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Abstract

A characterization for the Fourier multipliers and eigenvalues of linear peridynamic opera-
tors is provided. The analysis is presented for state-based peridynamic operators for iso-
tropic homogeneous media in any spatial dimension. We provide explicit formulas for the
eigenvalues in terms of the space dimension, the nonlocal parameters, and the material
properties. The approach we follow is based on the Fourier multiplier analysis developed
by Alali and Albin (Applicable Analysis 2526-2546, 1). The Fourier multipliers of linear
peridynamic operators are second-order tensor fields, which are given through integral rep-
resentations. It is shown that the eigenvalues of the peridynamic operators can be derived
directly from the eigenvalues of the Fourier multiplier tensors. We reveal a simple structure
for the Fourier multipliers in terms of hypergeometric functions, which allows for provid-
ing integral representations as well as hypergeometric representations of the eigenvalues.
These representations are utilized to show the convergence of the eigenvalues of linear
peridynamics to the eigenvalues of the Navier operator of linear elasticity in the limit of
vanishing nonlocality. Moreover, the hypergeometric representation of the eigenvalues is
utilized to compute the spectrum of linear peridynamic operators.

Keywords Fourier multipliers - Tensor multipliers - Eigenvalues - Peridynamics

1 Introduction

In this work, we study the Fourier multipliers of linear state-based peridynamic operators.
The main goals are to find explicit representations for the multipliers, when the operator is
defined on R”, and to find explicit representations for the eigenvalues of the peridynamic
operator, when it is defined on periodic domains. The formulas that we derive for the Fou-
rier multipliers and the eigenvalues are of two types: nonlocal (integral) representations
and representations in terms of hypergeometric functions. As have been demonstrated in
[1] and [2], such explicit representations can be exploited to rigorously characterize the
behavior of nonlocal operators and develop regularity theory for nonlocal equations, as
well as to devise efficient and accurate spectral methods for the numerical solutions of
nonlocal equations. The current work focuses on the derivations of these representations,
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while the regularity of peridynamic equations and spectral methods for peridynamics based
on the approach presented here will be pursued in forthcoming works.

There has been a recent increased interest in spectral methods for peridynamics and
nonlocal equations as these methods provide efficient and accurate solvers. One of the
features of these spectral solvers is that the nonlocality parameters do not scale with the
grid size, thus providing computational accuracy and efficiency [2]. Spectral methods
have been developed for nonlocal and peridynamic equations in periodic domain, bounded
domains, and for problems on surfaces, as well as problems involving fracture [3-6]. Spec-
tral and Fourier multipliers approaches provide analysis techniques for studying the regu-
larity of solutions of nonlocal equations, see for example [7, 8] and [1]. In [8], a Fourier
multipliers approach has been adopted for studying linear peridynamics bond-based model
in one and two dimensions. The work in [9] also follows a Fourier multipliers approach to
study a fractional Lamé-Navier operator and its connection to state-based peridynamics,
and to establish analysis results for this operator and certain associated fractional equa-
tions, see also [10].

The approach presented in this work to uncover explicit formulas for the multipliers
and the eigenvalues is based on two indirect connections; the first is a connection between
the multipliers of the peridynamic operator, which are second-order tensor fields, and the
scalar multipliers of the nonlocal Laplace operator. The second connection is between the
multipliers of the peridynamic operator, defined on R”, and the eigenvalues of the peridy-
namic operator, when it is defined on periodic domains. Throughout this article, we refer
to the Fourier multipliers of the nonlocal Laplacian as the scalar multipliers, whereas the
tensor multipliers refer to the Fourier multipliers of the peridynamic operator.

A brief description of the main steps in our approach and the organization of the article
are as follows. The definition of the linear peridynamic operator in R” and the specific inte-
gral kernels are provided in Sect. 2. In order to find explicit representations in terms of the
nonlocality parameters and the space dimension, we focus on integral kernels of the form
(1), which can be singular or integrable. However, we emphasize that the results in this
work can be generalized to other types of integral kernels. Section 3.1 presents the nonlo-
cal Laplacian and its multipliers given by the integral and hypergeometric representations
(9) and (10), respectively. The multipliers of the Navier operator of linear elasticity and
the integral formula for the tensor multipliers of the peridynamic operator are derived in
Sect. 3.2. Each entry of the n X n tensor multiplier is written as an integral in R". A key
step in our approach is to reveal a simple structure for this tensor. This is accomplished
in Sect. 3.3, where we show in Sect. 3.3.2 that the tensor multipliers can be recovered
using the derivatives of the scalar multipliers. By combining this relationship with the
hypergeometric formula of the scalar multipliers together with the aid of some facts about
hypergeometric functions as presented in Sect. 3.3.1, we arrive at a simple structure for
the tensor multipliers in terms of hypergeometric functions as demonstrated in Sect. 3.3.3.
An immediate consequence of this result is the convergence of the tensor multipliers of
the peridynamic operator to the tensor multipliers of the Navier operator for two kinds of
local limits. In Sect. 3.3.4, the tensor multiplier at any vector in R” is shown to be a real
symmetric matrix with n orthonormal eigenvectors and two distinct associated eigenval-
ues. Using the hypergeometric representation for the tensor multipliers, we derive explicit
formulas for these eigenvalues in terms of hypergeometric functions. Using these eigen-
value formulas, we derive integral representations for the eigenvalues in Sect. 3.3.5. In the
Appendix, we provide an alternative derivation to the hypergeometric representations of the
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tensor multipliers. The presentation is more technical than the one provided in Sect. 3.3 but
shows the results for integrable as well as singular integral kernels. In Sect. 4, we consider
the peridynamic operator defined for periodic vector-fields. We show how the eigenvector
fields and the eigenvalues for the peridynamic operator on periodic domains can be derived
from the tensor multipliers’ eigenvectors and eigenvalues.

2 Overview

Linear peridynamic operators defined in a domain Q C R” have the form [11]
Lu(x) = / Cx, y)(u(y) — u(x)) dy,
Q

where C(x, y) is a second-order tensor and u : R" — R" is a vector field. For a homogene-
ous isotropic solid, the linear operator takes the form

Lu(x) =,0/ y|(||)|)y ”!)()I—X)®(y—x)(u(y)—u(x))dy

) / / Yy = <Dy (llz = XD = 9 ® ¢ — 1) (u() — () dzdy
QJQ

+p’//y(lly—XII)Y(IIZ—yII)(y—x)®(z—y)(u(z)—u(y))dzdy,
QJQ

where y is a scalar field, and p and p’ are scaling constants that include the material proper-
ties. Taking Q = R”, and due to symmetry, the operator reduces to

Eu(x):p/ %(y—x)@(y—x)(u(y)—u(x))dy

0[]ty =tz =500 - © @ = yyuco dads.
In this work, we focus on radially symmetric kernels with compact support of the form

r(ly = xll) = *# T ”,, 28,00 1)

where ¢ is given by (3), B, is the indicator function of the ball of radius 6 > 0 centered
at x, and the exponent satisfies f < n + 2. In this case, the linear peridynamic operator,
parametrized by the horizon (nonlocality parameter) 6 and the integral kernel exponent f,
can be written as

(y —)C) ® (y —)C)(
By —x|IP+2

M)z / / 7Y () dad
u(z)azay,
By I8, 1y — x||ﬁ llz—yll#

where y and 1* are Lamé parameters, and the scaling constant ¢®# is defined by

LPa(x) = (n+2) u ™ u(y) — u(x)) dy

()]
+ (A -
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2 -1
AP = (i/ Il dw) )
2n B5(0) lwll?

) 2(n+2—ﬁ)r(g + 1)

3

ah/25n+2-p

Remark 1 Note that the integral in (3) is only defined for f < n + 2. However, the last
expression in (3) can be used to define c¢®# for larger f.

Remark 2 The second Lamé parameter is usually denoted by A, but we choose to use A*
instead in order to keep A to denote an eigenvalue.

It is convenient to use the following decomposition of £>#
LFP=r,+L,
where, after changing variables,

wRw

Lyu(x) = (n+2) uc®f /

B,0) IwllP+2 (uCr+w) = u(x)) dw, )

and

(c*F)? / / w q
Loux) = (A" —p) —— @ —— u(x + g + w)dgdw. 3
4 B;(0) J B5(0) lwll# llqll? ®)

We note that £, is the linear operator for bond-based peridynamics.
We denote by N the Navier operator of linear elasticity. For a homogeneous isotropic
medium, it is given by

Nu=A* + wV(V - u) + pAu. 6)

3 Fourier Multipliers
3.1 Multipliers for the Nonlocal Laplacian

For scalar fields u : R — R, the analogue to the peridynamic operator £°* is the non-
local Laplacian, which in this case is given by

168 _ 5,;;/ u(y) — u(x) dy.
ux) =c " o=l y @)

with ¢® given by (3).
The Fourier multipliers for the nonlocal Laplacian in (7) have been studied in [1], in
which the multiplier m®” is defined through the Fourier transform by
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LPPux) = @ /Rn m>P(Va(v)e™ ™~ dv, (8)
where m%# has the integral representation

w) -1
mi () =c5'ﬂ/ cosv-w)—1
o P ©

The hypergeometric representation of the multipliers is provided by

(10)

n+2-— +2 n+4-
m*(v) = —||v||22F3<1, Poym P _ ||v|| 52>

2 27 2

3.2 Integral Representations for the Peridynamic Multipliers

In this section, we extend the approach developed in [1] for the nonlocal Laplacian L% in
(7) to the peridynamic operator £ in (2). We begin by deriving integral formulas for the
Fourier multipliers of £>#. Express u through its Fourier transform as

(271r)” / a(v)e ™ dv.

Since the definition of £°# can be extended to the space of tempered distributions
through the multipliers derived below, it is sufficient to assume that u is a Schwartz vector
field. We compute the multipliers for £, and L separately. Applying £, shows that

ulx) =

Qw
Lyux) = (n+2)yc5’ﬁ/ LrOW
b 8,0 WP+

1 5 WRW [ ivw ~ iv-
= n+2)uc ~ﬂ/ = (M — 1) dw|ti(v)e” ™ dv,
Q2m) / [ B;(0) ||W||ﬂ+2( )

(u(x+w) —u)) dw

providing the representation

Lyux) = (2 ¥ M,,(v)ﬁ(v)eiv-x dv, (11)

where

M,(v) = (n+2 54’/ WOW (givw_ 1) ¢
W =m+2)uc 50 ”W”,m(e ) dw

(12)

=(m+2uc’ / W (cos(v - w) — 1) dw.
B;(0) ||W||ﬂ+2

Similarly, we compute the multipliers of L.,

w
—— Q@ ——u(x + g+ w)dgdw,
/(0) ./5«)) llwll# ||61||ﬂ

(C" Py / W i / q_
(A* ——e"dw ® eV dg|i(v)e™™ dv,
(275)" / [ B,(0) [Iwll? B,(0) ||61||ﬁ
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providing the representation

1
2y

Lou(x) = / M,(VU(v)e™™ dv, (13)
[R)I

where

(c>F)? (/ W -
M(v) = (A" — ) ——"dw | ® ——eV"dw
4 B;(0) llwll? B;(0) [Iwll?

e (c>F)? W W
=—A=pn 7 <—/B§(O) wll? sin(v w)dw> ® </B§(0) _||w||ﬂ sin(v w)dw).

(14)

Combining (12) and (14), we obtain the multipliers for L5,
M =M, +M,, 15)
which satisfy
Lo%u = M,

The following summarizes the results of this subsection.

Proposition 1 The Fourier multipliers M®F of the linear peridynamic operator L5 in (2)
are characterized through integral representations as given by (15), (12), and (14).

We note that the Fourier multipliers of A/, the Navier operator given in (6), are similarly
defined by

Na = MV,
and can be shown to be given explicitly by
MYy = =" + v @ v — ulvIP 1, (16)

where / is the identity matrix.

3.3 Peridynamic Multipliers: Structure and Hypergeometric Representations

We emphasize that the multipliers of linear peridynamics, given by (12),(14), and (15), are
second-order tensor fields. In this section, we reveal a simple and explicit structure for the
matrix M®#(v) in terms of v and the derivatives of the scalar multipliers (multipliers of the
nonlocal Laplacian) m®#(v) given by (9) or, equivalently, by (10).

3.3.1 Hypergeometric Formulas
In this section, we derive and present hypergeometric formulas that will be useful in the

subsequent sections. Let a = (a;,a,, ..., ap) and b = (b, b,, ..., b,) be two vectors of coef-
ficients. The generalized hypergeometric function ,F, with parameters a and b is defined as
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o (@)
JF (arb;z) 1= k; B, 1
Here, the notation (a), represents the product
@) = (@ (@) - (@)
where (a), is the Pochhammer symbol

T(a+k)
[(a)

We also define the notation

(@), =

=a@a+ )(a+2)--(a+k-1).

Ha:alaz---ap and a+c=(a1+c,a2+c,...,ap+c),
and recall the following useful facts about the Pochhammer symbol.
@ =ala+ 1) (a+k—1)(a+k)=ala+1), 17)
and

(a+ D a+k

@, a (18)
In light of (10), we consider the derivatives of a function of the form
o @ @)
@@=z, F(ab)=z) ——= _— 19
f P q kzz(; (b), k! k:z() (b), k! (19
Lemma 1 Let f(x) have the form (19). Then,
'@ = 1 F,@5b'52) (20)
and
a/
@)= % piiFg@ + 1D +1;2), 21)
where

a'=(2,a,,...,ap) and b’=(1,b1,...,bq).

Proof Taking the term-wise first derivative and applying (18) shows that

f’(Z) = i Mz — i (a)k(z)k Zk

==, F @52,
& by, kA b)) ke

Taking a term-wise derivative once again, then reindexing and using (17) yields
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pon oz @k S @)+ )
f'@o=2 b, ! =2 Oy (k+ 1)

k=1 =l
I i @+, ¢ Jla
TIIv A o+ Dk I

F,@ + ;b +1;2).

O
Two additional formulas we shall use are found in the following lemmas.
Lemma 2 For any choice of coefficients,
I]a
P abz)—1= mz priFa(La+ 1,2,b+ 1) 2). 22)
Proof This is again found by term-wise differentiation, reindexing, and applying (17).
o @ F o @y
F (a;b;2)— 1= — == .
pa ; (b), k! ; by K+ 1!
_la_ g @ 2
[Ib & b+ 1D (2), k!
Lemma 3 For any choice of hypergeometric coefficients and for any numbers ¢ and d,
2
Py 2,0:2) 4 d Fy(@ibi2) = (e +d) o a1, 5520 2, S2L i),
(23)
Proof This can be seen by term-wise addition and using (18):
o« [ c@ (), d@)\
c, F..(L,a;2,b;2) +d F, (a;b;z) = <—+ L
priTar pra kz:; (b)(2), ~ (b), ) k!
_ i <c+dk+d>@§
— k+1 (b), k!
o ctd
P
= k+1 (b) k!
c+2d
o () 0 o
Cc+ .
% (2) @™
O

3.3.2 Derivatives of the Scalar Multipliers
In this section, we show how the tensor multipliers M?#, and in particular M, , and M, can

be recognized in terms of the derivatives of the scalar multipliers m%#. Here we present
an intuitive approach that exposes the connection between the scalar multipliers and the
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tensor multipliers. In doing so, we focus on the derivation rather than specific integrability
requirements on f; some integrals need to be understood in a principal value sense. The
Appendix presents an alternative, but more technical, approach that shows that the results
are valid for all values of g < n + 2.

Differentiating m% in (9) with respect to v; shows that

0 55 511/ —w; sin(v - w)
—m®P(v) = ¢ — adw. 24
9, B;(0) lwll? 24
Substituting this into (14) yields the formula
_ A w0 sp 00 s
(Ms(")),j =-—7 6_vm (v)xm ). (25)

i J
Differentiating a second time in (24) (and replacing f by f + 2) yields

0> e 5,042 / —W;w; Cos(v - w)
——m®P(v) = > — dw, 26
ov,0v; B;(0) [lwll#+2 (20

which implies that

ww. cos(v - w) 2
/ i dw = —(cPP+2)! 9 mP ().
B;(0)

[lw]|p+2 9v,0v;

Moreover,

2
ww; / w; 5 e
— o dw=6; [ —— dw =25, @7)
./B,;(O) [lw]|#+2 ! B;(0) [lw||#+2 /
Substituting these last two formulas into (12) shows that

_ (+2uct (P
(Mb(\/))l] - cO.B+2 aviavj

m>P 2 (v) + 25,-j> . (28)

The scalar multipliers m®# can be written as

n+2—-p _ n+2 n+4-p 1
m53ﬂ<v>=—||v||22F3<1, 2t ;—van%Z)
4/ 1 22) n+2—-p _ n+2 n+4-p L2
=5\ o F 13 ;23 ) s T 1 29
S (=318 )oFs (1555 = S - P ) 29)
_ 4 1, 20
= Sf(-g )

where f has the form (19) with p = 2, g = 3, and coefficients a and b defined to match (29).
Differentiating once shows that

0 spy_ 4 Loo2s2 Lo\ _ Looi2s2
50 = 5l (g8 ) (=35) = =2 (=3P ) o)

Differentiating a second time shows that
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az;vjm‘s’ﬂ(v)=—2f< TV )3, = 27" (= IPe )y, - (—58%,) o

1
- —2f’<—Z||v||252>5y- + 52f”<—z ||v||252)v,y,.
The results of this subsection are summarized by the following.

Proposition 2 The tensor multipliers M, and M, can be represented in terms of the gradi-
ents of the scalar multipliers m>? as

(n+2) pc®
(0.5+2

= —%<5zf”<—%llvn252)v ®v+(2- 2f’<—4—11||v||252)>1>,

where f has the form (19) with p =2, q =3, and coefficients a = (1,%) and b =

(2, "7” MT_”) and,

M,(v) = — (VVm*P+2(v) + 21),

M(v) = 80 (v) @ VP (v),

x 1 g
= - = (/' (-7MP8) ) ver.
where f has the form (19) with p =2, g =3 and coefficients a = (1, @) and b =

n_+2 n+4—p
(2, 12 it )

This result together with the formulas derived in Sect. 3.3.1 allows us to express the ten-
sor multipliers as hypergeometric functions.

3.3.3 TheTensor Multipliers: Hypergeometric Representations
In this section, we provide a simple and explicit form for the tensor multipliers M, (v) and M (v).

Equations (25) and (30) and Lemma 1 show that M (v) is a rank-one symmetric matrix
of the form

M) =a,(V)vQv, -
with
am === (-2(- }tuvn%Z))2
——(/1*—/4)( (=3P 52>>
=—(x —mm(l,z,”” ﬂ,1,2,”;2,"+‘2‘ P._ ” ||252>2 33)
=—(1* = p), F2<n+2 i n+2’n+421 p._ ” ||262>2
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Equations (28) and (31) and Lemma 1 show that M, (v) is a symmetric matrix of the form
M,(v) = a (VI + o, (VIV Q v. (34)

The coefficient of the identity matrix is (keeping in mind that this time we are differen-

tiating m%P+2),
(n + 2 uc? 1
ap ) =~ B (2= 27 (-5 VI )
2(n + 2pc®? =B, nt2 nt2=p )
== +Fy 1,2, 7 1,2, 7 > || 1?62 ) — 1
2(n + 2)uc*? n—p n+2 n+2-F
=TI (g 2L ——|| 6% ) =1).
c0h+2 2 2 2
(35)
Applying Lemma 2 simplifies this expression to show that
2(n + 2)uc? 2(n—p) 1
an(m = 21520 D) (-5m5?)
c8-p+2 n+2)n+2-p)
n+2—f_n+4 n+4d-— ﬂ 2
X, F5| 1, 32, , 6
2 3< 5 > > II I (36)
) n+2-f _ n+4 n+4- ﬁ 2
=- F( 1, 32, ) 6
HlvIP 3< 5 P
The other coefficient can be computed as
_ (n+2)uc™’ 20m( 1 2¢2
abz(V)——W5f (_ZHVH o )
(4 2)uc’ 2(n—p) 52
co:h+2 n+2)n+2-p)
(23 2B, nd ntd=p ” i 37
3Ly 5D, ) 24 T )
n+2—-f n+4 n+4-— ﬂ 5
=—2u F ; , 1)
H 2< D) B ) || ||

It is interesting to see how these formulas combine to provide a formula for the trace
of the tensor M,,. Since we know all eigenvalues of M, using (32)-(37), we can compute
the trace as

trace M, (v) = nay, + ||v]|%ay,

2 n+2—-p_ n+4 n+4- ﬁ 2
== Fil L, 32, , o
nulvIP 5 3( 5 R ZIMP
n+2—f n+4 n+4-— ﬂ
—2ullvI? |F S CE
ulvIP | 2< L )

Applying Lemma 3, cancelling the repeated (n +4)/2 term from the hypergeometric
series coefficients, and then applying (10) shows that
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2- 4-
trace My(v) = —(n + 2)pul|v]? 3F4<1’n+4 n+ ﬂ,z’n+2 n+4 n+ I3 1”‘/”252>

20 2 T2 T2 T 2 g
n+2—-p _n+2 n+4-p 1
32, ; lIvii*s*

=—(n+2pulvI? 2F3<1’

= (n+2)um* (v).

2 T2 T 2 T g

This same formula can also be derived directly from (12), since

trace (w @ w) (cos(v - w) — 1) = cos(v-w)—1
[lwl|#+2 wiie

yielding the integrand in (10).
The main results of this subsection are summarized as follows.

Proposition 3 The tensor multipliers M, and M have the following hypergeometric representations

n+2-p _n+4 n+td-F 1
M,(v) = —u|lv|]? 2F3<1, :2, ;- levnzéz) 1

2 2’ 2

n+2-p n+4 n+d-p 1
—2M1F2< Ty T ;—ZIIVII252>V®v,

and

2
n+2—f n+2 n+4-p 1, 12
; B ;__ 6 .

2 2 2 il VeV

M,(v) = —(A" — ) le<

An immediate consequence of this result is the convergence of the multipliers of L% to
the multipliers of N in the limits as 6 = O oras f — n+ 2.

Proposition4 Let f < n+ 2. Then,

Jim M, (v) = - ulviP I =2uvQ@v,
51ir(r)1+ MWV)=-QA"-wveyv,

Jlim M)y ==+ pv@v—ullvll> I = MV ).

Moreover, let 6 > 0. Then,

lim M,(v) =— 21-2

pJim, »(V) ulivll HVvRv,
lim M(v)=—(A - v@v,

font2-

lim M%P(v) == (A" + wv @ v — u||v|I* I = MV(v).

p—-n+2-

Proof This result follows from the fact the hypergeometric functions in Proposition 3 are
equal to 1 under the considered limits. a

Remark 3 The same results hold true for the limit from above g — n + 2.
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3.3.4 Eigenvalues of the Tensor Multipliers

The form of the multiplier M®#(v) is found through (32) and (34),
M%P(v) = a, (VI + (a,,(V) + a,(V)V @ v, (38)

where a;,;, @;,, and a, are given by (36), (37), and (33), respectively. This implies that M%#
is a real symmetric matrix. Moreover, v is an eigenvector of M%#(v),

M (v = 4,(v)v, (39)
where
/11(V) = 051;1(‘/) + (abz(V) + as(V))”V”z-

Using (33), (36), and (37), this eigenvalue, which is associated with the direction of
v, has the following hypergeometric representation

n+2—-p_  n+4 n+4- ﬂ 2
(W) = =|VIP( uoF5( 1, 2, , B
) mu@23< 5 . M
n+2—f n+4 n+4- /3 9
2u F.
+M12< L I||I5 (40)
2
n+2—-f n+2 n+4-— ﬂ 2
+ (A" — u) |F : . 6
( un2< S L1

An alternative expression for this eigenvalue can be obtained by using Lemma 3 to
combine the first two hypergeometric functions, yielding

Sn+2-0_3 n+4 n+4- ﬂ 2
A —IVIP( 3p Fu| 1,2 2,2, , 5
1 (V) ==l < M 4< PR > > II 112
n+2-pn+2 ntd=p 1 2y (4D
A=) |F =, K
+ (A=), 2< 2 5 > II I ))

The other n — 1 eigenvectors are orthogonal to v. Denote by v! a vector in R” orthog-
onal to v. Then,

MO (vt = L, (v)v?, (42)
where
A (V) = ap (v). 43)

Using (36), this eigenvalue, which is associated with orthogonal directions to v, has
the following hypergeometric representation

(44)

n+2-f _ n+4 n+4- ﬂ 202
, - é
: Ll

@m=—mw%&0, :2,

The results in this subsection are summarized in the following.
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Theorem 1 Forv € R", the eigenvalue A,(v) ofM5'ﬂ(v), associated with the direction of v, is
given by the hypergeometric representation (41) and the eigenvalue A,(v) of M®#(v), associ-
ated with orthogonal directions to v, is given by the hypergeometric representation (44).

Corollary 1 Let v € R™. Then, the tensor multipliers M®#(v) and MN(v) have the same set
of eigenvectors: v and n — 1 eigenvectors orthogonal to v. Moreover, the eigenvalues of
M%P(v) converge to the eigenvalues of MN(v) in the local limits as follows: for p < n + 2,

lim 4,() = =G + 20 IvIP,
. _ 2
51Lr(r)1+ Ap(v) = —ullvll®,
and for 6 > 0,
. i 2
ﬂ%hnnjz_ M) = =" +2p|VII7,

Lim  A,(v) = —u||lv||*
Jlim 450) = —pllv]

3.3.5 Integral Representations for the Eigenvalues of the Peridynamic Multipliers

In this section, we provide integral representations for the eigenvalues A, and A,, given by
(40) and (44), respectively.

Theorem 2 The eigenvalue of M®P(v) associated with the direction of v is given by

)
H) = 0+ Dt / W w

B;(0) W(COS(V -w) — 1) dw

2 (45)
— (- ,4)(@/ 7 in(v - w) dw>
2 B;(0) Ivilliwll? '
The eigenvalue of M®P(v) associated with orthogonal directions to v is given by
Ay (v) =(n + uc®? / %(Sin(v ‘W) —v-w)dw. (46)
8,0 IIVIPIwIIF*
Proof Solving (39) for 4,(v), we obtain

A () = M) - W @7)

The result (45) follows from (47) combined with the fact that M = M, + M, and the
integral representations of the multipliers given in (12) and (14).
To derive (46), we use (43) and (35) to write

5.0 _ _
/12(V)=M<21F2<n fint2nt? ﬁ~—i||v||262>—2). @8)

coP+2 2 727 2

From (24), (30), and (33), we obtain
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2- 4-
Ca,ﬂ/ w sin(v-w)dw=2lF2<”+ ﬂ;n+2,n+ ﬁ;_i”‘/”%z)‘/.
B

2 2 2

5(0) [lwl|?

Thus, by replacing f by f + 2, then multiplying both sides of the above equation by

v

vz’

we find

n—pn+2 n+2-p

c‘s’ﬁ”/ $sin(v-w)dw=2 F < : , .
B,(0) lwllA+2]v||? 102 2 2 2 4

Using (27), we have the following identities

\%
2=Qhy - ——
[IviI?

wRw v
_ <05,p+2/ ®ﬂ+2 dw)v- _
8,0 Wl [Ivi

2
V-w
= C(S’ﬂ+2/ —( ﬂ+2) 5 dw
B, WP+

Using (48), (49), and (50), we obtain

IIVI|252>-

(49)

(50)

5.8 )
dy(v) = 8D <c5»ﬂ+2 / VY Gin(vew)— v w) dw),
B

coh2 L IwllP+2 v

from which the result follows.
4 Eigenvalues of the Linear Peridynamic Operator

Consider £% as an operator on the periodic torus

T =[Ji0.73,  with¢; >0, i=12,...n

i=1

In this section, we use the multiplier approach developed in the previous sections to iden-

tify the eigenvalues and the eigenvector fields of the operator £,
L =i
Let y be a fixed vector in R". For any k € Z", define

v, = Q2rk, /€, 25ky [ 5, ..., 27k, [ €)T,

VX

yi(x) = ey

Then, by applying £, in (4), and using (12), we obtain

— 0.0 wew Ve (W) o, ivex
Ly, (x)=m+2)puc /B(o) —||w||ﬂ+2 (e k y —e'% y) aw,
s

— <(n + 2)”Cé,ﬂ/ w ® w (eivk~w _ 1) dW) eivk~x 7,
B

L) [Iwll#+2

= M, (v (x).

S1Y)
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Similarily, by applying £, in (5), and using (14), we obtain

5.01\2 )
Esy/k(x) _ (ﬂ* _ /4) (C ) / / L ® q ezvk~(x+q+w) y dqdw,
B;(0) J B3(0) [lwl|?

4 llgll?

. (c®Py? </ W > </
= (A" — _— — MW ®
( u) 2 o) “w“ﬁe w i

=M, (v (x).

Equations (51), (52), and (15) yield

Ly, =Ly + Ly,

=M,(vow, + M vy,

= M*P(v)y,.

iv-q dq) eivk<x 7,

(52)

(33)

Denote by M, = M#(v,), the tensor multiplier evaluated at v,. From (38), (39), and (39),
the matrix M, is real symmetric and has » orthogonal eigenvectors: one in the direction of v,
and n — 1 orthogonal to v;, denoted by ¢ k2 ..., & The associated eigenvalues are denoted by

A (k) 1= A,(vp) and A, (k) := A,(v;), respectively. Explicitly,
My, = A, (k)v,

M =08, j=2,...n

Define

1 iV~
¢, (x) ="y,

L) =", j=2,...n.
Then,

L7 = M ().
="My,
=" A (k).
= (0,

and, for j =2,...,n,

ﬁ&,ﬂq}i — M&,ﬂ(vk)#(,
= "ML,
= M a0,
= L),

(54)

(35)

(56)

(57

This shows that the eigenvalues A,(k) and A,(k) of the peridynamic operator £°7,

defined on the periodic torus, are the eigenvalues of the tensor multipliers M,.
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Remark 4 In the eigenvector fields definition in (54) and (55), the complex-valued func-
tions e+ can be replaced by the real-valued functions cos (Vg - x) or sin (v, - x).

The summary is given in the following result.

Theorem 3 Let k € Z". The eigenvalues of the linear peridynamic operator L% are
A (k) 1= A;(vy) with associated eigenvector fields ¢i and Ay (k) 1= A,(v;) with associated
eigenvector fields ¢2,f0r J=2,....n, where A and A, are given in Theorem 1, or equiva-
lently, in Theorem 2. The eigenvector fields {%}kezm with j =1, ... ,n, are defined in (54)
and (55).

Convergence of the eigenvalues of the peridynamic operator to the eigenvalues of the
Navier operator follows immediately from Corollary 1 and Theorem 3. The eigenvalues of
the Navier operator in (6) are given by

Wiy == + 2wkl and (k) = —p |IkII. (58)

5 Discussion

The hypergeometric representations of the eigenvalues, given in (40) and (44), are
utilized to compute the eigenvalues 4, and A, as shown in Fig. 1. It easily follows
from (58) that for the Navier operator, the eigenvalues are non-positive and )/lv(v) is
decreasing in A* for a fixed value of y, which additionally can be seen from the eigen-
values’ curves for the Navier operator (top-left) in Fig. 1. The non-positivity of the
eigenvalues and the monotonicity of 4,(v) as a function of A* hold true as well for
the peridynamic operator. These observations follow from (45) and (46) for any 6 > 0
and f < n+ 2 and can also be observed in Fig. 1. In addition, in this figure, we note
that in the first row (which corresponds to 6 being close to 0) and the first column
(which corresponds to f being close to n+2) the eigenvalues satisfy 4,(v) & /Vlv(v)
and A,(v) & /19/ (v), which is consistent with Corollary 1 and the fact that the hyper-
geometric functions in (41) and (44) are continuous. Moreover, in the second row of
Fig. 1, which corresponds to f = n + 1, we observe that the curves of the eigenvalues
A1(v) and A,(v) are linear, of order ||v||, for large values of ||v||. The asymptotic behav-
ior of the eigenvalues in the third row of this figure, which corresponds to f = n, can
be shown to be logarithmic in ||v||. Furthermore, for integrable kernels (when g < n),
it can be seen from the fourth row of Fig. 1 that the eigenvalues are bounded. These
observations can be rigorously proved, similar to the approach followed in [1], using
the hypergeometric representations (41) and (44), and can be used to derive regular-
ity results for peridynamic equations. Lastly, we notice in the figure that the curves of
A, (v) for different values of A* converge to a single curve for large values of ||v||, in the
case that f < n. This can be shown using the integral representation (45) of 4, and the
Riemann-Lebesgue Lemma, which implies that sin(v - w) weakly converges to O in the
limit as ||v]| = .
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Navier Operator
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Fig. 1 The eigenvalues (vertical axis) 4,(v) and 4,(v), as given by (45) and (46), for the 3D case. Here ||v||
(horizontal axis) is sampled at 1000 equispaced points in the interval [0, 15] and 6 and g are as given in the

titles. The shear modulus and the second Lamé parameter are given by = 1 and A* = —-1.9,-1,0, 1,2. For
each plot, the dashed line shows 4,(v) and the solid lines show 4,(v) corresponding to the different values
of A* in a decreasing order, i.e., the top solid curve corresponds to A* = —1.9, the second corresponds to
A* = —1, etc.

Appendix. Alternative Derivations of the Hypergeometric Representations

In this section, we provide an alternative derivation of the hypergeometric representa-
tions summarized in Proposition 3. In the following, the n-sphere is denoted

S'={xeR"™! ;x| =1},
while the n-ball is denoted
B"={xeR": |x| <1}.

The (n — 1)-sphere has surface area

while the n-ball has volume
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Formula for M,

Consider the integral

1 - %(v -w)?2 — cos(v - w)
&) 1= / dw. 59)
B;(0)

lIwi|#+2

Since the numerator is of order O(||w/||*), the integral converges as long as § < n + 2. Moreover,

0%g, (v ww;
&) =/ —T(cos(v - w) — 1) dw.
0v;0v; By [wllP*

Now, we rewrite (59) in spherical coordinates oriented so that v - w = ||v||r cos ¢,. The
integral can be written as

5
g,(v) = / r"‘ﬂ‘3/ (1 - %llv”zr2 cos® ¢p; — cos(||v||rcos ¢1)> dgV dr. (60)
0 so-1

The innermost integral consists of three terms. The first term is simply

/ dg V=S5,
Sn—1
For the second term, we write

—%llvllzrz/ coszqﬁldSHV:—%Ilvllzrzsn_z/ cosqu1 sin"‘2q15l de,
sn-1 0

1 n—1
ﬂ2F<T)

1
= _Z ||V||2r2Sn—2

For the final term, we use [12, Eq. (9.1.20)].

—/ cos(||v||rcos @) g1 V = — ,,_2/ cos(||v||rcosgbl)sin"_zqﬁl do,
- 0

nh‘("%)
= =8, e (VI
1 2
(31v17)
1
(=] ﬂil—‘<ﬂ)
2 2
=-— T vin
() (4iwir)’

275
=—— 2T (V.

(41vrr)*
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Now, we can apply [12, Eq. (9.1.10)] to obtain a series representation.

) & (=HIvIE
—/ cos(||v]|rcos ¢,) dgi1 V = =272 Z &
5 = k!l"(’% +k>

Combining the three terms for the inner integral in (60) yields

/ (1 - %llvllzr2 cos? ¢, — cos(||v||rcos 4’1)) dgV
Snfl

LS IV
= S1 = VPRV, — 228 Y, —

= k'F( +k>
1 2.2 1 2.2\k
. 2 =7 lvIFr 2 (=7 vIFre)
=2r2 1 + 272 4 —27:52—4
r(g) ( +1) = kvr< +k>

(=3 IVIPr)

= ( +k)

Substituting into (60) and integrating provides the series representation

© 5 (_l)k”‘/|l2kr2k+n—ﬁ—3
&) = =2m: ) / :
k=20

kvr< +k>

1 _p—
. o (_Z)k”‘/”2k52k+n p-2

:_2”2k2(2k+n—ﬁ 2)k'F( +k)

Differentiation shows that

9g,(v) ot o0 k(_%)k|lvll2k—252k+n—ﬁ—2

= Qk+n-p- 2)k'F< +k)’

and
9°g,(v) a5t i k(—l)"||v||2"‘252"+”‘ﬂ‘2 syt © k(k—1)(=L )k”VHZk 4 52ktn—p-2
Mo DB @ken-p- 2)k'F( +k) B Qk+n-p- 2)1@1“( +k)

Thus, the second gradient of g, has the form

VVg, =g, (I + gp(V)v @ v.

The functions g,; and g, can be expressed as generalized hypergeometric series as follows
For g,,;, we write
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1 -
oo (_Z)k+2||‘/||2k+252k+n p+2

gy (V) = —4x> -
20 Ck+n—p+2)0k+ 1)!1“(% +k)

. (_i)2||V||25n—ﬂ+2 )

= 4! o (s
g (n+2—ﬂ)r(%)k—§k!( 4" )

where

(n+2— ﬁ)F(%‘)
ak = .
Qk+n+2— ﬂ)F(k+ #)(H 1
The ratio of consecutive coefficients is

n+2—p
G (k+—2 )(k+ )

A <k+¢%i)(k+§¥)®+2)

‘We can recognize the constant in front of the series by writing

R m16M2h B 1

Yor2-pr()  Aas2-pr(zer)(ser)  T0ED

Thus,

v n+2-— +4 n+4-
g&m(v) =— [ F<1, bon b, _

L 2s2
12, , ;= —lIviI*6” ).
bn+2) 23 2 2 2 il )
Using a similar procedure for g,,, we write

1 —
o0 (_Z)k+2”‘/”2k52k+n p+2

8n(v) = —81>
S Qk+n—p+ 2)k!r<%‘ + k)

i 2 (=2ivPe?)

(n+2— ﬁ)r(%) par

_1\2ent2-p
AR

= —8rx2

k

where
(n+2-pr(=)
a, =

- (2k+n+2—ﬁ)F(k+ %“)

In this case, the ratio between consecutive coefficients is
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k4 = ﬂ)
A1 _ (

a <k+n+4 ﬁ)(k+n+4>

The constant in front of the sum can be written as

TL'% 5n+2—[} 2

_2(n+2—/3)r(§ + 1)(%) T Pn+2)

therefore

2 — 4 —
gpp(V) = ———2 F<”+ fntdntt-p _ ||||52>

hn+2) "2 2 T2 2

To connect this with the multiplier matrix M, (v), we observe that

My(v) = (n+2) uc®’ / 2 (cos(v - w) — 1) dw
B

4(0) ||W||ﬂJr2
=n+2)uc®?vvg,(v)
+2—-B_ n+4 n+d- ﬁ
= —ulvi? F 1.2 2 2521
ulvII= 2 P50 1, T R II I
n+2—f n+4 n+4- /3 2
—2u F : , b v,
M 2< > 5 > || 1’6 Jv®v

recovering the first formula of Proposition 3.

Formula for M,

The formula for M is similar, but we begin with the function

1 —cos(v-w)
1= —= dw.

Since the numerator is of order O(||w||?), the integral converges as long as f < n + 2.
Taking a derivative yields

0
8:(V) =/ i sin(v - w) dw.
ov; B;(0) lwll#

l

Again, we can use spherical coordinates to write

6
gs(v):/ r”_ﬁ_I/ (1 =cos(||vllrcos ¢,)) dg1V dr. (62)
0 sn-1

The terms in the inner integral were found in the previous section and allow us to
rewrite the inner integral as
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1
S (=g IvIPA

/ (1 —cos(||v||rcosq,’>1)) dgV=_5,_, —2r3 _
gt & k(4 +k)
Therefore, by integrating,

[oo]

5 . 5 (_l)k”‘/”2kr2k+n—ﬂ—1
g,(v) = S,H/ PPt dr — 273 Z/ dr
0 k=0 /0 k'F( + k)

5 L@ (_1)kl|vllzk52k+n—ﬂ
=S, / Pt dr - 2x> 4 dr.
0 = (2k+n—ﬁ)k'F( +k>

Differentiating yields

98,(V) _ av & k(_i)kll\/|lzk—252k+n—ﬂ
ov; k=1 2k +n— ﬁ)kq“( + k)
© Lkt ) 112K §2k+n+2—
" (= IVl p
= —4vl-77:2

= Ck+n+2- ﬁ)k!F(%z +k>

_ 15n+2—ﬂ )

S — > (-Lies)
l (n+2—ﬂ)r(ﬁ)k—o kA4
2) £

where

(n+2—ﬁ)r<"2ﬁ)

“ (2k+n+2—ﬁ)F<k+ %2)

Again, the series is a generalized hypergeometric series with coefficient ratio

k 4+ 2= ﬁ)
A1 _ (

a <k+n+4 ﬂ)(k+n+2>

In order to recognize the constant in front of the series, we rewrite

1 _
R __5n+2 ]
(n+2-pr(z2) <
therefore
Wi 2 n+2—-f n+2 n+4- ﬁ )
—_ . d =— F : , 5
/35(0) wll? S W) dw =5 2( 2 2 2 || II?
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To connect this to the operator M, we note that

(c?F)? W iy W i
_(/1*_”) _elvw dw ® _etvwdw
4 B;(0) llwll? B;(0) [lwll?

2
2- 4—
n+2-p n+2 n+ ﬂ__1||V||252) vV,

M(v)

—(4* = u) |F ; ) ;==
( M)12< ) D) 2 4

recovering the second formula in Proposition 3.

Funding This project is based upon work supported by the National Science Foundation under Grant No. 2108588.

References
1. Alali B, Albin N (2021) Fourier multipliers for nonlocal Laplace operators. Appl Anal 100(12):2526-2546
2. Alali B, Albin N (2020) Fourier spectral methods for nonlocal models. J Peridyn Nonlocal Model
2(3):317-335
3. DuQ, Yang J (2017) Fast and accurate implementation of Fourier spectral approximations of nonlocal
diffusion operators and its applications. J] Comput Phys 332:118-134
4. Jafarzadeh S, Wang L, Larios A, Bobaru F (2021) A fast convolution-based method for peridynamic
transient diffusion in arbitrary domains. Comput Methods Appl Mech Eng 375:113633
5. Slevinsky RM, Montanelli H, Du Q (2018) A spectral method for nonlocal diffusion operators on the
sphere. J Comput Phys 372:893-911
6. Jafarzadeh S, MousaviF, Larios A, Bobaru F (2022) A general and fast convolution-based method for peridy-
namics: applications to elasticity and brittle fracture. Comput Methods Appl Mech Eng 392:114666
7. Du Q, Yang J (2016) Asymptotically compatible Fourier spectral approximations of nonlocal Allen-
Cahn equations. SIAM J Numer Anal 54(3):1899-1919
8. Zhou K, Du Q (2010) Mathematical and numerical analysis of linear peridynamic models with nonlo-
cal boundary conditions. STAM J Numer Anal 48(5):1759-1780
9. Scott JM (2022) The fractional Lamé-Navier operator: appearances, properties and applications. arXiv
preprint arXiv:2204.12029
10.  Scott J (2020) Mathematical analysis of a nonlocal system of equations arising in peridynamics. PhD
thesis, The University of Tennessee
11. Silling SA (2010) Linearized theory of peridynamic states. J Elast 99(1):85-111
12.  Abramowitz M, Stegun IA (1972) Handbook of mathematical functions: with formulas, graphs, and

mathematical tables, vol. 55. Courier Corporation

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a
publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript
version of this article is solely governed by the terms of such publishing agreement and applicable law.

@ Springer


http://arxiv.org/abs/2204.12029

	Linear Peridynamics Fourier Multipliers and Eigenvalues
	Abstract
	1 Introduction
	2 Overview
	3 Fourier Multipliers
	3.1 Multipliers for the Nonlocal Laplacian
	3.2 Integral Representations for the Peridynamic Multipliers
	3.3 Peridynamic Multipliers: Structure and Hypergeometric Representations
	3.3.1 Hypergeometric Formulas
	3.3.2 Derivatives of the Scalar Multipliers
	3.3.3 The Tensor Multipliers: Hypergeometric Representations
	3.3.4 Eigenvalues of the Tensor Multipliers
	3.3.5 Integral Representations for the Eigenvalues of the Peridynamic Multipliers


	4 Eigenvalues of the Linear Peridynamic Operator
	5 Discussion
	Appendix. Alternative Derivations of the Hypergeometric Representations
	Formula for 
	Formula for 

	References


