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Abstract

In this paper, a two-dimensional case study of the Bovik-Benveniste methodology for imper-
fect interface modeling of thin elastic layers is performed. The case study problem involves
an infinite domain containing a coated circular-shaped fiber subjected to uniform loading
at infinity. All phases of that composite system are assumed to be isotropic and linearly
elastic. Using this case, the main assumptions of the methodology are analyzed, and a
novel, complex variables-based approach for its implementation is developed. The proposed
approach is used for derivations of the first, second, and third orders imperfect interface
models for the case study problem. The models are tested for problems involving a wide
range of governing parameters. It is demonstrated that the Bovik-Benveniste methodology
allows for the construction of elastic interface models that behave satisfactorily at all ranges
of layer stiffness.

Keywords: Imperfect interface modeling, Bovik-Benveniste methodology, high order
models, complex variables-based approach

1. Introduction

Composite materials with thin coating layers and interfaces are encountered in a vari-
ety of engineering applications. Due to recent advances in surface engineering, it became
possible to create thin films and coating layers whose surface-related properties are solely re-
sponsible for unique performance of new composites that is practically unachievable in bulk
materials. Therefore, accurate modeling of thin layers is crucial for understanding intricate
effects they produce in composite materials. This explains tremendous interest to the topic
of interface modeling that resulted in large number of publications in which various models
have been proposed and extensively studied in the context of heat conduction, elasticity,
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thermoelasticity, etc., see comprehensive reviews in, e.g., Benveniste and Miloh (2001); Ru-
bin and Benveniste (2004); Javili et al. (2013); Lebon and Rizzoni (2018); Dumont et al.
(2016); Baranova et al. (2020); Serpilli et al. (2021); Firooz et al. (2021).

One approach in modeling thin layers, the so-called imperfect interface approach, con-
sists in reducing a layer to a zero-thickness interface with jump conditions in relevant fields
that are properly derived to mimic presence of the layer. As described in, e.g., Lebon and
Rizzoni (2018); Baranova et al. (2020); Saeb et al. (2021), the imperfect interface models
could be classified into two categories. The models of the first category are based on phe-
nomenological considerations that endow an interface with its own energetic structure and
require additional data (e.g., interface constitutive laws, material parameters, jump condi-
tions across the interface, etc.) The models that belong to the second category are derived
analytically from the fully resolved problem (that includes thin layer) using various types of
asymptotic analyses.

In this work, we focus on the second category of imperfect interface models. In most
publications, those models are derived using the following two approaches. First approach
is based on the asymptotic expansion method in which the layer thickness is chosen as a
small (perturbation) parameter. The early models obtained with this approach are reviewed
in Klarbring (1991); Klarbring and Movchan (1998); Mishuris (2004); more recent reviews
can be found in, e.g., Schmidt (2008); Lebon and Rizzoni (2011); Rizzoni and Lebon (2013);
Rizzoni et al. (2014); Lebon and Rizzoni (2018); Serpilli et al. (2021). In this approach,
the order of an interface model is defined by the highest power of perturbation parameter
involved in the asymptotic series. Two different asymptotic techniques have been developed,
one based on matched asymptotic expansions and the other one on variational formulation;
their consistency and equivalence have been proved, in e.g., Rizzoni et al. (2014). The
approach involves a recursive procedure to obtain higher terms of the asymptotic series and,
in general, results into implicit forms of jump conditions across the interface.

The second approach is based on the use of Taylor series expansions of the fields in-
volved. In such approach, the order of interface model is defined by the truncation order of
Taylor series expansions. Significant contributions to the development of the latter approach
are due to Hashin (Hashin, 2001, 2002), Bovik (Bovik and Olsson, 1992; Bévik, 1994), and
Benveniste (Benveniste, 2006a,b). However, as explained in Benveniste (2006a), those re-
searchers implemented the approach in two different ways. Hashin, see Hashin (2001, 2002),
used one-step procedure in which the fields related to the layer material were expanded
in the normal direction about the points located at the outer boundary of the layer and
the expansions were used to evaluate the fields at the points located at its inner bound-
ary. At both boundaries, the perfect bond conditions were enforced to exclude the fields
related to the layer. The obtained jump conditions across the layer were treated as the
jump conditions for the fields in two-phase imperfect interface model, in which the inter-
face coincided with the trace of the inner boundary of the layer. The approach of Bovik
and Benveniste (referred in the literature as the Bovik-Benveniste methodology) was first
developed in Bévik and Olsson (1992); Bovik (1994) and further generalized in Benveniste
(2006a,b). This approach is based on the following two-step procedure. At the first step,
the fields at the points located at the mid-surface of the layer are expanded in the normal
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direction about the points located at both boundaries and, after enforcing the perfect bond
conditions, the jump conditions across the layer are obtained. At the second step, additional
Taylor series expansions are used for the jumps of the first steps to eventually obtain the
explicit expressions for the jump conditions across the interface, which coincides with the
trace of the mid-surface. Later on, this methodology was used by several other authors, see,
e.g., Zhu et al. (2011); Gu et al. (2011); Xu et al. (2016); Baranova et al. (2020); Kushch
and Mogilevskaya (2021); Kushch (2021a,b). Unfortunately, despite clarifications provided
in Benveniste (2006a), the distinctions between various one- and two-steps procedures were
not always clearly made, sometimes confusing the jumps across the layer with those across
the interface, see e.g. Lebon and Rizzoni (2018) for the description of the case when all
phases in the three-phase configuration problem have the same properties. In the Bovik-
Benveniste methodology, jumps across the layer (obtained at the first step) are, as expected,
non-zero, while those across the zero-thickness interface (obtained at the second step) van-
ish. The solution of the two-phase configuration problem of a plane subjected to far-field
load and prescribed vanishing jumps across the interface is analytical and it coincides with
that for the problem of a homogeneous plane subjected to the same far-field load. Thus,
the fields at the traces of the layer boundaries are exactly evaluated, and the subtraction of
the fields associated with one boundary from those associated with the other produces exact
jump conditions across the layer in the three-phase configuration problem. In other words,
the procedure of finding jumps across the layer in three-phase configuration problems with
the Bovik-Benveniste methodology requires an additional post-processing step consisting in
the evaluation of the fields at the traces of the layer boundaries after solving the two-phase
configuration problems.

The Bovik-Benveniste methodology was successfully used in potential problems, see Ben-
veniste (2006b); Baranova et al. (2020), where the interface models of arbitrary orders were
constructed for interfaces of arbitrary smooth curvatures and wide range of problem param-
eters. However, there was an issue with its applications in elasticity problems containing
very stiff layers. The issue was identified by Benveniste and Berdichevsky (2010) who re-
ported that "the numerical results for the O(h?) version ... revealed a serious deficiency
consisting in the fact that for very stiff interphases its predictions do not improve over the
corresponding results of its O(h) version ... and even fall more distant from the ezxact so-
lution”, and concluded that "the construction of an O(h?) wversion ... in elasticity which
behaves satisfactorily at all ranges of interphase stiffness remains an open issue.”

The main goal of this paper is to resolve this issue and demonstrate, using the case
study problem of an infinite coated fiber of circular cross-section, that the Bovik-Benveniste
methodology can be successfully implemented in elastic problems with wide ranges of prob-
lem parameters. To achieve this goal, we perform detailed study of the methodology main
assumptions, develop novel complex variables-based implementation of the methodology,
and formulate, for the first time, third order interface model for the case study problem.

The paper is structured as follows. In Section 2, we formulate the case study problem. In
Section 3, we review theoretical tools that are used in subsequent sections and reformulate
the problem in terms of complex variables. In Section 4 (with the details provided in Ap-
pendix A), we discuss the Bévik-Benveniste methodology and validate its underlining as-
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matrix ’2’

Figure 1: Case study problem: coated fiber of circular cross-section embedded in an infinite matrix

sumptions for the problem under study. In Section 5 (with the details provided in Appendix
B), we develop novel, complex variables-based, implementation of the Bovik-Benveniste
methodology for the problem and derive jump conditions for the imperfect interface models
of first, second, and third orders. In Section 6, we use those models to obtain solutions of the
case study problem for wide range of governing parameters and far-field loadings. Finally,
in Section 7, we draw conclusions and discuss directions of future work.

2. Problem formulation for the case study

Consider a two-dimensional linear elastic plane strain problem involving an infinite ma-
trix subjected to uniform far-field load and containing a coated fiber of circular cross-section
(Fig. 1). Assume that media of the fiber, the coating layer, and the matrix (referred as
medium 1", ’0’, and ’2’, respectively) are isotropic and characterized by the shear module
©®) and Poisson’s ratios v®), where p = {0,1,2}. Also, consider the polar coordinate system
(r,0) and assume that its center is chosen to be located at the center of the fiber. The inner
and outer radii of the coating layer are denoted as R; and Rs, respectively. Thus, the layer’s
thickness is constant and equal to h = Ry — R;.

The following boundary conditions of perfect contact are imposed:

u®/ =@/
T(O)/ _ T(q)/ q=1{1,2}, (1)
r=R, ’

=1 r=Ry

where u® and T®?) = o® . n, are respectively the displacement and traction vectors in
the corresponding medium ’p’, o is the stress tensor in the medium ’p’, and n, is the
unit vector normal to the corresponding boundary of the layer r = R,. The notation -/,_g,
identifies the limit value of a corresponding field at the layer boundary described by r = R,.



3. Preliminaries: concise review of relevant aspects

In our study of Bovik-Benveniste methodology, we will use several tools of the complex
variables theory. Thus, we start with the review of relevant concepts of that theory, introduce
basic notations, and reformulate the case study problem in terms of complex variables.

3.1. Holomorphic functions

The complex variable z can be expressed via the local coordinates as z = re?, where 4
refers to the imaginary unit defined by i = —1. Below, we will use the following standard
definition of the derivative of the complex-valued function f(z) at some point a belonging
to an open set {2 in which f(z) is defined:

Y| e =S

dz |,_, z2a 2z—a

(2)

For this derivative to exist, its value should not depend on the way in which 2z approaches a.
The complex-valued function for which complex derivatives exist at any point of €2 is called
holomorphic.

The existence of complex derivative (2) is guaranteed if the real and imaginary parts
of the function f(z) = u(z,y) + iv(z,y) satisfy the so-called Cauchy-Riemann conditions.
Those conditions can be formulated in the polar coordinates as

1 1
Uy, = —0Vg, Vrp=—"Up (3)
T T

)

or in more concise form as

fr=—"tfo @)

where notations (), and (-) ¢ referred to partial derivatives of corresponding function with
respect to r and 6.

It can be seen from equation (4) that, for holomorfic function, its derivative with respect
to r can always be transferred to that with respect to 6. This fact is essential for the
developments of our approach.

Another essential fact is that conditions (3) ensure existence of the derivative d" f(z)/dz"
of arbitrary order n (Ahlfors, 1979; Shabat, 1976). Thus, holomorphic functions are infinitely
differentiable functions.

The complex derivative of the holomorphic function f(z) can be expressed in terms of

polar coordinates as
df(z) e ¥ i
_— r— . 5
dz 2 J Tf’e (5)
Taking into account Cauchy-Riemann conditions (4), Eq.(5) leads to
df(z ie” "
e =g )

dz r




Thus, all derivatives of holomorphic functions can be expressed via those with respect to
. For example, the expressions for the second and third order derivatives of the holomorphic
function with respect to r can be obtained with the use of Eq. (4) as

frr = (—;f,e) ) = %(if,e — fo0)

Jarr = {% (ifo — f,ee)] = %3 (=2ifo+3fo0 +ifo00) -

T

3.1.1. Case problem formulation in terms of complex variables
Let us reformulate the case problem in terms of complex variables. For that, we introduce
the complex displacement and complex traction at the point z as

u(z) = Uy + iuy, @)

o(z) = oy, +ios,

where u, and u, are the displacement components in the global Cartesian coordinates of
(Fig. 1) and o, and o, are the normal and shear traction components in the local coordinates.
Additionally, we introduce the resultant force f(z) as

f'(z) = a(2), (9)

where the symbol (-)" identifies the complex derivative d(-)/dz.
The perfect bound boundary conditions could be reformulated in terms of complex vari-

ables fields as
0 _
{“(( ))/|z|—Rq - u((q))/z|—Rq ,
0 — q
o) e, = 7 g,

where notation |z| refers to the absolute value (modulus) of complex variable z and it is
equal to r.

Sometimes, it might be convenient to reformulate the second condition of Egs. (10) in
terms of the resultant force f as

q = {172}7 (10)

f(O)/|z\:Rq - f(q)/|z\:Rq ‘ (11)

To complete the complex variables formulation for the case problem, we introduce the
following combinations for the stress components of the uniform far-field load:

0o 00 00
o =0, t Oy (12)
oo 00 [es) - _00
Oy = 0y — Opy — 200,
where 077, 007, and op, are prescribed far-field stress tensor components.



3.1.2. Kolosov-Muskhelishvili potentials
The complex variables representations for the displacements and tractions of two-dimensional
elasticity are given by the following Kolosov-Muskhelishvili formulae (Muskhelishvili, 1963):

2pu(2) = Kp(2) — 2¢/(2) — ¥(2),

z - 13
o2) = () + P + 1 (F @+ T -

where the parameter « is defined as k = 3 — 4r in plane strain and k£ = (3 —v)/(1 + v)
in plain stress, a bar over a symbol denotes complex conjugation, and ¢(z) and ¥(z) are
the so-called Kolosov-Muskhelishvili potentials. Those potentials are holomorphic functions
meaning that they are infinitely differentiable over z and equal, locally, to their complex
Taylor series.

The complex variables representation for the resultant force f(z) is

f(2) = 0(2) + 2¢'(2) + ¥(2). (14)

With the use of Eqgs. (13) and (14), the potentials ¢(z) and 1(z) can be expressed via
the complex displacement and resultant force as

1
:—2

. (15)
Y = o [kf —2pu —Zz (2uu’ + f)] .
Additionally, far-field conditions can re-formulated via the potentials as
©*(z) = p (52 +1) oz
p@ (kP +1) 4 7
®) (K2 Foo (16)
1/}00(2): H (I{ +1) 0%
M(Q) (/{(P) + 1) 2 7

where p = 1if |z] < Ry, p=0if Ry < |z| < Ry, and p =2 if |z| > Rs.

4. Discussion of the Bovik-Benveniste methodology

In this section, we discuss the basic steps of the Bovik-Benveniste methodology and its
main assumptions.
This methodology (Bovik and Olsson, 1992; Benveniste, 2006b) consists of two steps:

1. In the first step, using Taylor series expansions for the relevant fields inside the layer,
jump conditions in those fields across the layer are obtained in such a way that the
fields related to medium ’0’ are eliminated due to the use of perfect bond conditions.
The resulting jump conditions contain the fields related to media "1’ and 2’ only.



2. In the second step, the two-phase configuration is considered in which the phases are
separated by the interface, typically chosen to coincide with the mid-line of the layer.
Then, it is required that the jumps in the relevant fields across the traces of layer’s
boundaries remain to be the same as the corresponding jumps obtained in the first
step. Finally, Taylor series expansions are used in such a way that the fields involving
in the jump conditions of the first step are let to approach the interface from both
sides, resulting in the final jump conditions across the interface.

This methodology implies two major assumptions.

The first assumption requires the fields be differentiable up to a desired order, which
allows for the use of truncated Taylor series up to that order. In our complex variable-based
approach, this requirement is fulfilled by using Kolosov-Muskhelishvili formulae of Eq. (13)
and truncated series expansions of involved infinitely differentiable holomorphic functions.

The second assumption implies that the original three-phase configuration problem can
be reduced to the two-phase configuration one, if the medium between the corresponding
boundary of the layer and the interface (a curve inside the layer) is replaced with the medium
(that of a fiber or a matrix) in which the trace of corresponding layer’s boundary is located.
This effectively means that the medium of the fiber (medium ’1’) and that of the matrix
(medium ’2") are expanded up to the interface, thus, eliminating the layer (medium ’0’).
After such procedure, the jumps in the relevant fields across the traces of layer’s boundaries
must be the same as the corresponding jumps in the original problem.

This assumption that, in general, is not trivial is correct for the case study problem. From
the analytical solution for three-phase configuration problem reviewed in Appendix A, it
can be seen that the expressions for the displacements and tractions at the layer boundaries
have the forms of complex Fourier series with only few nonzero coefficients. The solutions
of the two-phase configuration problems could be obtained by using either complex integral
equations in which the boundary unknowns are approximated by complex Fourier series, e.g.,
Mogilevskaya and Crouch (2002); Mogilevskaya et al. (2008); Zemlyanova and Mogilevskaya
(2018), or complex series expansions for the potentials involved (Taylor series for the fiber
and Laurent series for the matrix), see, e.g., Ru (1999); Sudak and Mioduchowski (2002)
and the references therein. In both cases, it can be shown that the displacements and
tractions at the traces of the layer boundaries can also be expressed in the forms of complex
Fourier series. The unknown coefficients involved in the approximations for the two-phase
configuration problem can be exactly found from the solution of the linear algebraic system
obtained by equating the analytical expressions for the jumps of the original problem and
the orthogonality property of complex Fourier series.

However, the Bévik-Benveniste methodology (as all other imperfect interface approaches)
is based on the use of series expansions in terms of layer’s thickness h. The truncation order
of the series determines the order of interface model.

Below we check how many terms in the truncated series of such kind are needed to accu-
rately compute solutions for the jumps in two-phase configuration, using the corresponding
analytical solutions for three-phase configuration.



Figure 2: Two-phase configuration problem: a fiber and an infinite matrix separated by a circular interface
of radius Ry

4.1. Approximations of the jumps across the traces of layer’s boundary in two-phase config-
uration using analytical solution for three-phase configuration

Consider two-phase configuration problem of Fig. 2 that includes the fiber (medium ’1’)
and the matrix (medium ’2’) separated by a zero-thickness interface, which here is chosen
to be a circle of radius Ry = (R; + R»)/2.

The complex displacements u!) () and u?(z) at the points z, = R,e?, ¢ = {1,2} can
be expressed in terms of Taylor series expansions about the point 2y = Rye®, as

N (R — Ry)" 0"ulV(z)
u(l)(z)|2:21 = u(l)(z)/z:zo + Z orn =70 ’ (17)

n!

n=1

© _ n an, (2)
2) _ @ (R2 — Ro)" 0"u?(z)
uW(2)omny = u?(2) ) _ + ; ~ o) (18)

By subtracting Eq. (17) from Eq. (18) and using the fact that Ry — Ry = —h/2 and
Ry — Ry = h/2, the jump in complex displacement across the layer can be obtained as

W ()] omsy — w2y = u@(2)) . — V()]

Similarly, the jump in complex traction from |z| = Ry to |z| = Ry can be expressed as

0O ()sesy = 0V (Do = 0P (2) [ _, — 0o D(2)/ .,

+g% (g)n [%/z:% (1) %/Z:J | (20)
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We then make use of analytical solution for the three-phase configuration problem of Ap-
pendix A in order to obtain closed-form expressions for the jumps in the fields across the
layer (from |z| = Ry to |z| = Ry).

To demonstrate that the jumps of Egs. (19), (20) can reproduce with any desirable degree
of accuracy those analytical solutions, we use the fact that, for the case of uniform far-field
load, various solutions for the two-phase configuration problems are available. Those are
e.g., the displacement representations of Christensen and Lo (1979); Christensen (2012),
for the simple shear far-field load (rewritten in a slightly different form in Mogilevskaya
et al. (2019)), or well-known representations for hydrostatic far-field load (also reviewed in
Mogilevskaya et al. (2019)). With the use of such representations and standard superposi-
tion, expressions for more general cases of uniform far-field loads can be obtained.

The representations of that kind (that involve unknown coefficients) and their trac-
tion counterparts can be substituted into the right-hand sides of Egs. (19), (20), while the
left-hand sides of those equations can be evaluated using the analytical solutions for the
corresponding three-phase configuration problems. Naturally, in this process, infinite series
involved in the equations have to be truncated up to a certain order N, that leads to the
error of O(hM*1). Such procedure leads to the system of linear algebraic equations in terms
of the unknown coefficients.

To illustrate the procedure, consider the simple shear loading case (02 = —0
Oy = 0), for which the representations for the normal and tangential displacement compo-
nents are (Christensen and Lo, 1979)

__ 400
=o,,

e inside the fiber

ulM(z) = 4f(01) [leLO + (kM = 3) Gl%] cos 26, o
ugl) = 4f(01) {—leLO + (/1(1) + 3) alj%] sin 20;
e inside the matrix
u? = 41;% [ UdOORLO + (H(Q) +1) ag% + 631?—38} cos 20, )
ué2) _ 45?2) {—203"}% — (,{(2) - 1) a3% + 03%3} sin 260,

in which a1, di, a3, and c3 are unknown coefficients. The components u,(nq) and ugq) are

related to the complex displacement as
ugfn + z'u((f) = e_wu(‘”(z). (23)

The use of Egs. (21)-(22) together with the plane strain relations between stresses,
strains, and displacements, leads to the following expressions for the normal and tangential
traction components:
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e inside the fiber

2
(24)
(1) . 1 6a17’2 . )
% =5 (—d1 + I > sin 20;
e inside the matrix
1 4
o? = 3 (20d 4a3— — 3c3 —f) cos 20,

R (25)
(2) 1 R .
oy = —3 200 + 2a3— + 303— sin 26.

The coefficients ay, dy, asg, and c3 are found from the linear system that is formulated as
explained above, i.e. using Eqgs. (19) and (20), in which the analytical solutions of Appendix
A are used in the left-hand sides, while representations (21)-(25) are used in the right-hand
sides.

The resulting linear system can be rewritten in the matrix form as

AX =Y, (26)
where X = [a1,dy, a3, c3)T is the vector of the unknown coefficients, superscript ”T” refers
to transposition, Y = [V, Ys, Y3, Yy|T with
Ryo”

2@

Yy = Asp — Asi; (27)
Y3 =—B_9+ B o + 05

Yy = — By + By,

Yi=A 1o —A_11 —

in witch A*ll; A,12, A317 A327 Bf217 B,QQ, B217 and BQQ are the governing coefficients for
the analytical solution of three-phase configuration (given in Appendix A.1), and A is the
4 X 4 matrix

3R0b23/4[ﬁ(1) —R1/4[1,(1) I{(Q)Rgblo/éllj,@) 0
- (1)R0b23/4,u(1) 0 R0610/4M(2) R0b12/4ﬂ(2)
= : (28)
—3byy/2 1/2 b1 /2 0
3bgy /2 0 3byy /2 3by3/2
in which
> h\" (n+5)!
b =1 —1)" :
= ;( ) (230) jinl
Y (29)




and J is defined as

N
J = min(j, N) = {]’ = (30)

N, N<j.

We start testing the above procedure using trivial case of homogeneous medium. In such
case, the stresses inside the system are uniform and equal to those due to the simple shear
far-field load, while the displacements vary linearly. This case corresponds to the three-phase
configuration problem with p® = pu and v® = v for p = {0,1,2}. Analytical solution of
Appendix A provides the following expressions for the governing coefficients

B_91 =B 5 = 030, Boy = By =0,

31
A*H = Rlacolo/Zua A*ll = RQUSO/Q,U, A31 = A31 = 0. ( )

The use of (31) in linear system (26) leads, for any N, to the following closed-form solutions:

d1 = 20';0, a; = az = Cz = 0. (32)

It is clear from equations (21)-(22), (24)-(25), and (32) that the fields inside all constituents
of two-phase configuration are indeed the same as those in homogeneous medium.

We will now proceed with the testing of the procedure using three examples that involve
layers of different thicknesses and elastic properties. We will demonstrate that, by appro-
priately choosing value of N for each case, we can accurately simulate the jump conditions
across the layer in three-phase configuration. For all three examples, we choose the same
ratio uM /u® = 5 and take the values of Poisson’s ratios to be v = 0.35 (p = {0,1,2}).
The dimensionless far-field simple shear load is 05°/u® = 1, which might not be realistic
but chosen here and below for convenience.

As the first example, we consider the case of thin and soft layer characterized by the
dimensionless shear modulus p(¥/u® = 1.3-107° and dimensionless thickness ¢ = h/Ry =
0.001. By choosing values of N = {1, 2, 3}, we solved corresponding systems of equations (26)
and evaluated the displacement and traction jumps across the traces of the layer boundary in
two-phase configuration. Figure 3 presents the normalized jumps in normal and tangential
displacement components as well as the normalized jumps in the corresponding traction
components. The following notations are adopted:

[O]= (P, = OV g, - (33)
Additionally, Fig. 3 plots absolute errors of the corresponding solutions defined as
1
Eur - EO ||Iur]] approx [[Urﬂexact’ 5
1
Eug - E |[[u0]]approx - IIUG]]exact| 5
i (34)
EO'T = W |[[Ur]]approx - [[Ur]]exact| 5
1
EO'@ - W |[[00]] approx [[Ueﬂexact| )
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where subscripts "approx” and "exact” identify approximate solutions of two-phase config-
uration (obtained by solving linear system (26)) and exact solution of three-phase configu-
ration (obtained analytically), respectively.

For this example, the values of the exact solutions for the normalized jumps [u,/Ry] and
[ua/Ro] are of order 1 and those for [o,/u®] and [oy/u®] are of orders 10~7 and 107%,
respectively. As it can be seen from Fig. 3, the approximate solutions for the normalized
jumps in displacement components are sufficiently accurate even for N = 1, with £, and
E,, being relatively small (less than 8 - 1077) with respect to the orders of corresponding
exact solutions. For the normalized jumps in traction components, approximate solutions
are sufficiently accurate starting only with N = 2, with E,_ and E,, being less than 7-107°.

In the second example, we consider thin and stiff layer characterized by the dimensionless
shear modulus () /p® = 1.3-10'° and dimensionless thickness ¢ = 0.001. For this example,
the exact solutions for the normalized jumps [u,/Ro] and [ug/Ro] are given by very small
values (they are of order 10~'2 and 107°, respectively), while those of [o,/u®] and [og/u?]
are of order 1. Figure 4 presents normalized jumps in normal and tangential displacement
and traction components and corresponding absolute errors. It can be seen that the ap-
proximate solutions for the jumps in traction components are sufficiently accurate starting
with N =1 with E,_ and E,, being less than 4 - 107%. The approximate solutions for the
jumps in tangential displacement are sufficiently accurate starting only from N = 2, with
E,, being less than 4 - 107'°. The approximate solution for the normalized jump in normal
displacement is sufficiently accurate only for N = 4 with E, being less than 3 - 10716 that
exceeds machine accuracy.

In the third example, we consider stiff and relatively thick layer with dimensionless shear
modulus p®/u® = 1.3 -10° and dimensionless thickness ¢ = 0.1. The exact solutions
for this example are defined by very small values of the normalized jumps [u,/Ro] and
[ua/Ro] (of order 10~7 and 1073, respectively) and by values of normalized [o,/u®] and
[oo/1®] that are of order 1. The normalized jumps in normal and tangential displacement
and traction components and corresponding absolute errors for this example are plotted
on Fig. 5. The approximated solutions for the normalized jumps in traction components
are sufficiently accurate starting with N = 1, with E,, and E,, being less than 5 - 1072
The approximate solution for the normalized jump in tangential displacement is sufficiently
accurate starting from N = 2, with E,, being less than 5-10~*. The sufficiently accurate
approximate solution for the normalized jump in normal displacement is achieved only from
N = 6, with F,_being less than 1075,

Similarly to the examples described above for simple shear far-field load, we considered
examples (involving wide variety of governing parameters) for much simpler case of hydro-
static load. As in the three examples considered above, it was concluded that the analytical
solutions for the jumps across the layer could always be accurately represented by the ap-
proximate solutions for the corresponding two-phase configuration problems, if appropriate
values of N are chosen.

In the above developments, we benefited from the existence of analytical solution for
the three-phase configuration problem. While the right-hand sides of Egs. (19) and (20)
are series expansions in terms of parameter h, the left-hand sides of those equations involve
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analytical solutions with the coefficients that include the parameters § = R?/R3 and 57!,
which themselves could be sums of some infinite series in terms of h, see, e.g., Eq. (A.11).
In fact, the right-hand sides of Eqs. (19) and (20) represent exact series expansions of the
corresponding analytical solutions in terms of h; it is not straightforward to obtain such
expansions from the analytical solutions themselves.

In the Bovik-Benveniste methodology, analytical solutions are not employed (those are
not usually available). Rather the jumps across the layer in the original problem are ap-
proximated by the truncated series expansions in terms of h; the truncation order defines
the order of a specific model. Thus, it should be expected that the approximate solutions
obtained by following the steps of that methodology would have slower convergence rates
than those described in this section. It will be shown in the next sections, that the low order
models do not work well for the cases of very stiff layers.

5. Complex variables-based implementation of the Bovik-Benveniste methodol-
ogy

In this section, we describe complex variables-based implementation of the Bovik-Benveniste
methodology without using any prior information on the solution of the three-phase config-
uration problem. First, we proceed with deriving the first order imperfect interface model.
Next, we list relevant jump conditions for the second and third order models.

5.1. Derivation of the first order interface model

Consider complex variables formulation of case study problem of Section 3.1.1. For the
sake of brevity, we introduce new notation <p$f’ ) as a limit value of ©® when the latter
approaches z = z, (¢ = {1,2}) from corresponding medium ”p” (p = {0,1,2}). Similar
notations will be used for all fields considered thereafter. The limit values of derivatives of
those fields will be denoted as, e.g., (cpfg))q.

Next, using Eqs. (13)-(15), Eq. (6), boundary conditions (10), and new notations, we
reformulate the boundary conditions via the Kolosov-Muskhelishvili potentials ¢®)(z) and
Y®)(2) (p=0,1,2) of Section 3.1.2, as

1 | _
o0 =1 {a<q>¢gq> @ {iem <¢5g>)q N W)} } |

kO +1
1 o) ‘
PO = O {c@)(pgq) 4 p@ {Ql(%(g))q n (@%)J + d@yp (35)
+ je 2 [(a(q) _ d(q)) <90(3)> _p@ (77/,(51)) ] }’
T/ T /q
where
0 0
al® :ﬁ @ 41, p@) :ﬁ_L
iy () (36)
pw© 10
D = 0 _ K(Q)T7 d9 = 0 L )
0 q Iu(‘])



Now we perform the two steps procedure of the Bovik-Benveniste methodology, using
complex variables.

First step: Jump conditions across the layer
We start from expanding potential ¢ at zy = Rye' in terms of Taylor series expansions
about the two points z, = R, (¢ = 1,2) in the normal direction as

= (Ry — R)" [0
¢(0)(ZO):¢§0)+2( 0 -~ 2) ( g )q, (37)

Next, we truncate expansions (37) up to the first order as
0 (20) = ¢ + (Ro = Ry) (1), + O(h?). (38)

Using Cauchy-Riemann conditions (4) and the fact that

h
Ry = Ry +(=1)"5 (39)
we get .
Oy — O 4 (_1yath (0 2
PO = o)+ (1) 55 (), + 00, (40)

Then, we subtract the value of ¢(©)(z) given by Eq. (40) for ¢ = 2 from that for ¢ = 1

and obtain _ .
O _ o _ L < (0)> - ( (0>> 32 A1
P2 Y1 9 {Rl Yo . + R Yo ) + O(h%). (41)

Finally, using boundary condition (35), we obtain the following jump condition across
the layer:

Z(_1>q {a(q)¢gq) _pla [iem (@f?) + @] }
q

_ _% R%l {a(q) (wfg)>q 1 pla)2i0 {2 (90,(5)>q _ Z(@%)J _ @ (wfg)>q} + O(h?).

q=1

(42)
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Following the same procedure, we obtain the second jump condition across the layer as

2 -
Z(_l)q{cmwgq) ) {21-(@( } a0y

q=1

+ ie % l(aw) — d) (¢§g>> 9 q) }

q
_ s L (9 () +b<){2z<@<%> + (o%,) 1 +a ()
2 R, T /e ’ q " /q

e [(a@ — @) [2 (gofg)>q +i (%) } b@ [2 (;z}fg))q + i(¢f§2)q“ } +O(h?).

(43)

Second step: Jump conditions across the interface

In the second step, we consider two-phase configuration of Fig. 2. To formulate jump
conditions across the interface, we assume that conditions (42) and (43) obtained in the first
step are valid for the corresponding fields in the two-phase configuration.

We start from expanding the fields involved in (42) in terms of the following Taylor series

about z = z:
i _ k k, (q)
@ (s ) — @ (Ry — Ro)” ("¢
©'\V(2q) = g +§: il ok )

R R 8"%/1(‘1) (44)
(@) 0)
) O Z ( or* )o ’
and truncate those series up to the first order as
@ (5 — L@ ¢ (@ >
#D(zg) = o) = (~1y1- () +002),

I
V() =0 — (1) (), + o).

where we again used (39) and Cauchy-Riemann conditions (4). Other terms involved in
jump condition (42) could be obtained by taking corresponding derivative and applying
conjugation to Egs. (45). Additionally, we expand 1/R, as

Lk (15 e )] = L eSSy () (16)
R, | 2R, RO et 2R,
and truncate it up to the first two leading terms as
1 1 h
— 1—(=1)7 O(n* 47
b= [ GV o (a7
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Applying expansions (45) and (47) to jump condition (42), neglecting all terms that
include A™ with n > 1 (the condition is defined by the order of the interface model), and
using straightforward algebra, we get the first jump condition across the interface as

2 -
S (e {a<q>¢gq> "o [Z-em (29 + w(()m} }

q=1

. —%gb@ Lo [(5), (o), | - (o), } + 0w

Following similar logic of using expansions (45) and (47) in jump condition (43) and
neglecting all terms that include A™ with n > 1, we obtain the second jump condition across
the interface as

(48)

2

Z(_I)Q{C(Q)@ + @ {22' <S0’(g)>

q=1

rie (@ ) () -0 (o) | }
_ % : {Cm)(g,Tq))O + (@ {2i(s0,(3§)0 + (90,(350%}
=1
4 20 {(a@) — d) (gofg))O —p@ {(%@)O + z(zb((?g)oH } +O(h?).

Egs. (48) and (49) represent the first order imperfect interface jump conditions for the
potentials. Those conditions can be reformulated in terms of jumps in complex displacement
and traction across the interface.

Jumps in complex displacement and traction across the interface

Using the derivation presented in detail in Appendix B, we arrive at the following first
order jump conditions for the complex displacement and traction:

2

o o) = S [mo () me (o),
1

q=




where Re[(+)] and Im[(-)] refer to the real and imaginary parts of corresponding field and

o1
1 1+ 0 14+ k@’
@ _ w0 pl@)
2 T 14+ k0 14 k@
4@ _ 1 1 (51
3 /'L(O) (1 + /{(0)) M(Q) (1 —+ R(Q))’
» (0) (@

Ay = — .
4 M(O) (]_ + /@(0)) M(Q) (1 + /@(‘1))

If desired, Eqgs. (50) can be rewritten in terms of local displacement components by using
relation (23).

5.2. List of jump conditions for the second and third order interface models

Using the complex variable implementation of the Bovik-Benveniste methodology similar
to that of Section 5.1, but truncating the series at corresponding orders, the jump conditions
across the interface for the higher order models can be obtained. Here we list the jump
conditions for the third order imperfect interface model, the corresponding conditions for
the second order model can be obtained by omitting all terms that are multiplied by h3.

The jumps in complex traction and displacement for the third order interface model have
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the following forms:

(2)

2
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2
h . — )
uéQ) B uél) _ _Q_R()eze Z {Ro [qu)a(()q) _ Aiq)U(()q)} 4 4qu)Im [e—w (ufg)>0] }
q=1
h? . Y
— e Z(—l)q{Ro {353)05;” +iB" (o)) — BYof +iByY (af(,q))o}
o[t 5, R, 2 o (), ot ()
G @ (@ _ (@ @) [ (@
— TRS’G ; RO 3C18 O'Oq - <0'79q€)0 +3Z01[{ <0_70q )0
+ 3012 00 ) 4 10@ (Ufé”)o + C’fi) (a%)ol

3¢ {Cf? <z (), + () ) +iCyg m}

+2¢7" [201(?) <U,(g)> +3018 < gg) ‘HC < 999) } }—l—O(h"‘),

where the coefficients related to the terms that are multiplied by h? are

B = Lo (% - 1) | BY =AW - &g

BY = (34 x0) A — s B, B = BY + By — 24",

B = A® 1 2B B = AP 4l (A~ B,

BY =24 + B{Y, BY = AP,

g _ 4D &) B9 _ 40 _ g, L - (B9 —349)
9 20 (@ 1) L 10 ¥ — By? M(O ;

B(Q) ng) — A( ) + Bll (B(q Ag(I)) ,

P 1,0y
(@) 2
@ _ 4 we @) _ 4@ _ 9)
Bl3 - 14+ k(@) (N(O) 1) ) Bl4 - Al ( (0 )+ 1)3137
BY = (1-+®) A + xOBY, BY =24 - BYY.
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and the coefficients related to the terms that are multiplied by h® are

o = 1 (B 24, P = + AP - By,
O = —AY 1 12B, C@ =AW 2B,
cl = % (741 - 3B(), C{ = B + AP,
Of =245 1+ 90", O =24 130,
ci? =240 + 0, el = -3 (B9 - 47),
c? = -5y, cly =5 (B - A7), (59
ey =5 (38 ~ 6B + 114Y) €Y =3 (3BY ~ 380 + AY).,
0

O O = ey B - Sl

off =-4P +9 (69 +0),  clf AP -0 - 1,

1
off =241 -3 (300 + ).

6. Numerical examples

In this Section, we use imperfect interface problem of Fig. 2 with the conditions of
Section 5 for the jumps across the interface in order to solve the case study problem of
Fig. 1. The solution for the former problem is then compared with the analytical solution
of Appendix A for the latter problem.

To solve the imperfect interface problem, we employ the well-known representations for
the elastic fields that are available for various cases of uniform far-field loading. The un-
known coefficients involved in such representations are then found from the linear systems
of algebraic equations that result from the substitution of the representations in the pre-
scribed interface jump conditions such as, e.g., Egs. (52), (53). Similar procedures were
implemented in, e.g., Benveniste (2006b) and Baranova et al. (2020).

6.1. Hydrostatic far-field loading

Consider the case of hydrostatic far-field loading op; = oyy = 03 and o7y = 0. In this
case, the problem is one-dimensional. The radial displacements can be represented by the
following well-known expressions, reviewed in, e.g., Mogilevskaya et al. (2019):
ulM(r)y = Fr,  uP(r) = Fyr 4+ Fyr (56)

T T

where Fi, F,, and F3 are the unknown coefficients. The complex displacements could be
simply expressed as u(® = ul?eif for qg=1{1,2}.
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Figure 6: Normalized jumps in radial displacements and tractions and corresponding absolute errors as

functions of x(®)/u®). Problem-specific parameters are o3°/u(? =1, u /u?) =5, and £ = 0.001. (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of
this article. Some of the lines representing fields might be not visible, when they overlapped by the other
lines due to the chosen scales of plots.)
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The only non-zero traction components can be obtained from Eq. (56) as

2,2
F, o? (r)= a Fy — 2P Fyr2, (57)

2,
Q) — M _AR
o (r) T 1-2,0

r 1 =20

and the complex tractions are equal to the corresponding radial components o@ = a,(aq) (for
q= {17 2})
The coefficient F, can be determined from the far-field condition as
1—2v®@
= WU?. (58)

The unknown coefficients F; and Fj can be computed by solving the linear system of
algebraic equation obtained from the interface conditions, as described above.

For this problem, we used the jump conditions of the first and second order interface
models only and adopted the following set of parameters: o3°/u® = 1, u™/u® = 5, and
v®) =0.35 (p={0,1,2}).

First, we chose relatively thin layer of ¢ = h/Ry = 0.001 and obtained the solutions of
the interface models for wide range of u(®)/u® = [107°,10°]. Figure 6 plots the normalized
jumps in radial displacements and tractions, defined by Eq. (33), and corresponding absolute
errors, defined by the relevant equations of Eqs. (34), as functions of the ratio u(®/u(®.
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It can be seen from Fig. 6 that both models provide accurate results for entire range of
19 /1 with the second order model showing better accuracy than the first order model.
The absolute errors E, and E, of the first order model were less than 2.6 - 10~* and
2.4 - 1073, respectively, while the corresponding absolute errors of the second order model
were less than 1.3-1077 and 1.2- 1075, respectively. We note that the use of absolute errors
and logarithmic scale in Fig. 6 makes it look like a significant increase in performance for
some values of ratio p(® /u®. However, this phenomenon can be explained by the change
in signs of the differences between exact and approximate solutions.

Next, we chose relatively stiff layer of u(®/u® = 1.3 -10° and studied the solutions
of the interface models for wide range of ¢ = [107°,107!]. Figure 7 plots the normalized
jumps in radial displacements and tractions, defined by Eq. (33), and corresponding absolute
errors, defined by the relevant equations of Egs. (34), as functions of . The exact values of
normalized jump in radial displacement for the three-phase case study problem is of order
1079, while those values for the normalized jump in radial traction is of order 1. The first
order model provides accurate results for [u,/Ro] ( E,, < 2-1077) when & < 0.002 and for
[o./Ro] ( E,, < 0.13) when ¢ < 0.05. The second order model provides accurate results for
wider range of relative thickness: the similar values of E,. < 2-107" and FE,, < 0.13 are
obtained for ¢ < 0.017 and € < 0.094, respectively. From this example, it is clear that for
the case of relatively thick examples, the higher order models are required.

6.2. Simple shear far-field loading

Now we consider the case of simple shear far-field loading (095, = —op; = 03°, o5 = 0).
In this case, the representations for the elastic fields for the problem of Fig. 2 are given by
Egs. (21), (22), (24), and (25). The unknown coefficients a;, d;, as, and ¢z can be computed
by solving the linear system of algebraic equations obtained from the interface conditions,
as described above. We studied this case using the jump conditions of the first, second, and
third order models and considered the same examples as those presented in Section 4.1. As
before, we adopted the following parameters ¢3°/u® = 1, p/u® =5 and v = 0.35
(p=1{0,1,2}).

For the first example, we chose relatively thin and soft layer characterised by pu(® /u? =
1.3-107% and € = 0.001. As mentioned in Section 4.1, for this example, the values of the exact
solutions for the normalized jumps [u,/Ro] and [ug/Ro] are of order 1 and those for [, /u?]
and [op/p?] are of orders 10~7 and 107, respectively. The normalized jumps in normal
and tangential displacement and traction components and corresponding absolute errors for
this example are plotted on Fig. 8. It can be seen that the normalized displacement jumps
[u,/Ro] and [ug/Ry] are accurately approximated by the first order model (N = 1) with
E,, and E,, being less than 8 - 107%. However, the normalized jumps in traction [o,/u(?]
and [og/p®] are accurately evaluated only starting from the second order model (N = 2)
with E,, and E,, being less than 7.5- 107 and 1.6 - 107®. The approach of Section 4.1, for
this example, provided better accuracy in terms of absolute errors (as it could be expected);
however, quantitatively, the imperfect interface models provided similar results.

For the second example, we considered relatively thin and stiff layer with p(®/u(?) =
1.3 - 10'% and e = 0.001. For this example (also considered in Section 4.1), the exact
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Figure 9: Normalized jumps in displacement and traction components and corresponding absolute errors
plotted with respect to #. Problem-specific parameters are o3 /u® =1, uV /u? = 5,
p©/p® =1.3-10'°, and € = 0.001. (For interpretation of the references to colour in this figure legend,
the reader is referred to the Web version of this article.)
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solutions for the normalized jumps [u,/Ry] and [ug/Ry] are given by very small values
(they are of order 107'2 and 107°, respectively), while those for [o,/u®] and [op/u?]
are of order 1. The normalized jumps in normal and tangential displacement and traction
components and corresponding absolute errors for this example are plotted on Fig. 9. The
jump in normalized tangential displacement [us/Ro] and the jumps in normalized traction
components [o,/p?] and [oy/1?] are accurately approximated starting with the third order
model (N = 3) with absolute errors E,,, F,,, and E,, being less than 9.2-1077, 9-1073, and
1.4 - 1073, respectively. The small values of normalized jump in normal displacement could
not be approximated even by the third order model: maximum of absolute error F,, (among
considered range of 6) is around 3.8 - 107!, For better accuracy of approximated solutions
of the normal displacement, higher order interface models are needed. The approach in
Section 4.1, for this example, resulted in better convergence, when the normalized jumps
in tractions could be accurately obtained starting from N = 1 and the normalized jump
in tangential displacement was obtained starting from N = 2. For the normalized jump in
normal displacement, that approach also required higher order models.

For the third example, we chose relatively thick and stiff layer with x(® /u® =1.3-10°
and ¢ = 0.1. Exact solutions for this example (see Section 4.1) are given by very small
values of the normalized jumps [u,/Ro] and [ug/Ro] (of order 10~7 and 1073, respectively)
and by values of normalized [o,/u®] and [og/p®] that are of order 1. The normalized
jumps in normal and tangential displacement and traction components and the correspond-
ing absolute errors for this example are plotted on Fig. 10. It can be seen that all considered
interface models (N = {1, 2, 3}) do not provide sufficiently accurate results. The third order
model provides the best results with the maximum values of absolute errors in correspond-
ing normalized jumps being approximately E,, = 1.7-107°, E,, = 1.4-107%, E, = 1.45,
E,, = 0.33. It can be concluded that for thick and stiff layers, high order interface models
are required.

We note that the results for the third example, obtained with the imperfect interface
models, were quite different from those obtained with the approach of Section 4.1. The
latter approach had much faster convergence rate (N = 1 provided accurate results for
[o./p?] and [os/pP]), N = 2 was sufficient to accurately evaluate [ug/Ro], and higher
orders (N > 6) were only required for accurate evaluation of [u,/Ry]. Such difference could
be expected for this extreme example as the imperfect interface-based approach does not
use any prior information on the solutions for the case study problem, while the approach
of Section 4.1 employs the exact solutions at some point.

Finally, we would like to highlight the fact that in the last two examples, the results ob-
tained with the second order imperfect interface model were less accurate than those obtained
with the first order model. Similar observation was made in Benveniste and Berdichevsky
(2010). The reason for why this is the case remains unclear. However, according to the clas-
sification of Benveniste and Miloh (2001), the considered material parameters for the case
are consistent with the so-called “inextensible shell type” regime, defined by Eqgs. (2.15) and
(2.16) of the latter paper. It could be concluded from those equations that i) the condition
for jumps in traction components involve higher order derivatives that are only present in
the third order jump conditions; ii) parameter D involved in Egs. (2.16) includes the term

31



h3 that is present only in the models of third order. Thus, it is clear that the inextensible
shell type interface regime could only be recovered from the third order model.

6.3. More general uniform far-field loading
As an example, we consider the case study problem under uniaxial far-field loading and
present the results for the elastic displacements and stresses inside the composite system.
We choose uniaxial far-field load with the following components:
{055, 090,000}/ = {1,0,0} (59)

xx) Yy’ Ty

and consider the case of a thin (¢ = 0.001) and stiff (u©/u® = 1.3-10'°) layer. The
remaining problem parameters were taken to be puV)/u® =5 v =0.35 (p = {0,1,2}).
We mention that the same problem parameters were used in Subsection 6.2 for the case of
simple shear far-field loading.

Exact solutions for the elastic fields inside the fiber and the matrix in three-phase config-
uration are obtained using Kolosov-Muskhelishvili farmulae (13) and the potentials provided
in Appendix A.3 assuming the loading in the form of (59).

Solution of the problem in two-phase configuration is obtained by superposing the so-
lutions for hydrostatic and simple shear far-field loadings. Elastic fields in the fiber and in
the matrix are obtained as sums of the corresponding third order interface models’ solutions
(N = 3) for hydrostatic (¢;° = 1/2) and simple shear (¢5° = 1/2) far-field loading described
in Sections 6.1 and 6.2.

Figure 11 plots displacement components wu, and uy and radial and shear stress compo-
nents o, and 0,9 along three radial directions 6 = {0,7/4,7/2}. It can be seen from the
figure that the third order model accurately approximates exact solutions. To gain better
insight on accuracy of our approach, we also present the results in Table 1, which con-
tains the values for the fields at the points located inside the fiber, the matrix (r/Ry = 0.6,
r/Ry = 1.4), and at the traces of the layer boundaries (r/Ry = 0.9995, /Ry = 1.0005) along
previously chosen radial directions (0 = {0, 7/4,7/2}). It can be concluded that the third
order model can accurately capture four significant digits of the exact solutions. We add that
the results for the fields inside the layer, 0.9995 < /Ry < 1.0005, are not presented. Similar
as for harmonic problems, see Baranova et al. (2020), they could be accurately recovered
from the solution of separate problem containing an annual region (that represents the layer)
with the prescribed conditions at its boundaries obtained for the two-phase configuration
problem at the traces of layer boundary.

Finally, we would like to add the following remark. Even though the series for jump con-
ditions for interface model of order N are truncated up to O(h™*1); the errors of computed
elastic fields are not necessarily of the same orders. In fact, the remaining terms of series
might contain multiplayers such as, e.g., normalized shear modulus of the layer () /pu®.
The orders of such multiplyers could be comparable with e~ and that could increase the
errors of the solutions. This effect could be observed for the problem considered in this
subsection, where the errors of the solutions obtained with the third order models were of
orders O(g). Further investigation are needed to study the influence of elastic parameters
of layer material on accuracy of interface models.
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Coordinate ur /Ry ug/ Ry Orr/ e oro/ e
r/Ro | 6 | Exact | N=3 | Exact [ N=3| Exact | N=3 | Exact | N=3
0.6 0 -0.426 | -0.426 0 0 0.3247 | 0.3284 0 0
0.6 w/4 | -0.3141 | -0.3142 | 0.2988 | 0.2987 0 0 -0.2348 | -0.2375
0.6 w/2 | -0.0182 | -0.0184 | 0.4442 | 0.4444 | -0.3247 | -0.3284 0 0

0.9995 0 -0.4176 | -0.4174 0 0 0.3247 | 0.3284 0 0
0.9995 | w/4 | -0.3141 | -0.3142 | 0.3008 | 0.3007 0 0 -0.0752 | -0.0761
0.9995 | /2 | -0.0266 | -0.0269 | 0.4442 | 0.4444 | -0.3247 | -0.3284 0 0
1.0005 0 -0.4176 | -0.4174 0 0 1.3976 | 1.3968 0 0
1.0005 | w/4 | -0.3141 | -0.3142 | 0.3008 | 0.3008 0.65 0.65 -0.8275 | -0.8277
1.0005 | w/2 | -0.0266 | -0.0269 | 0.4442 | 0.4444 | -0.0976 | -0.0968 0 0
14 0 -0.2552 | -0.2551 0 0 1.4286 | 1.4281 0 0
14 w/4 | -0.2627 | -0.2629 | 0.0807 | 0.0808 | 0.5766 | 0.5766 | -0.4417 | -0.4419
1.4 w/2 | -0.0863 | -0.0865 | 0.4442 | 0.4444 | -0.2754 | -0.2749 0 0

Table 1: Normalized displacements and stress components.

7. Conclusion

In this work, we performed two-dimensional case study of the Bovik-Benveniste method-
ology for modeling elastic imperfect interfaces. The study produced three following impor-
tant contributions.

First, we demonstrated, using the case study, that the assumption of the Bovik-Benveniste
methodology (that, at its second step, the medium of the layer of the three-phase configu-
ration can be replaced with the corresponding media of remaining two phases and the fields
outside the layer can be expanded to the interface to accurately simulate the layer) is valid
for a wide range of problem parameters, and that this can be done with any desirable degree
of accuracy by increasing truncation number of Taylor series.

Second, we developed novel complex variables-based implementation of the Bovik-Benveniste
methodology for the case study problem. Using this implementation, we derived the inter-
face models up to the third order with explicit expressions for the jump conditions. To our
best knowledge, the third order model for this methodology is derived here for the first time.

Third, we performed extensive comparisons of the results obtained with the developed
models with the corresponding analytical solutions for the case study problem and a wide
range of problem parameters. In addition to plotted results, we provided tabulated data
that can be used as benchmarks for further investigators. We demonstrated that the issue
related to modeling of very stiff layers, raised in Benveniste and Berdichevsky (2010), can be
resolved with the use of the higher order models. Thus, the Bovik-Benveniste methodology,
indeed, allows for construction of elastic interface models that behave satisfactorily at all
ranges of layer stiffness.

The plans for our future work are as follows. As the results obtained here (e.g. explicit
forms of jump conditions, etc.) contain enormous information, we plan to use them for
further studies of interface models, including identifications of interface regimes and vari-
ous connections to the low-dimensional- (e.g. rods, beam, etc.) and the material surfaces
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theories. While here we focused on two-dimensional problem, three-dimensional problem
involving spherical interface could be analysed in similar manner. Finally, similarly as in
Baranova et al. (2020), we plan to generalize the complex variables implementation of the
methodology to model the problems involving interfaces of arbitrary smooth curvatures.
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Appendix A. Analytical solution for the three-phase configuration problem

For the reader convenience, we review the analytical solution for three-phase configura-
tion below. Such solutions are reported in several publications, see e.g. (Ru, 1999; Sudak
and Mioduchowski, 2002; Mogilevskaya and Crouch, 2004; Mogilevskaya et al., 2018) for the
reviews. Most of them are not well suited for the analysis of various parameters governing
the problem, as they involve numerically obtained coefficients. In this work, we use the
solution obtained in Mogilevskaya and Crouch (2004), see also Mogilevskaya et al. (2018),
which contains only closed-form expressions.

Appendiz A.1. Governing coefficients

The solution of Mogilevskaya and Crouch (2004); Mogilevskaya et al. (2018) can be
expressed via the following complex coefficients:
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where 3 = (R1/R,)?,

A= _ 2 31632
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c 3
A = % c1y + w (8 — 1)2 — an1 (a1s — az) B, (A.2)

Ay = c91¢99 — 8ay2 (2a11 — asy) B,

and ag; and cg; are
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The Kolosov-Muskhelishvili potentials for the case problem expressed in terms of those
coefficients are presented in Appendix A.3. Thus, all elastic fields inside the fiber, the
coating layer, and the matrix could be obtained in terms of the coefficients using Eqgs. (A.12)-
(A.14) and Egs. (13).

The complex displacements and tractions at the layers boundaries have the following,
particularly simple forms:

U(q)(z

u(q)(z

—240 210
B_Qqe t + B()q + nge ¢ s
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where coefficients A_;,, Ay,, and As, could be expressed via coefficients B_q,, By,, and By,
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In the cases (studied below in more detail) of hydrostatic (055 = ogy = 07°, o35,

simple shear (025 = —Op) =05 Ogy = 0), far-field loadings, the coefficients are
e Hydrostatic load
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Appendiz A.2. Discussion of the analytical solution

Analysis of the expressions of Appendix A.1 suggests that the solution for the case
problem is governed by several combinations of the elastic constants of the three media and
by the geometrical parameter §. This parameter is the only one that includes the layer
thickness h; it could be expressed via h in different ways, e.g. in the finite closed form as

(1o nY a9

or in the form of infinite series as

- [Eer (2)]

k=0

(A.10)

Additionally, by introducing Ry = (R; + Rz)/2 as a radius of the mid-line of layer’s
cross-section, the parameter 8 could be expressed as

Appendiz A.3. Analytical representations for Kolosov-Muskhelishvili potentials

(A.11)

For the case problem, the expressions for the Kolosov-Muskhelishvili potentials in terms
of coefficients B_y,, Bog, and By, are

(i) inside the fiber (|z] < Ry)
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(iii) inside the matrix (|z] > Ry)
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Appendix B. Details of the derivations for the first order interface jumps in
complex displacement, traction, and resultant force

First, by use of Kolosov-Muskhelishvili formulae (15), the jumps of Egs. (48) and (49),
and Egs. (36), we obtain the following expressions:
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Next, we take the derivative of Eq. (B.1) with respect to §, multiply the result by ie=2%
and subtract the resultant equation from Eq. (B.2). Conjugation of the result of those
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operations leads us to
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Final expressions for the jumps in complex displacement and resultant force can be
obtained using Eqgs. (B.1), (B.3), and straightforward algebra as

= B (o [ (1) 240m e (4) ]+ 00

-1
ih < T\
2 1 7
A = 2 A, (), o

+ 4i A9 Tm [e’ie (uf?)(j + O(h?).

By taking the complex derivative of the first expression in (B.4) and using Eq. (9), it is
possible to reformulate the jump conditions in terms of complex displacement and traction.
These conditions are given by Egs. (50).
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