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Abstract

This article studies Paley’s theory of lacunary Fourier series for von Neumann alge-
bra of discrete groups. The results unify and generalize the work of Rudin (Fourier
Analysis on Groups, Reprint of the 1962 original. Wiley Classics Library, A Wiley-
Interscience Publication, Wiley, New York, 1990, Section 8) for abelian discrete
ordered groups and the work of Lust-Piquard and Pisier (Ark Mat 29(2):241-260,
1991) for operator valued functions, and provide new examples of Paley sets and
A(p) sets on free groups.
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Introduction

Denote by T the unit circle. Consider a sequence (ji)ren of elements of Z which is
lacunary a la Hadamard, i.e. there exists § > 0 such that for all k € N,

[ Ji+1]

— > 1+46.
[ Jk!

A classical Khintchine-Pisier type inequality states that there exists Cs < oo such
that

00 3
< (zw) <Cs
LI(T)

k=1

o0
>k
k=1

o0
Z cpzt
k=1

LY(T)

This shows that £, (N) embeds into L' (T). However, the map
P f e (fU0)ren

does not extend to a bounded map from the whole space L' (T) to £». Here f denotes
the Fourier transform of f. This can be easily seen by looking at the so-called Riesz
products,

2k _ 2k

N 7 +z
f@=[la+—%—.
k=1

which have norm || |1 (1) = f(O) = 1 while (f(2k))1§k§N has norm 4 since

f (2") = % fork =1,---, N.Paley’s theory [33] is a variant of Khintchine’s inequal-
ity. Let H'(T) be the real Hardy space on the unit circle, that consists of integrable
functions such that both their analytic and the anti-analytic parts are integrable. Equiv-
alently,

HT) ={f e L@ 1flm = 1fl +IHP L < oo},

with H the Hilbert transform of f. Paley’s theory says that

(Z |Ck|2> =y inf {1 £l 2 f € H'(D). f(j) = ©.1)
k

This shows that the map P is bounded from H 1(T) (or the analytic L") to £,. These
Khintichine/Paley type inequalities for lacunary series have important applications to
Grothendieck’s theory (see [40, Section 5], [26, Appendix]).
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A subset E C Nis called a Paley set (see [37, Section 3]) if the above equivalence
(0.1) holds for all choices of (cx)x € €2, jr € E with constants depending only on E.
Rudin [48, Section 8] proved that E is a Paley set only if

sup#E N[2", 2" < C
neN

which is equivalent to say that E is a finite union of lacunary sequences.
By Fefferman-Stein’s H'-BMO duality theory, (0.1) has an equivalent formulation
that, for any (cx) € £2,

1
2
(Z |Ck|2> ~5 | e 0.2)
k k BMO(T)
Here, BMO(T) denotes the bounded mean oscillation (semi)norm
1
I fllBrmor) = sup T |f — filds (0.3)
I I

with the supremum taking over all arcs I C T.

In the first part of this article, we give an interpretation of Paley’s theory in the
semigroup language which allows an extension to non-abelian discrete groups. For
eacht > 0, let P; be the Poisson integral operator that sends ¢'*? to e ~IKlf¢/%¥ Here
is an equivalent characterization of the classical BMO and H'-norms by P;’s. For
[ e Li(D),

1
2
Leo(T)

2 3
tdl‘) . 0.5)

LI(T)

0.4)

P = PHP]

I/ llsoc = sup |
t>0

|9
||f||H1(T):H</O ‘Epzf

Consider a discrete group G and a conditionally negative definite length ¥ on G.
By that, we mean  is a R -valued function on G satisfying ¥/ (g) = 0 if and only if

g=e ¥(g) =v¥(g 1), and

D agany(g'h) <0 (0.6)

g.h

for any finite collection of coefficients a, € C with ) gy = 0. We say a sequence
(hi)ren of elements of G is ¥-lacunary if there exists a constant § > 0 such that

Y(h) = (1 +8)y(h;) ©0.7)
Y (b ) = 8y (). (0.8)
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forany k > j.

Note that the condition (0.8) follows from (0.7) (with a smaller constant) if we
further require ¥ to be sub-additive, i.e. ¥ (hg) < ¥ (h) + ¥ (g). In fact, assuming
V) = (L +e)y(h;) > (1 +6)y(h;), then the sub-additivity of v implies that
W) = Y(hihy i) < (k) + 9 (h5 ), thus (b i) = Y () — Yr(hy) =
e (hj) = ¥ () = L5 (hi).

Let 1 be the left regular representation of G. Given a sequence c; € £>(C), we
view f = ), cxip, as alacunary “Fourier series” and will study the related Paley’s
theory. To state our first main result, let us recall the semigroup type H' and BMO-
norms introduced in [20, 28], which have been frequently used in recent study of
noncommutative analysis (see [8—10, 12, 21, 23, 34] etc.). Let

Ti g > eV ®), 0.9)

be the semigroup of operators on the group von Neumann algebra G associated with
y.For f =3, cohg € LY(G), let
1
2 2
s ds)

®la
Iy =7 (/0 ‘aTs(f)
3

L1 = T(HP]

Il fllBmO. () = sup‘
5>0

with 7 being the canonical trace on the group von Neumann algebra of G. Please see
Sect. 1.1 for the introduction of the group von Neumann algebra and L' (G).

Theorem 0.1 Assume (hy) is a Y-lacunary sequence. Then, for any sequence
(e, € 02(C), the series Z,fil ckhn, converges in BMO. () and

2

o
~ Z e |2 (0.10)

BMO.(¥) k=1

o0
D ek
k=1

with a constant of equivalence depending only on the lacunary constant §. Moreover,

1

2
inf{||f||Hl;(1/,) - Fhy) = ey, forallk e N} ~5 (Zlck|2> _ 011

k

By the interpolation result proved in [20] (see Lemma 1.2 below), one obtains that
every subset of a yr-lacunary sequence is a A(p) set for all 2 < p < oo. More
precisely, we have that, for any 2 < p < oo and any f of the form f = ), cxhs,,

1
2

||f||Lp(G) =sp (Z |Ck|2> . (0.12)
k
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Passing to the dual, we have forany 1 < p < 2and any f of the form f = Y, cxhs,,

1
1 2
||f||L/a(é) =5 F (Z |Ck|2) . (013)
k

We will prove Theorem 0.1 for operator valued ci. See Theorem 2.3.

In the second part of the article, we assume that the group G is equipped with a
bi-invariant order “<”, that is a total order which is invariant under the left and right
multiplications. Let G4 = {g € G : e < g}. Following Rudin’s terminology [48,
Section 8.6], we say a subset E C G is lacunary if there exists a constant K such
that

N(E):= sup #lhe E:g<h<g’} <K.
8eGy

Theorem 0.2 For any sequence (ck),fil € C, and any sequence (hk),fil in a lacunary
subset E C G4, we have

1
2
inf {20171 ¢ () = i supp(f) € G | = (ZW) : 0.14)
k

Theorem 0.2 follows from a factorization theorem of noncommutative analytic
Hardy spaces and an adaptation of Lust-Piquard and Pisier’s argument [26] to Rudin’s
terminology [48, Section 8.6] of lacunary sets. We also provide interesting examples
of Paley sequences and A (p) sets (see e.g. Corollary 4.3) on free groups.

We prove all these results for operator-valued functions f, that is, for f of the
form f = Zk cx ® Ap, with ¢, being operators. See Theorems 2.4 and 3.2. Sect. 1
introduces some preliminaries. The main results are proved in Sects. 2 and 3. In Sect. 4,
we apply our theories to the case of free groups and construct new examples of Paley
sets and A (p) sets.

1 Preliminaries
1.1 Noncommutative LP-Space

Let M be a semifinite von Neumann algebra acting on a Hilbert space H with a normal
semifinite faithful trace 7. For 0 < p < oo, denote by L? (M) the noncommutative

L? space associated with the (quasi)norm || I, = [l’(|f|p)]%. As usual, we set
L% (M) = M equipped with the operator norm. For a (possibly nonabelian) discrete
group G, the von Neumann algebra is the closure of the linear span of the elements
Ag given by the left regular representation of G with respect to the weak operator
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topology. The trace t is defined by

T(f) = Ces

for f =}, cghg. The associated L? norm is defined as

11, = [c(F1M]7

forl < p < 0.

When G is abelian, e.g. G = 74, the non-commutative L? space obtained is
isometrically isomorphic to the classical L? space on the dual group. We denote by G
the group von Neumann algebra of G, and by L” (G) the associated non-commutative
L? spaces. So, G will also be denoted by L>®(G) sometimes. Let M = B(H), the
algebra of all bounded operators on H equipped with the usual trace tr, then the
associated LP-space L?(M) is the Schatten-p class S?(H). We denote t defined
above as the canonical trace on the group von Neumann algebra G and tr as the usual
trace on B(H). We will often consider the tensor product of von Neumann algebra
B(H )®G with the tensor trace ¥ ® t and the associated noncommutative L? space
LP(B(H )®G). For 1 < p < 00, this is the closure of the collection of all finite sums
[ =2 ce ®Ag with ¢g € SP with respect to the L”-norm

1flle = ((r @ DFID)7 -

The classical Cauchy—Schwartz inequality and Holder’s inequality extend to the non-
commutative setting. In particular, we have the Kadison-Cauchy-Schwartz inequality

I(id ® T)(f)* < ((d @ T)(|f ), (1.1)

forall f € B(H)®G, and Holder’s inequality,

Ifeler < I fllerlieliLa, (1.2)

forall f € LP(B(H)®G), ¢ € L1(B(H)®G), where % + [ll = L. Here id denotes
the identity operator on B(H). For the brevity of notation, we will omit the “id” in
“id ® t”, and omit the “®” in “cx ® Ay, ” in the statement of theorems or proofs and
simply write T and cxA;, when no confusion arises.

We refer readers to the survey paper [44] for information on non-commutative L”
spaces.
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1.2 Column and Row Spaces

Let 0 < p < oo and let (c,),>0 be a finite sequence in L” (M). Define

1/2 1/2

2 2
e lrove = || D leal el = | D leil

n>0 n>0
P

For0 < p < oo, we define L” (M, E%)(respectively LP (M, E%)) as the completion of

the family of all finite sequences in L” (M) with respectto || - || . a, ) (respectively
I+ IlLr (A, e2))- For p = o0, we define L°°(M, Ef) (respectively L% (M, Ef)) as the
Banach space of (possible infinite) sequences in M such that ), cic, (respectively

> . CnCpy) converges in the weak*-topology.
Let 0 < p < oco. We define the space L” (M, £2 ) as follows:

(H fo<p<?2,
LP(M, €2) = LP(M, £2) + LP(M, £2)

equipped with the norm:

lemzolnonmzy = inf A e + 1€ Lo |
ck=cy+cy

where the infimum is taken over all decompositions for which
||(Cz)||Lp(M,g3) < o0 and ”(CZ)”LI’(M,K%) < 00.
2 Iftp =2,
LP(M, £2) = LP(M, £2) N LP(M, £2)

equipped with the norm:

||(Ck)||Lp(M,egr) = max {”(Ck)”Lp(M,/zg)s ||(Ck)||Lp(M,gg)} .

The spaces L? (M, Zgr) (resp. LP (M, Zf), LP (M, Zf)) form an interpolation scale

for the complex interpolation method.

Lemma 1.1
LP(M, £3) = [L™(M, £2), LI(M,Zg)]% (1.3)
LP(M, ) = [L¥(M. £)), L' (M. €)1 (14)
LY (M. €)= [LX (M. €3). L'(M. €)1 (1.5)
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forl < p < oo.

Proof L?(M, E%) are complemented subspaces of L” (M® B (H)) via the embedding
Ck >k @ e k.

Therefore, they inherit the duality relation and the interpolation relation (1.3) from
L?(M®B(H)). The interpolation (1.4) holds because of a similar reason. The interpo-
lation equivalence (1.5) is proved by Pisier in [38, Theorem 8.4.8] for M = B(H). The
argument for the general case is in the same spirit, which we sketch here. Let [F, be the
free nonabelian group generated by countable many free generators {gx, k € N}, and
denote by L°°(IFs,) the associated group von Neumann algebra. Let E,, 1 < p < 00
(p = 00) be the norm (weak *) closure of span{ig ,k € N}. Then E, are comple-
mented subspaces of L? (M®L°°(]@’oo)) and form an interpolation scale for complex
interpolation. This is [38, Corollary 8.3.3]. By [38, Theorem 8.4.10] and the duality
relation, LP (M, Egr) is completely isomorphic to E, forall 1 < p < oo via the map

cri—>cr ® )\gr

Therefore, the interpolation relation (1.5) holds for L” (M, E%r). O

We denote by S7(£2), SP(¢2) and SP (£2,) the spaces L” (M, €2), LP (M, €2) and
LP? (M, Zfr) when M = B(H), respectively. Please refer to [19, 38, 44] for details on
these spaces.

1.3 Semigroup BMO Spaces

Given a conditionally negative definite length 1/ on discrete group G, Schoenberg’s
theorem [2, p. 74, Theorem2.2] says that the functions ¢, (g) = e~* V(9 are positive
definite on G for all ¢ > 0. Therefore, the family of operators,

Toihg =e 'V ®n,

extends to a symmetric Markov semigroup of completely positive operators on the
group von Neumann algebra G. That is to say, for every ¢ > 0, 7; is

(1) Unital, i.e. T;(X.) = Ae.

(2) Normal, i.e. T; is weak * continuous. .

(3) Symmetric, i.e. T(T;(f)p) = t(fT;(¢)),Vf,p € G. .

(4) Completely positive, i.e. id ® T, is positive preserving on K(£2) ® G with K(£2)
the algebra of compact operators on £2(N).

and the family (7;);~ is weak-* continuous at 0+, i.e. T (73 (f)¢) — t(fp)ast — 0
for all f € L£(G),¢ € L' (G). It is well known that a unital map on C*-algebras
(in particular on von Neumann algebras) is (completely) positive preserving iff it is
(completely) contractive. Because of this fact and the symmetric assuption (2), each
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T, extends to a contraction on L' (G) by duality. By interpolation, each 7; extends to
a contraction on Lp(é) forevery 1 < p < oo.

Given a semifinite von Neumann algebra M, denote by ' = M®&G. Following
[20] and [28], for finite sums f =", cg @ Ag with ¢, € M set

1 £lsvo.w = swp |Gd@ TH[If - (d @ TH(HP]

O<t<oo

2
. (1.6)

We will often omit id and simply write 7; instead of 7; ® id when no confusion arises
in the context. Set

I fllBmoy) = max{l| fllamo.cp), I f | BMmo.w)}- (L7

When G is the integer group Z, L? (Z) is the L? -space of p-integrable functions
with respect to the Haar measure on the torus T'. The semigroup 77 is the heat semigroup
(respectively Poisson semigroup) if we set ¥ (g) = | gl? (respectively |g]|) for g € Z.
It is an elementary calculation that the semigroup BMO norm defined above coincides
with those defined in (0.3), (0.4). When f is operator-valued, the semigroup BMO
norm defined above coincides with the ones studied in [27, Section 1.3]. The semigroup
BMO norms may differ from each other for different semigroups, see [12, Section 4]
for examples.

As in [20] and [28], we define the space BMO(/) as an abstract closure of all the
finite sums f = ), cg ® Ag. We omit the definition of this closure as it will not
be needed in this article. We refer the readers to [28, p. 3377] or [20, Sect. 5.2] for
the definition of this closure. The following interpolation result was proved in [20,
Theorem 0.2]. We refer the readers to Theorem 5.2 and Remark 5.5 of [20] for related
results. E. Ricard proved in [46] that the type of semigroup of operators considered in
this article satisfies the Markov dilation assumption in [20, Theorem 0.2].

Lemma 1.2 [20, Theorem 0.2] Let Lg(]\/) ={f € LP(N), 1(f) = 0}. The following
interpolation result holds for 1 < p < oo,

[BMO), L(‘)(Nn% ~ LE(N)

1.4 Analytic HP-Space on Ordered Groups

The theory of analytic noncommutative Hardy spaces were developed by Marsalli and
West etc. in [3, 5, 29-31] in the general context of Arveson’s subdiagonal operator
algebras [1]. We recall here the definition of these spaces and the corresponding
factorization, duality and interpolation results in the case of group von Neuman algebra
associated with ordered groups. Please see [44, Sect. 8] for a survey of these results.

Let (G, <) be a countable (possibly non-abelian) discrete group with a total order.
Denote by e the unit element. Let L” (é) be the noncommutative L? spaces associated
with the canonical trace 7.
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Forl < p <oo,let A, C L”(G) be the collection of all the finite sum D gme Cahg-
Let H p(é) be the norm (respectively weak operator) closure of A, in Lp(é) for
1 < p < oo (respectively p = 00). .
Like the classical case, one can define an analytic BMO space as the dual of H!(G)
using an analogue of the Hilbert transform, that we will introduce at below. Let H be

the linear map on Lz(f}) such that

H (Xg: cg,\g> =i (Z Cohg — chxg> : (1.8)

g=e g=e

It is clear that H is bpunded on Lz(f}). It was proveAd in [30] that H extends to a
bounded map on L?(G) forall 1 < p < co.! So H?(G) is complemented in L (G),

and the dual of H”(G) is isomorphic to Hp/(é) for % + % =1,1 < p < o0. For

[ =, cohg € LX(G), set
1 N grro@ = ntlllull gy + 10 o) 0 f =u+ Ho}

where the infimum is taken over all u,v € Loo(é). Note Hv € L2(é) as v €
L>®(G) C L%(G). Let BMOA(G) be the space of all f € H2(G) with finite | -
gm0 (G)-horms. Itis easy to show that the dual of H ! (é) is isomorphic to BMOA(G)
following the classical arguments. This was explained in [31, Theorem 5] and [44,
p. 1499]. Please note that BMOA was denoted by A, and the Hilbert transform was
called the conjugate map and was denoted by “~” in Theorem 5 of [31].

We will also need the operator-valued version of H p(é) and BMOA(G). Let
(M, tr) be a semifinite von Neumann algebra. Let N = MQG with the trace tr ® 7.
For 1 < p < oo, let HP(N) be the norm (respectively weak operator) closure in
LP(N) of the collection of all finite sums Zg>e cg ® Ag With ¢, € LP(M). In this

case, H'(N) coincides with the projective tensor product L'(MQH 1(@), and its
dual is isomorphic to BMOA (V) = M®BM O A(G) the injective tensor product. The
Hilbert transform id ® H extends to a bounded map on L”(N) forall 1 < p < oc.
So, for 1 < p < oo, HP(N) is a complemented subspace of L” (), and we have the
following equivalence for f = > g Cg ®Ag €LP N,

1Al = + (1.9)

ch ® Ag

gze

ch@)kg

g<e

p p

HP(N) and BMOA(N') were studied in [3, 29-31, 44] etc. in the general context of
Arveson’s subdiagonal operator algebras. The following factorization theorem was
proved in [30, Theorem 4.3] and [3, Theorem 3.2].

' One can check directly that H satisfies the so-called Cotlar’s identity. So its p-boundedness follows from
the classical iteration and interpolation argument. See [44, Lemma 8.5] for the details.
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Lemma 1.3 Given any f € H'(N) and ¢ > 0, there exist y, z € H*(N) such that
f=yzand|yl2lzlz = I flli +e.

It was proved in [31] and [3] that the dual of H'(\/) is isomorphic to BMOA(N),
and H”(N) is an interpolation space between them.

Lemma 1.4 [3, Proposition 4.1] Let 1 < p < oo then

HP(N) ~ [BMOAWN), H' (\)]1
P

with equivalent norms.

Lemma 1.4 has been known to experts after the work of Pisier [36], Marsallie/West
[30], and Pisier/Xu [44, p. 1499]. It was formally proved in [3] for the semifinite von
Neumann algebras.

2 Proof of Theorem 0.1

Lemma 2.1 Foras; € Ry, ¢c5, bs € B(H), we have, forany0Q < p,q,r < 00, %—i—% =
1

7

1
2

=

2.1)

E ascybs
N

2
S el ‘
N

Zas|bs|2
N

1
2

=

2.2)

Zasc:bs
k

2
S el ‘
N

Zas|bs|2
s

2
Sr SP S4q

1
Proof Let e;, be the canonical basis of B(H). Let f = Y  aicf ® ej and

1
¢ = Y asbs ® e 1. Then (2.1) follows from the fact that || fol < || flllell =

||ff*||%||<p*(p||%. The inequality (2.2) follows from Holder’s inequality (1.2),
Ifels = I1flseliglse. o

Lemma2.2 Let f =Y, cx ® A, € L2(B(H)®G), we have

1 } w2\
§(Z|Ck|2> >t (f sds) 2.3)
X 0

This means that subtracting the right hand side from the left hand gives a nonnegative
self-adjoint element of B(H). Moreover, if we assume (hy) is a ¥-lacunary sequence,

then
/OO 8Tf < 1+2
0 BSS - 1)

8Tf
ds

2
sds

> el

k

. (2.4)
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Proof An elementary calculation shows that

[ ] sas = [ X vnoe 0 s et sas
¢ j
o0
= Z(Ck)\hk)*cjkhjlﬁ(hk)l/,(hj)/ eSWHFY () g g
k.j 0
= Dk (exhn) et 2.5)
k,j
with
Y (hi) ¥ (hj)

Wl = W) + w2 =

since fooo e %sds = a—lz So, by Cauchy-Schwartz inequality (1.1), we get

(o) <[ ()]

On the other hand, for any given j, we have that

Ny Yoy ) Y (¥ ()
2= k_; T + w7+ 2 G + v

0

a
—T,
o IS

_T
o5 sf

N =

k>j
Y (hy) v (h;)
< +
k; Y(hj) ,; Y (hi)
< ﬂ + l =14+ %
-8 s s

In the last step of the estimate above, we have used the v-lacunary property (0.7).
Taking the supremum over j, we get

2
su E <1+ -=.
P L) = *3
k
A similar estimate shows,
su E ar i <1+ 2
kp / k,j — 8 *
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Applying Lemma 2.1 to (2.5), we have

r

0

2
—Tsf| sds
as

IA

2 2
> ekl > lejPa
k,j k. j

1
2

=

= Z|Ck|2 Zak,j l I Z'Cj|2 Zak.j

(03

2
> el

k

O

Theorem 2.3 Suppose that (hy); C G is a y-lacunary sequence. Then, forany N € N
and f = Z,ivzl CkAn, with cy € B(H), we have

L W arou =5 || D lel?| . (2.6)
ki te
At the other end, we have, for any (cx) € st (ﬁ%),

1
2 0
tr (Z|ck|2) ~sinf { (tr ® 7) (/0 ‘%Tsf

k

2 3
sds) :r(szk)zck

2.7)

where the infimum runs over all f € L (B(H)Q_Z)é).

Proof We prove the BMO estimate (2.6) first. An easy calculation shows that

AT G [(Z k(1= e’“’mxhk)) <Z k(1 — e"”““km))]
k k

=T | | D A= e VM)A — eV D) () e,
kJj

= Zak,j(Ck?»hk)*Cj)»hj, (2.8)
k.j

with
-1 -1
ar,j = e—ﬁlf(hk h_/)(l _ e—“//(hk ))(1 _ e—”//(hj)) > 0.
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Note

1 1 1
ak,j < min{fe V1D 1 — VD)) = min{e Vi 1) ] — o=tV DY

We have, for a fixed j,

Na< Y 1-ew g Y eV 'hy)
k

1 (h) =<1 19 (hy)>1

By the lacunary property (0.8) w(h,zlh j) = 8% (hy) and the inequality 1 —e™ <'s,
we get

i< Y )+ Y, e VO (2.9)

k 1y (he) =<1 1y (hy)>1

By the lacunary property (0.7) we see that

18 (hs 1)
tyr (hy) - 1 e ket — WY i) < =18 ()
tW(hger) ~ 148 e 10V <

So the first term on the right hand side of (2.9) is bounded by a geometric series with
ratio (1 + 8)~! and starting with 1. So it is smaller than lai‘s The second term on the

right hand side of (2.9) is bounded by a geometric series with ratio e and starting

. op s -8
with e7°. So it is smaller than . “—7. We then conclude that

)
supZak,j < 1+<S‘1+e—2 <1486 14+682=¢.
i 7 1 —e?

A similar estimate shows that
sup ag, j <cs.

Applying Lemma 2.1 to (2.8), we have

2 2
11 = THP)| = | el | | leiPary
k. j k,j
<A+ 487 D el
k
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Taking the supremum over ¢, we get || f ||% Mo, = €5 || Dk lcx |2 || . For the lower esti-
mate, note that for any f = 3", cxhp, with || Y, lcx|*|| < oo, we have

S GHIE

e (1[I -1HP])]

> [[r-eeoal

k,hy#e

Since 1 —e "V tends to 1 uniformly in k as 7 tends to co, we get the lower estimate.
Taking the adjoint, we prove the estimate for the BMO norms.

We now turn to the H'-estimate (2.7). By duality, we may choose b; such that
I3 1Bkl = 1 and

D=

(Z |ck|2> (D cibe) = sup(ir @ ([
k

where the superum runs over all finite sum @ = "0 | bedn, f = Yop_ cihn,. We
then have

(tr®r)(f*<p)=4(tr®r)<f < Tf)(8 Y<,0)sds>

0

2 3 -

sds) /
0

In the last step of the inequalities above, we used Holder’s inequality (1.2) for x €
L'(B(H ® L*(0,00)) ® G),y € B(H ® L*(0,00)) ® G with x = [;° /se1,; ®
%Ts f*ds and y = fooo Jses 1 ® %Tstpds. Combining the above estimates with
Lemma 2.2, we obtain
1
2 2
ds)

: 2\? | g
2

This proves one direction of (2.7), the other direction follows by taking 7 on the both
sides of (2.3). m]

9 2

0s

sds

o0
0
<4(tr 1) (/ —Tsf —Ts¢
0 as

Remark 2.4 Lust-Piquard and Pisier’s work [26] is the first one studying noncommu-
tative Paley’s inequalities. The second part of this paper generalize Lust-Piquard and
Pisier’s work to the group von Neumann algebras of ordered groups. An interesting
point of Theorem 2.3 is that it gives interpretations of the row (and column) version of
the noncommutative Paley’s inequality separately. Lust-Piquard and Pisier consider
the the analytic H'! norm which is equivalent to the Littlewood-Paley type H' norm
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(0.5) for scalar valued functions, but not for operator-valued functions [32]. Applying
Theorem 2.3 to the Euclidean length on the integer group, we see that these two norms
coincide for lacunary Fourier series with operator valued coefficients.

Given a y-lacunary sequence (hk),‘zil of elements in G, define the linear map T
from L>®°(B(H), £2,) to BM O by

T =) ey

k

Then T has anorm c§ from L*°(B(H), Kgr) to BM O and norm 1 from L2(B(H), E%,)
1

to L2(B(H) ® G), where cy < 057 from the proof of Theorem 2.3. Applying the
interpolation result Lemma 1.2, we get

Corollary 2.5 Suppose that (hy) is a ¥-lacunary sequence for some conditionally
negative definite . We have that, for any p > 2 and any f of the form f =Y, ckhn,,

1 1
2 2
I/l S5 pmax (Z |ck|2> : (Z |cz|2) . (210
£ p k p
By duality, we get the following result: Forany 1 < p < 2,

Ierllsoez ) SinflIf1p : f ) = e} 2.11)

We will prove a column version of (2.11) in the next section.

Remark 2.6 Corollary 2.5 can also be obtained by combining the noncommutative
H*-calculus techniques developed in [19, p. 118], and the dilation theory proved in
[46]. There is another approach via noncommutative Riesz transforms [22]. The order
p in (2.10) is better than what is implied by these two approaches. For ¢ being the
usual length function on the integer group, (2.10) holds with constants in the order
of ./p [47] as p — o0, it is unclear whether this is the same for general vr-lacunary
sequences.

Remark2.7 If G = F,, and v is the reduced word length, Haagerup proved in [13]
that ¥ is a conditionally negative function. For this v, it is easy to verify that a set
consisting of a ¥-lacunary sequence is the so-called Z(2) set [16, Definition 1.11].
Soitis a A(4) set by Harcharras’s work [16, Theorem 1.13]. This does not seem clear
for Z(p) with p > 2.

Remark 2.8 The sequence of free generators {g; : i € N} of Fy is a ¥-lacunary
sequence for some V. Indeed, let 7 be the group homomorphism from Fog to Foo

sending g; to gl.zl. Then ¥ (h) = |m(h)]| is a conditionally negative definite function.
Because, the matrix

(e B D=k j=n = (@) )ik, j<n
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is conditionally negative definite for any sy € Fo since the reduced word length
is conditionally negative definite [13]. Note {g; : i € N} is obviously -lacunary
because ¥ (g;) = 2'.

Remark 2.9 One can extend (2.11) to the range 0 < p < 1 as a Khintchine-type
inequality

2

ch)\hk

k

Ieollsrez,y < (2.12)

14
2

by applying Pisier—Ricard’s theorem [45]. For the case p = 1, one may follow
Haagerup—Musat’s argument in [14] to get a better constant in (2.12).

Remark 2.10 The assumption of v being conditionally negative definite is needed
merely by the interpolation result Lemma 1.2. The arguments for other results of this
section only need the assumptions (0.7), (0.8).

Remark 2.11 Let P; be the Poisson semigroup for bounded functions on the torus T.
As we pointed out before, the semigroup BMO associated with P; coincides with the
classical BMO. Let §; = P; ® idy, be its extension to the von Neumann algebra
of bounded n by n matrix-valued functions on T. The semigroup BMO, associated
with §; coincides with the matrix-valued BMOy, introduced in the literature (e.g. [32,
35]). Note that for the dyadic BMOg,-norm, the example of f = > r; ® ek, 1, with
ri = sgn [sin (25760)] being the k-th Rademacher function on T (which is identified
by [0, 1]), shows that the estimate

I fllgrrod S Vnllf*lpaod

S0 S0

is optimal. The upper bound of the estimate is of the order at most ,/n owing to the
inequality

> lal? 5tr<2|c}§|2> <n |y Ikl
k k k

which holds true for any sequence of n by n matrix cx. There was no easy method
to show that +/n is also optimal for the usual (non-dyadic) BMOy, norm before the
writing of this article. Note that the BMO by dyadic BMO trick does not help in
producing such a concrete example. Theorem 2.3 provides such an example by taking

zk
fZX:O<k5nZ ® ex,1-

3 Proof of Theorem 0.2

Throughout this section, we assume (G, <) is a countable (possibly non-abelian)
discrete group with a bi-invariant total order. This is equivalent to say that G contains
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a normal subsemigroup G such that, for G_ = (G4)~!,
G+UG_ ZG,G+ﬂG_ :{e}

In this case, onehas G, = {g € G: g > e}and x < yifand only if x "'y € G,. It
is well-known that the free groups have bi-invariant total orders (see Sect. 4). We use
the notation x < yifx < yand x # y.

Foreachg € Gy, let Ly ={h: g < h < g%). For E C G, let N(E, g) be
the number of elements of £ N L, i.e. N(E, g) = #(Lg N E). Following Rudin’s
terminology [48, Section 8.6], we say E C G is lacunary, if there is a constant K
such that

N(E) = sup N(E,g) < K.
8eGy

For a general subset E C G,let Ey = ENGy, E_ = E— E,. Wesay E is lacunary
if N(E) = N(EL) 4+ N((E~)~") is finite. Please see Sect. 4 for examples of such E.

Let (M, tr) be a semifinite von Neumann algebra. Let N = MQG with the trace
tr @ t. For f € LY\, g € G, denote by f(g) =7[f(I® Ag_l)]. It is clear that,

for a finite sum f = 3_, cghg, f©@) =cq.
Theorem 3.1 Assume that E is a lacunary subset of G. Then, for any sequence
(cr)x € LY (M), and any sequence (82, € E, we have

ez o,

~inf {(r @ D)(fD: f € L', flg) = v f@) =0.¥g <}, G.D)

Proof By the convexity of | - |

finite sequence g € G,

and the complete positivity of T, we have that, for any

1 1
2 2
Y | < (uzakxgm) _ (z w) .
k k

k
o (
1

Taking the adjoints, we get

So

1
2
2
) <tr (Z lax| ) = @) I (e
k

Z aghg;
k

Z axhg
k

< MOl a.e2)-

Zbk)“gk
k

1
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Writing cx = ax + bk, we get,

Z CkAgy

k

< I@OZ il (3.2)

1
This shows that the right hand side of (3.1) is smaller.

We now prove the other direction of the equivalence. By approximation, without
loss of generality, we may assume E is a finite set and N is a finite von Neumann
algebra. For f € H'(NV) and & > 0, by Lemma 1.3, there exist y, z € H?(N) such

that f = yz and [[yl2llzll2 < | flli_ +e. R
Given an element g; € E with f(g;) # 0. Recall that f(g) = t(sz), we have

flen= Y Wz 'g), (3.3)

e<h<g;

since y(g) =7Z(g) =O0forall g < e.
Thus, the sum in (3.3) can be split into two parts;

flen=">Y_ Iz 'egn+ > FWIh'g). (34)

e<h<gi<h? e<h<h?<g;

Let

Zi= Y =y gk,

e<h<h2?<g; e<h<g;<h?

Similarly let

Yi= ) T

e<h<h?<g;

It follows that

Zikyr = > 2 g)hy

e<h<g;<h?

and

hetYi= o ) Tk,

e<h<h’<g;
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Let

Then

because

and

Birkhauser

A =1 (yZ,')\gifl)

B =1 <Agi_| Y,-z) .

f(gi) = Ai + Bi,

A=t (yz,-xgl_q)

Il
-

2

(Z ?(g)kg)

gze

YZh ' g)

e<h<g;<h?

T ()‘g,-"YiZ)

| e<h<h?

2

e<h<h?<g;

T > Tk,

e<h<h?<g;

T > T,

e<h<h?<g;

YZ(h g).

> 2 g

(

e<h<g;<h?

=ty > @I gy

| 82€ e<h<g;<h?

Z?(g)xg>

g=e

Z HOR DLy

f=8i

T D DTS g,

<gi [=&i

(3.5)

(3.6)

3.7
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Applying the convexity of T and Jensen’s inequality to (3.5), we have

I (Ai)lr'lzlnL‘(M,fé%) =@rer)

i :
(Z |<yz,»xgin>*|2>

1
3
(tr ®7) ()’<E Zizi)y*>

1

[erenmp]’ [eren (ZZiZZ“ﬂ

A

1
2

[(tr<g>r)(|y|2)]7 YooY EMIw,

| [ e<h<gi<h?

On the other hand, we note that e < h < g; < h? implies that g; € L. Since
N(E, g) < K, we get

1 2
[erennP]’ [K D EOIF M)}
h

1 1
K3zl on Iyl 2o < KA F o + ).

1
2
(tr ® 1) <z* <§ :|Agm|2> z)

1 2
[er @m0z’ [(zr ®7) (Z |Agi1Y,-|2>]

1

B 2
lzll | Y (tr & r)(Y,-*m}

L 7

=lzll [ D Y 1T,

| | e<h<h®<g

IA

1CADTZ I a,e)

Now, we consider (B;);.

IA

IB)iZi L, e2)

IA

N—=

Note that the condition e < h < h% < g; implies
hlg < gi <hgi <gh g
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and
W <g <h?

with b/ = h~1 gi > e because “<” is bi-invariant. We then get

Yo Wl = Y PGB

e<h<h?<g; e<h’'<gi<h"

By the lacunary assumption N(E) < K, we get

=

IBI ey <zl [ D D 19520y

i e<h'<gi<h"
1 1
< K2zl I llzzvy < K21 f gy + €)-
Therefore,
||(f(gi))?:1||Ll(M,zgr) = ||(Bi)?:1||L1(M,zg) + ||(Ai)?:1||L1(M,zg)
1
<2K2(l fllLrny + ),

This completes the proof by letting ¢ — 0. O

Corollary 3.2 Assume that E is a lacunary subset of G1. Then, for any sequence
(ct)r C LP(M), and any sequence (gr);2, < E, we have

o0

el = Y crrg : (3.8)
k=1 BMO(N)
o0

el = | chg | (3.9)
k=1 1
o0

el vy = D ckhg | 1< p < oo (3.10)
k=1 P

IOz, = it {1F1, £ € L2, Fgo =] 1< p <2,

(3.11)

Proof The first equivalence follows from Theorem 3.1 and the duality. The second
equivalence follows from Theorem 3.1 and the inequality (3.2). The third equivalence
follows from the first two equivalences and the interpolation between H'(\) and
BMOA (). For the forth equivalence, the case p = 2 is trivial, the case p = 1 follows
from Theorem 3.1, the case | < p < 2 follows from the interpolation between H 1 N)
and H2(\N). O
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Corollary 3.3 For any sequence (g;){2, in a lacunary subset E € G

~ ”(cgi)?il”LP(M,@%r)’ 0 <p< Q. (312)
p

o
Z rg ® cy
i=1

lea)Zillirniy = inf {11 f € LYV, flg) = cq ] 1 < p < o0.
(3.13)

Proof Note g; € G_ implies g;” le G . Taking adjoints, we see that all the equiva-
lences in Corollary 3.2 also hold for lacunary subsets £ C G_ instead of G ;.

Wewrite E = E{UE_withE, ={ge€ E,g>e}CGrandE_={gecE, g <
e} C G_.By (1.9) and (3.10), we have, for 1 < p < oo,

[

Z Cg ® Ag

g€k

Z Cg ®hg | + Z Cgi ® Ag

gi€ky » gi€E_ »
||(Cg,-)g,~eE+||LP(M,(§r) + ||(Cg,-)g,~eE, ”LP(M’[%r)
= ||(Cg,-)gieE||Lp(/\/1,/ggr)~

p

[

This proves (3.12) for the case 1 < p < oo. The case where 0 < p < 1 follows from
the case 1 < p < oo and [45, Corollary 2.2] and [7, Theorem 2.6].

(3.12) implies that the right hand side of (3.13) is dominated by its left hand side up
to a constant. We now prove the other direction of (3.13). Given f = Y ¢ f(@®Ar, €
LP(N), p > 2, we have

1
(Z|f(g>|2) = (tIf ) = GIfIP)r.
8

So, if f(gi) = cg,

P

; »
ICe)sicr 1]y pg g2y =17 (Z |cg,|2> <ir (Z |f<g>|2> <t (I fIN)=IfI}.
8

8i

[S]3S]

Taking adjoints, we get ||(cg, )g;cE ||{p e = | FII5. Therefore,

14 14
”(cgi)giEE”Lp(M’[%r) =< ”f”p

Given f =Y, f(3) ® kg € LP(N), 1 < p < 2 with f,, = ¢, we have, by (3.11)
and its adjoint version,
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||(Cg,-)g,-eE||LP(M,£gr) = ||(Cg,-)g,-eE+||Lp(M,zgr) + ||(Cg,-)g,-eE,||Lp(M,zgr)

A

Zf(g)®)¥g +

gze

= fllp

Zf(g)®)\g

g<e

In the last step, we have applied (1.9). This completes the proof of (3.13). O

Remark 3.4 It would be interesting to see whether Pisier—Ricard’s argument [45] can
push Theorem 3.1 to the case where p < 1.

4 The Case of Free Groups

Let G = I, be the nonabelian group with two free generators a, b. Denote by |g| the
reduced word length of g € [F». Every g € F, can be uniquely expressed as

g =altbh ... a/Nphy (4.1)

with j;,k; € Z and j; #0for1 <i < Nandk; #0for1 <i < N.For0 < ¢q <2,
set the g-length of g to be

lglly = 1l + ) kil (4.2)
i i

Then, ¢ : F; — R defined by ¥(g) = [Igll; is a conditionally negative definite
function for all 0 < ¢ < 2. When g = 1, ||gll4 is the reduced word length function.
The property of it being conditional negative definite was studied in [13] for g = 1
and in [6, Corollary 1] for 0 < ¢ < 2. All results contained in Sect. 2, 3 apply to this
Y. In particular, all || - ||4-lacunary sequences are completely unconditional in L? (IF»)
for all 0 < p < co. However, this is not clear for p = oo.

Given a conditionally negative definite length v with ker(yr) = {e}, we say a subset
A C G is a (respectively complete) ¥ Paley-set, if there exists a constant C4 such
that

1 1

2 2
> crh <Camax{| Y |l D I . @3

hr€eA BMO®) hreA hreA

for any choice of finitely many c; € C (respectively K (H)). We say A is a Paley-set if
itis a Y Paley-set for some conditionally negative definite length ¢ withker(yr) = {e}.
This definition coincides with the classical “Paley”-set, when G = Z, and ¢ is the word
length on Z. In that case, every Paley set is a Sidon set. One may wonder to what extent
this is still true. The concept of Sidon sets had been studied in the noncommutative
setting for a long time, and was recently re-investigated by Pisier [41, 42] and by Wang
[50]. Pisier defines noncommutative completely Sidon sets using the full C*-algebras
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of discrete groups and proves the stability of his completely Sidon sets by taking
finite unions. An interesting feature of Pisier’s definition is that only non-amenable
groups can have infinite completely Sidon sets. The authors wish to consider a weaker
definition in the hope of covering the case of lacunary sequence studied in this article.

We say a subset A € G is a (completely) unconditional Sidon set, if {A; : h € A}
is (completely) unconditional in the reduced C*-algebra of the group, i.e. there exists
a constant C 4 such that

> ek | <Cal| Y cdny

hyeA hyeA

for any choice g = %1, ¢ € C (respectively K (H)). In the case that G = F, and
being the reduced word length (or g-length defined in (4.2)), every length-lacunary set
is a Paley set and a completely A(p) set for all 2 < p < oo as shown in this article.
The question is as follows:

Question Suppose that ()2 ; is a length-lacunary sequence of elements in I,

e.g. V'lfl—:lll > 2. 1Is {h;} a (completely) unconditional Sidon set? In other words, does

there exist a constant C such that

Z EkChAhy
k

<C

)

Z CkAhy
k

for any choice gy = %1 and ¢ € C (respectively K (H))?

The transference method used in the work [10] is powerful for the study of harmonic
analysis on the quantum tori. A similar method applies to the free group case. For
g € [, in the form of (4.1), let

2
+

2

N
2 ki

i=1

N
> i

i=1

lgl: =

Then

Yo ig > gl: 4.4

is another conditionally negative definite function on [F»,2 and the unbounded linear
operator L; : Ag > Y Ag generates a symmetric Markov semigroup on the free

2 One can see the conditional negativity of ¥, by identifying F, as a subgroup of the direct product F x 7?2
via the group homomorphism

N N
g (gsti»Zki) :
=1 i=1
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group von Neumann algebra I*,. For (z1, 22) € T2, let 7r, be the ¥-homomorphism on
IF, such that

7z(ha) = 21ha, T (Ap) = 22Ap.
Given f € I, viewing 7, (f) as an operator valued function on T, one can see that
7 A @id)m(f) = L)), 45)

with A being the Laplacian on T2. This identity allows one to transfer classical results
to free groups with L, taking the role of the Laplacian, including the corresponding
Paley’s inequality proved in this article. The disadvantage is that this transference
method cannot produce any helpful information on the large subgroup ker (y;). We
will show that the second part of this paper implies a Paley’s theory on ker (;).

Let us first recall a bi-invariant order on free groups [F». For notational convenience,
we denote the free generators by a, b. We define the ring A = Z[A, B] to be the ring
of formal power series in the non-commuting variables A and B. Let i be the group
homomorphism from [, to the group generated by {1 + A, 1 + B} in A such that:

p@=1+A, paH)=1-A+A2-A>+...,
ub)y=1+B, b~y =1-B+B>—B>+....

Then p is injective. Denote by “<” the dictionary order on A assuming 0 < B < A.
To be precise, write the element of A in a standard form, with lower degree terms
preceding higher degree terms, and within a given degree, list the terms in the sequence
according to the dictionary ordering assuming 0 < B < A. Compare two elements
of A by writing them both in standard form and order them according to the natural
ordering of the coefficients in the first term at which they differ. We then formally
define the ordering on the free group I, by setting

g =hinlFy if pu(g) < p(h)in A.

This biinvariant order was introduced by Vinogradov [11, 49]. But the corresponding
normal semigroup is not finitely generated [17].

Let J4(g) (respectively Jp(g)) be the coefficient of the A term (respectively B
term) in u(g); and Jap(g) (respectively Jp4(g)) be the coefficient of the AB term
(respectively BA term) in wu(g). More generally, for any word X of A, B, denote
by Jx(g) the coefficient of the X term in ju(g). Note that J4(g) = Ja(a’4®), and
J(g) = Jp(b'3®). For g € F, in the form of (4.1), that is

g =al'bk ... qINpky (4.6)
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with j;, ki € Zand j; #0forl <i < Nandk; #0for1 <i < N, we get by direct
computations,

N N

Ja@) =Y Js Ja(@) =Y ki (4.7)
s=1 s=1

Iag(@ = Y ke Jsa®@ = > sk (4.8)
1<s<t<N 1<t<s<N

From (4.7), (4.8), we see that

Jap(g) + Jpa(g) = Ja(g9)JB(9).

Using that p is a group homomorphism, we have

Ja(gh) = Ja(g) + Ja(h), (4.9)
Jap(gh) = Ja(g)Jp(h) + Jap(g) + Jap(h), (4.10)

Let

F) = ker(y;) = {g € F2 : Ja(g) = Jp(g) = O},
FY = {g € F3: Jap(g) = 0) = (g € F3 : Jan(g) = Jpa(g) = O}.

Then, ]Fg, ]Fgo are subgroups because of (4.9), (4.10), and IF(Z) = ker(y;) with ¥,
defined in (4.4). For g € Fg, g > eif Jup(g) > Osince J44(g) = 0. Recall that we

say a sequence of £, # 0 € Z is lacunary if there exists § > 1 such that inf, l;—:' > 6.
We then get the following property by definition.

Proposition 4.1 Given a sequence g, € Fp, then E = {g, : n € N} is a lacunary
subset of Fy if any of the following holds:

o The sequence J4(g,) € Z is lacunary.
o J(gn) = 0 forall n and the sequence Jp(g,) € Z is lacunary.
e Ja(gn) = Jp(gn) =0 foralln, and Jsp(gn) is lacunary.

For instance, {azi b% € Fy:i, ki € Ny} and {azkbzka_zkb_zk : k € N} are lacunary
subsets of [F5.

Remark 4.2 Corollary 3.3 implies that the sets E given in Proposition 4.1 are all
completely A(p) sets [16].

Corollary 4.3 Suppose (gi)r € IF(Z) is a sequence with (Jop(gx))kx € Z lacunary. Then
for any (cy)x with elements in SP (H), we have

p

) (4.11)
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forall 0 < p < oo. Moreover, for p = 1, we have

Jap(8)=0 Jap(g)<0

lellsiezy ~inf Jer@n) (| D f@@r|+| Y. f(g)@xg)]
(4.12)

Here, the infimum runs over all f € SUH) ® LI(FZ) with f(gk) = Ck.

Proof (4.11) follows from Corollary 3.3. For (4.12), we only need to prove the relation
“<” as the other direction is trivial. Since JFg and Fgo are subgroups, the projection Py

(and Pyo) onto L1 (IFAg) (and L' (Fgo)) is completely contractive. Given f € § lH)®
LI(FZ) with f(gk) = ¢, let y = Pyf — Pyof. Then, we have y(gr) = cr. By

Theorem 3.1, we have
] + (tr®7) [ }

=(tr @) Y. f@er||+ren Y, f@ei

g€F9,Jap(g)>0 g€F9,Jap(g)<0

c)k=1lls1e2,)

Sren D F@) @k

g<e

Z)A}(g)@)kg

gze

<@rer) Yo f@er|+IPofl+| Y f@®K

g€l Jap(g)=0 g€FY,Jap(g)<0

<20r®1) Yo F@en+| Y. fen

g€FY.Jap(8)=0 g€, Jap(g)<0

<2r®1) Yo f@exr+| Y. fl@ek

| |8€F2,J45(2)=0 g€lF2,Jap(g)<0

]

Remark 4.4 The associated positive cone of any total left order (including the one
introduced above) on free groups is NOT represented by a regular language [17].
This increases the mystery of the associated noncommutative Hardy spaces (norms).
Corollary 4.3 shows that there are more transparent alternatives (e.g. (4.12) ) of the non-
commutative real H'-norm that may be used to formulate the corresponding Paley’s
inequalities.

Remark 4.5 Interested readers are invited to prove a similar theory by computing
Jaap(8).
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