future, we can explore using more advanced automation for
identifying ephemeral data.

For each volume, F3 creates a different top level directory on the
local and networked file systems. This keeps the volume namespaces
separate, so files in separate volumes can share the same name and
path. Under this top level directory, F3 maintains the same directory
hierarchy on both the local file system and the networked file
system: the only difference is where the a file’s contents are stored.
It creates an empty file as a placeholder in the underlying file system
where the file is not stored (e.g., the networked file system if the file
is an ephemeral file). However, if a F3 volume is created by extending
an existing networked file system volume, F3 does not require any
initial synchronization. Instead, F3 lazily creates the network file
system’s directory hierarchy on the local disk as needed.

F3 uses extended attributes on the copies of the files on the
networked file system to track F3-specific metadata about a file.
For example, we use extended attributes to mark whether the file is
ephemeral, and if so which nodes in the cluster have a copy of that
file’s data. Storing metadata in the network file systems provides
high durability for metadata. When a file is opened by an application,
F3 checks the file’s extended attributes to determine if the file is
ephemeral: if so, it opens the copy of the file on the ephemeral data
store and returns the file descriptor to the application. Otherwise,
F3 opens the copy of the file on the networked file system and
returns that file descriptor. If the extended attributes are missing,
F3 assumes that the file is non-ephemeral. This can happen if F3 is
extending a networked file system that has already been populated
with data, for instance.

When F3 opens an ephemeral file, it first checks if the file contents
are available locally. If not, F3 uses the extended attributes to find
which nodes in the cluster have the file’s contents. F3 then uses a
per-node client/server communication to do a point-to-point, direct,
efficient transfer of the file contents. As soon as the network transfer
is initiated, F3 begins transferring the entire file and returns a file
descriptor for the file to the application, which can then read the
file as it is being downloaded.

The original copy of data is not deleted, and the data on
either node can be used by subsequent actions. For our current
implementation, we assume that ephemeral data is written once [34]
so this copy of data does not need to be updated. As most ephemeral
serverless data is written only once, this is a reasonable assumption.
At this time we consider it the responsibility of the application
developer to ensure that this assumption holds.

If a node or local disk fails and ephemeral data is lost, the action
that created the data has to be re-run. This is consistent with the

12

SYSTOR ’23, June 5-7, 2023, Haifa, Israel

Action Name: xxx .
Params: /v/ffin, /v/flout O Data transfer Data location
Vols: f3-vol o information
Mount points: /v/f
/a Mada 2
L NModa 2

Node 1 Shared

File
System

Serverless Platform

Scheduler
C—

Action

L

Mf/in, 2 GB, Node 1)

Data Locality Server

(v/flin, Iv/iloT

Figure 2: F3 architecture and locality-aware data operations

typical requirement that actions are idempotent [6, 30], and the fact
that actions may be automatically re-run by the serverless platform
in the event of certain kinds of errors [40].

Our current implementation of F3 does not include any garbage
collection to delete old data on the local disk. A simple approach
would be to delete data as needed when the disk fills up, using an
LRU algorithm to choose what data to delete. If a single action writes
enough ephemeral data to fill up the local disk by itself, the current
implementation of F3 would return ENOSPC to the application. Other
approaches might be to have F3 copy the ephemeral data to the
shared file system, store the data partially on the local disk and
partially on the shared file system, or to have the serverless platform
rerun the action and have F3 treat the data as non-ephemeral during
the second run. We leave exploration of these options, as well as an
implementation of a garbage collection mechanism, to future work.

Data locality hints for action scheduling. Collectively, the F3
file system drivers which run on each node in the cluster know what
files are present in their local ephemeral data store. If the serverless
platform’s scheduler knows what files an action will access, the
scheduler can ask the F3 file system for the location of the data and
use that information in deciding where to schedule the action.

Rather than making the scheduler query each local instance of
F3, F3 includes a simple server that centralizes this data locality
information. Each local instance of F3 sends information about
what files are on its node to this data locality server. The locality
information is sent to the server asynchronously, so the server
should not become a bottleneck in data operations.

Figure 2 details how the data locality feature in F3 works. When
an ephemeral file is written @) to an F3 file system, the local instance
of F3 on that node sends e the file name, file size, and node name
to the data locality server. F3 sends locality information twice: once
when the file is created, and again when the file is closed. The locality
information sent when the file is created allows the serverless
scheduler to schedule pipelined actions on the same node, since it
tells the scheduler where the data will be. The locality information
sent when the file is closed allows the scheduler to make scheduling
decisions based on the actual amount of data that each host has.

When the serverless platform receives @) a new action to run, its
scheduler has to choose where to run the action. If there are suitable
warm containers available, it chooses one of them; otherwise, it
creates a new container. When taking data locality into account, the
scheduler tries to identify all files that the action is likely to access.
Currently this is done by identifying strings in the action parameters

SYSTOR ’23, June 5-7, 2023, Haifa, Israel

that contain the mount point of the F3 file system @). This was
sufficient for the applications that we used for our evaluation. In
the future, more sophisticated methods such as predictions based
on prior action invocations can be used to identify files likely to
be accessed. Additionally, a serverless orchestrator or framework
such as Kubeflow [37] that knows the relationship between actions
could explicitly provide information about what data an action will
produce or consume.

The scheduler then sends the list of files to the data locality server
©. The datalocality server then uses the information supplied by
the F3 file system drivers to identify for each file in the list what
nodes have the file locally and the size of each file. It sums the
amount of data available on each node, and returns this information
to the scheduler @). The scheduler uses the information to choose
a container on a node with the largest amount of data available
locally @. If there are no suitable containers the scheduler then
uses this information to tell the container platform which node the
new container should be created on.

Data locality is only one of several factors that the scheduler uses
to place actions. For instance, if the node with the best data locality is
overloaded, then the scheduler may instead decide to run an action
onaless heavily utilized node. Ideally, the serverless scheduler would
provide a mechanism for letting users decide how these different
pieces of information are used when making scheduling decisions,
similar to the flexibility offered by the Kubernetes scheduler [39].

Reading-while-writing. Usually a process consumes a file by
issuing read system calls in a loop, stopping when read returns
zero (i.e, when the end of the file is reached). If the file is being
written at the same time as it is being read, the reader would need
to periodically poll for new data when read returns zero.

The challenge here is that the process needs to know when to
stop polling because the writer has finished and closed the file. Unix
pipes handle this transparently for a process: rather than returning
zero, read blocks until more data is available as long as the write
end of the pipe remains open.

F3 replicates this behavior by blocking read calls from returning
if read would return zero but the file is open for writing by another
process. When more data has been added to the file or the writer
closes the file, F3 allows read to return to the caller. Since F3 spans
the entire cluster, this works even if the writing process is running
in a different container or a different node.

This feature makes it possible for a serverless scheduler to sched-
ule the next stage of a pipeline before the previous stage has finished,
thus improving concurrency. The same locality hints the scheduler
uses to place the reader action can also be used to wait for the
previous pipeline stage to create the file. Thus pipeline stages can be
scheduled in parallel without code changes to either reader or writer.

If one of the pipeline steps fails, there may be subsequent stages
that have already read part of the output from the failed step. If the
pipeline previously ran on a single node, then it likely already has
logic for dealing with this case and such logic can be reused in the
serverless environment as well. For example, the application might
cleanup the output from failed steps and then rerun. Since objects are
written or read in their entirety, rather than incrementally as files are,
additional logic may be needed for applications that currently use
an object interface for storage. Detecting when a failure occurs and

13

A. Merenstein et al.

what recovery steps are needed (e.g., failing downstream actions that
are currently reading data from the failed action) is the responsibility
of the serverless execution system and is out of scope for F3.

5 IMPLEMENTATION

We implemented F3, following the design described in Section 4.
We targeted OpenWhisk [53] as the serverless platform, which we
deployed on top of Kubernetes as the container orchestration plat-
form. F3’s implementation consists of four components and a series
of modifications to OpenWhisk, described below. We plan to release
these components publicly, as open source, available at url-redacted.

1.F3 file system driver. The F3 file system driver is implemented
using FUSE [69, 70]. We used FUSE for this prototype rather
than implementing a kernel-based driver due to FUSE’s relative
simplicity and ease of development. We expect that any performance
penalty that FUSE imposes is insignificant compared to the benefits
provided by F3 (e.g., fewer network transfers). In the future, a kernel
version of F3 could be implemented for production uses.

The F3 FUSE driver is implemented in 2,406 lines of C and C++.
An instance of the FUSE driver runs on each node, for each F3
volume mounted on that node.

2. File transfer server & client. Ephemeral data written on one
node and read on another node must be copied to the reader node via
anetwork transfer. This functionality is implemented in a Go-based
client and server, each of which runs on each node of the cluster.
Go was chosen due to its strengths as a language for networked
applications like file transfer clients and servers [66]. Additionally,
Go’s ability to compile into a portable executable eases the
containerization and deployment of the file transfer and server [41].

The F3 FUSE driver communicates to the client via Unix domain
sockets to request that a file’s contents be downloaded from another
node. The file transfer server and client are written in 574 lines of Go.

3.CSIdriver. To integrate F3 with Kubernetes, we implemented a
CSI (Container Storage Interface) driver [33] to enable provisioning
and attaching F3 volumes to Kubernetes pods. The CSI driver is
implemented in 811 lines of Go.For example, the CSI specification
website lists 83 CSI drivers with source code: of those, 74 are
implemented in Go [33]. When users create an F3 volume, they
must also create a volume for the networked file system that F3 will
use. The F3 volume definition indicates what networked file system
volume to use with the Kubernetes label [38] 3. target-pvc: foo,
where foo is the name of the network file system’s volume.

When the CSI driver is instructed to attach an F3 volume (i.e.,
receives a NodePublishVolume CSI command), the driver checks to
see if the target networked file system volume is already mounted
on the node where the F3 volume is being attached. If not, the F3
CSI driver creates a pod on the target node that is attached to the
target networked file system. This forces the networked file system
to be mounted on the target node. F3’s FUSE file system can then
access the mount point. We assume that each node’s local data store
is mounted in advance.

4. File locality server. The file locality server aggregates data
from each F3 file system driver in the cluster. It is implemented in
214 lines of Go. The locality information about ephemeral data is
stored on disk in a JSON formatted file. The durability of the locality

url-redacted

F3: Serving Files Efficiently in Serverless Computing

information is not critical, since the data itself is ephemeral and the
serverless platform can always fall back to data-unaware scheduling.

5. OpenWhisk Modifications. In addition to the new com-
ponents implemented above, we had to modify the OpenWhisk
serverless platform. These changes included (1) adding support for
attaching action containers to storage volumes, (2) identifying what
files will potentially be accessed by an action, and (3) modifying the
OpenWhisk scheduler to query the data locality server and using
the response when choosing a container for an action.

In total, we changed about 700 lines of OpenWhisk code, most
of it in the Scala language.

5.1 Unmodified Applications in Serverless

One of the advantages of file based storage for serverless is that
it enables running unmodified applications. To highlight this
capability, we wanted to use unmodified, “off-the-shelf” applications
in our evaluation of F3.

During our evaluation we tested many combinations of container
images, applications, and application command line options. To
simplify this process, we implemented a mechanism that enables
easily running a command as an OpenWhisk action. The user
runs a command with the ow-run utility that we created. The user
experience with ow-run is similar to that of running a command using
the command line on their local machine. For example, consider
we want to run this command, normally invoked locally, as follows:
trimmomatic /data/@.fastq /data/@.fastq.gz

To run that command on OpenWhisk using our ow-run utility,
the command line invocation would be:

-ow-action trim
/data

ow-run -container-image sunbeam:v0.0.7
-vol-list f3-pvc -mount-path-list
/data/0@.fastq /data/@.fastq.gz

In this example, the user needs to have already configured the
resource limits and requests for the trim action and created the F3
volume f3-pvc. However, the user needs to make no modifications
to trimmomatic itself. This allowed us to easily and efficiently test

a wide range of applications and application settings.

trimmomatic

6 EVALUATION

Due to the growing amount of data produced by IoT devices, the
rising demand for low-latency on-the-spot computing, as well as
privacy and security concerns, applications and infrastructure are
increasingly deployed at the Edge rather than in the hyper-scale
Clouds [68]. The umbrella project for F3 focuses on the growing
Edge business opportunities: thus, we designed our experimental
platform and workloads to be representative of edge environments
and workloads. Furthermore, our analysis shows that thanks to its
higher resource efficiency, the serverless approach could be even
more attractive at the resource-constrained Edge than in the Clouds
with seemingly unlimited resources.

A typical edge data center is a cluster of only 1-10 servers
located either at a customer site (e.g., a factory or a retail sore) or
at an Internet access point (e.g., 5G cell tower). The servers in a
typical edge data center run standard operating system (e.g., Linux),
virtualization software (e.g., KVM), and container orchestrators (e.g.,
Kubernetes). Due to constraints on clusters’ physical footprint, a
popular architecture for Edge data centers is hyperconverged setup,

14

SYSTOR ’23, June 5-7, 2023, Haifa, Israel

where each building block (e.g., a server) provides both compute and
storage resources. The testbed described in the following section
reflects these characteristics of edge data centers.

6.1 Cluster and Storage Setup

We ran our evaluation on CloudLab [18] using a cluster of nine
machines connected via a 1Gbps network, with each node running
CentOS Linux 7.9.2009. Each machine had two 2.60GHz, ten-core
Intel CPUs with hyperthreading, 160GB of RAM, and one 430GB
SATA SSD. The cluster was connected via a private 1Gbps network.
Our serverless platform was OpenWhisk 1.0.0, using Kubernetes
1.19.0 as the container orchestrator.

One node was dedicated to running the etcd server used by
Kubernetes to store cluster state; another node was the Kubernetes
control node; and a third node was dedicated to running an
NES server used in evaluation. The remaining six nodes were
hyper-converged Kubernetes workers that ran both evaluated
workloads and storage systems—CephFS, MinlO, and F3.

In our CloudLab setup every node had only one attached disk.
Since F3 requires both a local disk and a shared file system, we used
LVM to split the single SSD attached to each node into two volumes.
We formatted one volume with ext4 and used that as F3’s local disk;
we used the other volume for CephFS and MinlIO.

In our evaluation we assume the case when an edge cluster already
hasaccess to durable storage: CephFS (distributed file system), MinIO
(object storage), or central NFS server (NAS). F3 can be layered over
these solutions (except MinlO) to provide additional performance
benefits in serving ephemeral data to serverless functions. We evalu-
ate MinIO to provide a reference point of how applications perform
with a popular object storage solution rather than a file system.

CephFS. Ceph [13] is a popular storage system built on the
RADOS object store [57]. It aggregates storage from each node it is
deployed on and exposes a single pool of storage. There are several
interfaces for Ceph including CephFS, which exposes a file-system
interface to applications. Ceph offers several data durability
schemes, such as replication and erasure coding. We evaluated three
different Ceph configurations: no replication, 3X replication, and
2-1 erasure coding (two data blocks and one erasure block).

CephFS has both kernel- and FUSE-based user-space drivers. We
used the FUSE-based user-space drivers, which are typically more
up to date and safer to use than their kernel counterparts. We used
Ceph version 15.2.7, deployed on Kubernetes with the Rook [61]
operator version 1.5.9.

MinIO. MinlO [48] is a popular object store. Like Ceph, it can
aggregate storage across multiple nodes and expose a single storage
pool. Also like Ceph, MinIO offers several data durability modes. We
chose EC-3, which was the default for our sized cluster (six nodes,
one disk per node). This mode splits data into three data chunks with
three coding chunks. We used MinIO release 2022-09-07T22-25-02Z,
deployed on Kubernetes with version 4.5.0 of the MinIO operator.

We used s3fs [62] to access MinlO’s object API and provide a
file-based interface over MinlO. This is representative of the current
state of storage for serverless: if a user wishes to run an application
on a serverless platform but the application requires a file based
storage interface, they would need to use a tool like s3fs to access
an object store.

SYSTOR ’23, June 5-7, 2023, Haifa, Israel

NFS. NFS [64] is a well-established file system protocol. Although
hyper-converged configurations such as those used by Ceph and
MinlO are common, architectures that use standalone NAS storage
appliances are still used. NFS is mature, and easier to deploy and
configure compared to more sophisticated, distributed or networked
file systems like CephFS. We used NFS on a standalone, dedicated
server in our cluster—to represent this alternate architecture. We
used the standard NFS server included with the Linux kernel to
export a local disk formatted with ext4. The NFS version was 4.1,
which was the default version available on our operating system
(CentOS Linux 7.9.2009).

F3. In most experiments we evaluated F3 using CephFS with
no replication as our networked file system. The local disks used
as a per-node local data store were formatted with ext4, which is
a commonly recommended file system and the default for many
operating systems [60]. Although we mainly used CephFS as the
networked file system for our evaluations, F3 is capable of stacking
on top of any underlying networked file system that supports
extended attributes. To test this, we verified that F3 also works on
arecent NFSv4.2 server with extended attributes support.

We measured the impact of using different networked file systems
(CephFS with no replication, 3 replication, 2-1 erasure coding, and
NFS) with F3. We found that the choice of underlying file system had
little to no impact on the performance of ephemeral data operations:
performance in each case was within 3.1% of each other for reads
where the data was not available locally, and less than 0.03% and
hence statistically indistinguishable. of each other in all other cases.
This is because F3 is designed to avoid the networked file system
for ephemeral operations. We used unreplicated CephFS as our net-
worked file system throughout our evaluation: any reference of “F3”
in the evaluation means “F3, layered on top of unreplicated CephFS”

Since the focus of this evaluation was on F3’s features for
ephemeral data, all data in our evaluation was marked as being
ephemeral. We leave to future work evaluating the performance
of mixed ephemeral and non-ephemeral data operations, as well
as how to automatically identify whether data is ephemeral or
non-ephemeral.

Disk vs. network speed ratios. When selecting the server for
a file system that accesses disks over the network, disk speeds and
network speeds should be on par with each other so that neither
dominates as the primary bottleneck. We chose network and disk
speeds that were representative of real-world ratios. Each of our
servers had only a single disk available for the storage systems under
evaluation. We measured the disk speed to be 200MB/s, giving a disk
to network throughput ratio of approximately 1.6 with the 1Gbps
network. Although 1Gbps is slow compared to the networks found
in many modern data centers, our disk to network throughput ratio
falls within the range typical of real world edge deployments [74]. If
we instead had ten disks with a combined throughput of 2000MB/s
and a 10Gbps network, the ratio would remain the same.

6.2 Data Transfer Micro-Benchmarks

We evaluated the performance of data exchange and the impact of
F3’s data exchange optimizations. We first show the performance
impact of different replication and erasure coding levels, compared

15

A. Merenstein et al.

Writes Reads
6 4 4 | Mear\
— . Median
(%]
=E
© —
25 |
g%
o
@ E 2+ 1
(o]
[9)
0- A__-_—_._._,‘

1x 3x

5x 2-1 3-3Local 1x
EC EC disk

3x 5x 2-1 3-3Local
EC EC disk

Figure 3: Mean and median system call latencies for different
configurations of storage system. 1X, 3%, and 5X refer to the
degree of replication; 2-1 and 3-3 EC refer to the erasure
coding configuration (2 data and 1 coding chunk, and 3 data
and 3 coding chunks, respectively).

e 1X == 3X == 5x == 2-1EC 3-3EC Local disk
Writes Reads
1.00 A R o)
1
0.75 A 1 i
8 0.50]
o ;
1
0.25 1 1 1
)
1
0.00 1, | i — ! o .
101 10° 10! 102 1072 101 10°

System call completion
time (ms), log scale

System call completion
time (ms), log scale

Figure 4: CDFs of read and write system call latencies, for
different storage configurations. We used log scale for the
x-axis because the system calls exhibited long tails at higher
replication degrees.

to a baseline of accessing a local disk. This is the motivation behind
F3’s use of a local disk for ephemeral data.

We then show the impact of data locality based scheduling, and
avoiding the overhead of transferring data across the network. Next,
we show the combined impact of F3’s data locality based scheduling
and F3’s use of local disk for ephemeral data. Finally, we show the
impact of F3’s optimizations for reading-while-writing.

Impact of replication & local disk storage. We evaluated the
impact of replication and erasure coding on the latency of read and
write system calls. We ran several experiments to time 100,000 reads
and 100,000 writes on CephFS volumes with varying replication
and erasure coding options, and compared with the same workload
on an ext4 file system on a local disk. Since CephFS uses a FUSE
driver, we used a passthrough FUSE file system to access the ext4
file system. This ensured that all read and write system calls went
through a FUSE layer for a more fair comparison. System call times
were measured with strace, and were generated with dd with bs=4K
and [o|ilflag=direct.

F3: Serving Files Efficiently in Serverless Computing

Il Data read via network I Data read locally from F3 ephemeral data store

7><7 ! !
o6 6. 6 6.,

D [0}
ke Q ° Q
25 5% 25 5%
o 5 8 5
,§4 48. _§4 48.
3/ \3”’ 3 3°
2 2 2 2

Without data
aware scheduling

With data
aware scheduling

Figure 5: Impact of data aware scheduling. Each line connects
a writer with its corresponding reader, with the numbers
along each side showing what node in the cluster the writer
or reader ran on. Red lines indicate that the reader needed
to transfer its file from the writer node via a network transfer.
Green lines indicate that the reader and writer ran on the
same node and the file was read from F3’s local ephemeral
data store, with no network transfer was needed.

Figure 3 shows the mean and median system call latency across
multiple storage configurations. The distribution of latencies exhib-
ited along tail, as can be seen in Figure 4 (note the log scale). This is ex-
pected, as there are multiple sources of variability in the storage and
networking stacks, and have been observed before [11, 27, 32,49]. As
the degree of replication increases, we see the tail grow longer, which
also makes sense as the number of sources of variability increases.

As expected, the local disk performed significantly better than
CephFS, especially when writing: 0.1ms vs. 2.2ms for 1X replication).
We also see that as the replication degree increased, generally so did
system latency. The exception was that for reads, 3x and 5% repli-
cation perform about the same or slightly better than 1X replication.

Impact of data locality considerations during action schedul-
ing. To demonstrate the impact of locality aware data scheduling,
we wrote and then read six ephemeral files. Writers were run
manually on each node, one per node, with each writing a unique
400MB file. For each writer, a corresponding reader was run in an
OpenWhisk action that read the entire 400MB file. When the reader
and writer both run on the same node, the reader reads its file from
F3’s local disk. However, when the reader and writer each run on
separate nodes, the data must be transferred from the writer node
to the reader node over the network.

Theleft-hand side of Figure 5 depicts the case where OpenWhisk’s
default scheduling is used. Here, the readers are assigned to nodes
without regard to where the input file they need to read is located;
we see that only a single reader (green line) ended up running on
the same node as its corresponding writer. The red lines depict
instances where the reader ran on a different node from its writer,
necessitating a 400MB network transfer to copy the data from the
writer node to the reader node. In total, using the default OpenWhisk
scheduler resulted in 5 %400 = 2000MB of data being transferred
across the cluster network.

The right side of Figure 5 shows the impact of our modified
OpenWhisk scheduler that utilizes F3’s data locality hints. All six

16

SYSTOR ’23, June 5-7, 2023, Haifa, Israel

Bm Ceph 1x W Ceph 3x

B Ceph2-1EC W MinlO NFSv4 F3

Latency (ms)

Throughput (MB/s)

write randwrite read read randread randread
same node diff node same node diff node
as writer than writer as writer than writer

Figure 6: Mean latencies and bandwidths of Ceph, NFS, MinIO,
and F3. “Ceph 1x” and “Ceph 3x” are configured with 1x
and 3X replication, respectively. “Ceph 2-1 EC” uses erasure
coding (data split into two data chunks and one coding chunk).
F3 was layered on top of an unreplicated CephFS volume.

readers were scheduled on the same node as the corresponding
writer, and hence no data was transferred over the network.

Impact of replication, local disk storage, and data locality.
We used fio [20] to measure sequential and random read and write
performance of the storage systems. fio ran in a pod (container) via
a serverless action. Write and read workloads were generated by
separate instances of fio running in separate pods. The data written
by fio wasmarked as ephemeral, and the reader instance ran after the
writer instance finished. We measured read performance where the
reader pod ran on the same node as the writer pod, as well as when the
reader pod ran on a different node. This demonstrates the difference
in performance that data locality can have on an I/O workload. We
disabled F3’s data locality based scheduling to be able to control
whether the reader ran on the same or different node as the writer.
We used a large (200GB) dataset to mitigate the impact of caching.

Figure 6 shows the bandwidth reported by fio, in MB/s, and the
mean latencies, in milliseconds. We ran fio in each configuration
three times. Error bars show that variance was small, less than 5%
of the mean, with one exception: F3 random reads on the same node,
where the variation was 7%.

As expected, F3 had the highest read and write performance when
the reader was on the same node as the writer. F3’s write bandwidth
ranged from 1.40X to 6.46X faster than other storage systems; read
bandwidth ranged from 1.84x to 2.30x faster. Latency ranged from
1.40X to 2.64% lower when writing and from 1.84X to 2.73X lower
when reading. These performance improvements were due to F3’s
use of local storage. By using local storage, F3 is not limited by the
cluster’s network capacity as other storage systems are.

SYSTOR ’23, June 5-7, 2023, Haifa, Israel

F3’s read performance when readers and writers ran on different
nodes was similar to NFS. In both cases, the data had to be transferred
over the network.

Each of the networked file systems was limited by the cluster’s
1Gbps (125MB/s) network. The one exception was writing in the
unreplicated configuration of Ceph. This was expected because
Ceph breaks files into blocks that are then distributed across each
of the storage nodes in the Ceph cluster. Because we were using
a hyperconverged architecture, the Ceph storage nodes were the
same nodes that run user workloads, including our instance of fio.
Since we had six nodes in our cluster, we expect then that % of the
data written by fio resided on the node running the fio program,
and as a result was not limited by the cluster’s network.

Impact of reading-while-writing. Passing data from one stage
of a data processing pipeline to the next is a common pattern.
A straightforward implementation is to run the pipeline stages
sequentially, where each stage produces an output file that the next
stage reads as input. A disadvantage of this approach, however, is
that it provides no parallelism between pipeline stages.

Another possible implementation is to run pipeline stages
concurrently, streaming the data between stages (e.g., using UNIX
pipes to connect them). The added parallelism of streaming can
result in lower end-to-end processing times. A limitation of using
UNIX pipes, however, is that the stages must all be run on the same
node, which is not always convenient.

In this section, we use a third approach where a stage in the
pipeline reads input from a file in a shared file system while the
previous stage writes the file. We show below how we solved the
problem of the reader reaching the end of file before the writer has
finished writing all data.

We ran experiments in a serverless environment using CephFS,
NFS, and F3 as the shared file system—first with the reader on the
same node as the writer, then with the reader on a different node.
We used a smaller data set (400MB) than the server’s RAM (160GB),
so the results reflect the ability of the storage systems to leverage
the kernel’s page cache rather than being disk bound.

To solve the early EOF problem, we made a few changes to our
pipeline stages. First, we modified the writer stage to create an empty
file, /var/data/f.done, on completion. Next, we split the reader into
two parts. The first part was a script that read from /var/data/f and
wrote to a FIFO pipe, /tmp/f . pipe. Whenever the script reached EOF
on input, it checked for the existence of the /var/data/f.done file,
and if not found, slept one second (same duration as tail -f), then
returned to the top of the loop and continued reading. The second part
was the actual reader program (e.g., grep or cat), except that instead
of reading from /var/data/f, it read from /tmp/f . pipe. Both parts of
the reader ran in the same action. This implementation enabled us
to run a reading-while-writing workflow in a serverless context.

Because F3 has special support for handling EOF in the reading-
while-writing access pattern, it did not require any of the additional
implementation: the writer action simply wrote to /var/data/f and
the reader action simply read from /var/data/f.

Note that because CephFS was not designed for this usage
pattern, it does not handle the reading-while-writing case efficiently
when reader and writer run on different nodes. In this pattern, it
falls back to unbuffered reading and writing [14].

17

A. Merenstein et al.

21000 | W Write, reader same node

= Il Read, writer same node

£ I Write, reader different node
g 5001 pum Read, writer different node
2

©

[an]

F3

Ceph Ceph Ceph Ceph Ceph NFSv4

1x 3x 5x 2-1EC 3-3EC

Figure 7: Comparison of read-while-write performance,
when readers and writers are on the same or different nodes.
For CephFS, having the reader and writer on different nodes
significantly degrades both read and write performance.
MinlIO is absent from this experiment due to its inability to
read and write data concurrently. F3 was layered on top of
an unreplicated CephFS volume.

MinlIO is not capable of reading from an object as it is being
written to, so it is omitted from these experiments. This example
further highlights the limitation of object-based interfaces.

Figure 7 shows the difference in same-node-reader vs. different-
node-reader performance. As expected, for all storage systems, read
performance is worse when the reader is on a separate node from
the writer. However, Ceph’s write performance is also lower when
the reader is on a separate node. This is because when both reader
and writer are on the same node, Ceph can do buffered reading and
writing, as only a single client is accessing the file. When the reader
and writer are on separate Ceph nodes, however, there are now
multiple clients accessing the same file and Ceph falls back to its
slower, unbuffered file accesses (plus the additional overhead of
network transfers).

6.3 Case Study: Bioinformatics Pipeline

We developed a bioinformatics case study in collaboration with
an industry partner specializing in large scale processing genetic
sequence data. The advent of new genetic-sequencing technologies
(e.g., nanopore) has made sequencing more portable, affordable, and
accessible. Sequencing can now be done anywhere from hospitals
to sea-bound ships and is being used for an increasing number of
applications [17].

Sequencing typically produces a large amount of data that
is then processed using a series of steps run in a pipeline. The
pipeline typically begins by cleaning and filtering the data, for
example removing artifacts created as a byproduct of the sequencing
technology. After cleaning, the sequence data is then analyzed, for
example to identify the species present in a sample.

Running all or part of the analysis pipeline at the edge where
the sequence data is generated can save significant time and cost
associated with moving a large amount of data to the cloud. It is not
always possible or desirable to run the entire processing pipeline at
the edge, for instance, when the analysis requires more computing
power than is available in the edge data center, or when the analysis
output is required in the cloud for other reasons (e.g., archival). But
running at least the cleaning portion of the pipeline at the edge can
still significantly reduce the amount of data uploaded to the cloud.

F3: Serving Files Efficiently in Serverless Computing

Because various stages in the pipeline have different resource
requirements, running the pipeline in a serverless environment
where each stage is run as a separate action provides better resource
utilization.

Analysis pipelines are usually built using existing tools developed
by other bioinformatics researchers. These tools usually assume
a file interface for their inputs and outputs.

We implemented the cleaning stage of a genetic-sequencing
pipeline using two commonly used tools: Cutadapt [45] and
Trimmomatic [10]. Cutadapt identifies and removes portions of
sequences that were added to support the sequencing process and
are unrelated to the data being analyzed. Trimmomatic removes
sequences that fail to meet a given quality metric. Usually, Cutadapt
is run first. Its output becomes the input for Trimmomatic.

Figure 8 describes our implementation. We uploaded a 926 MB file
of genetic-sequence data to a load-balanced web server @), which
wrote the file to a data store as ephemeral data. Because the web
server uses a load-balancer to distribute requests among nodes, the
server that receives and stores the sequence data can be any of the
worker nodes in the cluster.

Once the receiving node had saved the file, it ran Cutadapt @
and Trimmomatic @) as OpenWhisk actions. We ran the pipeline
in two modes: sequential and pipelined. In the sequential mode,
Trimmomatic was started after the completion of Cutadapt. In
pipelined mode, Trimmomatic was run at the same time as Cutadapt,
operating on Cutadapt’s output as it was being written. Cutadapt’s
output was 926 MB and Trimmomatic’s output was 126 MB. Together,
the two applications reduced the input data size by 7.3x.

Additionally, running the tools in separate actions provided better
resource efficiency. The memory requirement of Trimmomatic is
1024MB, while that of Cutadapt is only 32MB. If both steps ran in the
same context, then the system would have had to reserve the larger
memory requirement for the duration of both pipeline stages. By
scheduling them as separate actions, however, the larger memory
reservation was needed only for the duration of the Trimmomatic
stage. Running in separate actions is enabled by providing access
to shared, file based storage.

Figure 9 shows the end-to-end runtimes of the pipeline. The
pipeline ran fastest on F3, ranging from 8% to 34% faster than on
other storage systems for the sequential mode, and 9% to 47% faster
for the pipelined mode. Note that for the pipelined mode, MinIO
results are not shown because it is incapable of being run in this
mode (simultaneous reading and writing). The pipeline ran slowest
on MinlO, not surprising since the pipeline writes a large amount
of data during the Cutadapt stage and MinIO has the worst write
performance of all evaluated storage systems.

NFS performed similarly to F3, running only 8% slower. There are
two factors that contribute to this: the first is that the size of the data
used in the experiment is small. This means that the time spent onI/O
compared to the overall runtime is relatively small, and so improve-
ments to that I/O time have a small impact on the larger runtime.

Second, the experiment was conducted in what are close to
“ideal” conditions for NFS: only a single client and no other network
traffic. This allowed the data transfers that take place during the
experiment to utilize the entire network capacity. As a quick test,
we used iperf to generate network traffic and re-ran the experiment
for NFS: at 50% network utilization F3 performs 16% faster than

18

SYSTOR ’23, June 5-7, 2023, Haifa, Israel

Genetic (1] Load
Sequencer balanced Cutadapt Trimmomatic
web server

Constrained/
smart device

On-prem data
center/access point

Figure 8: Bioinformatics use case architecture

Sequential Pipelined

w
o
o

runtime (s)
= N
o O
o o

o

Ceph Ceph Ceph MinIONFSv4 F3 Ceph Ceph Ceph MinlIONFSv4 F3
1x 3x 2-1EC 1x 3x 2-1EC

Figure 9: Runtime of Cutadapt + Trimmomatic pipeline. F3
was layered on top of an unreplicated CephFS volume.

NFS, 25% better at 75% utilization, and 59% better at 90% utilization.
All networked file systems will be subject to performance variation
based on the overall network utilization. F3, by using local disks and
data locality scheduling, avoids this problem—performing relatively
better and better as the network gets more congested.

7 RELATED WORK

Jonas et al. [31] implemented PyWren, which enables the massive
parallelization of Python applications using AWS Lambda. This is
one of the first cases of researchers using serverless platforms for
use cases beyond web applications, and they found that existing
storage solutions were lacking. In particular, they reported that the
existing storage solutions are incapable of supporting large scale
data operations. Following PyWren, Klimovic et al. [34] examined
the storage use of several FaaS applications and proposed the design
of a storage system suitable for these new use cases. Unlike F3, these
works do not consider file-based storage for serverless.

Several papers introduce new storage systems for serverless
platforms: Locus [54], Pocket [35], and Cloudburst [65]. Other
frameworks for writing or running applications on serverless
platforms handle storage by abstracting access to one of many
possible storage backends. Examples include gg [21] and Ray [50].
In all of these cases, access to storage was exposed via a custom API
interface which would require porting existing applications in order
to run. Conversely, F3 allows existing applications to run unmodified.
Also, F3 could be integrated into frameworks like gg or Ray as an
alternative storage backend, or could be layered on top of one of
the existing storage backends supported by those frameworks.

Schleier-Smith et al. [63] make a similar argument as we do in
favor of a file interface for serverless applications. However, they
assert that existing shared file systems are too slow and are incom-
patible with cloud environments where failures and high latencies
are common; and they propose a transactional interface. We believe
that small edge data centers will have fewer random failures and
lower latency than cloud data centers, and that shared file systems
can achieve high performance in this setting (see Section 6).

SYSTOR ’23, June 5-7, 2023, Haifa, Israel

Wukong [12] and SONIC [44] aim to accelerate data transfer in
serverless environments by scheduling connected actions together
on the same node. However, they require prior knowledge of the
workload, such as the graph of which actions call other actions in
order to schedule actions that share data together on the same node.
F3 does not require prior knowledge about workloads in order to
schedule actions close to their data.

Other work has explored transferring data using direct network
connections between two serverless actions, made possible via
NAT hole-punching [73]. This addresses the issue of data transfer
between actions but does not address the need for file-based storage.

Our location-aware data scheduling is similar to the ideas imple-
mented by Hadoop [1] and HDFS [2]. Hadoop and HDFS are designed
for map-reduce environments and fit well for data analytics tasks. It
is not possible to access HDFS data through the usual read and write
system calls. F3 is created specifically for serverless computing and
is suitable for running generic, unmodified applications.

Apache Crail [67] makes a similar argument to us, that some
intermediate data generated by applications do not need the
durability provided by most storage systems. They introduce an
architecture and implementation of a system that provides fast data
transfer for ephemeral data. However, unlike F3, Crail exposes a
custom API that requires applications to be modified to use.

In HPC environments, burst buffers such as BurstFS [72], and
GekkoFS [71] accelerate access to temporary data by adding a
faster, less durable storage layer between the application and the
cluster’s persistent data store. Unlike F3, burst buffers treat all data
as ephemeral and do not provide a shared namespace with both
ephemeral and non-ephemeral data.

Using non-persistent storage such as RAM for ephemeral data
is common (e.g., using Redis [58] or Memcached [46]). These
solutions also have no shared namespace with both ephemeral and
non-ephemeral data. Additionally, popular memory-based storage
systems that are accessible from multiple servers all use object
interfaces, rather than file interfaces.

Like F3, the Google File System (GFS) [24] has special support
for the read-while-write use case. However, GFS implements a
limited number of file operations, making it potentially unsuitable
for running unmodified applications. Also, the special support for
reading-while-writing is exposed via a new, non-standard operation
called record append. Unmodified applications therefore cannot
benefit from this new feature. In F3, even unmodified applications
can benefit from our read-while-write optimizations.

8 CONCLUSION

Serverless platforms have been steadily growing in popularity.
Although so far they have been limited to relatively simple
web-based tasks, users and researchers are beginning to appreciate
the potential of serverless platforms’ on-demand computing
capabilities. As serverless platforms make the shift to being a
platform for any generic task, two significant problems remain:
access to storage and data transfer.

Some advanced and existing applications require access to
file-based storage. To support these applications, serverless
platforms need to allow attaching to file-based storage systems.

However, existing storage systems were not designed with serverless
applications in mind and lack key features that would accelerate the

19

A. Merenstein et al.

kind of data transfers commonly found in serverless environments:
(1) support for ephemeral data, (2) data locality-aware action
scheduling, and (3) support for efficient simultaneous data access
(i.e., reading files as they are written).

In this paper, we presented F3, a file system that layers on top
of existing storage systems to provide these three key data-transfer
features. We additionally described modifications to an open source
serverless platform, OpenWhisk, to enable attachment of file-based
storage and take advantage of data locality hints provided by F3
when scheduling actions. We evaluated F3 and showed that it is
capable of 2.0-6.5% faster write bandwidths and 1.8-2.3X better
read bandwidths compared to existing storage systems. Combined
with our modifications to OpenWhisk, we demonstrated that F3’s
data locality hints totally eliminating network traffic caused by data
transfers, by enabling OpenWhisk to schedule actions on the same
node as the action’s data.

Future work. F3’s handling of ephemeral data represents an alter-
nate design point in the reliability-performance trade-off continuum:
F3 provides higher performance at the cost of lower reliability for
some data. We plan to explore additional design points. For example,
some temporary files could reside entirely in RAM (much faster
but lower reliability); alternatively, we could compute and store an
integrity checksum or ECC with ephemeral files, which improves
reliability at cost of additional computation. Eventually, users would
have multiple “tiers” of reliability-performance service to choose
from. We plan to couple having several such tiers with methods for
automatically inferring the right tier for different date types.

In cloud settings, failures could be more common. We plan to
detect action failures and offer several handling policies: return
immediately to the calling application, retry the action up to N
times, etc. If failed actions leave behind partial data, periodic
garbage-collection would be needed.

9 ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd, Ram Alagap-
pan, for their constructive feedback. We also thank fellow students
Aakarsh Duvvuru, Rishabh Srivastava, and Nasratullah Sultany for
their contributions. This work was made possible in part thanks
to Dell-EMC, NetApp, Facebook, and IBM support; a SUNY/IBM
Alliance award; and NSF awards CNS-1729939, CNS-1900706,
CCF-1918225, CNS-1951880, CNS-2106263, CNS-2106434, and
CNS-2214980.

REFERENCES

[1] Apache Foundation, The. 2010. Hadoop. http:// hadoop.apache.org.

[2] Apache Foundation, The. 2010. HDFS Architecture Guide. https:// hadoop.
apache.org/docs/r1.2.1/ hdfs_design.html.

[3] AWS Lambda 2022. AWS Lambda. https://aws.amazon.com/lambda/.

[4] AWS Lambda Custom Runtimes 2018. AWS Lambda Now Supports Cus-
tom Runtimes and Enables Sharing Common Code Between Functions.
https:// aws.amazon.com/ about-aws/ whats-new/2018/ 11/ aws-lambda-
now-supports-custom-runtimes-and-layers/.

[5] AWS Lambda EFS [n.d.]. Using Amazon EFS with Lambda.
//docs.aws.amazon.com/lambda/ latest/ dg/ services-efs.html.

[6] AWS LambdaIdempotency 2021. How do I make my Lambda function idempotent?
https:// aws.amazon.com/ premiumsupport/ knowledge- center/lambda-
function-idempotent/.

[7] AWS Lambda Timeouts 2018. AWS Lambda enables functions that can run up to 15
minutes. https://aws.amazon.com/about-aws/ whats-new/2018/ 10/ aws-
lambda- supports- functions-that-can-run-up-to-15- minutes/.

https:

http://hadoop.apache.org
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://aws.amazon.com/lambda/
https://aws.amazon.com/about-aws/whats-new/2018/11/aws-lambda-now-supports-custom-runtimes-and-layers/
https://aws.amazon.com/about-aws/whats-new/2018/11/aws-lambda-now-supports-custom-runtimes-and-layers/
https://docs.aws.amazon.com/lambda/latest/dg/services-efs.html
https://docs.aws.amazon.com/lambda/latest/dg/services-efs.html
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://aws.amazon.com/about-aws/whats-new/2018/10/aws-lambda-supports-functions-that-can-run-up-to-15-minutes/
https://aws.amazon.com/about-aws/whats-new/2018/10/aws-lambda-supports-functions-that-can-run-up-to-15-minutes/

F3: Serving Files Efficiently in Serverless Computing

T w
o %

[10

[11

[12

[13

[14]

[15]

[16]

[17]

[18

[19

[20]
[21]

[26]

[27

[28]
[29]

[30]

[31]

[32

[33

AWS Serverless [n.d.]. Serverless Computing.
serverless/.

Michael Behrendt. 2018. IBM Cloud Functions: we’re doubling the time limit on
executing actions. https:// www.ibm.com/cloud/blog/ibm-cloud-functions-
doubling-time-limit-executing-actions.

Anthony Bolger, Marc Lohse, and Bjoern Usadel. 2014. Trimmomatic: a flexible
trimmer for Illumina sequence data. Bioinformatics 30 (Aug. 2014), 2114-2120.
https:// doi.org/ 10.1093/ bioinformatics/ btu170

Zhen Cao, Vasily Tarasov, Hari Raman, Dean Hildebrand, and Erez Zadok. 2017.
On the Performance Variation in Modern Storage Stacks, See [19], 329-343.
Benjamin Carver, Jingyuan Zhang, Ao Wang, Ali Anwar, Panruo Wu, and
Yue Cheng. 2020. Wukong: A Scalable and Locality-Enhanced Framework for
Serverless Parallel Computing. In Proceedings of the 11th ACM Symposium on Cloud
Computing (Virtual Event, USA) (SoCC °20). Association for Computing Machinery,
New York, NY, USA, 1-15. https://doi.org/10.1145/3419111.3421286
CephFS [n.d.]. Ceph File System. https://docs.ceph.com/en/pacific/ cephfs/
index.html.

CephFS Capabilities [n.d.]. Capabilities in Ceph. https://docs.ceph.com/en/
latest/ cephfs/ capabilities/.

Karen Coombs. 2019. Storing data in a serverless application. https:
//www.oclc.org/ developer/news/ 2019/ storing-data-in-a-serverless-
application.en.htm,.

Rodrigo Crespo-Cepeda, Giuseppe Agapito, Jose Vazquez-Poletti Luis, and Mario
Cannataro. 2019. Challenges and Opportunities of Amazon Serverless Lambda
Services in Bioinformatics. In 10th ACM International Conference on Bioinformatics,
Computational Biology and Health Informatics.

Carlos de Rojas. 2022. Portable Sequencing Is Reshaping Genetics Research. https:
//www.labiotech.eu/in-depth/ portable- sequencing-genetics-research/.
Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The
Design and Operation of CloudLab. In Proceedings of the USENIX Annual Technical
Conference (ATC). 1-14. https:// www.flux.utah.edu/paper/ duplyakin-atc19
fast2017 2017. Proceedings of the 15th USENIX Conference on File and Storage
Technologies (FAST ’17). USENIX Association, Santa Clara, CA.

fio [n.d.]. Flexible I/O Tester. https://github.com/axboe/ fio.

Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee,
Christos Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From
Laptop to Lambda: Outsourcing Everyday Jobs to Thousands of Tran-
sient Functional Containers. In 2019 USENIX Annual Technical Con-
ference (USENIX ATC 19). USENIX Association, Renton, WA, 475-488.
http:// www.usenix.org/ conference/ atc19/ presentation/ fouladi

The Linux Foundation. 2019. State of the Edge 2021. https:// www.Ifedge.org/ wp-
content/ uploads/2021/ 08/ StateoftheEdgeReport_2021_r3.11.pdf.

Gartner Predicts [n.d.]. Predicts 2022: The Distributed Enterprise Drives
Computing to the Edge. https:// www.gartner.com/document/4007176.
Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The
Google File System. SIGOPS Oper. Syst. Rev. 37, 5 (oct 2003), 29-43.
https:// doi.org/ 10.1145/1165389.945450

https:// aws.amazon.com/

Google Cloud Functions [n.d.]. Google Cloud Functions. https:
// cloud.google.com/functions.
GPFS 2021. Introducing General Parallel File System. https:

//www.ibm.com/docs/ en/ gpfs/4.1.0.4?topic=guide-introducing-
general-parallel-file-system.

Mingzhe Hao, Gokul Soundararajan, Deepak Kenchammana-Hosekote, Andrew A.
Chien,and Haryadi S. Gunawi. 2016. The Tail at Store: A Revelation from Millions of
Hours of Disk and SSD Deployments. In 14th USENIX Conference on File and Storage
Technologies (FAST 16). USENIX Association, Santa Clara, CA, 263-276. https://
www.usenix.org/ conference/ fast16/technical-sessions/ presentation/ hao
IBM Cloud Functions [n.d.]. IBM Cloud Functions. https:
// cloud.ibm.com/ functions.

IBM Obj vs File 2021. Object vs. File vs. Block Storage: What’s the Difference?
https:// www.ibm.com/ cloud/ blog/ object-vs-file-vs-block-storage.
idempotent-azure 2022. Designing Azure Functions for identical input.
https:// learn.microsoft.com/en-us/ azure/ azure-functions/ functions-
idempotent.

Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.
2017. Occupy the Cloud: Distributed Computing for the 99%. In Proceedings of
the 2017 Symposium on Cloud Computing (Santa Clara, California) (SoCC ’17).
Association for Computing Machinery, 445—451.

Nikolai Joukov, Ashivay Traeger, Rakesh Iyer, Charles P. Wright, and Erez Zadok.
2006. Operating System Profiling via Latency Analysis. In Proceedings of the 7th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 2006).
ACM SIGOPS, Seattle, WA, 89-102.

K8s CSI Drivers 2022. Drivers - Kubernetes CSI Developer Documentation.
https:// kubernetes-csi.github.io/ docs/ drivers.html.

20

(34]

(35]

~
fla

=
&

=
o

[50

[51

[52

[53

(54

SYSTOR ’23, June 5-7, 2023, Haifa, Israel

Ana Klimovic, Yawen Wang, Christos Kozyrakis, Patrick Stuedi, Jonas
Pfefferle, and Animesh Trivedi. 2018. Understanding Ephemeral Stor-
age for Serverless Analytics. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18). USENIX Association, Boston, MA, 789-794. https:
//www.usenix.org/ conference/ atc18/ presentation/ klimovic-serverless
Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfef-
ferle, and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Storage for
Serverless Analytics. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 427-444.
https:// www.usenix.org/ conference/ 0sdi18/ presentation/klimovic
Knative [n.d.]. Knative is an Open-Source Enterprise-level solution to build
Serverless and Event Driven Applications. https://knative.dev/docs/.
Kubeflow 2023. Kubeflow. https:// www.kubeflow.org/.

Kubernetes Labels and Selectors 2022. Labels and Selectors. https:
// kubernetes.io/ docs/ concepts/ overview/ working-with-objects/labels/.
Kubernetes scheduler 2022. Kubernetes Scheduler. https://kubernetes.io/docs/
concepts/ scheduling-eviction/ kube-scheduler/.

lambda-rerun [n.d.]. Error handling and automatic retries in AWS Lambda. https:
//docs.aws.amazon.com/lambda/ latest/ dg/ invocation-retries.html.
Johanan Liebermann. 2017. Golang. https:// codeburst.io/ why-golang-is-
great-for-portable-apps-94cf1236f481.

Lustre [n.d.]. Welcome to the official home of the Lustre(R) filesystem.
https:// www.lustre.org/.

Gilad David Maayan. 2020. Storage Options for Serverless on AWS. https:
// hackernoon.com/ storage-options- for-serverless-on-aws-fo3x3wsv.
Ashraf Mahgoub, Karthick Shankar, Subrata Mitra, Ana Klimovic, So-
mali Chaterji, and Saurabh Bagchi. 2021. SONIC: Application-aware
Data Passing for Chained Serverless Applications. In 2021 USENIX An-
nual Technical Conference (USENIX ATC 21). USENIX Association, 285-301.
https:// www.usenix.org/ conference/ atc21/ presentation/ mahgoub

Marcel Martin. 2011. Cutadapt removes adapter sequences from high-
throughput sequencing reads. EMBnet.journal 17, 1 (May 2011), 10-12.
https:// doi.org/ 10.14806/ €j.17.1.200

Memcached 2018. Memcached. hitps:// memcached.org/.

Alex Merenstein, Vasily Tarasov, Ali Anwar, Deepavali Bhagwat, Julie Lee, Lukas
Rupprecht, Dimitris Skourtis, Yang Yang, and Erez Zadok. 2021. CNSBench: A
Cloud Native Storage Benchmark Native Storage. In Proceedings of the 19th USENIX
Conference on File and Storage Technologies (FAST "21). USENIX Association,
Virtual.

MinIO [n.d.]. MinIO. https:// min.io/.

Pulkit A. Misra, Maria F. Borge, fiiigo Goiri, Alvin R. Lebeck, Willy Zwaenepoel,
and Ricardo Bianchini. 2019. Managing Tail Latency in Datacenter-Scale
File Systems Under Production Constraints. In Proceedings of the Four-
teenth EuroSys Conference 2019 (Dresden, Germany) (EuroSys °19). Associ-
ation for Computing Machinery, New York, NY, USA, Article 17, 15 pages.
https:// doi.org/ 10.1145/3302424.3303973

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael L
Jordan, and Ion Stoica. 2018. Ray: A Distributed Framework for Emerging
Al Applications. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 561-577.
https:// www.usenix.org/ conference/ 0sdi18/ presentation/ moritz

Netappp AWS EFS S3 [n.d.]. EBS Pricing and Performance: A Comparison
with Amazon EFS and Amazon S3. https:// cloud.netapp.com/blog/ ebs-efs-
amazons3-best-cloud- storage-system.

Xingzhi Niu, Dimitar Kumanov, Ling-Hong Hung, Wes Lloyd, and Ka Yee
Yeung. 2019. Leveraging Serverless Computing to Improve Performance for
Sequence Comparison. In 10th ACM International Conference on Bioinformatics,
Computational Biology and Health Informatics.

OpenWhisk [n.d.]. Open Source Serverless Cloud Platform.
//openwhisk.apache.org/.

Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling, Fast and Slow:
Scalable Analytics on Serverless Infrastructure. In 16th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 19). USENIX Association, Boston,
MA, 193-206. https:// www.usenix.org/ conference/nsdi19/ presentation/pu
PureStorage Obj vs File 2022. Object vs File Storage: When and Why to Use
Them. https://blog.purestorage.com/purely-informational/ object-vs-file-
storage-when-and-why-to-use-them/.

Quobyte Obj vs File [n.d.]. File Storage vs. Object Storage: What’s the Difference
and Why it Matters. https:// www.quobyte.com/storage-explained/ file-vs-
object-storage.

RADOS [n.d.]. RADOS - RADOS object storage utility.
//docs.ceph.com/en/ latest/ man/8/rados/.

Redis 2023. Redis. https://redis.io/.

RHEL FaaS$ 2020. What is FaaS? https://www.redhat.com/en/topics/ cloud-
native-apps/ what-is-faas.

https:

https:

https://aws.amazon.com/serverless/
https://aws.amazon.com/serverless/
https://www.ibm.com/cloud/blog/ibm-cloud-functions-doubling-time-limit-executing-actions
https://www.ibm.com/cloud/blog/ibm-cloud-functions-doubling-time-limit-executing-actions
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1145/3419111.3421286
https://docs.ceph.com/en/pacific/cephfs/index.html
https://docs.ceph.com/en/pacific/cephfs/index.html
https://docs.ceph.com/en/latest/cephfs/capabilities/
https://docs.ceph.com/en/latest/cephfs/capabilities/
https://www.oclc.org/developer/news/2019/storing-data-in-a-serverless-application.en.htm,
https://www.oclc.org/developer/news/2019/storing-data-in-a-serverless-application.en.htm,
https://www.oclc.org/developer/news/2019/storing-data-in-a-serverless-application.en.htm,
https://www.labiotech.eu/in-depth/portable-sequencing-genetics-research/
https://www.labiotech.eu/in-depth/portable-sequencing-genetics-research/
https://www.flux.utah.edu/paper/duplyakin-atc19
https://github.com/axboe/fio
http://www.usenix.org/conference/atc19/presentation/fouladi
https://www.lfedge.org/wp-content/uploads/2021/08/StateoftheEdgeReport_2021_r3.11.pdf
https://www.lfedge.org/wp-content/uploads/2021/08/StateoftheEdgeReport_2021_r3.11.pdf
https://www.gartner.com/document/4007176
https://doi.org/10.1145/1165389.945450
https://cloud.google.com/functions
https://cloud.google.com/functions
https://www.ibm.com/docs/en/gpfs/4.1.0.4?topic=guide-introducing-general-parallel-file-system
https://www.ibm.com/docs/en/gpfs/4.1.0.4?topic=guide-introducing-general-parallel-file-system
https://www.ibm.com/docs/en/gpfs/4.1.0.4?topic=guide-introducing-general-parallel-file-system
https://www.usenix.org/conference/fast16/technical-sessions/presentation/hao
https://www.usenix.org/conference/fast16/technical-sessions/presentation/hao
https://cloud.ibm.com/functions
https://cloud.ibm.com/functions
https://www.ibm.com/cloud/blog/object-vs-file-vs-block-storage
https://learn.microsoft.com/en-us/azure/azure-functions/functions-idempotent
https://learn.microsoft.com/en-us/azure/azure-functions/functions-idempotent
https://kubernetes-csi.github.io/docs/drivers.html
https://www.usenix.org/conference/atc18/presentation/klimovic-serverless
https://www.usenix.org/conference/atc18/presentation/klimovic-serverless
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://knative.dev/docs/
https://www.kubeflow.org/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://docs.aws.amazon.com/lambda/latest/dg/invocation-retries.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-retries.html
https://codeburst.io/why-golang-is-great-for-portable-apps-94cf1236f481
https://codeburst.io/why-golang-is-great-for-portable-apps-94cf1236f481
https://www.lustre.org/
https://hackernoon.com/storage-options-for-serverless-on-aws-fo3x3wsv
https://hackernoon.com/storage-options-for-serverless-on-aws-fo3x3wsv
https://www.usenix.org/conference/atc21/presentation/mahgoub
https://doi.org/10.14806/ej.17.1.200
https://memcached.org/
https://min.io/
https://doi.org/10.1145/3302424.3303973
https://www.usenix.org/conference/osdi18/presentation/moritz
https://cloud.netapp.com/blog/ebs-efs-amazons3-best-cloud-storage-system
https://cloud.netapp.com/blog/ebs-efs-amazons3-best-cloud-storage-system
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://www.usenix.org/conference/nsdi19/presentation/pu
https://blog.purestorage.com/purely-informational/object-vs-file-storage-when-and-why-to-use-them/
https://blog.purestorage.com/purely-informational/object-vs-file-storage-when-and-why-to-use-them/
https://www.quobyte.com/storage-explained/file-vs-object-storage
https://www.quobyte.com/storage-explained/file-vs-object-storage
https://docs.ceph.com/en/latest/man/8/rados/
https://docs.ceph.com/en/latest/man/8/rados/
https://redis.io/
https://www.redhat.com/en/topics/cloud-native-apps/what-is-faas
https://www.redhat.com/en/topics/cloud-native-apps/what-is-faas

SYSTOR ’23, June 5-7, 2023, Haifa, Israel

[60] RHEL FS Choice 2020. How to Choose Your Red Hat Enterprise Linux File System.
https:// access.redhat.com/ articles/3129891.
[61] Rook [n.d.]. Open-Source, Cloud-Native Storage for Kubernetes. https://rook.io/.
[62] s3fs [n.d.]. s3fs-fuse: FUSE-based file system backed by Amazon S3.
https:// github.com/ s3fs-fuse/ s3fs- fuse.
Johann Schleier-Smith, Leonhard Holz, Nathan Pemberton, and Joseph M. Heller-
stein. 2020. A Faa$ File System for Serverless Computing. arXiv:arXiv:2009.09845
[64] S.Shepler, M. Eisler, and D. Noveck. 2010. NFS Version 4 Minor Version 1 Protocol.
RFC 5661. Network Working Group.
Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith,
Joseph E. Gonzalez, Joseph M. Hellerstein, and Alexey Tumanov. 2020. Cloudburst:
stateful functions-as-a-service. In Proceedings of the VLDB Endowment, Volume
13, Issue 12. 2438-2452.
[66] stackshare golang [n.d.]. Golang. https://stackshare.io/golang.
[67] Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Ana Klimovic, Adrian
Schuepbach, and Bernard Metzler. 2019. Unification of Temporary Stor-
age in the NodeKernel Architecture. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19). USENIX Association, Renton, WA, 767-782.
https:// www.usenix.org/ conference/ atc19/ presentation/ stuedi
TechRepublic Edge Market [n.d.]. Global edge computing market to reach
$156 billion by 2030. https:// www.techrepublic.com/article/ global-edge-
computing-market/.

[63

[65

[68

21

[69

[70

[72

[74

]

A. Merenstein et al.

Bharath Kumar Reddy Vangoor, Prafful Agarwal, Manu Mathew, Arun Ramachan-
dran, Swaminathan Sivaraman, Vasily Tarasov, and Erez Zadok. 2019. Performance
and Resource Utilization of FUSE User-Space File Systems. ACM Transactions
on Storage (TOS) 15, 2 (May 2019). https://doi.org/10.1145/3310148

Bharath Kumar Reddy Vangoor, Vasily Tarasov, and Erez Zadok. 2017. To FUSE
or Not to FUSE: Performance of User-Space File Systems, See [19], 59-72.
Marc-André Vef, Nafiseh Moti, Tim Sifl, Tommaso Tocci, Ramon Nou,
Alberto Miranda, Toni Cortes, and André Brinkmann. 2018. GekkoFS
- A Temporary Distributed File System for HPC Applications. In 2018
IEEE International Conference on Cluster Computing (CLUSTER). 319-324.
https:// doi.org/10.1109/ CLUSTER.2018.00049

Teng Wang, Kathryn Mohror, Adam Moody, Kento Sato, and Weikuan Yu. 2016. An
Ephemeral Burst-Buffer File System for Scientific Applications. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis (Salt Lake City, Utah) (SC ’16). IEEE Press, Article 69, 12 pages.
Michal Wawrzoniak, Ingo Miiller, Gustavo Alonso, and Rodrigo Bruno. 2021.
Boxer: Data Analytics on Network-enabled Serverless Platforms. In Conference
on Innovative Data Systems Research.

Joe Wigglesworth. 2022. Inside the Storage/Compute Servers of IBM Spectrum
Fusion HCL https:// hardware-fusion.blogspot.com/2022/ 08/ inside-
storagecompute-servers-of-ibm.html.

https://access.redhat.com/articles/3129891
https://rook.io/
https://github.com/s3fs-fuse/s3fs-fuse
https://arxiv.org/abs/arXiv:2009.09845
https://stackshare.io/golang
https://www.usenix.org/conference/atc19/presentation/stuedi
https://www.techrepublic.com/article/global-edge-computing-market/
https://www.techrepublic.com/article/global-edge-computing-market/
https://doi.org/10.1145/3310148
https://doi.org/10.1109/CLUSTER.2018.00049
https://hardware-fusion.blogspot.com/2022/08/inside-storagecompute-servers-of-ibm.html
https://hardware-fusion.blogspot.com/2022/08/inside-storagecompute-servers-of-ibm.html

	Abstract
	1 Introduction
	2 Background
	3 Storage for Serverless Computing
	3.1 Object Stores vs. File Systems
	3.2 Shortcomings of Existing File Systems

	4 Design
	5 Implementation
	5.1 Unmodified Applications in Serverless

	6 Evaluation
	6.1 Cluster and Storage Setup
	6.2 Data Transfer Micro-Benchmarks
	6.3 Case Study: Bioinformatics Pipeline

	7 Related Work
	8 Conclusion
	9 Acknowledgments
	References

