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Abstract
This article studies Paley’s theory of lacunary Fourier series for von Neumann alge-
bra of discrete groups. The results unify and generalize the work of Rudin (Fourier
Analysis on Groups, Reprint of the 1962 original. Wiley Classics Library, A Wiley-
Interscience Publication, Wiley, New York, 1990, Section 8) for abelian discrete
ordered groups and the work of Lust-Piquard and Pisier (Ark Mat 29(2):241–260,
1991) for operator valued functions, and provide new examples of Paley sets and
�(p) sets on free groups.
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Introduction

Denote by T the unit circle. Consider a sequence ( jk)k∈N of elements of Z which is
lacunary à la Hadamard, i.e. there exists δ > 0 such that for all k ∈ N,

| jk+1|
| jk | > 1 + δ.

A classical Khintchine-Pisier type inequality states that there exists Cδ < ∞ such
that

∥
∥
∥
∥
∥

∞
∑

k=1

ck z jk

∥
∥
∥
∥
∥

L1(T)

≤
( ∞
∑

k=1

|ck |2
) 1

2

≤ Cδ

∥
∥
∥
∥
∥

∞
∑

k=1

ck z jk

∥
∥
∥
∥
∥

L1(T)

.

This shows that �2(N) embeds into L1(T). However, the map

P : f �→ (

f̂ ( jk)
)

k∈N

does not extend to a bounded map from the whole space L1(T) to �2. Here f̂ denotes
the Fourier transform of f . This can be easily seen by looking at the so-called Riesz
products,

f (z) =
N
∏

k=1

(1 + z2
k + z−2k

2
),

which have norm ‖ f ‖L1(T) = f̂ (0) = 1 while ( f̂ (2k))1≤k≤N has norm
√

N
2 since

f̂ (2k) = 1
2 for k = 1, · · · , N . Paley’s theory [33] is a variant of Khintchine’s inequal-

ity. Let H1(T) be the real Hardy space on the unit circle, that consists of integrable
functions such that both their analytic and the anti-analytic parts are integrable. Equiv-
alently,

H1(T) =
{

f ∈ L1(T) : ‖ f ‖H1 = ‖ f ‖L1 + ‖H( f )‖L1 < ∞
}

,

with H the Hilbert transform of f . Paley’s theory says that

(
∑

k

|ck |2
) 1

2

	δ inf
{

‖ f ‖H1 : f ∈ H1(T), f̂ ( jk) = ck

}

(0.1)

This shows that the map P is bounded from H1(T) (or the analytic L1) to �2. These
Khintichine/Paley type inequalities for lacunary series have important applications to
Grothendieck’s theory (see [40, Section 5], [26, Appendix]).
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A subset E ⊂ N is called a Paley set (see [37, Section 3]) if the above equivalence
(0.1) holds for all choices of (ck)k ∈ �2, jk ∈ E with constants depending only on E .
Rudin [48, Section 8] proved that E is a Paley set only if

sup
n∈N

#E ∩ [2n, 2n+1] < C

which is equivalent to say that E is a finite union of lacunary sequences.
By Fefferman-Stein’s H1-BMO duality theory, (0.1) has an equivalent formulation

that, for any (ck) ∈ �2,

(
∑

k

|ck |2
) 1

2

	δ

∥
∥
∥
∥
∥

∑

k

ck z jk

∥
∥
∥
∥
∥

B M O(T)

. (0.2)

Here, BMO(T) denotes the bounded mean oscillation (semi)norm

‖ f ‖B M O(T) = sup
I

1

|I |
∫

I
| f − f I | ds (0.3)

with the supremum taking over all arcs I ⊆ T.

In the first part of this article, we give an interpretation of Paley’s theory in the
semigroup language which allows an extension to non-abelian discrete groups. For
each t > 0, let Pt be the Poisson integral operator that sends eikθ to e−|k|t eikθ . Here
is an equivalent characterization of the classical BMO and H1-norms by Pt ’s. For
f ∈ L1(T),

‖ f ‖B M O(T) 	 sup
t>0

∥
∥
∥Pt

[

| f − Pt ( f )|2
]∥
∥
∥

1
2

L∞(T)
(0.4)

‖ f ‖H1(T) 	
∥
∥
∥
∥
∥
∥

(
∫ ∞

0

∣
∣
∣
∣

∂

∂t
Pt f

∣
∣
∣
∣

2

tdt

) 1
2

∥
∥
∥
∥
∥
∥

L1(T)

. (0.5)

Consider a discrete group G and a conditionally negative definite length ψ on G.
By that, we mean ψ is a R+-valued function on G satisfying ψ(g) = 0 if and only if
g = e, ψ(g) = ψ(g−1), and

∑

g,h

agahψ(g−1h) ≤ 0 (0.6)

for any finite collection of coefficients ag ∈ C with
∑

g ag = 0. We say a sequence
(hk)k∈N of elements of G is ψ-lacunary if there exists a constant δ > 0 such that

ψ(hk) ≥ (1 + δ)ψ(h j ) (0.7)

ψ(h−1
j hk) ≥ δψ(hk). (0.8)
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for any k > j .
Note that the condition (0.8) follows from (0.7) (with a smaller constant) if we

further require ψ to be sub-additive, i.e. ψ(hg) ≤ ψ(h) + ψ(g). In fact, assuming
ψ(hk) = (1 + ε)ψ(h j ) ≥ (1 + δ)ψ(h j ), then the sub-additivity of ψ implies that
ψ(hk) = ψ(h j h

−1
j hk) ≤ ψ(h j ) + ψ(h−1

j hk), thus ψ(h−1
j hk) ≥ ψ(hk) − ψ(h j ) ≥

εψ(h j ) = ε
1+ε

ψ(hk) ≥ δ
1+δ

ψ(hk).
Let λ be the left regular representation of G. Given a sequence ck ∈ �2(C), we

view f = ∑

k ckλhk as a lacunary “Fourier series” and will study the related Paley’s
theory. To state our first main result, let us recall the semigroup type H1 and BMO-
norms introduced in [20, 28], which have been frequently used in recent study of
noncommutative analysis (see [8–10, 12, 21, 23, 34] etc.). Let

Tt : λg �→ e−tψ(g)λg (0.9)

be the semigroup of operators on the group von Neumann algebra Ĝ associated with
ψ . For f =∑g cgλg ∈ L1(Ĝ), let

‖ f ‖H1
c (ψ) = τ

⎡

⎣

(
∫ ∞

0

∣
∣
∣
∣

∂

∂s
Ts( f )

∣
∣
∣
∣

2

s ds

) 1
2
⎤

⎦

‖ f ‖BMOc(ψ) = sup
s>0

∥
∥
∥Ts

[

| f − Ts( f )|2
]∥
∥
∥

1
2
,

with τ being the canonical trace on the group von Neumann algebra of G. Please see
Sect. 1.1 for the introduction of the group von Neumann algebra and L1(Ĝ).

Theorem 0.1 Assume (hk) is a ψ-lacunary sequence. Then, for any sequence
(ck)

∞
k=1 ∈ �2(C), the series

∑∞
k=1 ckλhk converges in BMOc(ψ) and

∥
∥
∥
∥
∥

∞
∑

k=1

ckλhk

∥
∥
∥
∥
∥

2

B M Oc(ψ)

	δ

∞
∑

k=1

|ck |2. (0.10)

with a constant of equivalence depending only on the lacunary constant δ. Moreover,

inf
{

‖ f ‖H1
c (ψ) : f̂ (hk) = ck, for all k ∈ N

}

	δ

(
∑

k

|ck |2
) 1

2

. (0.11)

By the interpolation result proved in [20] (see Lemma 1.2 below), one obtains that
every subset of a ψ-lacunary sequence is a �(p) set for all 2 < p < ∞. More
precisely, we have that, for any 2 < p < ∞ and any f of the form f =∑k ckλhk ,

‖ f ‖L p(Ĝ)
	δ p

(
∑

k

|ck |2
) 1

2

. (0.12)
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Passing to the dual, we have for any 1 < p < 2 and any f of the form f =∑k ckλhk ,

‖ f ‖L p(Ĝ)
	δ

1

p − 1

(
∑

k

|ck |2
) 1

2

. (0.13)

We will prove Theorem 0.1 for operator valued ck . See Theorem 2.3.
In the second part of the article, we assume that the group G is equipped with a

bi-invariant order “≤”, that is a total order which is invariant under the left and right
multiplications. Let G+ = {g ∈ G : e ≤ g}. Following Rudin’s terminology [48,
Section 8.6], we say a subset E ⊆ G+ is lacunary if there exists a constant K such
that

N (E) := sup
g∈G+

#{h ∈ E : g ≤ h ≤ g2} ≤ K .

Theorem 0.2 For any sequence (ck)
∞
k=1 ∈ C, and any sequence (hk)

∞
k=1 in a lacunary

subset E ⊆ G+, we have

inf
{

τ(| f |) : f̂ (hk) = ck, supp( f̂ ) ⊂ G+
}

	
(
∑

k

|ck |2
) 1

2

, (0.14)

Theorem 0.2 follows from a factorization theorem of noncommutative analytic
Hardy spaces and an adaptation of Lust-Piquard and Pisier’s argument [26] to Rudin’s
terminology [48, Section 8.6] of lacunary sets. We also provide interesting examples
of Paley sequences and �(p) sets (see e.g. Corollary 4.3) on free groups.

We prove all these results for operator-valued functions f , that is, for f of the
form f = ∑

k ck ⊗ λhk with ck being operators. See Theorems 2.4 and 3.2. Sect. 1
introduces some preliminaries. Themain results are proved in Sects. 2 and 3. In Sect. 4,
we apply our theories to the case of free groups and construct new examples of Paley
sets and �(p) sets.

1 Preliminaries

1.1 Noncommutative Lp-Space

LetM be a semifinite vonNeumann algebra acting on aHilbert spaceHwith a normal
semifinite faithful trace τ . For 0 < p < ∞, denote by L p(M) the noncommutative

L p space associated with the (quasi)norm ‖ f ‖p = [

τ(| f |p)
] 1

p . As usual, we set
L∞(M) = M equipped with the operator norm. For a (possibly nonabelian) discrete
group G, the von Neumann algebra is the closure of the linear span of the elements
λg given by the left regular representation of G with respect to the weak operator
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topology. The trace τ is defined by

τ( f ) = ce,

for f =∑g cgλg . The associated L p norm is defined as

‖ f ‖p = [τ(| f |p)
] 1

p

for 1 ≤ p < ∞.
When G is abelian, e.g. G = Z

d , the non-commutative L p space obtained is
isometrically isomorphic to the classical L p space on the dual group. We denote by Ĝ
the group von Neumann algebra of G, and by L p(Ĝ) the associated non-commutative
L p spaces. So, Ĝ will also be denoted by L∞(Ĝ) sometimes. Let M = B(H), the
algebra of all bounded operators on H equipped with the usual trace tr , then the
associated L p-space L p(M) is the Schatten-p class S p(H). We denote τ defined
above as the canonical trace on the group von Neumann algebra Ĝ and tr as the usual
trace on B(H). We will often consider the tensor product of von Neumann algebra
B(H)⊗̄Ĝ with the tensor trace tr ⊗ τ and the associated noncommutative L p space
L p(B(H)⊗̄Ĝ). For 1 ≤ p < ∞, this is the closure of the collection of all finite sums
f =∑g cg ⊗ λg with cg ∈ S p with respect to the L p-norm

‖ f ‖L p = ((tr ⊗ τ)(| f |p)
) 1

p .

The classical Cauchy–Schwartz inequality and Hölder’s inequality extend to the non-
commutative setting. In particular, we have theKadison-Cauchy-Schwartz inequality

|(id ⊗ τ)( f )|2 ≤ (id ⊗ τ)(| f |2), (1.1)

for all f ∈ B(H)⊗̄Ĝ, and Hölder’s inequality,

‖ f ϕ‖Lr ≤ ‖ f ‖L p‖ϕ‖Lq , (1.2)

for all f ∈ L p(B(H)⊗̄Ĝ), ϕ ∈ Lq(B(H)⊗̄Ĝ), where 1
p + 1

q = 1
r . Here id denotes

the identity operator on B(H). For the brevity of notation, we will omit the “id” in
“id ⊗ τ”, and omit the “⊗” in “ck ⊗ λhk ” in the statement of theorems or proofs and
simply write τ and ckλhk when no confusion arises.

We refer readers to the survey paper [44] for information on non-commutative L p

spaces.
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1.2 Column and Row Spaces

Let 0 < p ≤ ∞ and let (cn)n≥0 be a finite sequence in L p(M). Define

‖(cn)‖L p(M,�2c )
=

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

n≥0

|cn|2
⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥

p

, ‖(cn)‖L p(M,�2r ) =

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

n≥0

|c∗
n |2
⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥

p

.

For 0 < p < ∞,we define L p(M, �2c)(respectively L p(M, �2r )) as the completion of
the family of all finite sequences in L p(M) with respect to ‖ · ‖L p(M,�2c )

(respectively

‖ · ‖L p(M,�2r )). For p = ∞, we define L∞(M, �2c) (respectively L∞(M, �2r )) as the
Banach space of (possible infinite) sequences in M such that

∑

n c∗
ncn (respectively

∑

n cnc∗
n) converges in the weak

∗-topology.
Let 0 < p ≤ ∞. We define the space L p(M, �2cr ) as follows:

(1) If 0 < p < 2,

L p(M, �2cr ) = L p(M, �2c) + L p(M, �2r )

equipped with the norm:

‖(ck)n≥0‖L p(M,�2cr )
= inf

ck=c′
k+c′′

k

{

‖(c′
k)‖L p(M,�2c )

+ ‖(c′′
k )‖L p(M,�2r )

}

where the infimum is taken over all decompositions for which

‖(c′
k)‖L p(M,�2c )

< ∞ and ‖(c′′
k )‖L p(M,�2r ) < ∞.

(2) If p ≥ 2,

L p(M, �2cr ) = L p(M, �2c) ∩ L p(M, �2r )

equipped with the norm:

‖(ck)‖L p(M,�2cr )
= max

{

‖(ck)‖L p(M,�2r ), ‖(ck)‖L p(M,�2c )

}

.

The spaces L p(M, �2cr ) (resp. L p(M, �2c), L p(M, �2r )) form an interpolation scale
for the complex interpolation method.

Lemma 1.1

L p(M, �2c) = [L∞(M, �2c), L1(M, �2c)] 1
p

(1.3)

L p(M, �2r ) = [L∞(M, �2r ), L1(M, �2r )] 1
p

(1.4)

L p(M, �2cr ) 	 [L∞(M, �2cr ), L1(M, �2cr )] 1
p

(1.5)
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for 1 < p < ∞.

Proof L p(M, �2c) are complemented subspaces of L p(M⊗̄B(H)) via the embedding

ck :�→ ck ⊗ e1,k .

Therefore, they inherit the duality relation and the interpolation relation (1.3) from
L p(M⊗̄B(H)). The interpolation (1.4) holds because of a similar reason. The interpo-
lation equivalence (1.5) is proved byPisier in [38, Theorem8.4.8] forM = B(H). The
argument for the general case is in the same spirit, whichwe sketch here. LetF∞ be the
free nonabelian group generated by countable many free generators {gk, k ∈ N}, and
denote by L∞(F̂∞) the associated group von Neumann algebra. Let E p, 1 ≤ p < ∞
(p = ∞) be the norm (weak ∗) closure of span{λgk , k ∈ N}. Then E p are comple-
mented subspaces of L p(M⊗̄L∞(F̂∞)) and form an interpolation scale for complex
interpolation. This is [38, Corollary 8.3.3]. By [38, Theorem 8.4.10] and the duality
relation, L p(M, �2cr ) is completely isomorphic to E p for all 1 ≤ p ≤ ∞ via the map

ck :�→ ck ⊗ λgk .

Therefore, the interpolation relation (1.5) holds for L p(M, �2cr ). ��
We denote by S p(�2c), S p(�2r ) and S p(�2cr ) the spaces L p(M, �2c), L p(M, �2r ) and

L p(M, �2cr ) whenM = B(H), respectively. Please refer to [19, 38, 44] for details on
these spaces.

1.3 Semigroup BMO Spaces

Given a conditionally negative definite length ψ on discrete group G, Schoenberg’s
theorem [2, p. 74, Theorem2.2] says that the functions φt (g) = e−tψ(g) are positive
definite on G for all t > 0. Therefore, the family of operators,

Tt : λg = e−tψ(g)λg

extends to a symmetric Markov semigroup of completely positive operators on the
group von Neumann algebra Ĝ. That is to say, for every t > 0, Tt is

(1) Unital, i.e. Tt (λe) = λe.
(2) Normal, i.e. Tt is weak ∗ continuous.
(3) Symmetric, i.e. τ(Tt ( f )ϕ) = τ( f Tt (ϕ)), ∀ f , ϕ ∈ Ĝ.
(4) Completely positive, i.e. id ⊗ Tt is positive preserving on K(�2) ⊗ Ĝ with K(�2)

the algebra of compact operators on �2(N).

and the family (Tt )t>0 is weak-∗ continuous at 0+, i.e. τ(Tt ( f )ϕ) → τ( f ϕ) as t → 0
for all f ∈ L(G), ϕ ∈ L1(Ĝ). It is well known that a unital map on C∗-algebras
(in particular on von Neumann algebras) is (completely) positive preserving iff it is
(completely) contractive. Because of this fact and the symmetric assuption (2), each
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Tt extends to a contraction on L1(Ĝ) by duality. By interpolation, each Tt extends to
a contraction on L p(Ĝ) for every 1 ≤ p ≤ ∞.

Given a semifinite von Neumann algebra M, denote by N = M⊗̄Ĝ. Following
[20] and [28], for finite sums f =∑k cg ⊗ λg with cg ∈ M set

‖ f ‖BMOc(ψ) = sup
0<t<∞

∥
∥
∥(id ⊗ Tt )

[

| f − (id ⊗ Tt )( f )|2
]∥
∥
∥

1
2

N . (1.6)

We will often omit id and simply write Tt instead of Tt ⊗ id when no confusion arises
in the context. Set

‖ f ‖B M O(ψ) = max{‖ f ‖B M Oc(ψ), ‖ f ∗‖B M Oc(ψ)}. (1.7)

When G is the integer group Z, L p(Ẑ) is the L p-space of p-integrable functions
with respect to theHaarmeasure on the torusT. The semigroup Tt is the heat semigroup
(respectively Poisson semigroup) if we set ψ(g) = |g|2 (respectively |g|) for g ∈ Z.
It is an elementary calculation that the semigroup BMO norm defined above coincides
with those defined in (0.3), (0.4). When f is operator-valued, the semigroup BMO
normdefined above coincideswith the ones studied in [27, Section 1.3]. The semigroup
BMO norms may differ from each other for different semigroups, see [12, Section 4]
for examples.

As in [20] and [28], we define the space BMO(ψ) as an abstract closure of all the
finite sums f = ∑

k cg ⊗ λg . We omit the definition of this closure as it will not
be needed in this article. We refer the readers to [28, p. 3377] or [20, Sect. 5.2] for
the definition of this closure. The following interpolation result was proved in [20,
Theorem 0.2]. We refer the readers to Theorem 5.2 and Remark 5.5 of [20] for related
results. E. Ricard proved in [46] that the type of semigroup of operators considered in
this article satisfies the Markov dilation assumption in [20, Theorem 0.2].

Lemma 1.2 [20, Theorem 0.2] Let L p
0 (N ) = { f ∈ L p(N ), τ ( f ) = 0}. The following

interpolation result holds for 1 < p < ∞,

[B M O(ψ), L1
0(N )] 1

p
	 L p

0 (N )

1.4 Analytic Hp-Space on Ordered Groups

The theory of analytic noncommutative Hardy spaces were developed byMarsalli and
West etc. in [3, 5, 29–31] in the general context of Arveson’s subdiagonal operator
algebras [1]. We recall here the definition of these spaces and the corresponding
factorization, duality and interpolation results in the case of group vonNeuman algebra
associated with ordered groups. Please see [44, Sect. 8] for a survey of these results.

Let (G,≤) be a countable (possibly non-abelian) discrete group with a total order.
Denote by e the unit element. Let L p(Ĝ) be the noncommutative L p spaces associated
with the canonical trace τ .
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For 1 ≤ p ≤ ∞, letAp ⊂ L p(Ĝ) be the collection of all the finite sum
∑

g≥e cgλg .

Let H p(Ĝ) be the norm (respectively weak operator) closure of Ap in L p(Ĝ) for
1 ≤ p < ∞ (respectively p = ∞).

Like the classical case, one can define an analytic BMO space as the dual of H1(Ĝ)

using an analogue of the Hilbert transform, that we will introduce at below. Let H be
the linear map on L2(Ĝ) such that

H

(
∑

g

cgλg

)

= −i

(
∑

g≥e

cgλg −
∑

g≤e

cgλg

)

. (1.8)

It is clear that H is bounded on L2(Ĝ). It was proved in [30] that H extends to a
bounded map on L p(Ĝ) for all 1 < p < ∞.1 So H p(Ĝ) is complemented in L p(Ĝ),
and the dual of H p(Ĝ) is isomorphic to H p′

(Ĝ) for 1
p + 1

p′ = 1, 1 < p < ∞. For

f =∑g cgλg ∈ L2(Ĝ), set

‖ f ‖B M O(Ĝ)
= inf{‖u‖L∞(Ĝ)

+ ‖v‖L∞(Ĝ)
: f = u + Hv}

where the infimum is taken over all u, v ∈ L∞(Ĝ). Note Hv ∈ L2(Ĝ) as v ∈
L∞(Ĝ) ⊂ L2(Ĝ). Let B M O A(Ĝ) be the space of all f ∈ H2(Ĝ) with finite ‖ ·
‖B M O(Ĝ)

-norms. It is easy to show that the dual of H1(Ĝ) is isomorphic to BMOA(Ĝ)

following the classical arguments. This was explained in [31, Theorem 5] and [44,
p. 1499]. Please note that BMOA was denoted by A, and the Hilbert transform was
called the conjugate map and was denoted by “∼” in Theorem 5 of [31].

We will also need the operator-valued version of H p(Ĝ) and BMOA(Ĝ). Let
(M, tr) be a semifinite von Neumann algebra. LetN = M⊗Ĝ with the trace tr ⊗ τ .
For 1 ≤ p ≤ ∞, let H p(N ) be the norm (respectively weak operator) closure in
L p(N ) of the collection of all finite sums

∑

g≥e cg ⊗ λg with cg ∈ L p(M). In this

case, H1(N ) coincides with the projective tensor product L1(M)⊗̂H1(Ĝ), and its
dual is isomorphic toBMOA(N ) = M⊗̄B M O A(Ĝ) the injective tensor product. The
Hilbert transform id ⊗ H extends to a bounded map on L p(N ) for all 1 < p < ∞.
So, for 1 < p < ∞, H p(N ) is a complemented subspace of L p(N ), and we have the
following equivalence for f =∑g cg ⊗ λg ∈ L p(N ),

‖ f ‖p 	
∥
∥
∥
∥
∥

∑

g≥e

cg ⊗ λg

∥
∥
∥
∥
∥

p

+
∥
∥
∥
∥
∥

∑

g<e

cg ⊗ λg

∥
∥
∥
∥
∥

p

. (1.9)

H p(N ) and BMOA(N ) were studied in [3, 29–31, 44] etc. in the general context of
Arveson’s subdiagonal operator algebras. The following factorization theorem was
proved in [30, Theorem 4.3] and [3, Theorem 3.2].

1 One can check directly that H satisfies the so-called Cotlar’s identity. So its p-boundedness follows from
the classical iteration and interpolation argument. See [44, Lemma 8.5] for the details.
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Lemma 1.3 Given any f ∈ H1(N ) and ε > 0, there exist y, z ∈ H2(N ) such that
f = yz and ‖y‖2‖z‖2 ≤ ‖ f ‖1 + ε.

It was proved in [31] and [3] that the dual of H1(N ) is isomorphic to BMOA(N ),
and H p(N ) is an interpolation space between them.

Lemma 1.4 [3, Proposition 4.1] Let 1 < p < ∞ then

H p(N ) 	 [B M O A(N ), H1(N )] 1
p

with equivalent norms.

Lemma 1.4 has been known to experts after the work of Pisier [36], Marsallie/West
[30], and Pisier/Xu [44, p. 1499]. It was formally proved in [3] for the semifinite von
Neumann algebras.

2 Proof of Theorem 0.1

Lemma 2.1 For as ∈ R+, cs, bs ∈ B(H), we have, for any 0 < p, q, r < ∞, 1
p + 1

q =
1
r ,

∥
∥
∥
∥
∥

∑

s

asc∗
s bs

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

∑

s

as |cs |2
∥
∥
∥
∥
∥

1
2
∥
∥
∥
∥
∥

∑

s

as |bs |2
∥
∥
∥
∥
∥

1
2

(2.1)

∥
∥
∥
∥
∥

∑

k

asc∗
s bs

∥
∥
∥
∥
∥

Sr

≤
∥
∥
∥
∥
∥

∑

s

as |cs |2
∥
∥
∥
∥
∥

1
2

S p

∥
∥
∥
∥
∥

∑

s

as |bs |2
∥
∥
∥
∥
∥

1
2

Sq

. (2.2)

Proof Let es,t be the canonical basis of B(H). Let f = ∑

s a
1
2
s c∗

s ⊗ e1,s and

ϕ = ∑

s a
1
2
s bs ⊗ es,1. Then (2.1) follows from the fact that ‖ f ϕ‖ ≤ ‖ f ‖‖ϕ‖ =

‖ f f ∗‖ 1
2 ‖ϕ∗ϕ‖ 1

2 . The inequality (2.2) follows from Hölder’s inequality (1.2),
‖ f ϕ‖Sr ≤ ‖ f ‖S p‖ϕ‖Sq . ��
Lemma 2.2 Let f =∑k ck ⊗ λhk ∈ L2(B(H)⊗̄Ĝ), we have

1

2

(
∑

k

|ck |2
) 1

2

≥ τ

⎡

⎣

(
∫ ∞

0

∣
∣
∣
∣

∂

∂s
Ts f

∣
∣
∣
∣

2

sds

) 1
2
⎤

⎦ (2.3)

This means that subtracting the right hand side from the left hand gives a nonnegative
self-adjoint element of B(H). Moreover, if we assume (hk) is a ψ-lacunary sequence,
then

∥
∥
∥
∥
∥

∫ ∞

0

∣
∣
∣
∣

∂

∂s
Ts f

∣
∣
∣
∣

2

sds

∥
∥
∥
∥
∥

≤
(

1 + 2

δ

)
∥
∥
∥
∥
∥

∑

k

|ck |2
∥
∥
∥
∥
∥

. (2.4)
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Proof An elementary calculation shows that

∫ ∞

0

∣
∣
∣
∣

∂

∂s
Ts f

∣
∣
∣
∣

2

sds =
∫ ∞

0

∑

k

(ckλhk )
∗ψ(hk)e

−sψ(hk )
∑

j

(c jλh j )ψ(h j )e
−sψ(h j )sds

=
∑

k, j

(ckλhk )
∗c jλh j ψ(hk)ψ(h j )

∫ ∞

0
e−s(ψ(hk )+ψ(h j ))sds

=
∑

k, j

ak, j (ckλhk )
∗c jλh j , (2.5)

with

ak, j = ψ(hk)ψ(h j )

(ψ(hk) + ψ(h j ))2
≥ 0

since
∫∞
0 e−αss ds = 1

α2 . So, by Cauchy-Schwartz inequality (1.1), we get

τ

⎡

⎣

(
∫ ∞

0

∣
∣
∣
∣

∂

∂s
Ts f

∣
∣
∣
∣

2

sds

) 1
2
⎤

⎦ ≤
[

τ

(
∫ ∞

0

∣
∣
∣
∣

∂

∂s
Ts f

∣
∣
∣
∣

2

sds

)] 1
2

=
(
∑

k

|ck |2ak,k

) 1
2

= 1

2

(
∑

k

|ck |2
) 1

2

.

On the other hand, for any given j , we have that

∑

k

ak, j =
∑

k≤ j

ψ(hk)ψ(h j )

(ψ(hk) + ψ(h j ))2
+
∑

k> j

ψ(hk)ψ(h j )

(ψ(hk) + ψ(h j ))2

≤
∑

k≤ j

ψ(hk)

ψ(h j )
+
∑

k> j

ψ(h j )

ψ(hk)

≤ 1 + δ

δ
+ 1

δ
= 1 + 2

δ
.

In the last step of the estimate above, we have used the ψ-lacunary property (0.7).
Taking the supremum over j , we get

sup
j

∑

k

ak, j ≤ 1 + 2

δ
.

A similar estimate shows,

sup
k

∑

j

ak, j ≤ 1 + 2

δ
.
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Applying Lemma 2.1 to (2.5), we have

∥
∥
∥
∥
∥

∫ ∞

0

∣
∣
∣
∣

∂

∂s
Ts f

∣
∣
∣
∣

2

sds

∥
∥
∥
∥
∥

≤

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

k, j

|ck |2ak, j

⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

k, j

|c j |2ak, j

⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

k

|ck |2
∑

j

ak, j

⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j

|c j |2
∑

k

ak, j

⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

≤
(

1 + 2

δ

)
∥
∥
∥
∥
∥

∑

k

|ck |2
∥
∥
∥
∥
∥

.

��
Theorem 2.3 Suppose that (hk)k ⊆ G is a ψ-lacunary sequence. Then, for any N ∈ N

and f = ∑N
k=1 ckλhk with ck ∈ B(H), we have

‖ f ‖2B M Oc(ψ) 	δ

∥
∥
∥
∥
∥
∥

∑

k,hk �=e

|ck |2
∥
∥
∥
∥
∥
∥

. (2.6)

At the other end, we have, for any (ck) ∈ S1(�2c),

tr

⎡

⎣

(
∑

k

|ck |2
) 1

2
⎤

⎦ 	δ inf

⎧

⎨

⎩
(tr ⊗ τ)

⎡

⎣

(
∫ ∞

0

∣
∣
∣
∣

∂

∂s
Ts f

∣
∣
∣
∣

2

s ds

) 1
2
⎤

⎦ : τ( f λ∗
hk

) = ck

⎫

⎬

⎭
.

(2.7)
where the infimum runs over all f ∈ L1(B(H)⊗̄Ĝ).

Proof We prove the BMO estimate (2.6) first. An easy calculation shows that

Tt

[

| f − Tt ( f )|2
]

= Tt

[(
∑

k

ck(1 − e−tψ(hk )λhk )

)∗ (
∑

k

ck(1 − e−tψ(hk )λhk )

)]

= Tt

⎡

⎣

⎛

⎝
∑

k, j

(1 − e−tψ(hk ))(1 − e−tψ(h j ))(ckλhk )
∗c jλh j

⎞

⎠

⎤

⎦

=
∑

k, j

ak, j (ckλhk )
∗c jλh j , (2.8)

with

ak, j = e−tψ(h−1
k h j )(1 − e−tψ(h−1

k ))(1 − e−tψ(h j )) ≥ 0.
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Note

ak, j ≤ min{e−tψ(h−1
k h j ), 1 − e−tψ(h−1

k )} = min{e−tψ(h−1
k h j ), 1 − e−tψ(hk)}.

We have, for a fixed j ,

∑

k

ak, j ≤
∑

tψ(hk)≤1

1 − e−tψ(hk ) +
∑

tψ(hk)>1

e−tψ(h−1
k h j ).

By the lacunary property (0.8) ψ(h−1
k h j ) ≥ δψ(hk) and the inequality 1 − e−s ≤ s,

we get

∑

k

ak, j ≤
∑

tψ(hk)≤1

tψ(hk) +
∑

tψ(hk)>1

e−tδψ(hk) (2.9)

By the lacunary property (0.7) we see that

tψ(hk)

tψ(hk+1)
≤ 1

1 + δ
,

e−tδψ(hk+1)

e−tδψ(hk)
= etδ(ψ(hk )−ψ(hk+1) ≤ e−tδ2ψ(hk ).

So the first term on the right hand side of (2.9) is bounded by a geometric series with
ratio (1 + δ)−1 and starting with 1. So it is smaller than 1+δ

δ
. The second term on the

right hand side of (2.9) is bounded by a geometric series with ratio e−δ2 and starting
with e−δ . So it is smaller than e−δ

1−e−δ2
. We then conclude that

sup
j

∑

k

ak, j ≤ 1 + δ−1 + e−δ

1 − e−δ2
≤ 1 + δ−1 + δ−2 =: cδ.

A similar estimate shows that

sup
k

∑

j

ak, j ≤ cδ.

Applying Lemma 2.1 to (2.8), we have

∥
∥
∥Tt

[

| f − Tt ( f )|2
]∥
∥
∥ ≤

∥
∥
∥
∥
∥
∥

∑

k, j

|ck |2ak, j

∥
∥
∥
∥
∥
∥

1
2
∥
∥
∥
∥
∥
∥

∑

k, j

|c j |2ak, j

∥
∥
∥
∥
∥
∥

1
2

≤ (1 + δ−1 + δ−2)

∥
∥
∥
∥
∥

∑

k

|ck |2
∥
∥
∥
∥
∥

.
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Taking the supremum over t , we get ‖ f ‖2B M Oc
≤ cδ

∥
∥
∑

k |ck |2
∥
∥ . For the lower esti-

mate, note that for any f =∑k ckλhk with ‖∑k |ck |2‖ < ∞, we have

‖Tt

[

| f − Tt ( f )|2
]

‖ ≥
∥
∥
∥(id ⊗ τ)

(

Tt

[

| f − Tt ( f )|2
])∥
∥
∥

=
∥
∥
∥
∥
∥
∥

∑

k,hk �=e

∣
∣
∣

[

1 − e−tψ(hk )
]

ck

∣
∣
∣

2

∥
∥
∥
∥
∥
∥

.

Since 1−e−tψ(hk ) tends to 1 uniformly in k as t tends to∞, we get the lower estimate.
Taking the adjoint, we prove the estimate for the BMO norms.

We now turn to the H1-estimate (2.7). By duality, we may choose bk such that
‖∑ |bk |2‖ = 1 and

tr

⎡

⎣

(
∑

k

|ck |2
) 1

2
⎤

⎦ = tr
(∑

c∗
k bk

)

= sup
f ,ϕ

(tr ⊗ τ)( f ∗ϕ),

where the superum runs over all finite sum ϕ = ∑N
k=1 bkλhk , f = ∑N

k=1 ckλhk . We
then have

(tr ⊗ τ)( f ∗ϕ) = 4(tr ⊗ τ)

(∫ ∞

0

(
∂

∂s
Ts f ∗

)(
∂

∂s
Tsϕ

)

sds

)

≤ 4(tr ⊗ τ)

⎡

⎣

(
∫ ∞

0

∣
∣
∣
∣

∂

∂s
Ts f

∣
∣
∣
∣

2

sds

) 1
2
⎤

⎦

∥
∥
∥
∥
∥

∫ ∞

0

∣
∣
∣
∣

∂

∂s
Tsϕ

∣
∣
∣
∣

2

sds

∥
∥
∥
∥
∥

1
2

.

In the last step of the inequalities above, we used Hölder’s inequality (1.2) for x ∈
L1(B(H ⊗ L2(0,∞)) ⊗ Ĝ), y ∈ B(H ⊗ L2(0,∞)) ⊗ Ĝ with x = ∫∞

0

√
se1,s ⊗

∂
∂s Ts f ∗ds and y = ∫∞

0

√
ses,1 ⊗ ∂

∂s Tsϕds. Combining the above estimates with
Lemma 2.2, we obtain

tr

⎡

⎣

(
∑

k

|ck |2
) 1

2
⎤

⎦ ≤ 4

(

1 + 2

δ

) 1
2

(τ ⊗ tr)

⎡

⎣

(
∫ ∞

0

∣
∣
∣
∣

∂

∂s
Ts f

∣
∣
∣
∣

2

sds

) 1
2
⎤

⎦ .

This proves one direction of (2.7), the other direction follows by taking tr on the both
sides of (2.3). ��
Remark 2.4 Lust-Piquard and Pisier’s work [26] is the first one studying noncommu-
tative Paley’s inequalities. The second part of this paper generalize Lust-Piquard and
Pisier’s work to the group von Neumann algebras of ordered groups. An interesting
point of Theorem 2.3 is that it gives interpretations of the row (and column) version of
the noncommutative Paley’s inequality separately. Lust-Piquard and Pisier consider
the the analytic H1 norm which is equivalent to the Littlewood-Paley type H1 norm
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(0.5) for scalar valued functions, but not for operator-valued functions [32]. Applying
Theorem 2.3 to the Euclidean length on the integer group, we see that these two norms
coincide for lacunary Fourier series with operator valued coefficients.

Given a ψ-lacunary sequence (hk)
∞
k=1 of elements in G, define the linear map T

from L∞(B(H), �2cr ) to B M O by

T [(ck)
∞
k=1] =

∑

k

ckλhk .

Then T has a norm c′
δ from L∞(B(H), �2cr ) to B M O and norm 1 from L2(B(H), �2cr )

to L2(B(H) ⊗ Ĝ), where c′
δ ≤ c

1
2
δ from the proof of Theorem 2.3. Applying the

interpolation result Lemma 1.2, we get

Corollary 2.5 Suppose that (hk) is a ψ-lacunary sequence for some conditionally
negative definite ψ . We have that, for any p > 2 and any f of the form f =∑k ckλhk ,

‖ f ‖L p �δ p max

⎧

⎨

⎩

∥
∥
∥
∥
∥
∥

(
∑

k

|ck |2
) 1

2

∥
∥
∥
∥
∥
∥

p

,

∥
∥
∥
∥
∥
∥

(
∑

k

|c∗
k |2
) 1

2

∥
∥
∥
∥
∥
∥

p

⎫

⎬

⎭
. (2.10)

By duality, we get the following result: For any 1 < p < 2,

‖(ck)k‖S p(�2cr )
� inf{‖ f ‖p : f̂ (hk) = ck}. (2.11)

We will prove a column version of (2.11) in the next section.

Remark 2.6 Corollary 2.5 can also be obtained by combining the noncommutative
H∞-calculus techniques developed in [19, p. 118], and the dilation theory proved in
[46]. There is another approach via noncommutative Riesz transforms [22]. The order
p in (2.10) is better than what is implied by these two approaches. For ψ being the
usual length function on the integer group, (2.10) holds with constants in the order
of

√
p [47] as p → ∞, it is unclear whether this is the same for general ψ-lacunary

sequences.

Remark 2.7 If G = Fn and ψ is the reduced word length, Haagerup proved in [13]
that ψ is a conditionally negative function. For this ψ , it is easy to verify that a set
consisting of a ψ-lacunary sequence is the so-called Z(2) set [16, Definition 1.11].
So it is a �(4) set by Harcharras’s work [16, Theorem 1.13]. This does not seem clear
for Z(p) with p > 2.

Remark 2.8 The sequence of free generators {gi : i ∈ N} of F∞ is a ψ-lacunary
sequence for some ψ . Indeed, let π be the group homomorphism from F∞ to F∞
sending gi to g2i

i . Then ψ(h) = |π(h)| is a conditionally negative definite function.
Because, the matrix

(|π(h−1
k h j )|)1≤k, j≤N = (|(π(hk))

−1π(h j )|)1≤k, j≤N
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is conditionally negative definite for any hk ∈ F∞ since the reduced word length
is conditionally negative definite [13]. Note {gi : i ∈ N} is obviously ψ-lacunary
because ψ(gi ) = 2i .

Remark 2.9 One can extend (2.11) to the range 0 < p ≤ 1 as a Khintchine-type
inequality

‖(ck)k‖S p(�2cr )
�
∥
∥
∥
∥
∥

∑

k

ckλhk

∥
∥
∥
∥
∥

2

p
2

(2.12)

by applying Pisier–Ricard’s theorem [45]. For the case p = 1, one may follow
Haagerup–Musat’s argument in [14] to get a better constant in (2.12).

Remark 2.10 The assumption of ψ being conditionally negative definite is needed
merely by the interpolation result Lemma 1.2. The arguments for other results of this
section only need the assumptions (0.7), (0.8).

Remark 2.11 Let Pt be the Poisson semigroup for bounded functions on the torus T.
As we pointed out before, the semigroup BMO associated with Pt coincides with the
classical BMO. Let St = Pt ⊗ idMn be its extension to the von Neumann algebra
of bounded n by n matrix-valued functions on T. The semigroup BMOc associated
with St coincides with the matrix-valued BMOso introduced in the literature (e.g. [32,
35]). Note that for the dyadic BMOso-norm, the example of f = ∑

rk ⊗ ek,1, with
rk = sgn

[

sin
(

2kπθ
)]

being the k-th Rademacher function on T (which is identified
by [0, 1]), shows that the estimate

‖ f ‖B M Od
so

�
√

n‖ f ∗‖B M Od
so

is optimal. The upper bound of the estimate is of the order at most
√

n owing to the
inequality

∥
∥
∥
∥
∥

∑

k

|ck |2
∥
∥
∥
∥
∥

≤ tr

(
∑

k

|c∗
k |2
)

≤ n

∥
∥
∥
∥
∥

∑

k

|c∗
k |2
∥
∥
∥
∥
∥

which holds true for any sequence of n by n matrix ck . There was no easy method
to show that

√
n is also optimal for the usual (non-dyadic) BMOso norm before the

writing of this article. Note that the BMO by dyadic BMO trick does not help in
producing such a concrete example. Theorem 2.3 provides such an example by taking
f =∑0<k≤n z2

k ⊗ ek,1.

3 Proof of Theorem 0.2

Throughout this section, we assume (G,≤) is a countable (possibly non-abelian)
discrete group with a bi-invariant total order. This is equivalent to say that G contains



77 Page 18 of 30 Journal of Fourier Analysis and Applications (2022) 28 :77

a normal subsemigroup G+ such that, for G− = (G+)−1,

G+ ∪ G− = G, G+ ∩ G− = {e}.

In this case, one has G+ = {g ∈ G : g ≥ e} and x ≤ y if and only if x−1y ∈ G+. It
is well-known that the free groups have bi-invariant total orders (see Sect. 4). We use
the notation x < y if x ≤ y and x �= y.

For each g ∈ G+, let Lg = {h : g ≤ h ≤ g2}. For E ⊂ G+, let N (E, g) be
the number of elements of E ∩ Lg , i.e. N (E, g) = #(Lg ∩ E). Following Rudin’s
terminology [48, Section 8.6], we say E ⊂ G+ is lacunary, if there is a constant K
such that

N (E) = sup
g∈G+

N (E, g) ≤ K .

For a general subset E ⊂ G, let E+ = E ∩ G+, E− = E − E+. We say E is lacunary
if N (E) = N (E+) + N ((E−)−1) is finite. Please see Sect. 4 for examples of such E .

Let (M, tr) be a semifinite von Neumann algebra. LetN = M⊗Ĝ with the trace
tr ⊗ τ . For f ∈ L1(N ), g ∈ G, denote by f̂ (g) = τ [ f (1 ⊗ λg−1)]. It is clear that,
for a finite sum f =∑g cgλg , f̂ (g) = cg .

Theorem 3.1 Assume that E is a lacunary subset of G+. Then, for any sequence
(ck)k ⊂ L1(M), and any sequence (gk)

∞
k=1 ⊆ E, we have

‖(ck)
∞
k=1‖L1(M,�2cr )

	 inf
{

(tr ⊗ τ)(| f |) : f ∈ L1(N ), f̂ (gk) = ck, f̂ (g) = 0,∀g < e
}

, (3.1)

Proof By the convexity of | · |2 and the complete positivity of τ , we have that, for any
finite sequence gk ∈ G,

τ |
∑

k

akλgk | ≤
(

τ |
∑

k

akλgk |2
) 1

2

=
(
∑

k

|ak |2
) 1

2

.

So

∥
∥
∥
∥
∥

∑

k

akλgk

∥
∥
∥
∥
∥
1

= tr

(

τ

∣
∣
∣
∣
∣

∑

k

akλgk

∣
∣
∣
∣
∣

)

≤ tr

(
∑

k

|ak |2
) 1

2

= ‖(ak)
∞
k=1‖L1(M,�2c )

.

Taking the adjoints, we get

∥
∥
∥
∥
∥

∑

k

bkλgk

∥
∥
∥
∥
∥
1

≤ ‖(bk)
∞
k=1‖L1(M,�2r ).
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Writing ck = ak + bk , we get,

∥
∥
∥
∥
∥

∑

k

ckλgk

∥
∥
∥
∥
∥
1

≤ ‖(ck)
∞
k=1‖L1(M,�2cr )

. (3.2)

This shows that the right hand side of (3.1) is smaller.
We now prove the other direction of the equivalence. By approximation, without

loss of generality, we may assume E is a finite set and N is a finite von Neumann
algebra. For f ∈ H1(N ) and ε > 0, by Lemma 1.3, there exist y, z ∈ H2(N ) such
that f = yz and ‖y‖2‖z‖2 ≤ ‖ f ‖1 + ε.

Given an element gi ∈ E with f̂ (gi ) �= 0. Recall that f̂ (g) = τ( f λ∗
g), we have

f̂ (gi ) =
∑

e≤h≤gi

ŷ(h)̂z(h−1gi ), (3.3)

since ŷ(g) = ẑ(g) = 0 for all g < e.
Thus, the sum in (3.3) can be split into two parts;

f̂ (gi ) =
∑

e≤h≤gi <h2

ŷ(h)̂z(h−1gi ) +
∑

e≤h≤h2≤gi

ŷ(h)̂z(h−1gi ). (3.4)

Let

Zi =
∑

e≤h≤h2<gi

ẑ(h)λh =
∑

e≤h≤gi <h2

ẑ(h−1gi )λh−1gi
.

Similarly let

Yi =
∑

e≤h≤h2≤gi

ŷ(h)λh .

It follows that

Ziλg−1
i

=
∑

e≤h≤gi <h2

ẑ(h−1gi )λh−1

and

λg−1
i

Yi =
∑

e≤h≤h2≤gi

ŷ(h)λg−1
i h .
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Let

Ai := τ
(

y Ziλg−1
i

)

(3.5)

Bi := τ
(

λg−1
i

Yi z
)

. (3.6)

Then

f̂ (gi ) = Ai + Bi , (3.7)

because

Ai = τ
(

y Ziλg−1
i

)

= τ

⎡

⎣

(
∑

g≥e

ŷ(g)λg

)⎛

⎝
∑

e≤h≤gi <h2

ẑ(h−1gi )λh−1

⎞

⎠

⎤

⎦

= τ

⎡

⎣
∑

g≥e

∑

e≤h≤gi <h2

ŷ(g)̂z(h−1gi )λgh−1

⎤

⎦

=
∑

e≤h≤gi <h2

ŷ(h)̂z(h−1gi )

and

Bi = τ
(

λg−1
i

Yi z
)

= τ

⎡

⎣

⎛

⎝
∑

e≤h≤h2≤gi

ŷ(h)λg−1
i h

⎞

⎠

(
∑

g≥e

ẑ(g)λg

)⎤

⎦

= τ

⎡

⎣

⎛

⎝
∑

e≤h≤h2≤gi

ŷ(h)λg−1
i h

⎞

⎠

⎛

⎝
∑

f ≤gi

ẑ( f −1gi )λ f −1gi

⎞

⎠

⎤

⎦

= τ

⎡

⎣
∑

e≤h≤h2≤gi

∑

f ≤gi

ŷ(h)̂z( f −1gi )λg−1
i hλ f −1gi

⎤

⎦

=
∑

e≤h≤h2≤gi

ŷ(h)̂z(h−1gi ).
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Applying the convexity of τ and Jensen’s inequality to (3.5), we have

∥
∥(Ai )

n
i=1

∥
∥

L1(M,�2r )
≤ (tr ⊗ τ)

⎡

⎣

(
∑

i

|(y Ziλg−1
i

)∗|2
) 1

2
⎤

⎦

= (tr ⊗ τ)

⎡

⎣

(

y

(
∑

i

Zi Zi

)

y∗
) 1

2
⎤

⎦

≤
[

(tr ⊗ τ)(|y|2)
] 1
2

[

(tr ⊗ τ)

(
∑

i

Zi Z∗
i

)] 1
2

=
[

(tr ⊗ τ)(|y|2)
] 1
2

⎡

⎣
∑

i

∑

e≤h≤gi <h2

‖̂z(h)‖2L2(M)

⎤

⎦

1
2

.

On the other hand, we note that e ≤ h ≤ gi < h2 implies that gi ∈ Lh . Since
N (E, g) ≤ K , we get

‖(Ai )
n
i=1‖L1(M,�2r ) ≤

[

(tr ⊗ τ)(|y|2)
] 1
2

[

K
∑

h

‖̂z(h)‖2L2(M)

] 1
2

= K
1
2 ‖z‖L2(N )‖y‖L2(N ) ≤ K

1
2 (‖ f ‖L1(N ) + ε).

Now, we consider (Bi )i .

‖(Bi )
n
i=1‖L1(M,�2c )

≤ (tr ⊗ τ)

⎡

⎣

(

z∗
(
∑

i

|λg−1
i

Yi |2
)

z

) 1
2
⎤

⎦

≤
[

(tr ⊗ τ)(|z|2))
] 1
2

[

(tr ⊗ τ)

(
∑

i

|λg−1
i

Yi |2
)] 1

2

= ‖z‖2
[
∑

i

(tr ⊗ τ)(Y ∗
i Yi )

] 1
2

= ‖z‖2
⎡

⎣
∑

i

∑

e≤h≤h2≤gi

‖ŷ(h)‖2L2(M)

⎤

⎦

1
2

.

Note that the condition e ≤ h ≤ h2 ≤ gi implies

h−1gi ≤ gi ≤ hgi < gi h
−1gi
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and

h′ ≤ gi ≤ h′2

with h′ = h−1gi ≥ e because “≤” is bi-invariant. We then get

∑

e≤h≤h2≤gi

‖ŷ(h)‖2L2(M)
≤

∑

e≤h′≤gi ≤h′2
‖ŷ(h′)‖2L2(M)

.

By the lacunary assumption N (E) ≤ K , we get

‖(Bi )
n
1‖L1(M,�2c )

≤ ‖z‖2
⎡

⎣
∑

i

∑

e≤h′≤gi ≤h′2
‖ŷ(h′)‖2L2(M)

⎤

⎦

1
2

≤ K
1
2 ‖z‖L2(N )‖y‖L2(N ) ≤ K

1
2 (‖ f ‖L1(N ) + ε).

Therefore,

‖( f̂ (gi ))
n
i=1‖L1(M,�2cr )

≤ ‖(Bi )
n
i=1‖L1(M,�2c )

+ ‖(Ai )
n
i=1‖L1(M,�2r )

≤ 2K
1
2 (‖ f ‖L1(N ) + ε),

This completes the proof by letting ε → 0. ��
Corollary 3.2 Assume that E is a lacunary subset of G+. Then, for any sequence
(ck)k ⊂ L p(M), and any sequence (gk)

∞
k=1 ⊆ E, we have

‖(ck)
∞
k=1‖L∞(M,�2cr )

	
∥
∥
∥
∥
∥

∞
∑

k=1

ckλgk

∥
∥
∥
∥
∥

B M O(N )

, (3.8)

‖(ck)
∞
k=1‖L1(M,�2cr )

	
∥
∥
∥
∥
∥

∞
∑

k=1

ckλgk

∥
∥
∥
∥
∥
1

, (3.9)

‖(ck)
∞
k=1‖L p(M,�2cr )

	
∥
∥
∥
∥
∥

∞
∑

k=1

ckλgk

∥
∥
∥
∥
∥

p

, 1 < p < ∞. (3.10)

‖(ck)
∞
k=1‖L p(M,�2cr )

	 inf
{

‖ f ‖p : f ∈ L p(N ), f̂ (gk) = ck

}

, 1 ≤ p ≤ 2,

(3.11)

Proof The first equivalence follows from Theorem 3.1 and the duality. The second
equivalence follows from Theorem 3.1 and the inequality (3.2). The third equivalence
follows from the first two equivalences and the interpolation between H1(N ) and
BMOA(N ). For the forth equivalence, the case p = 2 is trivial, the case p = 1 follows
fromTheorem 3.1, the case 1 < p < 2 follows from the interpolation between H1(N )

and H2(N ). ��
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Corollary 3.3 For any sequence (gi )
∞
i=1 in a lacunary subset E ∈ G

∥
∥
∥
∥
∥

∞
∑

i=1

λgi ⊗ cgi

∥
∥
∥
∥
∥

p

	 ‖(cgi )
∞
i=1‖L p(M,�2cr )

, 0 < p < ∞. (3.12)

‖(cgi )
∞
i=1‖L p(M,�2cr )

	 inf
{

‖ f ‖p : f ∈ L p(N ), f̂ (gi ) = cgi

}

, 1 < p < ∞.

(3.13)

Proof Note gi ∈ G− implies g−1
i ∈ G+. Taking adjoints, we see that all the equiva-

lences in Corollary 3.2 also hold for lacunary subsets E ⊂ G− instead of G+.
We write E = E+ ∪ E− with E+ = {g ∈ E, g ≥ e} ⊂ G+ and E− = {g ∈ E, g <

e} ⊂ G−. By (1.9) and (3.10), we have, for 1 < p < ∞,

∥
∥
∥
∥
∥
∥

∑

gi ∈E

cgi ⊗ λgi

∥
∥
∥
∥
∥
∥

p

	
∥
∥
∥
∥
∥
∥

∑

gi ∈E+
cgi ⊗ λgi

∥
∥
∥
∥
∥
∥

p

+
∥
∥
∥
∥
∥
∥

∑

gi ∈E−
cgi ⊗ λgi

∥
∥
∥
∥
∥
∥

p

	 ‖(cgi )gi ∈E+‖L p(M,�2cr )
+ ‖(cgi )gi ∈E−‖L p(M,�2cr )

= ‖(cgi )gi ∈E‖L p(M,�2cr )
.

This proves (3.12) for the case 1 < p < ∞. The case where 0 < p ≤ 1 follows from
the case 1 < p < ∞ and [45, Corollary 2.2] and [7, Theorem 2.6].

(3.12) implies that the right hand side of (3.13) is dominated by its left hand side up
to a constant. We now prove the other direction of (3.13). Given f =∑g f̂ (g)⊗λg ∈
L p(N ), p ≥ 2, we have

(
∑

g

| f̂ (g)|2
) 1

2

= (τ | f |2) 1
2 ≤ (τ | f |p)

1
p .

So, if f̂ (gi ) = cgi ,

‖(cgi )gi ∈E‖p
L p(M,�2c )

= tr

(
∑

gi

|cgi |2
) p

2

≤ tr

(
∑

g

| f̂ (g)|2
) p

2

≤ tr ⊗ τ(| f |p)=‖ f ‖p
p.

Taking adjoints, we get ‖(cgi )gi ∈E‖p
L p(M,�2r )

≤ ‖ f ‖p
p. Therefore,

‖(cgi )gi ∈E‖p
L p(M,�2cr )

≤ ‖ f ‖p
p.

Given f = ∑

g f̂ (g) ⊗ λg ∈ L p(N ), 1 < p < 2 with f̂gi = cgi , we have, by (3.11)
and its adjoint version,
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‖(cgi )gi ∈E‖L p(M,�2cr )
= ‖(cgi )gi ∈E+‖L p(M,�2cr )

+ ‖(cgi )gi ∈E−‖L p(M,�2cr )

�
∥
∥
∥
∥
∥

∑

g≥e

f̂ (g) ⊗ λg

∥
∥
∥
∥
∥

p

+
∥
∥
∥
∥
∥

∑

g<e

f̂ (g) ⊗ λg

∥
∥
∥
∥
∥

p

	 ‖ f ‖p

In the last step, we have applied (1.9). This completes the proof of (3.13). ��
Remark 3.4 It would be interesting to see whether Pisier–Ricard’s argument [45] can
push Theorem 3.1 to the case where p < 1.

4 The Case of Free Groups

Let G = F2 be the nonabelian group with two free generators a, b. Denote by |g| the
reduced word length of g ∈ F2. Every g ∈ F2 can be uniquely expressed as

g = a j1bk1 · · · a jN bkN (4.1)

with ji , ki ∈ Z and ji �= 0 for 1 < i ≤ N and ki �= 0 for 1 ≤ i < N . For 0 < q ≤ 2,
set the q-length of g to be

‖g‖q =
∑

i

| ji |q +
∑

i

|ki |q . (4.2)

Then, ψ : F2 → R defined by ψ(g) = ‖g‖q is a conditionally negative definite
function for all 0 < q ≤ 2. When q = 1, ‖g‖q is the reduced word length function.
The property of it being conditional negative definite was studied in [13] for q = 1
and in [6, Corollary 1] for 0 < q ≤ 2. All results contained in Sect. 2, 3 apply to this
ψ . In particular, all ‖ · ‖q -lacunary sequences are completely unconditional in L p(F̂2)

for all 0 < p < ∞. However, this is not clear for p = ∞.
Given a conditionally negative definite lengthψ with ker(ψ) = {e}, we say a subset

A ⊆ G is a (respectively complete) ψ Paley-set, if there exists a constant CA such
that

∥
∥
∥
∥
∥
∥

∑

hk∈A

ckλhk

∥
∥
∥
∥
∥
∥

B M O(ψ)

≤ CA max

⎧

⎪⎨

⎪⎩

∥
∥
∥
∥
∥
∥

∑

hk∈A

|ck |2
∥
∥
∥
∥
∥
∥

1
2

,

∥
∥
∥
∥
∥
∥

∑

hk∈A

|c∗
k |2
∥
∥
∥
∥
∥
∥

1
2

⎫

⎪⎬

⎪⎭

, (4.3)

for any choice of finitely many ck ∈ C (respectively K (H)). We say A is a Paley-set if
it is aψ Paley-set for some conditionally negative definite lengthψ with ker(ψ) = {e}.
This definition coincideswith the classical “Paley”-set,whenG = Z, andψ is theword
length onZ. In that case, every Paley set is a Sidon set. Onemaywonder to what extent
this is still true. The concept of Sidon sets had been studied in the noncommutative
setting for a long time, and was recently re-investigated by Pisier [41, 42] and byWang
[50]. Pisier defines noncommutative completely Sidon sets using the full C∗-algebras
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of discrete groups and proves the stability of his completely Sidon sets by taking
finite unions. An interesting feature of Pisier’s definition is that only non-amenable
groups can have infinite completely Sidon sets. The authors wish to consider a weaker
definition in the hope of covering the case of lacunary sequence studied in this article.

We say a subset A ∈ G is a (completely) unconditional Sidon set, if {λh : h ∈ A}
is (completely) unconditional in the reduced C∗-algebra of the group, i.e. there exists
a constant CA such that

∥
∥
∥
∥
∥
∥

∑

hk∈A

εkckλhk

∥
∥
∥
∥
∥
∥

≤ CA

∥
∥
∥
∥
∥
∥

∑

hk∈A

ckλhk

∥
∥
∥
∥
∥
∥

,

for any choice εk = ±1, ck ∈ C (respectively K (H)). In the case that G = F2 and ψ

being the reduced word length (or q-length defined in (4.2)), every length-lacunary set
is a Paley set and a completely �(p) set for all 2 < p < ∞ as shown in this article.
The question is as follows:

Question Suppose that (hk)
∞
k=1 is a length-lacunary sequence of elements in F2,

e.g. |hk+1|
|hk | > 2. Is {hk} a (completely) unconditional Sidon set? In other words, does

there exist a constant C such that
∥
∥
∥
∥
∥

∑

k

εkckλhk

∥
∥
∥
∥
∥

≤ C

∥
∥
∥
∥
∥

∑

k

ckλhk

∥
∥
∥
∥
∥

,

for any choice εk = ±1 and ck ∈ C (respectively K (H))?
The transferencemethod used in thework [10] is powerful for the study of harmonic

analysis on the quantum tori. A similar method applies to the free group case. For
g ∈ F2 in the form of (4.1), let

|g|z =
∣
∣
∣
∣
∣

N
∑

i=1

ji

∣
∣
∣
∣
∣

2

+
∣
∣
∣
∣
∣

N
∑

i=1

ki

∣
∣
∣
∣
∣

2

.

Then

ψz : g �→ |g|z (4.4)

is another conditionally negative definite function on F2,
2 and the unbounded linear

operator Lz : λg �→ ψzλg generates a symmetric Markov semigroup on the free

2 One can see the conditional negativity ofψz by identifyingF2 as a subgroup of the direct productF2×Z
2

via the group homomorphism

g :�→
⎛

⎝g,

N
∑

i=1

ji ,
N
∑

i=1

ki

⎞

⎠ .
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group von Neumann algebra F̂2. For (z1, z2) ∈ T
2, let πz be the ∗-homomorphism on

F̂2 such that

πz(λa) = z1λa, πz(λb) = z2λb.

Given f ∈ F̂2, viewing πz( f ) as an operator valued function on T2, one can see that

π−1
z (� ⊗ id)πz( f ) = Lz( f ), (4.5)

with� being the Laplacian on T2. This identity allows one to transfer classical results
to free groups with Lz taking the role of the Laplacian, including the corresponding
Paley’s inequality proved in this article. The disadvantage is that this transference
method cannot produce any helpful information on the large subgroup ker(ψz). We
will show that the second part of this paper implies a Paley’s theory on ker(ψz).

Let us first recall a bi-invariant order on free groups F2. For notational convenience,
we denote the free generators by a, b. We define the ring � = Z[A, B] to be the ring
of formal power series in the non-commuting variables A and B. Let μ be the group
homomorphism from F2 to the group generated by {1 + A, 1 + B} in � such that:

μ(a) = 1 + A, μ(a−1) = 1 − A + A2 − A3 + · · · ,

μ(b) = 1 + B, μ(b−1) = 1 − B + B2 − B3 + · · · .

Then μ is injective. Denote by “≤” the dictionary order on � assuming 0 ≤ B ≤ A.
To be precise, write the element of � in a standard form, with lower degree terms
preceding higher degree terms, andwithin a given degree, list the terms in the sequence
according to the dictionary ordering assuming 0 ≤ B ≤ A. Compare two elements
of � by writing them both in standard form and order them according to the natural
ordering of the coefficients in the first term at which they differ. We then formally
define the ordering on the free group F2 by setting

g ≤ h in F2 if μ(g) ≤ μ(h) in �.

This biinvariant order was introduced by Vinogradov [11, 49]. But the corresponding
normal semigroup is not finitely generated [17].

Let JA(g) (respectively JB(g)) be the coefficient of the A term (respectively B
term) in μ(g); and JAB(g) (respectively JB A(g)) be the coefficient of the AB term
(respectively B A term) in μ(g). More generally, for any word X of A, B, denote
by JX (g) the coefficient of the X term in μ(g). Note that JA(g) = JA(a JA(g)), and
JB(g) = JB(bJB (g)). For g ∈ F2 in the form of (4.1), that is

g = a j1bk1 · · · a jN bkN (4.6)
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with ji , ki ∈ Z and ji �= 0 for 1 < i ≤ N and ki �= 0 for 1 ≤ i < N , we get by direct
computations,

JA(g) =
N
∑

s=1

js, JB(g) =
N
∑

s=1

ks, (4.7)

JAB(g) =
∑

1≤s≤t≤N

jskt , JB A(g) =
∑

1≤t<s≤N

jskt . (4.8)

From (4.7), (4.8), we see that

JAB(g) + JB A(g) = JA(g)JB(g).

Using that μ is a group homomorphism, we have

JA(gh) = JA(g) + JA(h), (4.9)

JAB(gh) = JA(g)JB(h) + JAB(g) + JAB(h), (4.10)

Let

F
0
2 = ker(ψz) = {g ∈ F2 : JA(g) = JB(g) = 0},

F
00
2 = {g ∈ F

0
2 : JAB(g) = 0} = {g ∈ F

0
2 : JAB(g) = JB A(g) = 0}.

Then, F0
2,F

00
2 are subgroups because of (4.9), (4.10), and F

0
2 = ker(ψz) with ψz

defined in (4.4). For g ∈ F
0
2, g > e if JAB(g) > 0 since JAA(g) = 0. Recall that we

say a sequence of �n �= 0 ∈ Z is lacunary if there exists δ > 1 such that infn
�n+1
�n

≥ δ.

We then get the following property by definition.

Proposition 4.1 Given a sequence gn ∈ F2, then E = {gn : n ∈ N} is a lacunary
subset of F2 if any of the following holds:

• The sequence JA(gn) ∈ Z is lacunary.
• JA(gn) = 0 for all n and the sequence JB(gn) ∈ Z is lacunary.
• JA(gn) = JB(gn) = 0 for all n, and JAB(gn) is lacunary.

For instance, {a2i
bki ∈ F2 : i, ki ∈ N+} and {a2k

b2
k
a−2k

b−2k : k ∈ N} are lacunary
subsets of F2.

Remark 4.2 Corollary 3.3 implies that the sets E given in Proposition 4.1 are all
completely �(p) sets [16].

Corollary 4.3 Suppose (gk)k ∈ F
0
2 is a sequence with (JAB(gk))k ∈ Z lacunary. Then

for any (ck)k with elements in S p(H), we have

‖(ck)‖p
S p(�2cr )

	 (tr ⊗ τ)

(∣
∣
∣
∣
∣

∑

k

ck ⊗ λgk

∣
∣
∣
∣
∣

p)

(4.11)
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for all 0 < p < ∞. Moreover, for p = 1, we have

‖(ck)‖S1(�2cr )
	 inf

⎧

⎨

⎩
(tr ⊗ τ)

⎛

⎝

∣
∣
∣
∣
∣
∣

∑

JAB (g)≥0

f̂ (g) ⊗ λg

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣

∑

JAB (g)<0

f̂ (g) ⊗ λg

∣
∣
∣
∣
∣
∣

⎞

⎠

⎫

⎬

⎭

(4.12)
Here, the infimum runs over all f ∈ S1(H) ⊗ L1(F̂2) with f̂ (gk) = ck .

Proof (4.11) follows fromCorollary 3.3. For (4.12), we only need to prove the relation
“�” as the other direction is trivial. Since F0

2 and F
00
2 are subgroups, the projection P0

(and P00) onto L1(F̂0
2) (and L1( ˆ

F
00
2 )) is completely contractive. Given f ∈ S1(H) ⊗

L1(F̂2) with f̂ (gk) = ck , let y = P0 f − P00 f . Then, we have ŷ(gk) = ck . By
Theorem 3.1, we have

‖(ck)
n
k=1‖S1(�2cr )

� (tr ⊗ τ)

[∣
∣
∣
∣
∣

∑

g≥e

ŷ(g) ⊗ λg

∣
∣
∣
∣
∣

]

+ (tr ⊗ τ)

[∣
∣
∣
∣
∣

∑

g<e

ŷ(g) ⊗ λg

∣
∣
∣
∣
∣

]

= (tr ⊗ τ)

⎡

⎢
⎣

∣
∣
∣
∣
∣
∣
∣

∑

g∈F02,JAB (g)>0

f̂ (g) ⊗ λg

∣
∣
∣
∣
∣
∣
∣

⎤

⎥
⎦+ (tr ⊗ τ)

⎡

⎢
⎣

∣
∣
∣
∣
∣
∣
∣

∑

g∈F02,JAB (g)<0

f̂ (g) ⊗ λg

∣
∣
∣
∣
∣
∣
∣

⎤

⎥
⎦

≤ (tr ⊗ τ)

⎡

⎢
⎣

∣
∣
∣
∣
∣
∣
∣

∑

g∈F02,JAB (g)≥0

f̂ (g) ⊗ λg

∣
∣
∣
∣
∣
∣
∣

+ |P00 f | +

∣
∣
∣
∣
∣
∣
∣

∑

g∈F02,JAB (g)<0

f̂ (g) ⊗ λg

∣
∣
∣
∣
∣
∣
∣

⎤

⎥
⎦

≤ 2(tr ⊗ τ)

⎡

⎢
⎣

∣
∣
∣
∣
∣
∣
∣

∑

g∈F02,JAB (g)≥0

f̂ (g) ⊗ λg

∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣

∑

g∈F02,JAB (g)<0

f̂ (g) ⊗ λg

∣
∣
∣
∣
∣
∣
∣

⎤

⎥
⎦

≤ 2(tr ⊗ τ)

⎡

⎣

∣
∣
∣
∣
∣
∣

∑

g∈F2,JAB (g)≥0

f̂ (g) ⊗ λg

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣

∑

g∈F2,JAB (g)<0

f̂ (g) ⊗ λg

∣
∣
∣
∣
∣
∣

⎤

⎦ .

��

Remark 4.4 The associated positive cone of any total left order (including the one
introduced above) on free groups is NOT represented by a regular language [17].
This increases the mystery of the associated noncommutative Hardy spaces (norms).
Corollary 4.3 shows that there aremore transparent alternatives (e.g. (4.12) ) of the non-
commutative real H1-norm that may be used to formulate the corresponding Paley’s
inequalities.

Remark 4.5 Interested readers are invited to prove a similar theory by computing
JAAB(g).
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