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Abstract—The rapid advances in federated learning (FL) in the
past few years have recently inspired federated reinforcement
learning (FRL), where multiple reinforcement learning (RL)
agents collaboratively learn a common decision-making policy
without exchanging their raw interaction data with their envi-
ronments. In this paper, we consider a general FRL framework
where agents interact with different environments with identical
state and action spaces but different rewards and dynamics.
Motivated by the fact that agents often have heterogeneous
computation capabilities, we propose a Federated Heterogeneous
Policy Gradient (FedHPG) algorithm for FRL, where agents can
use different numbers of data trajectories (i.e., batch sizes) and
different numbers of local computation iterations for their re-
spective PG algorithms. We characterize performance bounds for
the learning accuracy of FedHPG, which shows that it achieves
a learning accuracy e with sample complexity of O(1/€*), which
matches the performance of existing RL algorithms. The results
also show the impacts of local iteration numbers and batch sizes
for iteration on the learning accuracy. We also extend FedHPG to
heterogeneous policy gradient variance reduction (FedHPGVR)
algorithm based on the variance reduction method, and analyze
the convergence of this algorithm. The theoretical results are
verified empirically for benchmark RL tasks.

I. INTRODUCTION

As an emerging ML paradigm, federated learning (FL)
carries out model training in a distributed manner [1]: Instead
of collecting data from a possibly large number of devices
to a central server in the cloud for training, FL trains a
global ML model by aggregating local ML models computed
distributedly across edge devices based on their local data.
One significant advantage of FL is to preserve the privacy
of individual devices’ data. Moreover, since only local ML
models rather than local data are sent to the server, the
communication costs can be greatly reduced. Furthermore, FL.
can exploit substantial computation capabilities of ubiquitous
smart devices.

Along a different avenue, as a powerful paradigm of ML,
reinforcement learning (RL) has been increasingly studied in
the past few years. Generally, the objective of RL training is to
acquire the optimal policy to maximize the long-term reward.
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Recently, RL has recently been applied to enormous real-
world sequential decision-making problems. However, despite
its extraordinary performance in simulated environments, RL
always suffers from many challenges in practical scenarios [2]
such as limited samples when learning, especially in large state
space or action space. For example, when RL is applied to train
a walking robot, its performance is limited by the number of
samples generated by itself.

To exploit the benefits of FL for RL, federated reinforce-
ment learning [3] has been proposed recently as a promising
approach, where multiple RL agents exchange their knowl-
edge to collectively learn a better decision-making policy.
Compared to conventional distributed RL where agents can
communicate collected samples directly to learn the policy,
FRL can greatly reduce communication costs while protecting
agents’ privacy.

In order to fully realize the potential of FRL, several
challenges need to be addressed due to salient features of FL.
First, FRL implies heterogeneous data across agents, which
mean that agents can interact with diverse environments with
different reward and state transition functions. Second, in
contrast to conventional distributed ML where nodes commu-
nicate after every iteration of local computations, an agent
may perform multiple local iterations of computation before
exchanging its local model with other agents. While this
feature can reduce communication costs of FRL, it may also
slow down the convergence of the global model due to local
drifts.

Moreover, in FRL, we also need to take into account some
unique features of RL that distinguish it from supervised or
unsupervised learning. First, RL is an online learning process
where data samples are collected while a policy is learned
via computations from the data samples. The policy used to
collect data samples can be different from the policy currently
evaluated in search for the optimal policy. Second, when the
state and/or action space is large, the amount of information
required to be exchanged could be enormous. In this case,
the policy gradient method is efficient in finding the optimal
policy.

In this paper, we explore FRL where agents perform
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distributed PG with heterogeneous computation configura-
tions. In FRL, besides heterogeneous environments faced by
agents, agents’ devices also have heterogeneous computation
capabilities. Indeed, the computation capabilities (including
computation costs) of agents’ devices can be highly diverse
in practice. For example, the computing resources (e.g., CPU,
memory) available on a low-end smartphone would be much
less powerful than those on a high-profile GPU-based desktop,
and it can vary greatly over time depending on the demand
of other computation tasks on the device. However, existing
studies on FRL only considered homogeneous computation
configurations of devices, including local iteration numbers
and mini-batch sizes. Therefore, this scheme is not flexible
and adaptable to heterogeneous and time-varying computation
capabilities of devices.

The main contributions of this paper are summarized as

follows:

« We propose a Federated Heterogeneous Policy Gradient
(FedHPG) algorithm for FRL, where agents can use het-
erogeneous computation configurations (i.e., batch size,
local iteration number) to perform the policy gradient
method in a distributed manner. The proposed FedHPG
algorithm allows distributed agents with heterogeneous
computation capabilities to perform FRL efficiently.

« We conduct convergence analysis for the FedHPG al-
gorithm by characterizing performance bounds on the
learning accuracy as a function of agents’ heterogeneous
computation configurations. Our results show that the
sampling complexity for achieving a certain learning
accuracy e is O(%), which matches the performance
of existing RL algorithms. The results also characterize
the impacts of agents’ computation configurations on the
learning accuracy, based on which we can find appropri-
ate design of these parameters.

« We extend the FedHPG algorithm to the heterogeneous
policy gradient variance reduction (FedHPGVR) algo-
rithm based on the variance reduction method, which
utilizes past policy gradients to reduce variances of cur-
rent policy gradients. We analyze the convergence of this
algorithm, which shows that its sampling complexity is
also as good as existing RL algorithms.

« We evaluate the performance of the FedHPG algorithms
by conducting numerical experiments for a benchmark
application of RL. The experimental results demonstrate
the effectiveness of the proposed algorithms.

The remainder of this paper is organized as follows. Section

II reviews related work. In Section III, we propose Federated
Heterogeneous Policy Gradient (FedHPG) for FRL. In Section
IV, we analyze the convergence of the FedHPG algorithm.
In Section V, we extend FedHPG to FedHPGVR. Numerical
results based on experiments are provided in Section VL

II. RELATED WORK

Distributed and Multi-Task Reinforcement Learning.
Distributed reinforcement learning (DRL) involves multiple
agents operating in a distributed fashion. As a major class

of DRL, parallel RL [4], [5] uses multiple learners to solve
a large-scale single-agent RL task [6], [7], where the learners
aim to learn a common policy for different instances of the
same environment. Another major class of DRL is multi-
agent reinforcement learning (MARL), where a group of
agents operate in a common environment where all agents’
action influence the global state transition and aim to find
a joint policy combining all local policies in a collaborative
manner [8]-[10], or find their respective policies in a non-
collaborative manner [11]. These prior work of distributed
RL are different from FRL which is studied in this paper,
since 1) agents in FRL can interact with diverse environments
and collaboratively aim to learn a common policy for their
different environments; 2) FRL involves some unique features
of FL, including multiple local computation iterations before
communications, and heterogeneous computation capabilities
of agents which are considered in this paper.

Multi-task reinforcement learning (MTRL) considers a

number of different but possibly similar RL tasks [12], and
aims to find a good policy for each task. Typically, each
task is drawn from a finite set of Markov decision processes
with identical state and action spaces, but different reward
and transition model parameters [13]. Therefore, MTRL is
different from FRL, as the goal of FRL is to find a single
common policy that performs well for multiple different tasks
on average.
Federated Learning. FL has emerged as a disruptive comput-
ing paradigm for ML by democratizing the learning process to
potentially many individual users using their end devices. The
past few years have seen tremendous research on FL. However,
prior work on FL predominantly focused on federated super-
vised learning (and a few of them on federated unsupervised
learning). The settings of FRL have significant differences
compared to those of federated supervised learning, due to
the salient features of RL, such as the online learning nature
of RL. There have been a few recent work on FRL [4], [14]-
[16]. However, these work have not considered distributed FL
algorithms with heterogeneous computation configurations due
to heterogeneous computation capabilities of agents, which is
the focus of this paper.

III. FEDERATED REINFORCEMENT LEARNING WITH
HETEROGENEOUS POLICY GRADIENT

Similar to FL where multiple agents collectively train a
shared model, FRL is proposed to find a single and common
policy that is simultaneously effective for a number of tasks
executing on corresponding agents. It is worth noting that each
agent independently samples and calculates gradients by inter-
acting with its own environment. The Markov decision process
(MDP) at agent k can be given by: M = {S, A, Pr, Rk, &}
where the state space and action space have to be common
across tasks. Px(s’|s,a) denotes the transition probabilities
from state s to state s’ by taking action a in the environ-
ment of agent k. R(s,a) and ~; are the reward function
and discount factor for agent k respectively. In our setting,
all MDPs are episodic with trajectory horizon H. Multiple
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agents aim to learn a common policy w : § — A(A). The
trajectory sampled by any stationary policy can showed as
Iy = {s0, a0, 51,01, -. sH 1, aH 1}x where the return along
the trajectory is ’R('rk) Zt 0 fykRk(st,at) Generally, the
performance of a policy m can be written as

Ik (1) = Ery py (1) [R (1) [ M] 1

where pg(-|m) denotes the density distribution induced by
policy  of all possible trajectories in the environment of agent
k. The goal of agents in RL is to find 7* € arg maxy{Jr(7)}.
To parameterize the policy, we use mp to denote the policy
parameterized by & € RY. For convenience, we use 6 to denote
the policy mg. The goal of agents in FRL is to cooperatively
find the common policy 6* which can maximize the total
cumulative discounted rewards
K
0* = argmax J(f) = argmax »_ Ji(8), (2)
6 6 k=1
where J(#) is a non-concave objective.
Policy gradient methods have been widely deployed in
model-free RL. Taking the gradient of J(6) with respect of
6, we can get [17]:

= Ei,~pr(-10)[V log po(lk) R (L)) (3)

The policy can be optimized by running gradient ascent
algorithms. However, it is impossible to calculate the full
gradient in (3). Hence stochastic gradient ascent is typically
used to update the policy. In particular, agent k samples a batch
of trajectories {lj .} 2%, using policy 6,, in each iteration m
and update the policy by Omy1 = O + YV B, Jk(6m) Where
v is the step size and Vg, Ji(6) is the policy estimate of (3)
based on sampled trajectories {lx ;}2%,. By is the number
of sampled trajectories in each local policy iteration at agent
k which can be different among agents since agents have
heterogeneous capability of sample collection. Vg, J(6) can
be defines as

VJk(6)

By
- 1
Ji(0) = = lio|0 4
V5, Jk(6) Bk;g( kol6) @
where g(li|0) denote the unbiased estimate of the true
gradient V log pg(Ix)|R(lx), ie., VJi(6). The most common
gradient estimators for policy gradient such as REINFORCE

and GPOMDP. The REINFORCE [18] is:

H-1 H-1
9(116) = | Y Velogmy(an |sn }] lz 7" R(sn,an) — Cy
h=0 h=0 &
The GPOMDP [19] is:
H-1[ h
9(116) = > |>_ Velogms(an [sn }] -(Y"R(sn, an) = Cyn)-
h=o Lt=0
©)

Note that Cp, and Chpp, are the corresponding baselines.

A. Algorithm Description

The pseudocode for the proposed federated heterogeneous
policy gradient (FedHPG) in reinforcement learning is shown
in algorithm 1. FedHPG starts with a randomly initialized
parameter g at the server. At the beginning of the ¢-th round,
the server keeps a snapshot of its parameter from the previous
round and broadcasts this parameter to all agents.

At the (1 + 1)-th local iteration in the ¢-th round agent
k sampled a batch {I; ’T}B‘c using current policy 67", then
the local policy can be updated by the gradient Vp, Jk(ﬂ}
which is an unbiased estimate of (3) using sampled tra]ectorles
{E‘tTc 1B After executing 7, local update, agent k sends 67"
to the server. Then the server collects K parameters of local
policy returned from the agents. Then the server aggregates the
parameter and broadcasts to all agents to start a new round of
federation.

Algorithm 1 Federated Heterogeneous Policy Gradient
(FedHPG)
1: Input: number of rounds 7', batch size { By}, stepsize n,
initial model &g
2 fort=1toT do

3 0+ 6,y
4: all agents k=1,2,..., K do concurrently:
5 6 .0 = 9-;
6: forr=0to7m.—1do
7 Sample By trajectories {Ek T}B‘c from p(-|6F")
8: update: 957+ =gk 7 4 Yo 21 g(687™)
8=

N K

o: 6t+1 — % Z Bicsﬂc—l
k=1

10: Output: {6;}7_,

IV. CONVERGENCE ANALYSIS OF FEDHPG

In this section, we present the performance of FedHPG.
Before that, we introduce a few essential assumptions required
for our theoretical analysis throughout the rest of this paper, all
of which are common in the literature. Due to space limitation,
the complete proofs of results in this paper can be found in
our online technical report [20].

Assumption 1. (Bounded gradient variance) For each agent
k, there is a constant o such that E||g(lx |#) — VJ(6)]|
o2 for all policy .

Assumption 1 is a standard assumption commonly used in
stochastic non-convex optimization.

Assumption 2. (Bounded policy gradient) For each state-

action pair (s,a), mg(a|s) is the policy of an agent at state s
where 6 € R9. There exist constants G' and F' such that

|Vologmg(als)| < G, ||Vilogms(als)| < F.

Assumption 2 guarantees the smoothness assumption on
the objective function J(6) commonly used in non-convex
optimization.
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Assumption 3. (Bounded gradient) For all agent k&, there is a
boundedness assumption on the gradient norm E||g(Ix |8)||* <
M for all policy p.

Assumption 3 can be easily satisfied by clipping the gra-
dients during training. Actually, it can be deduced from
Assumption 2 [17]. For brevity, we put it as Assumption 3.

Assumption 4. (Function smoothness) For all agents k, the
objective function is L-smoothness.

[VJIk(61) — VJIk(62)|| < L [|61 — 62| -

Assumption 4 can also be deduced from Assumption 2 [17].
The smoothness of the objective function is critical in the
convergence analysis of optimization algorithms, especially
in nonconvex optimization. Based on Assumption 2 and the
proof of smoothness in cumulative rewards, we can show
that the aggregated cumulative rewards J(f) is L-smooth
with Zi;l Ly [21]. FedHPG can guarantee the following
convergence result which provides some useful insights.

Theorem 1. Suppose the initial state distribution across agents
is uniform and the gradient estimator is the REINFORCE or

GPOMDP estimator. If the stepsize v < min{%, %% ,

the average gradient norm of the objective is bounded by:

E(VJ(6,)|

min
t=1,..T

K
2EJ(8*)—J (8 2L2v 2 —1)(271—1
< (’Y;T @) + Toxcr kz_:l rer Bk)( e @

K 2 _2
| ’Y;;“: > TkB:’“ + 'YLfM (’YLG'A + (1 — %L) OﬁB)
k=1
where a4 and apg are defined as following:

K
gy = % Z 'rk('rk — 1)(2Tk — 1)
k=1
ap — % Z 'rk('rk —1)
k=1
Remark 1. Theorem 1 characterizes an upper bound on the
learning accuracy of FedHPG, which consists of four terms.
As vy > 0, the 1st term converges to zero as 7' increases.
Besides, it gives an O(1/T") convergence rate which matches
that of [4] and the results in non-convex optimization. The
2nd and 3rd terms are caused by the variances of stochastic
policy gradient descent, and thus these two terms decrease as
the batch sizes { By} increase (and diminish to 0 as { Bz} go
to infinity).

Remark 2. We observe that the last three terms all depend
on agents’ local iteration numbers {73}, and they increase as
{7k} increase. Intuitively, due to agents’ heterogeneous data
(as a result of their heterogeneous environments), more local
computation iterations drives each agent’s local policy more
towards its local optimal policy and possibly away from the
global optimal policy (also known as “local drifts” in existing
works on federated supervised learning [22], [23]). As a result,
the learning accuracy bound increases as the local iteration
numbers go up.

We also observe that the impacts of agents’ batch sizes
on the learning accuracy can vary for different agents, which
depend on their local iteration numbers: an agent with a larger
local iteration number 75 has a larger weight of its batch size
By, in the bound. Therefore, it is beneficial to choose agents’
batch sizes based on their weights on the learning accuracy.

We note that the local iteration numbers minimize the bound
when they are all equal to 1 (i.e., 7, = 1,V:). However, it has
been widely shown that multiple local iterations achieve good
performance empirically in practice while reducing commu-
nication costs (compared to communicating after every local
iteration). Therefore, we should set local iteration numbers
based on their empirical performance as well as agents’
computation capabilities, rather than the learning accuracy
bound (which captures the worst-case scenario).

Remark 3. We observe that the 4th term in the bound does
not depend on the number of communication rounds 7" and the
batch sizes { B }. Note that such a term does not exist when
the local iteration numbers are all equal to 1 (which is captured
in some prior work [22]). Therefore, the 4th term cannot be
controlled by T" and {By}. However, we can make this term
arbitrarily small by choosing a sufficiently small stepsize ~.
To this end, the stepsize ~ should satisfy the condition below
(see our technical report [20] for details):
<mn{d S )
L’ (CEA-I—CEB)LEU, LKag '
Sample complexity is an important performance metric for
RL, as it quantifies how much experience need to be acquired
in order to find a good policy. Note that data samples for RL
come from interactions with the environment and thus data
collection is a costly and time-consuming process. Formally,
sample complexity measures how large is the training set
required in order to learn a near optimal policy [24] (typically
e-approximate optimal policy [4], [17], [25]).

8)

Corollary 1. The policy found by Algorithm 1 is e-
approximate, i.e., E[|VJ(6;)||* < e, if the number of rounds T
and agents’ batch sizes { By} satisfy the following conditions:

T=0(%)

By =0(1)
which implies that the sample complexity of each agent is
given by:

E[Traj(e)] < TreBr < O (é) .

which agrees with the results of [18], [25], [26].

V. EXTENSION TO FEDHPGVR WITH VARIANCE
REDUCTION

Stochastic variance reduction policy gradient (SVRPG) is a
typical algorithm to decrease the variance which reuses past
gradient computations to reduce the variance of the current
gradient estimate [25]. In federated reinforcement learning
architecture, we propose FedHPGVR algorithm based on
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SVRPG algorithm, shown as Algorithm 2. At the beginning of
the ¢-th epoch, SVRPG will first regard the current policy 6}, as
a reference point and each agent use it to sample Bk trajecto-

Z 9(1£5 165),
where g is the REINFORCE or GPOMDP estnnator computed
in k-th agent (a.k.a. k-th environment). Then at the n-th itera-
tion within the ¢-th epoch, the agent k samples by, trajectories
using the current policy 6F,, and then update the policy based
on the following semi-stochastic gradient:

ries and compute a gradient estimator p; =

b
1
vzn:g;[ 2108, —w- g 6D)] + 1k, ©
where w := w(l |9tn,30) = P(E ||9°)/p(l |9

which is known as the importance welght from p(I¥J |6°
Importance weight can preserve the unbiasedness of the gra-
dient estimate [25].

At the beginning of analyzing the performance of algorithm
2, we put some additional lemmas and assumptions which will
be used in following analysis.

Algorithm 2 Federated Heterogeneous Policy Gradient with
Variance Reduction (FedHPGVR)
1: Input: number of rounds 7', batch sizes By and by,
stepsize 7, initial model 6y
2 fort=1toT do
3% 0f «+ 6;_1
4 for k=1to K do

5: Sample Bk trajectories {I¥ .} Z*, from py(-|69)
6: Z 9(lz106)

: forn—OtoN—ldo

8 Sample by trajectories {i!t o J 1

from Pk( |6t n)

9: Utn - Z [g(f tn —w- g(f |60 ]
‘hut
(For ease of notatlon w = w(lf] |6F, ,69))
10 6t n+1 Bk;n + ’YUt,n
1 G Z 0%
Ko "

12: Output: {6,}T_,

Assumption 5. Let W < oo be a constant. For each pair
of policies (target policy and evaluation policy) shown in
Algorithm 2 and for each trajectory, we have

Varfw(l|01, 02)] <W VY 61,00 € R% 1 ~ py(-|62)

Theorem 2. Suppose the initial state distribution across agents
is uniform and the gradient estimator is the REINFORCE or
GPOMDP estimator. If the stepsize v < %, then the average

gradient norm of the objective is bounded by:

T
1 2KE[J(6%)—J(60)]
+ ;1 E(IVJ(8,)]” < Ty (R=1-F)
K K
(LANEIPIC 5~ N 4 (GYLANKZ1=P)E § N
N KP k2=:1 O X=:1 Be
(10

where ¢ and £ are some positive constants depending on W,
M, G and F.

Remark 4. We observe that the three terms in the bound
depend on the number of rounds 7', batch sizes {By}, and
{bx}, respectively, and these terms are decreasing with respect
to these parameters. Therefore, to achieve a vanishing conver-
gence error, we should choose sufficiently large T', { B}, and
{bk}, such that each term can be made arbitrarily small. In
this case, the sample complexity is given by O (%).

VI. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of our proposed
FedHPG algorithm on GridWorld, which is a common bench-
mark platform for RL. In this problem, the agent is placed
in a grid of cells, where each cell can be defined by the
desired goal, an obstacle, or empty. For solving this multi-
task GridWorld, the agents implement Algorithm 1 where the
local gradients are estimated using a Monte-Carlo approach,
and the states are their locations in the grid. After 100
training episodes, the agents agree on a unified policy, whose
performance is tested in parallel in all environments. The agent
selects an action from (up, down,left, right) to move to the
next cell. It then receives a reward of +1 if it reaches the
desired goal, -1 if it gets into an obstacle, and 0 otherwise. The
goal of the agent is to reach a desired position in a minimum
number of steps (or maximize its cumulative rewards).

1) Impact of batch sizes

We compare globally averaged reward among 4 agents while
using heterogeneous batch size to update the local policy
network over rounds showed in Fig.1. We observe that for
the case of heterogeneous batch size for agents to updating the
policy, the algorithm executed on that agents have larger batch
for updating will have better performance, which conforms to
Theorem 1.

2) Impact of local iteration numbers

We compare globally averaged reward among 4 agents while
using different local iteration number to update the local policy
over rounds. The first case which all agents use larger local
iteration number, ; = 5,7 = 5,73 = 6,74 = 6 and the
second case which agents use 71 = 2,79 = 2,73 = 3,74 =3
respectively are compared in Fig.2. We observe that when
agents use more local iteration number will achieve good
performance.

3) Impact of FedHPGVR

We typically evaluate the effect of the number of inner
loop N on the performance of FedHPGVR algorithm, showed
in Fig.3. We observe when N is bigger, the algorithm will
show good performance since more local sampling give better
quality of gradient estimates.
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VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a federated heterogeneous policy
gradient (FedHPG) algorithm for FRL, where agents can use
heterogeneous computation configurations (i.e., batch size and
local iteration number) to perform the policy gradient method
in a distributed manner. We characterized its performance
bounds on the learning accuracy as a function of hetero-
geneous computation configurations, which showed that the
sampling complexity matches the performance of existing RL
algorithms. We extended the FedHPG algorithm to FedH-
PGVR which utilizes past policy gradients to reduce variances
of current policy gradients, and analyzed the convergence of
this algorithm. We demonstrated performance of the proposed
algorithms via experimental results.

For future work, we will explore other RL settings for FRL
with heterogeneous computations, including temporal differ-
ence (TD) based learning such as Q-learning and the Actor-
Critic (AC) methods. These cases will be more challenging to
study due to the complex structure of TD-based learning.
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